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Abstract. In this paper, we consider a spatiotemporal growth model where a social

planner chooses the optimal location of economic activity across space by maximization

of a spatiotemporal utilitarian social welfare function. Space and time are continuous,

and capital law of motion is a parabolic partial differential diffusion equation. The

production function is AK. We generalize previous work by considering a continuum of

social welfare functions ranging from Benthamite to Millian functions. Using a dynamic

programming method in infinite dimension, we can identify a closed-form solution to

the induced HJB equation in infinite dimension and recover the optimal control for the

original spatiotemporal optimal control problem. Optimal stationary spatial distribu-

tions are also obtained analytically. We prove that the Benthamite case is the unique

case for which the optimal stationary detrended consumption spatial distribution is uni-

form. Interestingly enough, we also find that as the social welfare function gets closer to

the Millian case, the optimal spatiotemporal dynamics amplify the typical neoclassical

dilution population size effect, even in the long-run.
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1. Introduction

There is a growing interest in the economic literature in the role of space in decision-

making. While the economic analysis has incorporated the spatial dimension for quite a

long time (Von Thunen, 1826), it is the rise of the so-called New Economic Geography

(NEG) which did induce such a recent boom in this literature stream (see Krugman, 1998,

for an insightful review of the NEG, and Fujita and Thisse, 2002, for a master textbook

in this area). An overwhelming part of the latter stream has been concerned with the

identification and characterization of spatial externalities and the inherent agglomeration

mechanisms. Concretely, researchers in the area target either first nature causes for ag-

glomeration for given technology and demographic spatial distributions (Krugman, 1993)

or second nature causes through the identification of mechanisms (typically, economies of

scale or spillovers) leading to agglomeration for example when labor is mobile (Krugman,

1991). An overwhelming majority of this paper is purely static: individuals do not save

over time and therefore no capital accumulation is considered. Following an earlier con-

tributions in mathematical geography by Isard and Liossatos (1979), Brito (2004) is to

our knowledge the first who attempted to insert space in otherwise standard neoclassical

growth models, giving rise to a bunch of papers on optimal growth within spatiotemporal

frames (in particular, Boucekkine et al, 2009, 2013, 2019, and Fabbri, 2016).

This paper builds on Boucekkine et al. (2019). We focus on the problem faced by a

central planner who has to choose the optimal distribution of economic activity (say, in-

vestment and production) over space (here the unit circle for simplicity). We assume that

technology is homogenous across space, which amounts to assuming that technological

spillovers are quick enough for all the locations to use the same technology. In contrast,

as it is most of the time the case, individuals are harder to move. We do not justify such

an immobility but just assume it. In other words, the central planner can move capital

but not people. Accordingly, our problem investigates a first nature cause of (potential)

spatial externalities. Moreover, we generalize the social welfare function considered by

Boucekkine et al. (2019) by introducing a form of imperfect altruism in the social prefer-

ences. While only the Benthamite social welfare function is considered in the latter (that

is, the planner consider the sum of utilities of all the individuals present in the economy),
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we consider a continuum of social welfare functions ranging from the Benthamite to the

Millian form (i.e only the average consumer is considered). To our knowledge, this is the

first time this is done within a spatial setting. Clearly, this would allow to handle a set of

new population ethics and political economy issues, for example concerning regional par-

ticularism. Earlier papers using this continuum of social welfare functions in non-spatial

settings have been typically devoted to study the normative implications of 1984 Parfit’s

population ethics theory in different economic contexts (see Nerlove et al., 1985, Palivos

and Yip, 1993, and more recently, Boucekkine and Fabbri, 2013).

Importantly enough, the induced control problem to handle is infinite-dimensional as

capital spatiotemporal dynamics follow a parabolic PDE in the tradition opened by Isard

and Liossatos (1976). To solve it, we use a dynamic programming technique in infinite

dimension, partially based on the work of Bensoussan et al. (2007), first implemented

in economics by Fabbri and Gozzi (2008) in a different context. More precisely, we rely

on previous work by Boucekkine et al. (2019) in a similar context. Essentially because

the production function is assumed linear, it is possible to find a closed-form solution to

the induced HJB equation in the associated functional space, and to identify at the end

of the day the corresponding optimal spatiotemporal controls and dynamics. This paper

shows that this method is robust to a an additional nonlinear deviation.

