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Abstract
We analyze risk-taking regulation when financial institutions are linked through
shareholdings. We model regulation as an upper bound on institutions’ default probability,
and pin down the corresponding limits on risk-taking as a function of the shareholding
network. We show that these limits depend on an original centrality measure that
relies on the cross-shareholding network twice: (i) through a risk-sharing effect coming
from complementarities in risk-taking and (ii) through a resource effect that creates
heterogeneity among institutions. When risk is large, we find that the risk-sharing
effect relies on a simple centrality measure: the ratio between Bonacich and self-loop
centralities. More generally, we show that an increase in cross-shareholding increases
optimal risk-taking through the risk-sharing effect, but that resource effect can be
detrimental to some banks. We show how optimal risk-taking levels can be implemented
through cash or capital requirements, and analyze complementary interventions through
key-player analyses. We finally illustrate our model using real-world financial data and
discuss extensions toward including debt-network, correlated investment portfolios and
endogenous networks. (JEL: C72, D85)
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1. Introduction

Financial institutions are highly regulated, because of the liquidity risk1

inherent to their business, and because a default would cause important
externalities, for example in terms of confidence of clients toward the whole
financial system. One drawback of ex-post interventions, like bail-outs, is
that they can be costly and subject to moral hazard.2 This confers a key
role on ex ante regulation. Such prudential regulation constrains the amount
of risk each institution is allowed to take. During the 2007 financial crisis,
these rules however proved insufficient, notably because of the importance
of financial linkages – see for example the cases of Lehman Brothers and
AIG discussed in Glasserman and Young (2016). Indeed, whereas financial
contracts between institutions allow to share liquidity risk and diversify
investment portfolios, they can also trigger contagion, i.e. the spread of negative
shocks between institutions. This systemic risk, that arises through financial
networks, is currently only partially taken into account in financial regulation.
Regulators mostly relying on an indicator-based methodology, that sets up
higher requirements for systemic institutions (BCBS, 2013). In this paper, we
highlight the importance of the network structure of financial linkages, and
discuss a network-based methodology for prudential regulation.

More precisely, we analyze how financial linkages, in the form of
cross-shareholding, structure the risk exposure of each institution, and
how prudential regulation should account for it. Focusing on equity-type
contracts, that have been shown to be increasingly important among financial
institutions,3 allows us to focus on the first failure (rather than contagion),
which is crucial for prudential regulation. We build a simple model in which
each financial institution, financed through equity, held in part by the financial
sector, and external debt, has to allocate its fund between a risky and a risk-
free asset. Assuming that an extreme adverse event – in the form of a loss in
its risky asset – can hurt at most one institution,4 we pin down the optimal
level of risk-taking for each institution that allows the risk of default to remain
below a given threshold, set by the regulator.

Our results are threefold. First, we show that the limits of risk-taking
depend on an original centrality measure that relies on the cross-shareholding
network twice: (i) through a risk-sharing effect generated by complementarities

1. Liquidity risk refers to a temporary mismatch between asset and liability.

2. Moral hazard is at the root of the issue of “Too Big to Fail” financial institutions.

3. “Between 2000 and 2015 the number of banks with ownership in other banks doubled
in the United States. [...] Between 2011 and 2015 the total value of ownership of banks by
banks increased by 211 percent.” (Pollak and Guan, 2017)

4. We consider extreme risks of high magnitude and rare frequency, in the heart of current
financial regulation. Solvency II (the directive that harmonises EU insurance regulation) for
example calibrates prudential regulation on the notion of bicentenary events.
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in risky investments5 and (ii) through a resource effect, inherent to available
liabilities, and which is heterogeneous across institutions. Under large shock,
the risk-sharing effect is aligned with a simple centrality measure: the ratio
of Bonacich centrality over self-loop centrality. The resource effect makes the
analysis more complex, but we are able to show for specific structures, like the
star network,6 that more central banks are allowed to take more risk.

Second, turning to comparative statics, we show that an increase in
cross-shareholding increases optimal risk-taking through the risk-sharing effect
channel, but the resource effect can be detrimental to some banks. In our model,
cross-shareholding can increase either through integration (i.e. an increase
in the amount invested by each bank in the existing network) or through
diversification (i.e. new connections for a given amount of investment in the
network). Simulations on random graphs suggest that those two mechanisms
have very different effects. Whereas integration increases the average level of
risk-taking, diversification has no significant impact.

Third, we highlight how prudential regulation, through cash or capital
requirements, can implement the optimal levels of risk-taking, and discuss
complementary policy interventions through key player analyses. We identify
the institution whose equity injection leads to the highest global increase in
risky investment; and the one on which relaxing regulation has the highest
impact.

We finally bring this analysis to data using the indicators defining systemic
banks, in particular the “total holding of equity issued by other financial
institutions”. Our computations show that the network structure (which
governs how this total is shared) has significant effects both on the optimal
levels of risk-taking and on the label of the bank that complementary policies
should target.

Our analysis contributes to the fast-growing literature on financial network,
by endogeneizing risk-taking decisions and accounting for prudential regulation.
We analyze the impact of the financial network on the first failure, whereas the
literature mostly focuses on contagion.

The propagation of shocks – and the resulting default contagion – is
indeed at the heart of the literature on financial networks. One branch of the
literature uses epidemiologic approaches to study numerically how liquidity
shocks transmit in large networks (see Gai and Kapadia, 2019, for a recent
survey). It provides, through simulations, quantitative assessments on the effect
of network topology (in particular the average degree). Another branch of

5. The strategic complementarities between risk-taking levels stems from the risk structure
we model. When an institution is hit by a negative shock, the others necessarily don’t,
meaning that higher investment increases their value in that state of nature, enhancing the
value of the bank receiving the shock through cross-shareholding.

6. In a star network, all links involve a same agent; this agent is often called central and
other agents peripheral.
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the literature, more closely related to our work, seeks to analyze the effect
of network structure on transmission mechanisms analytically. Bringing the
seminal paper of Diamond and Dybvig (1983) to networks, Allen and Gale
(2000), Acemoglu et al. (2015) and Glasserman and Young (2016) analyze
the effect of financial networks on contagion, when banks are linked through
debt contacts. Liquidity shocks spread through unmet obligations (i.e. unpaid
debt) potentially causing default cascades. The effect of network density then
depends on the size of the initial liquidity shock Acemoglu et al. (2015) and
common exposures amplify contagion Glasserman and Young (2016). Focusing
on this last aspect, Cabrales et al. (2017) model financial linkages as investments
by banks in each other’s projects and analyze the optimal network structure
depending on projects’ riskiness.7 Elliott et al. (2014) consider additional
frictions through default costs in a model of linear cross-holdings and discuss the
effect of integration (stronger links) and diversification (more links).8 In all the
above papers, the initial risk faced by each bank is exogenous. We endogenize
it through investment choices by banks, what allows discussing how the initial
risk and the risk of first default depend on the network structure; and to tackle
prudential regulation.9

Prudential regulation, through cash or capital requirements, has been shown
a useful and powerful tool to deal with excessive risk-taking by banks and
reduce default risk (Hellmann et al., 2000; Decamps et al., 2004).10 It is
implemented by financial regulators since the early 1990s (through the 1988
Basel Accord or Basel 1) and has been made more complex thereafter to
take account for the specific natures of risk (market risk, liquidity risk and
operational risk for example). It allows dampening solvency risk, without
implying the social cost of bail-outs, and their induced effects – through moral
hazard – when anticipated (Freixas and Rochet, 2013). We provide the first
analysis of prudential financial regulation in networks, thus contributing to the
nascent literature on public intervention on financial networks. Elliott et al.
(2014) study the effect of reallocations of cross-holdings that leave the market
value of banks unchanged and find that it doesn’t allow avoiding the first failure.
When banks are connected through debt-contract and subject to liquidity
shocks, Leduc and Thurner (2017) study the effect of transaction-specific taxes

7. Our structure of risk with one large negative shock hurting one bank at time echoes the
one modeled by Cabrales et al. (2017).

8. Although links are modeled as shareholding, Elliott et al. (2014) view them as “debt
contracts around and below organizations’ failure thresholds” and assume that default costs
spread in the network.

9. Galeotti et al. (2016) model portfolio choice in a model of equity-holding in networks but
assume away default. Jackson and Pernoud (2019) discuss a situation with both risk-taking
and default but limit to simple examples with binary (and independent or fully correlated)
returns on the risky assets.

10. Cash requirements correspond to constraints on the asset side whereas capital
requirements lie on the liability side.
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and show that it can reduce contagion. Finally, Demange (2018) and Jackson
and Pernoud (2019) discuss the optimal ex-post intervention, through bailouts
or cash injection. We contribute to this network literature by analysing ex-ante
intervention aiming at limiting the risk-taking level of financial institutions.

The remainder of the paper is organized as follows. We introduce the model
of prudential regulation in financial networks in Section 2. We characterize the
optimal levels of risk-taking in Section 3 and discuss the impact of network
topology in Section 4. We analyze policy interventions and real-world network
in Section 5. We discuss various extensions in Section 6, and conclude in Section
7.

2. The model

2.1. The financial network

We consider a network of financial institutions (called banks in the following
for simplicity)11 potentially linked through cross-shareholding. In the core of
the paper, the cross-shareholding network is assumed to be exogenous and
debt-holding between institutions are regarded away. We discuss these issues
in Section 6.

We consider a two-period model in which every institution is liquidated after
risk realisation. At t = 0, each bank i ∈ I = {1, 2, · · · , n} is financed by debt (or
deposit) di, equity held by outside investors ei, and equity held by other banks
in the network: {pji}j∈I\{i}; where pji represents the amount invested by bank
j in bank i. Each bank shares this resource between investment in a risk-free
asset (with normalized return equal to 1): xi ≥ 0, investment in a bank-specific
risky asset: zi ∈ [0, di + ei +

∑
j 6=i pij ], and investment in the equity of other

banks in the network: {pij}j∈I . The balance sheet of bank i at t = 0 (i.e. before
realization of risk) can then be represented as in Figure 1:

A L

xi di
zi ei∑
j pij

∑
j pji

Figure 1. Balance sheet of bank i at t = 0.

This leads to the following accounting equation at t = 0:

xi + zi +
∑
j∈I

pij = di + ei +
∑
j∈I

pji (1)

11. The model can also fit with the settings of insurance companies or pension funds, for
example.
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Defining vector u = e + d + (PT − P)1 for convenience, we have z ∈ [0,u]
from the balance sheet equation (1) provided that u > 0, which will be ensured
under Assumption 1 thereafter.

At t = 1, risks are realized and banks are liquidated. Their values (if
any) are then distributed among their shareholders. We denote by aij =
pij/ (

∑
k pkj + ej) the share of the value of bank j held by bank i. Letting

ρ ≥ 1 represent the deterministic return on debt12 (or deposit) and µ̃i the
stochastic return on the risky asset of bank i, Figure 2 presents the balance
sheet of bank i for a given realization µi of the risky asset at t = 1, where the
equity value vi of bank i accounts for equity held both by the financial system
and by external investors:

A L

xi ρdi
µizi∑
j ajivj vi

Figure 2. Balance sheet of bank i at t = 1.

The equity value vi of bank i then writes:

vi = xi + µizi − ρdi +
∑
j 6=i

aijv
+
j (2)

where v+
j = vj if vj > 0 and 0 otherwise.13 In case vi < 0, all assets go to debt

repayment. Using the accounting equation (1) at t = 0, equation (2) becomes:

vi = (µi − 1)zi + ηi +
∑
j 6=i

aijv
+
j (3)

where ηi = ei − (ρ− 1)di +
∑
j∈I

pji −
∑
j∈I

pij .

Assumption 1. We assume ηi > 0 for all i, meaning that each bank remains
solvent when it doesn’t invest in risky asset (vi > 0 when zi = 0).

Assumption 1 guarantees that vector u is positive (this assumption
also guarantees that each bank invests a positive amount in risky asset at
equilibrium, when returns on risky assets are larger than unity). When the
network of cross-shareholding is balanced (

∑
pji =

∑
pij), Assumption 1 boils

12. Returns on debt are assumed to be homogeneous and independent from default risk.
As regulated banks will end up with the same default probability, this last assumption is
reasonable.

13. Note that the market value of bank i, i.e. the share of the value held by external equity
holders, is given by vi · ei/

(
ei +

∑
k∈I pki

)
.
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down to the condition ei > (ρ− 1)di for all i, meaning that one bank’s equity
is enough to finance the interest paid on debt. More generally, this assumption
also depends on

∑
pji−

∑
pij , that we will denote ”resource effect” thereafter,

and has to be of sufficiently low magnitude.

2.2. Equilibrium equity values

We introduce the following notations. Matrices are written in block and bold
letters, vectors in lower case and bold letter; 0,1 represent the vectors of
zeros and ones respectively; the upper script T stands for the transpose
operator. Numbers and entries of matrices are written in lower case. We let
I be the identity matrix of order-n, and J be the n-square matrix of ones.
Then, d = (di)i∈I is the vector of external debts, z = (zi)i∈I the profile of
investments in risky assets, e = (ei)i∈I the vector of equity held by outside
investors, P = (pij)i,j∈I2 the matrix of investment in equity among bank,
A = (aij)(i,j)∈I2 the corresponding matrix of shares and v = (vi)i∈I the vector
of bank’s equity value. We define hi = (µi− 1)zi + ηi and h = (hi)i∈I . Equation
(3) then simply writes:

vi = hi +
∑
j 6=i

aijv
+
j (4)

that is, in the absence of default (if vi ≥ 0 for all i):

v = Mh (5)

where M = (I−A)−1.14 The next Lemma – reminiscent of Eisenberg and Noe
(2001) – establishes uniqueness of values satisfying the system of equations (4)
∀i:

Lemma 1. For any financial network (d,e,P), any investment profile z ∈
[0,e + u], and any realization of risks (µi)i∈I , there is a single set of values v
solving system (4) for all i (with possible defaults).

Proof. See Appendix G.1 �

The proof of Lemma 1 rests on the complementarities between banks’
values, that would imply – in case of multiplicity – a minimum and a maximum
configurations solving the system. Now, the total equity invested in the financial
system is identical in both configurations, while the debt repayment would be
larger in the maximum configuration, due to a larger number of survivors. This
means there would be less wealth to distribute in the maximum configuration

14. The largest eigenvalue of any sharing matrix A is lower than unity (as the sum of every
column is lower than 1). Therefore, (I−A)−1 =

∑∞
q=0 A

q.
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than in the minimum configuration, which contradicts that values in the
maximum configuration are larger than that of the minimum configuration.
Hence, both configurations coincide, implying uniqueness.15

2.3. The structure of risk

As explained in the Introduction, we focus here on extreme and rare events,
likely to put one institution into financial distress. We therefore assume that
only one institution can be hurt by this large negative shock. We however allow
this shock to have a negative impact on other institutions’ risky investment (on
top of the effect going through cross-shareholding) for example through a fire-
sale mechanism.

With probability 1− q, the system is not stressed and the return on every
banks risky asset equals r > 1. However, with probability q, the financial system
is stressed: the return on the risky investment of all banks falls to r < r, and a
large negative shock hits a single bank at random (with uniform probability);
the bank hit by the shock suffers a stochastic loss s̃, defined on the non-negative
support [s0,+∞), s0 > r − 1 (leading to µi < 1), with cumulative function F
and an average value s.16 Formally, we assume that, for every bank i:

µ̃i =


r with probability 1− q
r with probability n−1

n q
r − s̃ with probability q

n

(6)

Assumption 2. Bank-specific risky assets have positive expected values:
E(µ̃i) > 1 ∀i, and only the bank hit by the negative shock potentially defaults:
r > 1.

Assumption 2 implies that investment in the risky assets is still worth it.

Assumption 3. Only the bank hit by the negative shock potentially defaults:
r > 1.

Together with Assumption 1, Assumption 3 guarantees that vi is
positive when i is not hit by the large negative shock, even in a stressed

15. Complementarity in values also allows to build a simple algorithm that pins down
the equilibrium set of surviving banks. Start with an initial set containing all banks with
positive constant hi, and compute their values in this initial setting. Then extend the set
by systematically testing neighbors as newcomers, and check whether each newcomer has a
positive value. If so, integrate it in the set of survivors. Such an algorithm is rather efficient
as once a newcomer is surviving given the current set of survivors, it never leaves the building
set of survivors. The set of survivors can then only be enlarged during the process.

16. This structure of risks echoes that of Cabrales et al. (2017) who model rare and
large shocks on gross return through: a deterministic return with fixed probability, and
two alternatives with either a small or a large shock.
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environment. Note that Assumption 3 renders asset diversification through
cross-shareholding rational.

2.4. Banks’ behavior and prudential regulation

Regarding away agency issues inside the bank, we assume that managers and
equity-holders objectives are aligned. Each bank then acts as risk-neutral and
maximizes its expected equity value E(vi).

17 The network of shareholding being
assumed exogenous in the main part of the paper, the bank’s behavior consists
in allocating its resources ui between the risk free asset and its specific risky
asset. Using equation (3), this comes to:

max
zi∈[0,ui]

(E(µ̃i)− 1)zi + ηi +
∑
j 6=i

aijv
+
j (7)

and by Assumptions 2 and 3, an unregulated bank optimally chooses to allocate
all its resources toward risky asset: z∗ui = ui ∀i (as E(µ̃i) > 1 banks’ objective
is increasing in zi). Note that hi < 0 as soon as µi < ρd/ui (in this case, the
survival of bank i depends upon the shareholding network).

Assume now that the regulator wishes to dampen this level of risk-taking
to alleviate the social cost of default (e.g. in terms of trust in the banking
system) and the cost of ex-post intervention (notably related to moral hazard
considerations). Consistently with the actual regulation, we assume that the
regulator sets a maximal acceptable probability of default common to all
banks.18 We discuss in section 5.1 how this objective can be achieved using
capital or cash (reserve) requirement, and in section 5.2 to what extend
a differentiated regulation by bank can help. Denoting by β the maximal
acceptable probability of default set by the regulator, the problem of regulated
banks is: ∀i

max
zi∈[0,ui]

E(ṽi) (8)

s.t. P(ṽi < 0) ≤ β

where ṽi = (µ̃i − 1)zi + ηi +
∑
j 6=i aijv

+
j .

As clear from the above program, the optimal investment chosen by each
bank then depends on the entire shareholding network A. We characterize in

17. Our analysis remains valid with risk averse banks, as soon as the default probability
resulting from their unregulated choice of risky investment is higher than the one generating
the maximum acceptable default probability for the regulator.

18. This assumption echoes the use of the notion of “Value-at-risk” by financial regulators
(e.g. in Basel 3 and Solvency 2). The Value-at-risk is defined by the Basel Committee on
Banking Supervision as “A measure of the worst expected loss on a portfolio of instruments
resulting from market movements over a given time horizon and a pre-defined confidence
level ”BCBS (2019). The maximal acceptable probability of defaults can here be understood
as the complement to the confidence level defined by the regulator.
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the next section these optimal levels of risk-taking and discuss in section 4 how
the network structure impacts them.

3. Optimal risk-taking

In this section, we solve the system of optimal risk-taking for regulated banks
and highlight that the shareholding network impacts it twice: (i) through a risk-
sharing effect stemming from complementarities in risk-taking decisions and (ii)
through a resource effect that creates heterogeneity among institutions.

3.1. Characterization

First, as noted above, the objective of bank i is increasing in its risk-taking
decision zi. For any interior solutions z∗i ∈ (0, ui)∀i, the optimal levels risk-
taking are therefore obtained through the system of binding constraints:

P(ṽi < 0) = β ∀i. (9)

Given the structure of risk and by Assumption 2, bank i’s value can only be
negative when it suffers the large negative shock on its asset, in which case
the values of the other banks are necessarily positive (and µj=r). Equation (9)
then becomes:

q

n
.P

(r − s̃− 1)z∗i + ηi +
∑
j 6=i

cij
[
(r − 1)z∗j + ηj

]
< 0

 = β ∀i (10)

with cij = mij/mii (recall here that M = (I−A)−1).

Now define t1−nβq
as the (1− nβ

q )th quantile of the distribution of s̃ and

` = r − t1−nβq ; ` can then be understood as the Value-at-Risk at level (1− β)

of each bank (see footnote 18). Equation (10) then writes:

(`− 1)z∗i + ηi +
∑
j 6=i

cij
[
(r − 1)z∗j + ηj

]
= 0 ∀i (11)

Assumption 4. Regulation is constraining, which corresponds to ` to lower
than 1. This amounts to a low enough value of β, the maximal acceptable
probability of default set by the regulator.19

From equation (11), the optimal level of risk-taking for on isolated bank
is z∗i = (ei − (ρ − 1)di)/(1 − `), and this risk-taking level is positive under

19. In the current regulation, β is set to 1% in the banking sector (Basel 2) and 0.5% in
the insurance industry (Solvency 2).
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Assumption 1 and Assumption 4. Moreover, under Assumption 4, equation (11)
reflects that optimal risk-taking decisions by bank are strategic complements:

z∗i −
∑
j 6=i

εcijz
∗
j =

ηi +
∑
j 6=i cijηj

1− `
(12)

with ε = (r − 1)/(1− `) > 0 under Assumption 4 and cij = mij/mii > 0.
This pattern of strategic complementarities stems from the structure of

risk.20 As only one bank – say bank i – suffers a negative shock, the other banks
in the network always provide support to bank i through cross-shareholding
links. The value received by bank i through its shares of other banks being
increasing in their own investment in risky asset (as r > 1 by Assumption 2),
the higher this investment the higher bank i’s investment in its risky asset, for
a given default probability.