The paper is organized as follows. Sections 2 to 5 give all the mathematical steps

needed to solve explicitly the optimal control problem. Section 6 describes the economic

application and apply the preceding mathematical theory. Section 7 displays some com-

plementary numerical exercises. Section 8 concludes.

2. The optimal control problem

Let (D,D, µ) be a countably generated measure space and let us consider the separable

Hilbert space H := L2(D,µ;R), with it its usual norm | · | and scalar product 〈·, ·〉. We

identify, by the usual Riesz identification, H with its topological dual. We shall identify

the elements of H, which are equivalence classes of functions coinciding µ−a.e., with (one

of) their representative functions. So, the pointwise relationship must be intended µ−a.e..
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We consider the positive and strictly positive orthants of H, i.e. the sets

H+ := {f ∈ H : f ≥ 0}, H++ := {f ∈ H : f > 0}.

Finally, we denote

H0
+ := H+ \ {f ≡ 0}.

In the following we set R+ := [0,+∞).

Given this setting, we are concerned with the following optimal control problem in

the space H. Let L : D(L) ⊆ H → H be a (possibly) unbounded linear operator and

let N : H → H a linear bounded operator. Given x0 ∈ H and a control function

c ∈ L1
loc(R+;H), we consider the following abstract state equation in H:

(1) x′(t) = Lx(t)−Nc(t), x(0) = x0.

We introduce the following assumption

Assumption 2.1. L is a closed and densely defined operator generating a C0-semigroup

in H.

We use the notaton etL for the semigroup generated by L and, according to Bensoussan

et al. (2007), we define the mild solution to (1) as the function

(2) x(t) := etLx0 −
∫ t

0

e(t−s)LNc(s)ds.

To stress the dependence of x on x0, c, we write xx0,c. (2) is also a weak solution to (1),

i.e.

(3) 〈x(t), ψ〉 = 〈x0, ψ〉+

∫ t

0

〈x(s), L∗ψ〉ds−
∫ t

0

〈Nc(s), ψ〉ds, ∀ψ ∈ D(L∗), ∀t ≥ 0,

where L∗ : D(L∗) ⊆ H → H denotes the adjoint of L.

Assumption 2.2. u : D × R+ → R+ is such that u(θ, ·) is a utility function for each

θ ∈ D — i.e. increasing and concave.

Next, given u : D × R+ → R+ as above u(θ, ·), we consider the functional

U(z) :=

∫
D

u(θ, z(θ))µ(dθ), z ∈ H+,
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and the functional on L1
loc(R+;H+)

(4) c 7→ J (x0; c) :=

∫ ∞
0

e−ρtU(c(t))dt,

where ρ > 0 is a given discount factor. Notice that both U and J (x0; ·) inherit from u

the concavity.

Remark 2.3. The choice of working only with nonnegative (or, equivalently, bounded from

below) utility function is done here just for the sake of brevity, in order to avoid technical

complications that would arise in treating the case of utility functions not bounded from

below. The latter case might be considered and treated as well at the price of technical

complications.

Assumptions 2.1–2.2 will be standing from now on.

Let ϕ ∈ H++. The aim is to maximize U when c ranges over

Aϕ++(x0) = {c ∈ L1
loc(R+;H+) : xx0,c(t) ∈ Hϕ

++ for a.e. t ≥ 0},

where Hϕ
++ is the open set

Hϕ
++ := {x ∈ H : 〈x, ϕ〉 > 0} ⊂ H.

Notice that H0
+ ⊂ Hϕ

++. Hence, if the semigroup etL preserves H0
+, i.e. it maps H0

+ into

itself, then Aϕ++(x0) is not empty when x0 ∈ H0
+, as the null control c ≡ 0 belongs to it.

Moreover, if also N is positivity preserving, we have the following monotonicity property:

c1 ≤ c2 =⇒ xx0,c1 ≥ xx0,c2 .

In particular

(5) c1 ≤ c2, c2 ∈ Aϕ++(x0) =⇒ c1 ∈ Aϕ++(x0).

So, given x0 ∈ Hϕ
++, we are interested in the following optimal control problem:

(Pϕ) Maximize J (x0; c) over the set Aϕ++(x0),

whose value function is

V ϕ(x0) := sup
c∈Aϕ++(x0)

J (x0; c).
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Note that we cannot say ex ante that V ϕ is finite. Sufficient conditions for finiteness will

be provided later.