The complementarities, together with the upper bounds on zis, guarantee
the existence of solution z∗ to the system of programs (8) ∀i. This solution is
characterized in the following theorem:

Theorem 1. The unique interior solution for the optimal levels of risk-taking
(that satisfy the system of programs (8) ∀i) writes:

z∗ = (I− εC)−1(I + C)n (13)

with n =
(
e−(ρ−1)d+(PT−P)1

1−`

)
> 0. Under Assumption 1, the general solution

writes z∗ = min
(
u, (I− εC)−1(I + C)n

)
.

Proof. Expression (13) is just the matrix form of the system of equations (12).
Uniqueness is guaranteed by n > 0 and ε > 0 (see Belhaj et al., 2014), a direct
implication from Assumption 1 and Assumption 4. �

Remark 1. Multiple shocks. Allowing for more than one shock makes the
network less useful to banks that suffer the shocks and thereby leads to more
restrictions on risk-taking. More precisely, there is strategic substitutability
between risk-taking levels of the two shocked banks, what can lead to multiple
equilibria. Appendix D characterizes optimal risk-taking when two banks can
be hit by a negative shock (of the same size) and gives an example leading to
multiple equilibria.

From now on we assume interior solutions. The interior solution z∗ defines
an original centrality measure that expresses banks’ optimal risk-taking level
as a function of their position in the (weighted) network of cross-shareholding

20. In Appendix E, we show that risk-taking decisions can become strategic substitute
when banks can invest in each others’ risky assets.
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A (recall here that cij = mij/mii and that M = (I−A)−1). In the following,
we focus on this solution, which is obtained when ` is high enough, that is
when the maximal acceptable probability of default β is low. We now analyze
the characteristics of the centrality measure z∗ as a function of the network
topology.

3.2. Network effects

As said earlier, equity-holdings impact optimal risk-taking twice: (i) through
the share-holding matrix via C, but also (ii) directly through the accounting
balance via (PT − P)1. This second effect comes from differences in the
resources that can be allocated toward the risky asset, when investments in
equities by banks don’t balance: ui = ei + di +

∑
j∈I pji −

∑
j∈I pij . The

quantity (PT − P)1 reflects the difference between the investment of other
banks in bank i’s equity and the investment of bank i in other banks’ equities.

Definition 1. The optimal risk taking levels z∗ can be decomposed into:

• a pure risk-sharing effect

z∗RS = (I− εC)−1(I + C)(e− (ρ− 1)d)/(1− `) (14)

• a resource effect

z∗RE = (I− εC)−1(I + C)(PT −P)1/(1− `) (15)

with z∗ = z∗RS + z∗RE; the latter effect being null for bank i when
∑
j pij =∑

j pji.

We start by analyzing the pure risk-sharing effect, before accounting for
the effect going through resources for specific network topologies. It is first
interesting to note that

lim
ε→0

z∗RS = (I + C)(e− (ρ− 1)d)/(1− `) (16)

In our setting ε→ 0 when |`| is large, that is when β is low, which corresponds
to situations a tight regulation. Recalling that cij = mij/mii and denoting
by bOi =

∑
jmij the out-ward Bonacich centrality of bank i in the cross-

shareholding network A, we the obtain the next proposition:

Proposition 1. When banks are homogeneous in terms of external financing
(ei = e and di = d ∀i) and when regulation is tight (ε→ 0), the pure risk-sharing
effect of optimal risk-taking (z∗RS) is proportional to

(I + C)1 =

(
bOi
mii

)
i∈I

(17)
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that is, to the ratio of out-ward Bonacich centrality over self-loop centrality in
cross-shareholding network A.

Bonacich centrality aggregates the share of other banks’ values got by a
bank (bOi =

∑
jmij and M =

∑∞
q=0 Aq). Banks with higher Bonacich centrality

receive more from others through the shareholding network and can therefore
take more risk (for a given probability of default). Now, the network may also
make a bank more exposed to its own value, and therefore to its own level
of risk-taking, through self-loop (mii). Banks with higher self-loop centrality
then suffer more from a shock on their risky asset and can therefore take less
risk (for a given probability of default). Proposition 1 states that, under tight
regulation, the pure risk-sharing effect results from a trade-off between these
two effects.

More generally, the above discussion questions the effect of the size of
shareholdings on optimal risk-taking. The next Lemma helps understanding the
part that goes through the pure risk-sharing effect (that is when we abstract
from the effect of the shareholding matrix on banks’ resources).

Lemma 2. If A′ ≤ A, then C′ ≤ C.

Proof. See Appendix G.2 �

The proof of Lemma 2 relies on the path-product property of inverse
M-matrices.21 Focusing on interior solutions, the matrix (I − εC)−1 is not
explosive and an increase in C implies an increase in z. Increasing shareholding
has an ambiguous effect a priori as (i) it propagates the negative shock on
one bank’s asset to the whole network, but (ii) it propagates the (necessarily
positive) value of other banks to the bank hit by the negative shock. The
next proposition shows that the second effect dominates when we regard away
resource effects:

Proposition 2. The pure risk-sharing effect of optimal risk-taking z∗RS

increases when cross-shareholding increases.

Note that any change of the cross-shareholding matrix A potentially
generates a resource effect. To address this effect, we study two types of
modification of matrix A: integration and diversification. By integration we
mean that matrix A increases through an increase in the investment of one
bank in the equity of some among its existing “neighbors”; by diversification
we mean new connections, that is investments in the equity of a new bank. To

21. An M-matrix is a n-by-n matrix with nonpositive off-diagonal entries and has an
entry-wise nonnegative inverse, as (I−A) in our case. M = (I−A)−1 is then an inverse
M-matrix.
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analyze these various channels, we will model a binary graph G that supports
the network of cross-investment in equity P: pij > 0⇔ gij = 0. This allows us
to analyze optimal risk-taking for particular network topologies and to analyze
integration and diversification.

4. Network topology and optimal risk-taking

As explained above, to isolate the effect of network topology, we now assume
that banks’ balance sheets are identical except for cross-shareholding (ei = e
and di = d ∀i) and introduce a binary network G supporting cross-investment
in equities. We moreover denote by δOi = (G1)i and δIi = (GT1)i the out- and
in-degree of bank i in this network. To relate G with investment in equities
between banks, we analyze two specific structures.

• Either pij = p · gij : the investment of each bank in another bank is fixed,
with a ticket of size p. We then refer to fixed participation and

aij =
1

δIj + e
p

· gij (18)

In this case, the resource effect is null (PT = P and z∗ = z∗RS) as soon as
δOi = δIi ∀i, that is when the number of banks in which one bank invests is
equal to the number of banks that invest in it. This case not only covers all
undirected graph (for which GT = G), but also a class of directed graphs,
as those presented in Figure 3.

Figure 3. Example of graphs in which, for all nodes, in-degree equals out-degree

• Or pij = (p · gij)/δOi : the total investment of each bank in the network is
fixed to p and equally shared among the banks it invests in. We then refer
to fixed investment and

aij =
1/δOi

ϕIOj + e
p

· gij (19)

where ϕIOj =
∑
k∈I 1/δOk · gkj represents the sum of inverse out-degrees of

in-neighbors (“IO” stands for In-neighbor Out-degree). In this case, the
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resource effect is null (PT = P and z∗ = z∗RS) when GT1 = G1 = δ1; that
is when all banks invest in the same number of banks (δOi = δ ∀i), which
is also the number of banks that invest in each (δIi = δ ∀i).

It is worth noticing here that optimal risk-taking levels can be differentiated
even on regular undirected structures and without resource effect (that are
graphs on which links are reciprocated GT = G and where agents have the same
number of links G1 = δ). For example, on the structure represented in the left
panel of Figure 4, the optimal risk-taking of agent 1 (z∗1) is higher than the one
of agent 2 (z∗2) in any configuration with ei = e and di = d ∀i. This is due to the
fact that agent 2 has a higher self-loop centrality than agent 1: m22 > m11 (by
construction all nodes have the same Bonacich centrality on regular undirected
networks). To obtain homogeneous risk-taking, the key is having a matrix M
with homogeneous diagonal entries. In Appendix A, we illustrate how this latter
property entails that optimal risk-taking is independent of network position on
the subclass of Directed Strongly Regular Graphs (called DSGRs thereafter) –
both for fixed participation and fixed investment. In DSRGs, on top of having
the same degree, all linked nodes have the same number of common friends, and
all pairs of unlinked nodes also have the same number of common friends; The
right panel of Figure 4 is a example of an undirected strongly regular graph.
For DSRGs, we are able to show that the level of optimal risk-taking, identical
for all banks, is increasing in the ratio of out-ward Bonacich centrality over
self-loop centrality, this ratio being also the same for all banks.

Figure 4. A regular (left panel) and a strongly regular (right panel) graph with eight
agents

The specification of a relationship between cross-shareholding (A) and the
supporting binary graph (G) allows us (i) to analyze what happens when
investments in other banks (p) are small (in Section 4.1), (ii) to fully determine
optimal risk-taking on particular structures (in Section 4.2) and (iii) to further
analyze the effect of integration and diversification (in Section 4.3)
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4.1. Asymptotic results

We consider low levels of cross-shareholding, by studying the case where p
is close to 0. This corresponds to low investment in each bank in the fixed
participation case and to low total investment in the fixed investment case. In
both cases, from equations (18) and (19), we get A = p/eG + o(p) and therefore
M = I + p/eG + o(p). This allows us to state the following result that highlights
again the importance of centrality and the role of resource effects.

Remark 2. When cross-shareholding is low (p close to 0), optimal risk-taking
levels are approximated by

z∗i =
1

1− `

(
η + η(1 + ε)

p

e
δOi + p(δIi − δOi )

)
+ o(p) (20)

in the fixed participation case, and by

z∗i =
1

1− `

(
η + η(1 + ε)

p

e
+ p.(ϕIOi − 1)

)
+ o(p) (21)

in the fixed participation case where η = e− (ρ− 1)d.

It is salient from Result 2 that in the fixed participation case, risk-taking
is increasing in in-degree (that is in the number of banks that invest in a given
bank) but not necessarily in out-degree (that is the number of banks in which a
given bank invests). This last result is fully driven by the resource effect. Indeed,
in absence of resource effect, δIi = δOi and z∗i is increasing in out-degree.

Regarding the fixed investment case, we obtain from equation (21) that the
banks allowed to take more risk are those that receive investment from a large
number of banks that themselves invest in few others (that is banks with a large
number of in-neighbors with low out-degrees). For example, it can correspond
to the case of core banks in core-periphery structures,22 that have been shown
to represent pretty well real financial networks, both in terms of inter-bank
lending (see e.g. Craig and von Peter, 2014) and of cross-shareholding (Rotundo
and D’Arcangelis, 2014). In the following section, we analyze the case of the
simplest core-periphery networks, that are star networks.

4.2. Star networks

We focus on Complete Core-Periphery networks. In such structures, banks in
the core are linked to all banks, and there is no link between any pair of
peripheral banks. On these networks, it is not obvious that the ratio of Bonacich

22. Core-periphery networks are networks in which highly interconnected nodes – called
the core – coexist with nodes loosely connected (both to the core and between them) –
called the periphery
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centrality over self-loop centrality is favorable to central agents. For instance,
in the undirected four-star network, this ratio can be favorable to peripheral
agents under sufficiently high values of interaction.23

Still, the next proposition highlights that our model induces a specific
interaction pattern through the definition of cross-shareholding (base of cross-
investment), that leads to a higher ratio bi/mii for the center of stars. This
leads to more risk-taking for the center in the fixed participation case, in which
resource effects are absent.

Proposition 3. Consider an undirected star network with n banks (GT = G)
and the case of fixed participation (pij = p · gij). The optimal risk-taking of the
center is higher than that the one of peripheral banks.

Proof. See Appendix G.3 �

The proof rests on the asymmetry of matrix A and its specification. We
first prove that the ratio bOi /mii is larger for the center as compared to
any peripheral bank. By Proposition 1, this statement proves the result for
sufficiently large negative shocks. We then extend the proof to arbitrary values
of ε by using the ranking of centrality in an argument by induction.

The above proposition is limited to the case of fixed participation, in
which there are no resource effects when the network is undirected. This result
still holds in fixed investment case, for which resource effects exist even on
undirected graph.

Proposition 4. Consider an undirected star network with n banks (GT = G)
and the case of fixed investment (pij = p · gij/δi). The optimal risk-taking of
the center is higher than that the one of peripheral banks.

Proof. See Appendix G.3 �

This result can be deduced from the preceding proposition because, in star
networks with fixed investment, the resource effect is also in favor of the center.
Indeed, the center receives (n− 1) · p through the shareholding network (when
it invests p) whereas a periphery bank only receives p/(n− 1) from the center
(when it invests p).

23. Let ∆ = 0.44, G the adjacency matrix of the 4-player star network where agent 1 is the
central agent, M = (I−∆G)−1 and b = M1. Then b1/m11 = 2.32 whereas bj/mjj = 2.35
for j 6= 1.
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4.3. Comparative statics

More generally, using a binary graph to support the shareholding network
allows us to analyse the comparative statics obtained in Section 3 into
details. Proposition 2 states that an increase in the cross-shareholding matrix
A increases the pure risk-sharing effect (z∗RS). We analyze now various
mechanisms that can alter A and their full impact accounting for resource
effects.

Through the specification of the relationship between investment in cross-
shareholding and the supporting graph, we are able to fully disentangle
the effect of integration (stronger links) and diversification (more links).24

Integration corresponds to an increase in p in the fixed participation case;
whereas the pure diversification effect can be obtained by adding a new link in
the fixed investment case, holding constant the total investment of each bank
in the network.

We start by considering integration. First, as the resource effect is null for all
banks in the case of full participation when the graph is undirected (GT = G),
a direct corollary of Proposition 2 is:

Corollary 1. Integration (an increase in p in the fixed participation case)
increases optimal risk-taking when the network is undirected.

The result however doesn’t extend to directed network, that is when
shareholding links are not reciprocated. As shown in Appendix B, integration
can then decrease the contribution of resource effects to total optimal risk-
taking (1T z∗RE) in directed networks as the one presented in Figure 5.

Figure 5. An directed network with 4 banks

To further explore the effect of integration, and study whether this (possibly
negative) resource effect can outweigh the positive risk-sharing effect, we rely on

24. We use here the same nomenclature as Elliott et al. (2014).
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simulations on random graphs. Following Elliott et al. (2014), we first generate
random graphs through the Erdös-Renyi procedure: for a fixed average out-
degree δ ∈ {1, · · · , n− 1}, each (directed) link is created with a probability of
δ/(n− 1). We alternatively generate random networks with power law degree
distributions, using a Barabasi-Albert like procedure (that follows a preferential
attachment mechanism). More precisely, we rely on the following procedure:

1. Node 2 is attached to node 1 with probability 1. This gives G2 as the empty
matrix plus the bilateral link 21 (g12 = g21 = 1).

2. For node t = 3, 4, · · · , n, the probability to be linked with nodes j =
1, 2, · · · , t− 1 is equal to

Ptj(τ) =
τ

n− 1
·

δ
(t−1)
j∑t−1

k=1 δ
(t−1)
k

(22)

where degrees are defined over the network Gt−1 (i.e. δ(t−1) = Gt−11)
defined as Gt = Gt−1 plus the set of links created at period t. Parameter
τ > 0 controls for the average density of the network. To model directed
networks, we randomly draw the direction on the link, once one in created.

In the following, we present the results for those two procedures. We
calibrate our simulations with n= 20, ρ= 1.01, r = 1.01, `= 0.85, d= 1500 and
e = 100 (the two last parameters are consistent with the data we use in Section
5.3).25 Figure 6 depicts the effect of integration on average optimal risk-taking.
With the above parameters set, and the two forms of random networks, we draw
1, 000 networks for each value of p in the fixed participation case (pij = p · gij),
and plot the average optimal risk-taking among banks and among runs. Figure
6 presents the results for an average degree δ = 5 in the Erdös-Renyi procedure
and an average density τ = δ · n = 100 in the Barabasi-Albert procedure.26

Figure 6 highlights several features of our model. First, it illustrates that the
cross-shareholding network has significant effects on average risk-taking. In our
parameters set, average z∗i can increase by more that 50% with respect to the
case of isolated banks. Second, it shows that the positive risk-sharing effect of
integration dominates on average the resource effect for random graphs, leading
to an increase in average risk-taking. Third, it confirms that heterogeneity in
network positions (which is higher in the Barabasi-Albert) tends to decrease
average risk-taking through resource effects, and soften the effect of integration
(this mechanism is also highlighted in Appendix B about the network presented
in Figure 5).

We now turn to the study of diversification. As explained above, diversifying
means distributing the same resource over a larger number of banks,

25. The maximum acceptable probability of default β is obtained for a depreciation on
ones risk asset of 15%.

26. The average number of links in then the same under the two procedures.
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Figure 6. The effect of integration on average optimal risk-taking

what necessarily conveys important resource effects. Formally, there is more
diversification in P than in P′ whenever (i) for all (i, j): p′ij > 0, pij ≤ p′ij ,
and (ii) there exists (i, j): pij > p′ij = 0 (Elliott et al., 2014). To rigorously
disentangle diversification from integration, we focus on P and P′ such that
P1 = P′1 by analyzing the effect of new links in the fixed investment case. In
this case, a new directed link from i to j shifts away resources from all bank
i’s neighbors and increases resources of bank j. Furthermore, this lowers all
cross-holding shares already invested in bank j.

Figure 7 presents the results of simulations on random graphs. As above, we
use both Erdös-Renyi and Barabasi-Albert procedures (to draw 1, 000 network
per parameters set), and plot the effect of diversification on the average optimal
risk-taking. We keep the same set of parameters: n = 20, ρ = 1.01, r = 1.01,
` = 0.85, d = 1500, e = 100 and set p = 50 as the fixed investment of each bank
in the network. We analyse values of δ from 7 to 20 (and corresponding values
of τ = δ · n). Below δ = 7, some banks can have no out-neighbour, in which
case a new link also entails an integration effect (

∑
j pij increasing from 0 to

p).
Figure 7 highlights that pure diversification has no significant effect on

average risk-taking. The above mentioned effects therefore cancel each other.
Moreover, as in the case for integration, the higher heterogeneity in degrees
and thus in resources effects in the case of Barabasi-Albert graphs tends to
lower average optimal risk-sharing. The absence of pure diversification effect on
average in confirmed by a deeper analysis of the effect of link addition on given
network structure. More precisely, we performed complementary simulations
in which, starting from a random network, we add randomly one link per
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Figure 7. The effect of diversification on average optimal risk-taking

bank, and find no significant effect on the average risk-taking (for the above
parameters and average degree from 5 to 20, the effect on the average risk-
taking is always lower than 0.1 percent).

Taken together, Figure 6 and 7 suggest that integration and diversification
have differentiated impacts on optimal risk-taking. This echoes the findings of
Elliott et al. (2014), although we find here that pure diversification have no
significant effect.27 This absence of significant effect on average can still hide
significant changes at the bank level. We analyze this on real data in the next
section. This will also allow us to introduce heterogeneity in banks’ balance
sheets.

Before turning to this real-data analysis, we first discuss how policy
interventions can implement and adjust optimal risk-taking.

5. Policy interventions

5.1. Prudential requirements

We study how a financial regulator can implement optimal risk-taking levels
using prudential requirements. Equation (13), characterizing optimal risk-
taking, defines a relationship between one bank’s initial asset (at t= 0, through
zi) and its liability (through ei and di):

z∗ = (I− εC)−1(I + C)
(
e− (ρ− 1)d + (PT −P)1

)
/(1− `) (23)

27. Elliott et al. (2014) find (different) non-linear effects of integration and diversification
on contagion, but don’t separate pure diversification from integration as we do here using a
fixed investment framework.
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It can therefore be implemented by the regulator either by constraining the
asset side ex-ante, or by constraining the liability side.

Regarding the latter, equation (23) can also be written to express equity
e as a function of z (and the other parameters). It then specifies the minimal
level of equity ei a bank should have to be allowed to invest zi in its risky
asset (see equation (G.29) in the Appendix). The optimal levels of risk-taking
can then be achieved by setting capital requirements (that are lower bounds on
the level of external equity) that depend on risk-exposure z, debt d, and the
shareholding network P.