Remark 2.4. Problem (Pϕ) is the most natural one from the mathematical point of view

when ϕ is chosen suitably, in the sense that it admits an explicit solution. However, we

anticipate that the meaningful problem from the economic point of view would be the (more

difficult) one:

(P+) Maximize J (x0; c) over the set A+(x0)

whose value function is

V+(x0) := sup
c∈A+(x0)

J (x0; c).

where

A+(x0) := {c ∈ L1
loc(R+;H+) : xx0,c(t) ∈ H0

+ for a.e. t ≥ 0}.

Note that H0
+ ⊂ Hϕ

++: hence, for x0 ∈ H0
+, A+(x0) ⊆ Aϕ++(x0) and, consequently

V ϕ(x0) ≥ V+(x0). Moreover, if ĉ ∈ Aϕ++(x0) is optimal for (Pϕ) and belongs to A+(x0),

then it is also clearly optimal for (P+). In the illustration of the results, we will just test

numerically, ex post, that the optimal control ĉ ∈ Aϕ++(x0) also belongs to A+(x0).

3. The HJB equation and the verification theorem

In this section we provide a verification theorem for the problem and, accordingly,

the solution in a special case. The results will be used in the next section to treat our

motivating economic application.

The Hamilton-Jacobi-Bellman (HJB) equation associated to the optimal control prob-

lem (Pϕ) is

(6) ρv(x) = 〈Lx,∇v(x)〉+H(∇v(x)), x ∈ Hϕ
++,

where

H(q) := sup
z∈H+

HCV (q; z), q ∈ H.

and

HCV (q; z) := U(z)− 〈Nz, q〉, z ∈ H+, q ∈ H.
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Notice that the above supremum may not be finite in general. A sufficient condition for

the finiteness is: U(z) ≤ C|z|α for some C > 0 and α ∈ (0, 1), N∗ preserving H++, and

q ∈ H++. These will be used later.

Definition 3.1. We call classical solution to (6) (on Hϕ
++) a function v ∈ C1(Hϕ

++;R)

such that ∇v ∈ C(Hϕ
++;D(L∗)) and such that1

ρv(x) = 〈x, L∗∇v(x)〉+H(∇v(x)), ∀x ∈ Hϕ
++.

Now we turn to state our Verification Theorem. Typically, to prove such theorem

for infinite horizon problems, a condition on the solution v computed on the admissible

trajectories when t → +∞ is needed. This is exactly the analogous of the so-called

transversality condition arising in the maximum principle approach. The condition that

we shall use is

(7) lim
t→+∞

e−ρtv(xx0,c(t)) = 0, ∀c ∈ Aϕ++(x0).

Theorem 3.2 (Verification). Let v be a classical solution to (6) in Hϕ
++, let x0 ∈ Hϕ

++

and let (7) hold. Then:

(i) v(x0) ≥ V ϕ(x0);

(ii) if, moreover, there exists ĉ ∈ Aϕ++(x0) such that (7) holds and

(8) N∗∇v(xx0,ĉ(s)) ∈ D+U(ĉ(s)) for a.e. s ≥ 0,

where D+U denotes the superdifferential of U , then v(x0) = V ϕ(x0) and ĉ is opti-

mal for (Pϕ) starting at x0, i.e. J (x0; ĉ) = V ϕ(x0).

Proof. (i) Let c ∈ Aϕ++(x0). By chain’s rule in infinite dimension, we have, for every t ≥ 0,

d

dt
[e−ρtv(xx0,c(t)))] = e−ρt

(
−ρv(xx0,c(t))+〈xx0,c(t), L∗∇v(xx0,c(t))〉−〈Nc(t),∇v(xx0,c(t))〉

)
.

1This equality, in particular, implies that H(∇v(x)) is finite for every x ∈ Hϕ
++.
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Now we add and subtract e−ρtU(c(t)) to the right hand side, use the fact that v solves

HJB, and integrate over [0, t]. We get, for every t ≥ 0,

e−ρtv(xx0,c(t)) +

∫ t

0

e−ρsU(c(s))ds =

v(x0) +

∫ t

0

e−ρs
(
−H(∇v(xx0,c(s)) +HCV (∇v(xx0,c(s); c(s))

)
ds,

Observe that, since U is concave (and hence sublinear from above), and c(·) ∈

L1
loc(R+;H+) then both sides of the above inequality are finite for every t ≥ 0. Now,

rearranging the terms and taking into account the definition of H, we get, for every t ≥ 0,

(9) v(x0) ≥ e−ρtv(xx0,c(t)) +

∫ t

0

e−ρsU(c(s))ds

— with equality if c = ĉ verifies (8) (equivalently, (11)) s-a.e. on [0, t]. Since U is

nonnegative (Assumption 2.2), by monotone convergence theorem w have then it must be

(10) lim
t→+∞

∫ t

0

e−ρsU(c(s))ds =

∫ ∞
0

e−ρsU(c(s))ds =: J (x0; c(·)).