Regarding the asset side, the accounting equation at t = 0: x + z = u (see
equation (1)) allows to relate optimal risk-taking with cash (or risk-free asset)
holdings at t = 0. Therefore, the optimal levels of risk-taking can be achieved
by setting cash (or reserve) requirements, that are lower bounds on the level
of investment in risk-free asset, that depend on the levels of equity e, debt d,
and the shareholding network P.28

5.2. Complementary policies

Prudential requirements or bounds on risk-taking are costly in terms of the net
value created by the banking sector (assuming E(µ̃) > 1). One can therefore
wonder whether targeted interventions on some particular banks can be useful
to decrease requirements on others, keeping probabilities of default constant.
We analyze two such interventions: equity injection, and tighter regulation on
one bank.

We first analyze the effect of equity injection in one given bank on the sum
of investments in risky assets. In other words, we study here how cash injection
by the regulator in the liability side of the balance sheet can affect prudential
regulation on the asset side. To simplify, suppose that the regulator can choose
only one bank in which to inject equity with the objective of maximizing
aggregate investment in risky asset, for a given probability of default β. The
next proposition defines the bank it should target. Defining matrix W such that
wii = mii and wij = −εmij for all i, j, and vector wS = W−11 = (wSi )i∈I , we
obtain:

Proposition 5. The bank whose equity injection has the highest effect on
total investment in risky assets (

∑
i z
∗
i ) is the one with the highest index miiw

S
i .

Proof. See Appendix G.4 �

Proposition 5 allows to determine the optimal bank to inject equity based
on network properties and relative magnitude of the negative shock (through

28. Note that, in a richer model, these requirements could also be used to deal with other
issues such as liquidity risk or monetary policy.
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parameter ε) only, even with heterogeneous financing ei and di. We analyze how
this targeted bank can change depending on the network in the next section.

We now analyze the pendant of this intervention on the asset side. Given
that reduced risk-taking entails a lower need of external equities, and given the
network of financial interdependencies, our aim is to determine the impact of a
decrease in one bank’s risk-taking level on the sum of external equities required
to balancing regulation. The next proposition defines the bank whose decrease
in risk taking entails the largest reduction in the need of total external equities.
Denoting the share of bank i held by external shareholders by ēi = ei∑

j pji+ei
,

we find:

Proposition 6. The bank whose decrease in risky investment has the highest
effect on total need of external assets (

∑
i ei) is the one with the highest index

miiēi.

Proof. See Appendix G.5 �

Proposition 6 states that the choice of the targeted bank depends both on
network effects through self-loop centrality mii (recall here that banks with
higher mii are the those more exposed to their risky asset through loops in
the network of shareholding) and on the structure of equity. This choice trades
off bank’s risk exposure through the network and the cost of its risk-taking in
terms of external equity.

We now turn to real-data analysis to highlight the importance of the
network structure both in the design of optimal risk-taking (and thus of
optimal prudential regulation), and in the determination of the banks the two
complementary interventions presented just above should target.

5.3. Real world networks

To build networks of cross-shareholding between real financial institutions,
we rely on banks’ annual financial reports (for the size of their liability)
and on indicators they report to the financial regulator regarding their
”interconnectedness” (for the size of investments in other institutions’ equity).

More precisely, we focus on the set of banks defined as “global systemically
important” by the Financial Stability Board (FSB) in 2019,29 for which
regulatory data are available through the Federal Financial Institutions
Examination Council (FFIEC)30 or the European Banking Authority (EBA)

29. see https://www.fsb.org/wp-content/uploads/P221119-1.pdf.

30. see https://www.ffiec.gov/npw/FinancialReport/FRY15Reports.

https://www.fsb.org/wp-content/uploads/P221119-1.pdf
https://www.ffiec.gov/npw/FinancialReport/FRY15Reports
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database.31 We end up with a set of 20 banks32 rated by the FSB in
four regulatory buckets, where higher buckets correspond to higher capital
requirements. For these 20 banks we retrieve data on stockholders’ equity
(ei +

∑
j pij) and total liabilities (or total asset) from their annual report of

2018. This allows us to compute di as the difference between total asset liability
and stockholders’ equity. We use data from financial regulators (FFIEC and
EBA) on “Holdings of securities issued by other financial institutions: Equity
securities” (RISK-M356 for the FFIEC and GSIB-1040 for the EBA) to retrieve
the quantity

∑
j pij . Then, we rely on assumptions on the graph structure to

allocate it among other banks (assuming that all of these investments go into
our set of systemic banks). This calibration aims at illustrating the impact of
bank heterogeneity rather than to literally describe the financial network.

In this database, equity (ei +
∑
j pij) represents about 8% of the balance

sheet on average, and investment in other institutions’ equity (
∑
j pij) less than

1% of asset.33 In the following, we show that the form of the graph supporting
cross-shareholding still significantly impacts optimal risk-taking levels, and the
identity of the bank optimally targeted by our complementary interventions.
To do so, we calibrate ρ = 1.01, r = 1.01 and ` = 0.85 (as in Section 4.3).

We first compare optimal risk-taking in two specific structures for graph G:
the complete graph and the star, with undirected links (GT = G). Bilateral
investments pij are therefore equal to

∑
j pij/δi. We obtain the following

findings. First, on the complete graph, optimal risk-taking equals 44.8% of
bank’s assets on average, with a standard deviation of 21.2% (differences
between banks then mostly come from the heterogeneity in the composition of
their liabilities, between debt and equity). Second, differences between optimal
risk-taking on the complete graph and optimal risk-taking by each bank when it
is at the center of the star appear fairly small. On average, risk-taking decreases
by 1.5% when one bank is at the center of the star with respect to its level in
the complete graph. This finding can be related to our result on diversification:
adding links between peripheral banks in the star doesn’t significantly change
the optimal risk-taking level of the center. Still, when a bank is at the periphery
of the star, the identity of the center is relevant. Indeed, the optimal risk-
taking of a peripheral bank varies by 7% on average between its highest value
and its lowest value depending on the identity of the center. This figure even

31. see https://eba.europa.eu/risk-analysis-and-data/global-systemically-important-
institutions.

32. Bank of America, Bank of New York Mellon, Barclays, BNP Paribas, Citigroup, Groupe
Crédit Agricole, Deutsche Bank, Goldman Sachs, Groupe BPCE, HSBC, ING Bank, JP
Morgan Chase, Morgan Stanley, Santander, Société Générale, Standard Chartered, State
Street, UBS, UniCredit and Wells Fargo

33. Holdings of debt securities issued by other financial institutions, that can also be
retrieved on regulators’ databases, represent about the same proportion as equity securities
on average.

https://eba.europa.eu/risk-analysis-and-data/global-systemically-important-institutions
https://eba.europa.eu/risk-analysis-and-data/global-systemically-important-institutions
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exceeds 20% for three banks: Goldman Sachs, Morgan Stanley and Société
Générale.34 This finding illustrates that the detailed structure of the graph can
have substantial effects on individual optimal risk-taking. Therefore, current
regulation, that relies on total investment in the equity of other banks (

∑
j pij)

only, can be improved using detailed network data.
We finally use these data to illustrate how the network structure impacts

the identity of the banks the policy interventions discussed in Propositions 5
and 6 should target. To limit comparisons, we focus on three complete-core
periphery structures, varying the numbers of banks in the core based on the
buckets definition of the FSB. We then alternatively model a core composed
of one bank (JP Morgan Chase, the only bank in bucket 4), three banks (JP
Morgan Chase plus the two banks of bucket 3: Citigroup and HSBC) and nine
banks (the three previous plus the six of our database that are in bucket 2:
Bank of America, Bank of China, Barclays, BNP Paribas, Deutsche Bank and
Goldman Sachs). For these three networks we compute the indexes defined in
Propositions 5 and 6 and find that:35

• when the size of the core enlarges, the optimal bank to target for equity
injection (see Proposition 5) is successively JP Morgan, HSBC and BNP
Paribas

• when the size of the core enlarges, the optimal bank to target for tighter
regulation (see Proposition 6) is successively JP Morgan, HSBC and
Goldman Sachs.

These results again highlight the importance of the shape of the financial
network, on top of the individual indicators of interconnectedness used in the
current regulation.

6. Extensions

We now discuss several extensions toward relaxing the main assumption of our
model regarding the structure of investments.

Inter-bank debt holding. First note that our analysis extends to the
modeling of inter-bank debts as long as only the bank hit by the negative
shock potentially defaults. In other words, inter-bank debt positions should
be such that a bank doesn’t default when it doesn’t invest in risky asset (see
Assumption 1). In this case, we show in Appendix C that a reallocation of
inter-bank debts increases average optimal risk-taking when it favors banks

34. For all three banks, the best case is when Groupe BPCE is at the center of the star.
The worse case for Morgan Stanley and Société Générale is when Goldman Sachs is at the
center; and the worse case for Goldman Sachs is when Barclays is at the center.

35. Remind here that mijs are defined over the matrix of shares A leading to exogenous
values even for banks with similar position in the network G through differences in

∑
j pij .
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with the highest pure risk-sharing effects (that is banks with the highest ratios
of Bonacich centrality over self-loop centrality when risk is large).

Correlated investment portfolios. In the model presented above, we assume
that each bank invests in a specific risky asset. Given our risk structure, this
ensures that only one bank potentially defaults, and that the shareholding
network always helps it. We relax this assumption in Appendix E by allowing
banks to invest in each other risky assets (or projects) in the spirit of Cabrales
et al. (2017). This introduces correlation in investment portfolios, making each
bank less exposed to risk of its own asset, but spreading this risk among others
(that then provide less support).36 It therefore reduces the likelihood of the first
failure but increases contagion. In Appendix E, we show that this extension
is likely to qualitatively modify our results, as the nature of the strategic
interaction between banks (in z∗i ) changes to strategic substitutability when
banks invest too much of their asset into other banks’ project.

Toward endogenous networks. In all the above analysis, we model only the
decision of banks to allocate their resources between a risky and a risk-free
asset, for a given cross-shareholding structure. Now, this structure also depends
on banks’ choice. We therefore analyze in Appendix F the incentives for link
formation, in the simple case of bilateral links and fixed participation. When
cross-shareholding is low, we find that when banks internalize the change in
regulation following link formation, the set of pairwise stable networks only
contains the complete network; whereas when they don’t, the complete network
is pairwise stable, but there can exist other stable networks defined as the union
of complete components of distinct sizes. This call for more work, especially to
consider higher cross-shareholding levels.