Hence, passing (9) to the limt→+∞ and using (7), we conclude

v(x0) ≥ J (x0; c)

Then, by definition of V ϕ and since c ∈ Aϕ++(x0) was arbitrary, we immediately get the

claim.

(ii) Notice that, by concavity of U , (8) is equivalent to

(11) ĉ(s) ∈ argmaxz∈Hϕ
++
{U(z)− 〈Nz,∇v(xx0,ĉ(s))〉}, ∀s ≥ 0,

the usual closed loop condition for optimality. Hence, for c = ĉ we have equality in (9).

Hence, passing to the limt→+∞ and using (7) and (10), we get the equality

v(x0) = J (x0; ĉ)

Since J (x0; ĉ) ≤ V ϕ(x0), combining with part (i), the claim follows. �
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4. A solution of the HJB equation

In this section we further specify the model to deal with an explicit solution. We

consider the following assumption.

Assumption 4.1.

(i) There exists an eigenvector b0 ∈ H++ for L∗ : D(L∗) ⊆ H → H with eigenvalue

λ0 ∈ R. Without loss of generality we assume that |b0|H = 1.

(ii) ρ > λ0(1− γ).

(iii) [Nz](θ) = n(θ)z(θ), where n ∈ L∞(D,D, µ; (0,+∞)).

(iv) u(θ, ξ) =
ξ1−γ

1− γ
f(θ), where γ ∈ (0, 1) ∪ (1,∞) and f ∈ L∞(D,D, µ;R+).

(v)

∫
D

f(θ)
1
γ (n(θ)b0(θ))

γ−1
γ µ(dθ) <∞,

∫
D

(
f(θ)

n(θ)b0(θ)

)p/γ
µ(dθ) <∞.

Notice that Assumptions 4.1(iv) implies Assumption 2.2. Also notice that, in general,

b0 may be not unique. A sufficient condition for the uniqueness of b0 is that L∗ is a

diagonal operator with respect to a given orthonormal basis in H. This will be the case

in Section 6.

Proposition 4.2. Let Assumption 4.1 hold. Then

(12) v(x) = α
〈x, b0〉1−γ

1− γ
, x ∈ Hb0

++,

where

(13) α = γγ

(∫
D
f(θ)

1
γ (n(θ)b0(θ))

γ−1
γ µ(dθ)

ρ− λ0(1− γ)

)γ

is a classical solution to (6) on Hb0
++.

Proof. Notice first that U is Fréchet differentiable in Hb0
++ and

[∇U(z)](θ) = f(θ)z(θ)−γ, z ∈ Hb0
++.

Hence, by straightforward computations

H(q) =
γ

1− γ

∫
D

f(θ)
1
γ (n(θ)q(θ))

γ−1
γ µ(dθ), q ∈ H++,
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with optimizer

(14) ẑ(q)(θ) = argmaxz∈H+

{
U(z)− 〈Nz, q〉

}
=

(
f(θ)

n(θ)q(θ)

) 1
γ

.

Moreover

∇v(x) = α〈x, b0〉−γb0.

Plugging these expression into (6) and dividing all terms by 〈x, b0〉1−γ/(1− γ) we get the

following algebraic equation in α ∈ R

ρα = λ0(1− γ)α + γα
γ−1
γ

∫
D

f(θ)
1
γ (n(θ)b0(θ))

γ−1
γ µ(dθ),

which has a unique positive solution provided by (13). �

5. The solution of the control problem

In order to produce an optimal control starting at x0 ∈ Hb0
++, we study the closed loop

equation associated to the solution v and to the candidate optimal feedback map (14)

under Assumption 4.1:

(15) x′(t) = Lx(t)−NΦx(t), x(0) = x0,

where Φ : H → H is the bounded linear positive operator

(16) [Φz](θ) =

(
f(θ)

αn(θ)b0(θ)

) 1
γ

〈z, b0〉.