7. Conclusion

In this paper, we highlight the role of the network of cross-shareholding
on optimal risk-taking by banks under prudential regulation. The two key
assumptions of our model are that only one bank potentially suffers a large
negative shock on its asset and that the network of cross-shareholding is
exogenous. We characterize these optimal levels when the regulator fixes a
maximum acceptable probability of default and show that it depends on the
network twice: (i) through a pure risk-sharing effect and (ii) through a resource
effect as cross-shareholding changes the size of the balance-sheet of each bank.
We show that the pure risk-sharing effect is aligned with the ratio of Bonacich
centrality over self-loop centrality when risk is large; and that in star networks,
banks at the center are optimally allowed to take more risk. In more general

36. Note here that this corresponds to correlation as portfolio diversification and not as
portfolio concentration (e.g. market portfolio) that will always lead to more regulation in
our case.
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networks, resource effects however complexify the analysis and we rely on
simulations on random network to show that integration (an increase in the
amount invested by each bank in the network) entails increased average optimal
risk-taking. Turning to policy interventions, we show how the optimal levels
of risk-taking can be implemented though capital or cash requirements and
complemented by targeted interventions. We finally use real financial data
to highlight the importance of the structure of the shareholding network, on
top of the bank-specific indicators of interconnectedness used in the current
regulation.

Our work can be extended in several directions. First, it would be
challenging to tackle endogenous network formation for arbitrary cross-holding
networks. Second, it is natural to explore possible optimal prudential regulation
in conjunction with ex post regulation.

Appendix A: The case of Directed Strongly Regular Graphs

We have shown in the paper that optimal risk-taking behaviors may be
differentiated in regular networks. In this sense, neutralizing network effects
is more demanding. Actually, to obtain homogeneous risk-taking, the key is
having a matrix M with homogeneous diagonal entries. In this appendix,
we illustrate how this latter property entails that optimal risk-taking is
independent of network position by solving for the case of Directed Strongly
Regular Graphs.37

Definition A.1. An undirected network G is δ-regular whenever G1 = δ1.

Definition A.2. An undirected network G is strongly regular of parameters
(δ, κ, θ) whenever G is a δ-regular graph, every pair of adjacent nodes has the
same number of common neighbors κ, and every pair of non-adjacent nodes
has the same number of common neighbors θ.

The class of strongly regular can moreover be extended to directed networks
(see Duval 1988):

Definition A.3. An directed network G is strongly regular of parameters
(δ, κ, θ, t) if: {

G2 + (θ − κ)G− (t− θ)I = θJ
GJ = JG = δJ

(A.1)

37. A more general class of networks shares this property of homogeneous self-loop
centrality: the class of distance-based regular graphs. We do not present here the results for
space restriction, but the logic of our proofs extends to this latter class.
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(where t represents the number of reciprocated links per node)

Figure A.1. The smallest Directed Strongly Regular Graph ((n, δ, κ, θ, t) = (6, 2, 0, 1, 1))

Note first that, for both fixed investment and fixed participation, there
are no resource effects (PT = P) on directed strongly regular graphs (DSRG
thereafter). We can thus focus exclusively on the pure risk-sharing effects.
We know that Bonacich centralities are homogeneous in regular graphs. We
show in the following that, for DSRGs, self-loop centralities ((mii)i∈I) are
homogeneous.

In both cases of fixed participation and fixed investment, the cross-sharing
matrix A car be writen as A = ∆G, with ∆ = 1/ (δ + e/p) in the fixed
participation case and ∆ = 1/ (δ (1 + e/p)) in the fixed investment case. We note
m0 the representative diagonal entry of M = (I− δG)−1 for DSRG, and b0 the
representative entry of vector M1 (of course, m0, b0 depend on all parameters
(n, δ, κ, θ, t) defining the DSRG, we omit their enumeration for convenience).
Then:

Proposition A.A.1. z∗i s are identical in Directed Strongly regular Graphs:
z∗i = z∗0 ∀i, and z∗0 is an increasing function of the ratio b0/m0.

The intuition behind Proposition A.A.1 relies on the fact that self-loop
centralities are homogeneous in DSRGs. This stems from G2 = (κ − θ)G +
(δ − θ)I + θJ, which entails that any power of M is a linear combination of G,
I, J. In the end, M =

∑+∞
q=0 δ

qGq is also a linear combination of G, I, J. Now,
as self-loop centralities are homogeneous across banks, matrix C is proportional
to matrix M. So

∑+∞
q=0 ε

qCq1 is a constant vector.
We now compute the optimal risk-taking z∗0 on a DSRG (with η = e− (ρ−

1)d). Given that the adjacency matrices for these networks is given by A = ∆G,
we can compute M analytically. Let us define α and γ such that for a DSRG
of parameters (n, δ, κ, θ, t), we have

G2 = (κ− θ)︸ ︷︷ ︸
=α

G + θJ + (t− θ)︸ ︷︷ ︸
=γ

I (A.2)
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where γ ≥ 0 and γ > α by construction. Then,

(I−∆G)−1 =
∞∑
q=0

∆qGq = ᾱG + θ̄J + γ̄I (A.3)

with (after some computations):38
ᾱ = ∆

1−2∆α−4∆2γ

γ̄ = 1 + ∆γα

θ̄ = θ∆2

[
δ2

(1−∆δ)(δ2−2αδ−4γ) −
4
δ ·

(α2+γ)(δ+4∆γ)
(1−2∆α−4∆2γ)(δ2−2δα−4γ) −

2(α+2∆γ)
δ(1−2∆α−4∆2γ)

]

Now, C1 = b0
m0

1 and z∗ =
(∑∞

q=0 ε
qCq

)
(I + C)n, with n = η/(1 − `).

Therefore:

z∗i = z∗0 = η × b0
m0
· 1

1− ε
(
b0
m0
− 1
) (A.4)

∀i, with z∗0 increasing in b0/m0. Moreover, as M = ᾱG + θ̄J + γ̄I,

b0
m0

=
(ᾱG + θ̄J + γ̄I)1

θ̄ + γ̄
(A.5)

That is, since G1 = δ1 and J1 = n,

b0
m0

=
nθ̄ + δᾱ+ γ̄

θ̄ + γ̄
. (A.6)

Appendix B: An example of integration with resource effect

Consider the network depicted in Figure 5 and fixed investment. Then, the
resource effect is given by pγ where γ = (GT −G)1. To simplify, consider

ε = 0, so that z∗ = (I + C)
(
e−(ρ−1)d

1−` 1 + p
1−`γ

)
. The effect of p on the total

contribution of resource effect to optimal risk-taking is then captured by:
p/(1 − `)1TCγ, and can be decreased when the level of integration of the
financial network is increased. Recall here that matrix C depends on parameter
p. Denoting Cp the value of this matrix under parameter p, we have for the
network depicted in Figure 5: 1TC1γ ∼ −0.0328 and 21TC2γ ∼ −0.0789.

38. For all q ≥ 2: Gq = αqG+ θqJ+ γqI with the convention (α2, θ2, γ2) = (α, θ, γ). Using
the expression of Gq−1, we have

Gq = (ααq−1 + γq−1)︸ ︷︷ ︸
=αq

G + (θαq−1 + δθq−1)︸ ︷︷ ︸
=θq

J + γαq−1︸ ︷︷ ︸
=γq

I)

and ᾱ = ∆ +
∑∞
q=2 ∆qαq; γ̄ = 1 +

∑∞
q=2 ∆qγq; θ̄ =

∑∞
q=2 ∆qθq.



Belhaj, Bourlès & Deröıan. Prudential Regulation in Financial Networks 30

Therefore, the contribution of the resource effects to total optimal risk-taking
is here negative and decreasing with p. This comes from the negative correlation
between the vector of out-degrees δO = (3, 1, 1, 0)T and the vector of resource
effects γ = (−1, 0, 0, 1)T .

Appendix C: Modeling inter-bank debt

We incorporate inter-bank debt to the model as follows. Denoting νij the debt
of bank i towards bank j and νi =

∑
j νji −

∑
j νij , the optimal risk-taking

with inter-bank debts z∗ solves

z∗ = (I− εC)−1(I + C)(n + (ρ− 1)ν)/(1− `) (C.1)

and Assumption 1 becomes n +ν > 0. Recall here that z∗ guarantees that bank
i is solvent when it suffers a shock of size `, in which case all the other banks
are also solvent.

Now consider a reallocation ν′ of inter-debt such that 1T (ν′−ν) = 0. Then:

1T (z′ − z) = (ρ− 1)((I− εC)−1(I + C)1)T (ν′ − ν)/(1− `) (C.2)

Now, when ei = e and di = d, z∗RS = (e− (ρ− 1)d) · (I− εC)−1(I + C)1 (see
14) and:

1T (z′ − z) =
ρ− 1

(e+ (ρ− 1)d)(1− `)
· z∗RS

T (ν′ − ν) (C.3)

That is: ∑
i

(z∗
′

i − z∗i ) =
ρ− 1

(e+ (ρ− 1)d)(1− `)
∑
i

z∗i,RS(ν′i − νi) (C.4)

Thus, the reallocation of debts increases total optimal risk-taking if it favors
banks that would have the highest pure risk-sharing effect in the absence of
inter-bank debt.

Appendix D: Extension to multiple shocks

Consider the case when a shock, i.e. a return µ = ` < 1 on one’s risky asset (we
consider binary shocks for simplicity), can hit two banks, say i and k at the
same time.39 To avoid default, bank i must satisfy the following constraint:

(`− 1)zi + (`− 1)cikzk − (r − 1)
∑
l 6=i,k

cilzl ≤ ηi +
∑
j 6=i

cijηj (D.1)

39. The extension to more than two shocks is immediate.
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That is:

zi − ε
∑
j 6=i

cijzj ≤ ni +
∑
j 6=i

cijnj −
r − `
1− `

cikzk (D.2)

Following our definition of prudential regulation, bank i should then survive to
all pairs of shocks involving its own shock, that is:

zi − ε
∑
j 6=i

cijzj = ni +
∑
j 6=i

cijnj −
r − `
1− `

max
k 6=i

cikzk (D.3)

Importantly, there is strategic substitutability between risk-taking levels of the
two shocked banks.

We define the vector ζ(z) = (max
k 6=i

cikzk)i∈I . Then, a solution z∗∗ to the

problem with two shocks should satisfy equation (D.3) for all banks i. That is,
it should solve the non-linear system

z∗∗ = (I− εC)−1

(
(I + C)n− r − l

1− l
ζ(z∗∗)

)
(D.4)

Remembering that the solution with a single shock is given by z∗ = (I −
εC)−1(I + C)n, we get

z∗∗ = F (z∗∗) (D.5)

where F (z) = z∗ − r−`
1−`(I − εC)−1ζ(z). Then, existence follows directly from

the boundedness and continuity of function F .
However, the system can now admit multiple solutions. Indeed, consider the

following three-bank two-shock example. We set e = 100, d = 100, ρ = 1.01, l =
0.8, and let the matrix of cross-investments be

P =

 0 0.7 0.4
1 0 0.8

1.05 1 0

 . (D.6)

One can then see that there are two solutions to system (D.4): z∗∗1 ∼
(496.74, 493.31, 490.44) and z∗∗2 ∼ (496.73, 494.32, 490.44), where no solution
dominates the other one.