This linear equation admits a unique mild solution x̂, which is also a weak solution. In

particular, testing against b0 ∈ D(L∗) and taking into account the definition of α, it holds

d

dt
〈x̂(t), b0〉 = 〈x̂(t), L∗b0〉 − 〈NΦx̂(t), b0〉

=

(
λ0 − α−

1
γ

∫
D

f(θ)
1
γ (n(θ)b0(θ))

γ−1
γ µ(dθ)

)
〈x̂(t), b0〉.

Hence, taking int account the definition of α, providing

(17) α−
1
γ

∫
D

f(θ)
1
γ (n(θ)b0(θ))

γ−1
γ µ(dθ) =

ρ− λ0(1− γ)

γ
,

we get

d

dt
〈x̂(t), b0〉 = g 〈x̂(t), b0〉,
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i.e.

〈x̂(t), b0〉 = 〈x0, b0〉 egt, t ≥ 0,

where

(18) g :=
λ0 − ρ
γ

.

By Assumption 4.1(i), we get

(19) x̂(t) ∈ Hb0
++, ∀t ≥ 0.

Theorem 5.1. Let Assumption 4.1 hold, let x0 ∈ Hb0
++, and let v be the solution to (6)

given as in Proposition 4.2. The control

ĉ(t, θ) := [Φx̂(t)](θ) =

(
f(θ)

αn(θ)b0(θ)

) 1
γ

〈x0, b0〉egt,

belongs to Ab0++(x0) and is optimal for (P b0) starting at x0. Moreover, v(x0) = V (x0).

Proof. We want to apply Theorem 3.2. First, notice that, using the concept of weak

solution (3) with ψ = b0, we have

d

dt
〈xx0,c(t), b0〉 = λ0〈xx0,c(t), b0〉 − 〈Nc(s), b0〉 ∀c ∈ Ab0++(x0),

i.e.

〈xx0,c(t), b0〉 = 〈x0, b0〉eλ0t −
∫ t

0

eλ0(t−s)〈Nc(s), b0〉 ∀c ∈ Ab0++(x0).

Since both n and b0 are nonnegative (Assumption 4.1(i) and (iii)), we have

0 ≤ 〈xx0,c(t), b0〉 ≤ 〈x0, b0〉eλ0t ∀c ∈ Ab0++(x0).

Hence,

0 ≤ e−ρtv(xx0,c(t)) = αe−ρt
〈xx0,c(t), b0〉1−γ

1− γ
≤ α

1− γ
〈x0, b0〉e−(ρ−λ0(1−γ))t, ∀c ∈ Ab0++(x0).

Therefore, using Assumption 4.1(ii), we see that (7) hold. This allow to apply part (i) of

Theorem 3.2.

Let us now turn to part (ii) of Theorem 3.2, i.e. to prove the optimality of ĉ. By

construction xx0,ĉ = x̂. Hence, by (19) and Assumption 4.1(v), we obtain ĉ ∈ Ab0++(x0).

Moreover, again by construction, ĉ verifies the optimality condition (11). So, Theorem

3.2(ii) applies and the proof is complete.
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Assumption 5.2. L∗ : H → H admits an orthonormal basis of eigenvectors, i.e. there

exists an orthomormal basis {bn}n∈N of H such that

L∗bn = λnbn ∀n ∈ N.

Moreover,

(20) λk < g, ∀k ∈ N \ {0}.

Theorem 5.3. Let Assumption 4.1 and 5.2 hold, and let x0 ∈ Hb0
++. Then, setting

x̂g := e−gtx̂(t), we have the convergence in H

x̂g(t)→ 〈x0, b0〉
∞∑
k=0

qkbk, as t→∞,

where

q0 := 1, qk :=
ζk

λk − g
,

where

ζk :=

〈(
f(·)

αn(·)b0(·)

) 1
γ

, bk

〉
Moreover, the speed of convergence is exponential of order s := supk∈N\{0}{λk − g}.

Proof. The equation for x̂g is

(21) x̂′g(t) = (L− g)x̂g(t)−NΦx̂g(t).

Let x̂
(k)
g (t) = 〈x̂g(t), bk〉, so that, by Fourier series expansion

x̂(k)g (t) =
∞∑
k=0

x̂(k)g (t)bk.

From the fact that x̂g is also a weak solution to (21), we get the equations

d

dt
x̂(k)g (t) = (λk − g)x̂(k)g (t)− 〈x0, b0〉ζk, k ∈ N.