Appendix E: Correlated investment portfolios

We now extend our model to an environment where banks can invest not only in
their own risky project but also in the risky projects of the other banks. In our
baseline model we consider n banks, n risky projects, with one project receiving
investment from a single bank. We instead consider here an environment with
n risk projects (still attached to a bank). Each bank invests an homogeneous
share λ of its risky investment in its own project, and distributes the residual
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share 1− λ equally among other projects, as illustrated in Figure E.1.40 Note
that, in this extended model, the equivalent of Assumption 4 imposes λ > r−1

r−` .

Figure E.1. Diversifying investment portfolios

In this case, Proposition E.E.1 shows that correlated investment portfolios
can change the nature of the interaction between banks’ risk-taking.
Substitutability emerges when portfolios are sufficiently (positively) correlated.
Under large correlation, all banks are hurt by the negative shock on bank i’s
project, and the cross-shareholding network does not bring value to bank i but
rather transmits its low value of other banks.

Proposition E.E.1. Risk-taking decisions by banks are strategic substitutes
whenever the fraction of risky investment each bank allocates to its own project
is low, i.e. when

1− λ
n− 1

>
r − 1

r − `

Proof. When each bank allocates a share λ of its risky investment in its own
project, and distributes equally the remaining among other projects, the value

40. A more general setting will consist of n banks and an arbitrary number of projects
with a bipartite network representing the amount each banks invests in each project (Elliott
et al., 2014).
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of firm i conditional on a negative shock on its project writes

vi = mii [zi (λ`+ (1− λ)r − 1) + ηi]

+
∑
j 6=i

mij

[
zj

(
λr +

(n− 2)(1− λ)

n− 1
r +

(1− λ)

n− 1
`− 1

)
+ ηj

]
(E.1)

In this case , z∗ is defined by:

z∗ = (I− ε(λ)C)−1(I + C)n (E.2)

with ni = ηi/(1− λ`− (1− λ)r) and

ε(λ) = −n− 1− (1− λ)`− (λ+ n− 2)r

(n− 1)(1− λ`− (1− λ)r)
(E.3)

The numerator of ε(λ) is negative when λ < n−1−`−(n−2)r
r−` , i.e. when 1−λ

n−1 >
r−1
r−` , leading to substituability in zis. �

Appendix F: Endogenous shareholding network

We examine in this Appendix the endogenous formation of cross-shareholding
links. For tractability, we focus on the fixed participation case and only
consider undirected networks: GT = G (there is therefore no resource effect
in this setting). To isolate pure network effects, we assume ei = e and di = d
for all i. We simplify the analysis by examining the case of sufficiently low
participation level p; and binary distribution for the return of one bank’s
risky asset: r = r > 1 and µ̃i = ` < 1 when bank i suffers the large shock
(E(µi) = E(µ) = (1− q/n)r + q/n · ` > 1 by Assumption 2).

We consider alternatively (i) that banks do consider the change in regulation
when modify their connections and (ii) that banks do not take into account
modified regulation when changing links. This last setting corresponds for
example to situations in which regulation are not updated often enough, with
respect to banks’ choices.

We now analyze incentive to form link. We assume that this decision is
taken by existing shareholders based on the expected value of one share, which
writes in our case:

Eπi =
E(vi)

e+ pδi
=
η

e
+ E(µ)

∑
j∈I

mijzj

e+ pδi
(F.1)

with t = e− (ρ− 1)d and E(µ) = q`+ (1− q)r.
Indeed, denoting s the state of nature (µ1, ..., µn), we have

vi(s) =
∑
j

mij((µj − 1)zj + η) = ηbi +
∑
j

mij(µj − 1)zj (F.2)
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(where bi =
∑
jmij is the Bonacich centrality of i). Then,

E(vi) = ηbi + (1− q)(r − 1)
∑
j

mijzj

+
q

n

n∑
k=1

(r − 1)
∑
j 6=k

mijzj + (`− 1)mikzk

 (F.3)

= ηbi + E(µ)
∑
j∈I

mijzj (F.4)

Noting that, under fixed participation, e+
∑
j pji = e+ pδi and bi = (e+ pδi)/e

we obtain the value of Eπi in (F.1).
Note that, as E(µ) > 0 and Mz > 0, an immediate consequence of equation

(F.1) is that the empty network is not stable.
We consider in the following low values of p and, first, that banks take into

account change in regulation when forming a link.

F.1. Link formation with regulatory change.

Considering low values of p, at order 1, we have A = p
eG + o(p) leading to

M = I + p
eG + o(p) and C = p

eG + o(p) (as mii = 1 + o(p)). This therefore
gives:

z =
η

1− `

(
I + (1 + ε)

p

e
G
)

1 + o(p) (F.5)

and
Mz =

η

1− `

(
I + (2 + ε)

p

e
G
)

1 + o(p) (F.6)

We note 1ij the square matrix with all entries equal to 0 but both entries
i, j and j, i equal to 1. We then denote M′ and z′ the outcomes associated with
network G + 1ij . Then, the return for bank i to forming undirected link ij
writes:

∆πiji = E(µ) ·


∑
j∈I

m′ijz
′
j

pδi + e+ p
−

∑
j∈I

mijzj

pδi + e

 (F.7)

And using F.6, bank i wants to form the link ij whenever

E(µ)

[
e+ (2 + ε)p(δi + 1)

pδi + e+ p
− e+ (2 + ε)pδi

pδi + e

]
> 0 (F.8)

that is, if

E(µ) · p
e
· 1 + ε

e+ p(2δi + 1)
> 0 (F.9)

As (F.9) is always verified, the set of pairwise stable networks is equal to the
complete network when banks take into account the change of regulation after
link addition.
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F.2. Link formation without regulatory change.

We now analyze the case in which banks don’t account for change in regulation
when choosing to form a link. We then get:

∆πiji = E(µ)


∑
j∈I

m′ijzj

pδi + e+ p
−

∑
j∈I

mijzj

pδi + e

 (F.10)

Still considering low values of p, we here need to develop expressions at order

2. Then, M = I + p
eG + p2

e2 G2 + o(p2); C = p
eG + p2

e2 G2 + o(p2);

z =

(
I + (1 + ε)

p

e
G +

p2

e2
(1 + ε)2G2

)
1 (F.11)

and

Mz =

(
I + (2 + ε)

p

e
G +

p2

e2
(ε2 + 3ε+ 3)G2

)
1 (F.12)

that is
Mzi
e+ pδi

=
1 + (2 + ε)peδi + p2

e2 (ε2 + 3ε+ 3)δ2
i

e+ pδi
(F.13)

But since M′ = I + p
e (G + 1ij) + p2

e2 (G + 1ij)
2 + o(p2), we get

M′z = Mz +
p

e
1ij1 +

p2

e2

(
G1ij + (2 + ε)1ijG + 12

ij

)
1 (F.14)

Noticing that (1ij1)i = 1, (G1ij1)i = 0, (1ijG1)i = δj and (12
ij)i = 1, we find

M′zi
e+ pδi + p

=
Mzi + p

e + p2

e2 (1 + (2 + ε)δj)

e+ pδi + p
(F.15)

Using the expressions of (F.13) and (F.15) in equation (F.10), bank i wants to
form the link ij whenever

E(µ)

(
1

1 + ε
+

(
1 +

1

1 + ε

)
δj − δi

)
> 0 (F.16)

As E(µ) > 0 and 1/(1 + ε) > 0, all banks with same degrees prefer to
form a link. This means that the complete network is stable. Other stable
networks are unions of complete components of distinct size, with appropriate
size distribution. Suppose that a network is the union of χ complete components
of size σ1 > σ2 > · · · > σr. From equation (F.16), it must be that (and it is
sufficient that)

For all components i < χ,
σi
σi+1

>
2 + ε

1 + ε
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so that the bank with higher degree is better of refusing to form the link.
To see formally that a stable network is necessarily the union of complete

components of distinct size, we observe that returns to link formation satisfy
Goyal and Joshi (2006)’s proposition 4.3, which guarantees the point. Indeed,
when p tends to zero and for any e > 0, the return of link formation satisfies

∆πiji = f(δi, δj) (F.17)

with f decreasing in δi, increasing in δj , and f(δi + 1, δj + 1) > f(δi, δj), as

∆πiji =

p2

e

(
1 + (2 + ε)δj − (1 + ε)δi

)
(e+ pδi + p)(e+ pδi)

+ o(p2) (F.18)

(and f(δi + 1, δj + 1) > f(δi, δj) as e/p goes to infinity when p goes to zero).

Appendix G: Proofs

G.1. Proof of Lemma 1

Consider the system:

vi = hi +
∑
j∈I

aijv
+
j ∀i ∈ I (G.1)

In vis, this corresponds to a game of strategic complementarities with lower
and upper bounds (for given µis), that is a supermodular game. Therefore, it
possesses a minimum and a maximum equilibrium.

Now, consider an equilibrium with S non defaulting banks, i.e. with vS =
(v1, · · · , vs) > 0 and let āi = 1−

∑
k∈S

aki. Then,

∑
i∈S

āivi =
∑
i∈S

(
1−

∑
k∈S

aki

)
vi (G.2)

and given that
∑
i∈S

vi =
∑
i∈S

hi +
∑
i∈S

∑
k∈S

aikvk:∑
i∈S

āivi =
∑
i∈S

hi (G.3)

Last, suppose that the minimum equilibrium, say S, is distinct from the
maximum equilibrium, say S ′. Then vS < vS′ (where we use here the vectorial
inequality) and ∑

i∈S
hi =

∑
i∈S

āivi <
∑
i∈S

āiv
′
i <

∑
i∈S′

āiv
′
i =

∑
i∈S′

hi (G.4)

However, by construction, for all banks i ∈ S ′ \ S: hi < 0. Indeed, by (G.1):
hi > 0⇒ vi > 0 and all banks with hi > 0 always belong to the surviving set.
Then,

∑
i∈S′

hi <
∑
i∈S

hi, which is in contradiction with (G.4). The equilibrium

values are then unique.
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G.2. Proof of Lemma 2

The proof rely on the Sherman-Morrison formula, that states: Suppose Q is an
invertible n-square matrix with real entries and r, s ∈ Rn are column vectors.
Then Q + rsT is invertible in and only if 1 + sTQ−1r 6= 0. If Q + rsT is
invertible, its inverse is given by

(Q + rsT )−1 = s−1 − Q−1rsTQ−1

1 + sTQ−1r
(G.5)

We apply this formula with Q = I −A and rsT = −Ω, where Ω = [ωij ]
is such that ωij = ω if (i, j) = (r, s), δij = 0 otherwise. Then matrix Ω has a
single non-zero entry, corresponding to a positive impulsion at the entry (r, s).
It is easily shown that Ω = −rsT for r = (0, · · · , 0, ω, 0, · · · , 0)T with ω at entry
r, and sT = (0, · · · , 0, 1, 0, · · · , 0)T with 1 at entry s.