We already know that, by definition of g,

x̂(0)g (t) ≡ 〈x0, b0〉.
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For the others term, when k ∈ N \ {0}, we have

x̂(k)g (t) = 〈x0, bk〉e(λk−g)t + 〈x0, b0〉ζk
1− e(λk−g)t

λk − g
.

The claim follows by (20). �

6. The economic problem

We apply the results of the previous section to an economic problem by taking the

following specifications of the general framework above:

(a) D = S1 := {ξ ∈ R2 : |ξ| = 1} ∼= R/Z; S1 is topologically identified with [0, 2π] ⊂ R

when the extreme of the latter interval are identified; similarly, functions on S1 are

identified with 2π-perodic functions on R;

(b) µ = Hausdorff measure on the Borel σ-algebra of S1; i.e., through the identification

S1 ∼= R/Z, µ =Lebesgue measure on (0, 2π);

(c) L = σ d2

dθ2
+ A, where σ,A > 0 are constant; accordingly, the integration with respect

to this measure will be simply denoted by dθ;

(d) f(θ) = n(θ)β, with β ≥ 0.

In this case Assumption 2.1 is verified L = L∗ and this operator admits a spectral de-

composition on the separable Hilbert space L2(S1, dθ;R). Moreover, there is a doubly

indexed sequence of eigenvectors and eigenvalues of L = L∗ which is explicit. Indeed,

b0 = (2π)−1/21S1 , λ0 = A,

and

b
(1)
k (θ) = π−1/2 sin(kθ), b

(2)
k (θ) = π−1/2 cos(kθ), λk = A−σk2, ∀θ ∈ S1, ∀k ∈ N\{0}.

This formal frame fits quite well optimal growth models with AK production function,

one-dimensional geography and capital diffusion as in Boucekkine et al. (2013, 2019).

Indeed, calling K(t, ·) = x(t) according to the usual notation for capital in AK models,

formally the problem becomes:

V (K0) := sup
A(K0)

∫ ∞
0

e−ρt
(∫

S1

c(t, θ)1−γ

1− γ
n(θ)βdθ

)
dt,



14

where ρ > 0, γ ∈ (0, 1), β ≥ 0,

A(K0) :=
{
c ∈ L1

loc([0,+∞); L2(S1, dθ;R+)) :

K(t, θ) ≥ 0 and K(t, θ) 6≡ 0 for a.e. (t, θ) ∈ R+ × S1
}
,

under the state PDE-constraint

(22)


∂K

∂t
(t, θ) = σ

∂2K

∂θ2
(t, θ) + AK(t, θ)− n(θ)c(t, θ), (t, θ) ∈ R+ × S1,

K(0, θ) = K0(θ), θ ∈ S1,

A few comments on the economic problem are needed at this stage. First of all, let

us comment on the objective function,
∫∞
0
e−ρt

(∫
S1

c(t,θ)1−γ

1−γ n(θ)βdθ
)

dt, which is indeed

the social welfare function to be maximized by the central planner. This generalizes the

social welfare function adopted by Boucekkine et al. (2019), which is itself an extension

of Boucekkine et al. (2013). In the latter, n(θ) ≡ 1 and in the former β = 1. In

this case, the planner sums all the utilities of all the individuals in location θ at time t.

This corresponds to total utilitarianism or equivalently to the Benthamite case. When

β = 0, one gets average utilitarianism or the Millian social welfare function: the planner

do not consider all the individuals but only the average. In between, β ∈ (0 , 1), we

get a continuum of intermediate configurations, we shall refer to this case as imperfect

altruism: roughly speaking, as β increases, the planner takes more closely into account

the welfare of his population.2 Two other parameters of the social welfare functions are

interesting to comment briefly on. Parameter ρ may be interpreted as the time discounting

factor of the planner: the bigger ρ, the more weight will be given to the present (or to

the current generations) by the planner. More interestingly, parameter γ has a double

role in our spatiotemporal frame: it captures on one hand the cost of intertemporal

consumption substitution faced by individuals, as in the standard non-spatial settings,

but it also indicates the degree of aversion to inequality of the planner on the other. Thus

one has therefore to expect that as γ increases, the less unequal will be the consumption

distribution over space. We shall check this in the last section devoted to numerical

illustration.

2A natural extension is to consider that β is a function of θ, which is a direct way to model regional

or local particularism. We abstract away from this in this paper.
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Finally the state equation (22) gives the spatiotemporal dynamics of capital. σ ∂
2K
∂θ2

(t, θ)

is the diffusion term of the equation, it depicts the dynamics of capital through space with

σ > 0 the diffusion speed. The rest of terms are obvious. In particular n(θ)c(t, θ) is the

so-called dilution effect of demographic size on capital accumulation. Notice that in this

economy goods are produced and consumed locally, only capital moves cross locations (or

more precisely, capital is moved by the planner according to the PDE above in line with

Isard and Liossatos, 1979).

Next, assuming that

(A1)

∫
S1

n(θ)
β+γ−1
γ dθ <∞,

∫
S1

n(θ)
2(β−1)
γ dθ <∞,

(A2) ρ > A(1− γ),

all the assumptions of the previous sections are verified. By expliciting the result of

Theorem 5.1 with these specifications, we get the following.

Theorem 6.1. Let (A1)–(A2) hold and assume that the solution K̂ to the linear integro-

PDE

(23)
∂K

∂t
(t, θ) = σ

∂2K

∂θ2
(t, θ) +AK(t, θ)− α−1/γ(2π)−1/2

(∫
S1

K(t, θ)dθ

)
n(θ)

β+γ−1
γ , (t, θ) ∈ R+ × S1,

K(0, θ) = K0(θ), θ ∈ S1,

is such that K̂ ≥ 0 and K̂ 6= 0. Then

(i) the value function is explicitly given by

V (K0) =

(
γ

ρ− λ0(1− σ)

)γ (∫
S1

n(θ)
β+γ−1
γ dθ

)γ
(2π)−1/2

1− γ

(∫
S1

K0(θ)dθ)

)1−γ

;

(ii) the control

ĉ(t, θ) = α−1/γ(2π)−1/2
(∫

S1

K0(θ)dθ

)
n(θ)

β−1
γ egt,

where g := A−ρ
γ

is the optimal growth rate of the economy, is optimal and the corre-

sponding optimal capital is K̂;

(iii) if moreover, A− σ < g and

∞∑
k=1

(
(ζ

(1)
k )2 + (ζ

(2)
k )2

)
<∞,
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where

ζ
(2)
k :=

ρ− A(1− γ)

γ

(∫
S1

n(θ)
β+γ−1
γ dθ

)−1 ∫
S1

n(θ)
β−1
γ cos(kθ)dθ

ζ
(1)
k :=

ρ− A(1− γ)

γ

(∫
S1

n(θ)
β+γ−1
γ dθ

)−1 ∫
S1

n(θ)
β−1
γ sin(kθ)dθ

then the detrended optimal capital

K̂g(t, ·) := e−gtK̂(t, θ)

converges in L2(S1, dθ;R+) to the function

K̂∞g (θ) :=

(∫
S1

K0(θ)dθ

)(
1 +

∞∑
k=1

(
ζ
(1)
k sin(kθ) + ζ

(2)
k cos(kθ)

))
as e−(g−A+σ)t.

A few comments are in order here. Of course, since we are dealing with an AK model,

growth is endogenous and all variables grow at exponential rates. The growth rates are

not location-dependent. This is not surprising since technology (though parameter A)

is the same everywhere, and so are individual preferences. Second, as in Boucekkine

et al. (2019), we are able to identify the optimal stationary spatial distributions in

closed-form and the corresponding convergence speeds, which certainly speaks about the

flexibility of the analytical method developed. Third, and more importantly, β plays a

central role in the shape of these distributions, in particular for consumption per capita.

Indeed, this distribution is uniform if and only if the social welfare function is Benthamite

(β = 1). This is an important property which was not of course reachable in the previous

contributions to this area as they all rely on total utilitarianism. The next section goes

deeper into this question via numerical exploration.

7. Some numerical illustrations

We shall now explore numerically some of the salient properties of the optimal long-

term distributions theoretically uncovered above. We shall in particular, highlight the

implications of two key parameters: the aversion to inequality parameter γ, and the

altruism parameter β. To make the exposition more focused on the novelties brought by

our generalization of social welfare, we shall concentrate on consumption, which is the
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control variable and the sole measure of welfare in our model. It can be shown that just

as in Boucekkine et al. (2019), long-term total and per-capita capital, production and

investments are lower in the more populated areas. This has a simple explanation: to

guarantee a reasonable level of consumption to everybody, the planner needs to maintain

an higher level of aggregate consumption in more densely populated areas leading to

lower investment at the same locations. It follows that in this model where the optimal

spatiotemporal decisions are only driven by demographic heterogeneity across space, and

not by technology discrepancy, the key variable is consumption and the determinants

behind (notably, aversion to inequality and altruism).3

To start our numerical exercises, we need a benchmark (reasonable) calibration. Con-

cretely, we choose: ρ = 0.04, γ between 0.6 and 0.9, β between 0 and 1 and A = 0.08. The

value of ρ (the discount rate parameter) is chosen consistently with the data from Lopez