Applying the formula, noting (I−A)−1 = M and sTMr = −mrsω, we get

(I−A−Ω)−1 = M +
MΩM

1−mrsω
(G.6)

Now the entry (i, j) of matrix MΩM is given by [MΩM]ij = mirmsjω. Then,

[(I−A−Ω)−1]ij = mij +
mirmsjω

1−msrω
(G.7)

We want to prove that the ratio
mij
mii

increases for all i, j when A becomes

A′ = A + Ω. Note that
mij
mii
≤ mij+a

mii+b
if and only if

mij
mii
≤ a

b . Then it is sufficient

to prove that
mij
mii
≤ mirmsjω

mirmsiω
, i.e.

mij

mii
≤ msj

msi
(G.8)

Now the path product property of any inverse M-matrix Y (see for instance
Johnson and Smith, 2007, p. 329) writes

yijyjk ≤ yikyjj (G.9)

Equation (G.8) can be writen:

msimij ≤ miimsj (G.10)

that is, permuting labels i and j:

msjmji ≤ mjjmsi (G.11)

and, permuting labels i and q:

mijmjs ≤ mjjmis (G.12)

which corresponds to the path product property with i, j, s as shown by
equation (G.9). M being an inverse M-matrix, we therefore have that A′ > A
leads to C′ > C, where cij = mij/mii and M = (I−A)−1.
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G.3. Proof of Propositions 3 and 4

Step 1. Let us first show that the ratio bi/mii is higher for the center of the
star, both in the case of fixed participation and in the case of fixed investment.

Consider an undirected star with n agents. We denote by 1 the center of
the star and by 2 the representative periphery. We denote a = a12 and b = a21.
Under fixed participation: a = 1/(1 + e/p) and b = 1/(n− 1 + e/p); whereas
under fixed investment: a = 1/(1 + (n− 1) · e/p) and b = 1/(n− 1 + e/p).

In both cases,

(I−A) =


1 −a −a · · · −a
−b 1 0 · · · 0
· · · · · · · · · · · · · · ·
−b 0 · · · 0 1

 (G.13)

and (I−A)−1 =
(

1
1−(n−1)ab

)
Q with

Q =


1 a a · · · a
b 1− (n− 2)ab ab · · · ab
· · · · · · · · · · · · · · ·
b ab ab · · · 1− (n− 2)ab

 (G.14)

This gives bO1 /m11 = 1 + (n − 1)a and bO2 /m22 = (1 + b)/(1 − (n − 2)ab); so
that the ratio bOi /mii is higher for the center when

1 + (n− 2)a+ (n− 2)(n− 1)a2 < (n− 1)
a

b
(G.15)

Considering the values of a and b for the fixed participation case, this
corresponds to

(n− 1)
n− 1 + e

p

1 + e
p

>
(n− 1)(n− 2)

(1 + e
p)2

+
n− 2

1 + e
p

+ 1 (G.16)

Multiplying both sides by (1 + e/p) and simplifying, we get(
1 +

e

p

)(
n− 1 +

e

p

)
> n− 1 (G.17)

which holds true as e/p > 0, meaning that bi/mii is higher for the center of a
star in the fixed participation case.

Now turn to the values of a and b in the fixed investment case. (G.15) then
corresponds to

(n− 1)
n− 1 + e

p

1 + (n− 1) ep
>

(n− 1)(n− 2)

(1 + (n− 1) ep)2
+

n− 2

1 + (n− 1) ep
+ 1 (G.18)
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Multiplying both sides by (1 + (n− 1) · e/p) and simplifying, we get

1 >
1

1 + (n− 1) ep
(G.19)

which holds true as e/p > 0 and n > 1, meaning that bi/mii is higher for the
center of a star also in the fixed investment case.

Step 2. We now prove by induction that z∗RS,1 > zRS,2, that is that the pure
risk-sharing effect is higher for the center of the star that for each of the
periphery.

For it, it is enough to show that ∀q (Cq1)1 > (Cq1)2. Now, by step 1, we
now that (C1)1 > (C1)2. For convenience, let us ψ1 = (C1)1, ψ2 = (C1)2, and

more generally, ψ
(q)
1 = (Cq1)1, ψ

(q)
2 = (Cq1)2 for all q ≥ 1.

Let property P(q) : ϕ
(q)
c > ϕ

(q)
p . Assume P(1), · · · ,P(q − 1). We will prove

P(q). First note that

ψ
(q)
1 = ψ1ψ

(q−1)
1 (G.20)

and
ψ

(q)
2 = c21ψ

(q−1)
1 + (ψ2 − cpc)ψ(q−1)

2 (G.21)

The inequality ψ
(q)
1 > ψ

(q)
2 then means

(ψ1 − ψ2)ψ
(q−1)
2 > c21

(
ψ

(q−1)
1 − ψ(q−1)

2

)
(G.22)

Now, by P(q − 1), we have

ψ1ψ
(q−2)
2 > c21ψ

(q−2)
1 + (ψ2 − c21)ψ

(q−2)
2 (G.23)

and inequality (G.22) also writes

(ψ1 − ψ2)ψ
(q−1)
2 > c21

(
(ψ1 − ψ2)ϕ

(q−2)
2 − c21

(
ψ

(q−2)
1 − ψ(q−2)

2

))
(G.24)

that is

(ψ1 − ψ2)
(
c21

(
ψ

(q−2)
1 − ψ(q−2)

2

)
+ (ψ2 − c21)ψ

(q−2)
2

)
> −c221

(
ψ

(q−2)
1 − ψ(q−2)

2

)
what holds whenever ψ2 − c21 > 0. Now ψ2 > c21 corresponds to∑

j 6=2m2j

m22
>
m21

m22
(G.25)

which always holds as mij ≥ 0 ∀i, j. Therefore P(q) holds, whenever P(q − 1)
holds. As P(1) holds by Step 1, we have that the pure risk-sharing effect is
always higher for the center of the star than for the periphery.
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Step 3. We now account for resource effects. In the fixed participation case,∑
j pij =

∑
j pji for all undirected graph (where gij = gji) so that z∗RE = 0. We

thus have z∗ = z∗RS and Proposition 3 holds by Step 2. In the fixed investment
case, the resource effect is beneficial to the center. Indeed:

∑
j p1j = p and∑

j pj1 = (n − 1)p; whereas
∑
j p2j = p and

∑
j pj1 = p/(n − 1). Therefore

z∗RE,1 > z∗RE,2 what together with Step 2 gives z∗1 > z∗2 .

G.4. Proof of Proposition 5

Defining υi = miini +
∑
j 6=i
mijnj , the initial Z∗ solves

miiz
∗
i − ε

∑
j 6=i

mijz
∗
j = υi (G.26)

Or, in matrix notation,
Wz∗ = υ

where W is a n-dimensional square matrix such that wii = mii and wij =
−εmij ; and υ = (υi)i∈I .

Suppose now that one 1− ` unit of cash in the external equity of bank 1
(everything follows with bank i, we focus on bank 1 to ease exposition). Letting
m1 = (m11,m21, · · · ,mn1)T be the first column of matrix M, the optimal risk-
taking z′∗ then writes

Wz′∗ = υ + m1

and the change in total investment in risky asset is

1T (z′ − z) = 1TW−1m1

Noticing that

m1 = −1

ε


m11

−εm21

· · ·
−εmn1

+
1 + ε

ε


m11

0
· · ·
0


we obtain

W−1m1 = −1

ε


1
0
· · ·
0

+
1 + ε

ε
W−1


m11

0
· · ·
0


Thus, defining 1TW−1 = (wS1 , w

S
2 , · · · , wSn), so that wSi is the sum of entries of

column i in matrix W−1, we obtain that

1T (z′ − z) = −1

ε
+

(
1 + ε

ε

)
m11w

S
1

The bank whose capital injection has the highest effect on total investments in
risky assets (1T (z′ − z)) is the one with the highest index miiw

S
i .
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G.5. Proof of Proposition 6

Equation (11) can be written as

(1− `)miiz
∗
i − (r − 1)

∑
j 6=i

mijz
∗
j = miiηi +

∑
j 6=i

mijηj (G.27)

∀i with ηi = ηi = ei − (ρ− 1)di +
∑
j∈I pji −

∑
j∈I pij .

This is equivalent to:

Me = (1− `)Mεz
∗ + (ρ− 1)Md−M(PT −P)1 (G.28)

where matrix Mε has diagonal entry (i, i) equal to mii and off-diagonal entry
(i, j) equal to −εmij (with ε = (r − 1)/(1− `)). This gives:

e = (1− `)(I−A)Mεz
∗ + (ρ− 1)d− (PT −P)1 (G.29)

and
1Te = (1− `)1T (I−A)Mεz

∗ + (ρ− 1)1Td (G.30)

Now assume that z∗1 decreases to z′∗ = z∗1 − ι and z′∗i = z∗i ∀i 6= 1.41 This
induces a new vector of external equities e′. The impact on total external
equities is given by

1T (e′ − e) = (1− `)1T (I−A)Mε(z
′∗ − z∗)

Defining 11 = (1, 0, · · · , 0)T , we have by definition z′∗ − z∗ = −ι11, and

Mε(z
′ − z) = ιεM1 − ι(1 + ε)m1111 (G.31)

Therefore, noticing that (I−A)M1 = 11, we obtain

1T (e′ − e) = ι(1− `)
(
ε− (1 + ε)m111

T (I−A)11

)
(G.32)

That is,

1T (e− e′) = ι(1− `)

(1 + ε)
( m11e1∑
k 6=1

pk1 + e1

)
− ε

 (G.33)

Therefore, the bank whose decrease in risky investment has the highest effect
on total need of external assets (1T (e− e′)) is the one with the highest index

miiēi; where ēi = ei/
(∑

j pji + ei

)
represents the share of bank i held by

external shareholders.

41. Again, we use bank 1 by convenience.
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