(2008). Parameter γ, also measuring the inverse of the intertemporal substitution with

the CRRA specification of preferences, can be calibrated using relative risk aversion con-

sistently with the values found in individual choice experiments (see for example Cubitt

et al., 2001 and Tversky and Kahneman, 1992). The value of A is set to generate long-

term growth rates of 4% to 6%, which are consistent with those observed in developing

countries (see e.g. World Bank Group, 2018). As to the exogenous density distribution,

we assume that we have a demographic center as depicted in Figure 1:

Because of the neoclassical dilution effect, the computed stationary distributions will

always deliver that optimal consumption per capita goes down with population size over

space except in the Benthamite case, which therefore features a case of egalitarianism.

More interesting insights can be gained from the numerical exercises.

The implications of the aversion to inequality parameter, γ. Here we fix the altruism

parameter β to 0, that is we stick to the Millian social welfare function. Needless to say,

since we are concerned with consumption per capital, the Benthamite case, β = 1, as

studied in Boucekkine et al. (2013, 2019) is irrelevant as by the theorem just above, this

3We could have followed Allen and Arkolakis (2014) and assume that the size of population drives

productivity at any location. In other words, we could have assumed population-based productivity

heterogeneity. We don’t to that to single out the pure population effect in our generalized context.
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Figure 1

is a case where consumption is uniform across space, independently of γ. Figure 2 delivers

the stationary distributions of consumption per capita detrended for γ = 0.6, 0.75, 0.9.

First, as γ increases, consumption is in average bigger. This is due to the fact that, as

outlined in the previous section, γ also measures the cost of intertemporal substitution in

consumption: when it’s high, savings and investment are lower and consumption is higher.

But in our spatiotemporal frame, γ also measures the planner’s aversion to inequality. One

can check that as γ rises, consumption distributions becomes less unequal. A rough and

quick verification is to compute the ratio between the periphery plateau consumption

value and its value at the trough of the distribution: it decreases steadily.4

The implications of the altruism parameter, β. Figure 3 reports the stationary spatial

distribution of detrended consumption capita. For this exercise, we fix γ = 0.8, and

we play on the the altruism parameter. Precisely, we compute the distributions for the

Benthamite (β = 1), Millian (β = 0) and an imperfect altruism (β = 0.5) cases. Not

surprisingly, the optimal stationary distribution of consumption per capita is uniform.

More interestingly, the Millian case (β = 0) delivers by far the largest spatial inequality

in consumption while imperfect altruism displays intermediate results from this point

of view. Indeed, the ratio between the periphery plateau consumption value and its

value at the trough of the distribution is larger than 2, which exceeds the ratio between

4In our calibrated example, this ratio move from 2.75 at γ = 0.6, to 1.85 when γ = 0.75 and finally it

is equal to 0.75 for γ = 0.9. Empirical standard deviations deliver the same ranking of course.
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Figure 2

the corresponding population sizes. That is to say at low enough values of the altruism

parameter β, the optimal spatiotemporal dynamics amplify the neoclassical dilution effect,

even in the long-run! Including this parameter into the analysis seems therefore highly

interesting from the normative point of view, and probably also from a more positive

perspective in contexts of regional particularism.

Figure 3

8. Conclusion

In this paper, we have generalized the social welfare function typically considered in the

recent literature on spatiotemporal growth with capital diffusion. Adapting the dynamic

programming method in infinite dimension used in Boucekkine et al. (2019), we have
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been able to solve in closed-form for the optimal controls and for the corresponding

spatial stationary distributions as well, either in the short or in the long-run. We have

found several interesting results. In particular, we prove that the Benthamite case is the

unique one for which the optimal stationary detrended consumption spatial distribution is

uniform. Interestingly enough, we also find that as the social welfare function gets closer

to the Millian case, the optimal spatiotemporal dynamics amplify the typical neoclassical

dilution population size effect, even in the long-run.

Further extensions with space-dependent altruism featuring regional particularism are

worth exploring. We could have also studied much more in detail the interplay between

altruism and aversion to inequality (that is between β and γ). We leave it for future work.
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