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Abstract

This survey paper reviews the recent Bayesian literature on poverty
measurement. After introducing Bayesian statistics, we show how
Bayesian model criticism could help to revise the international poverty
line. Using mixtures of lognormals to model income, we derive the pos-
terior distribution for the FGT, Watts and Sen poverty indices, then
for TIP curves (with an illustration on child poverty in Germany)
and finally for Growth Incidence Curves. The relation of restricted
stochastic dominance with TIP and GIC dominance is detailed with
an example on UK data. Using panel data, we show how to decom-
pose poverty into total, chronic and transient poverty, comparing child
and adult poverty in East Germany when redistribution is introduced.
When a panel is not available, a Gibbs sampler is used to build a
pseudo panel. We illustrate poverty dynamics by examining the con-
sequences of the Wall on poverty entry and poverty persistence in
occupied West Bank.
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1 Introduction

For long, standard errors were not reported for poverty or inequality indices,
and this on two grounds. Data sets based on surveys included more than five
thousands observations, so it was thought that the standard errors would
have been very small. A second objection was the difficulty of computation
(see for instance Davidson 2009 for the Gini index or Biewen and Jenkins 2006
for generalized entropy indices and complex sampling). These arguments are
no longer tenable. We might well be interested in sub-groups, operating
thus on reduced sample sizes. The Bayesian approach brings in feasible
answers for small sample sizes and its simulation techniques make simple
the computation of standard errors. More precisely, a Bayesian approach
to poverty measurement relies most of the time on a parametric modelling
of the income distribution. Poverty indices, the TIP curve of Jenkins and
Lambert (1997), the growth incidence curve of Ravallion and Chen (2003)
are transformations of the parameters of this parametric income distribution.
The purpose of Bayesian inference will be to provide draws of the posterior
density of these quantities, using simulation methods. The same approach
will be used to explore restricted stochastic dominance and poverty dynamics.
Before covering these applications, let us introduce what is Bayesian inference
and what are the simulation methods involved.

1.1 Bayesian statistics

Let us consider a continuous random variable X . Realizations of this random
variable will be our sample space and we shall assume that it is equipped
with a particular structure of o-field so that we can define probability mea-
sures over it. These measures are indexed by a parameter # belonging to a
parameter space ©. If we assume that © is dominated by a o— finite measure
(this is a restriction), probabilities over the sample space X can be described
by a density function p(z|f), leaving aside a non-parametric approach. Given
N realizations (x1,xs,...,z;,...,xx), we can write the likelihood function
of this observed sample:

N

06;2) = [ plailo).

i=1

Classical inference is looking for the value of 6 that is the most likely to
have produced the observed sample, assuming that given the data density,
there is somewhere a true value of the parameter on which we want to get
information given the observed sample. However, as there might exist other



realizations of X, one of the main concerns of classical statisticians is to
investigate: What would happen if our sample size were tending to infinity?
Bayesian inference follows a different route. We equip the parameter space
© with a probability structure so that a prior probability ¢(f) can be defined.
This means that there is no unique true value of €, but uncertainty around
possible values that 6 could take. The object of inference is to reduce this
uncertainty by learning from the observation of a realization x of X, using

Bayes’ theorem: 0:2) n
£(0;x) X (6
plx) W

©(0) is the prior density of # which describes our prior knowledge around the
plausible values of 6. ¢(0; x) is the likelihood function of the sample and the
common element with the classical approach. ¢(f|z) is the posterior density
of #, which means how our prior knowledge of § was revised by the observation
of one realization = of the random variable X. By realization, we mean the
observation of a sample of a given size. Following Lindley (1971), the purpose
of Bayesian inference is quite different from the classical approach: once a
sample is realized, it is no longer considered as a random variable. Bayes
theorem is a learning mechanism, describing how a prior knowledge is revised
by the experience of observing the realization of a particular sample. Finally
in (1), p(z) is the predictive density:

p(Olz) =

pla) = / (6:) % (6) do. (2)

It gives the probability of observing a particular realization of our sample z,
given all the possible prior values of the parameter 6. Its evaluation is rarely
necessary. If £(6;x) and p(€) belong to well-known families, the integrating
constant of the posterior density ¢(f|x) can be recovered analytically. So
Bayes theorem in this case can be simplified to:

p(0]x) oc £(6; ) x p(0),

which means that the posterior density is proportional to the product of the
likelihood function times the prior.

1.2 Simulation methods

For models more complex than the linear regression model, it is not possible
to find an analytical expression for ¢(f|x). However in many cases, it is
possible to decompose 6 in several blocks, say ' = [0,0,] and to recover



analytical expressions for p(0;|0,, z) and (62|01, ) from which it is possible
to draw random numbers. In this case, the alternative sampling from:

09 ~ (6,05 x), (3)
09 ~ (650 2), (4)

produces a Markov chain that converges under mild conditions to draws from
the posterior distribution ¢(f|x). The method is called a Gibbs sampler
and belongs to the class of Monte Carlo Markov Chains or MCMC. When
this type of decomposition is not possible, one has to rely on a Metropolis
algorithm and an importance function from which it is easy to draw random
numbers and which is not too far from p(0|x).

2 Revising the IPL using Bayesian inference

Using Bayesian inference, we revise the international poverty line (IPL) of
the World Bank which serves to count the number of poor in the world and
locate poverty in order to design anti-poverty policies.

2.1 The econometric model of the World Bank

The international poverty line of the World Bank relies from a constrained
regression model and a data base covering 74 developing countries. Ravallion
et al. (2009) note that below a certain level of consumption, national poverty
lines z; seem to be constant while they evolve as a function of consumption
after that level:

zi = si(ar +11Cy) + (1 — 55) (g + 7Cy) + €, (5)

where s; is equal to an indicator function I(C; < 6), which is one for countries
below a mean consumption of  and zero otherwise. For C; < 6, the constraint
~v1 = 0 is imposed, corresponding to the concept of an absolute poverty line.
Moreover, Ravallion et al. (2009) do not estimate 6, but fix it to $60 per
month. With all these restrictions, the IPL corresponds to the estimated
value of o and is found to be $1.25 per day when using 2005 PPP.

2.2 Bayesian model criticism: Poverty and social in-
clusion

Model criticism would imply estimating a complete switching regression model
where at least 6 is unknown. However, classical inference is not well suited in
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this case as according to Hansen (2000), the asymptotic distribution of the
threshold parameter is non-standard and can be misleading in small samples.
A more intuitive alternative is to apply the Bayesian approach which is by
nature more robust for small sample sizes and provides a direct inference
process for the posterior distribution of 6.

Xun and Lubrano (2018) enlarge the initial model (5) by introducing the
notion of social inclusion developed in Atkinson and Bourguignon (2001).
At any level of income, poverty corresponds to the deprivation of enough
resources to participate in social life. Social inclusion in Atkinson and Bour-
guignon (2001) means that poverty is not only a matter of minimum calory
consumption (absolute poverty line), but also depends on social life partici-
pation. As a measure of social inclusion, Xun and Lubrano (2018) consider
the unemployment rate ur;, leading to the richer econometric model:

2 = SZ‘(Oll +7 log Oz + ﬁlurz‘) + (]- - Sz‘)(a2 + 72 log OZ) + €, (6)
Si = ]I(CZ < 0)7 (7)
Var(¢;) = s;02 + (1 — s;)03. (8)

This is a switching regression model with heteroskedasticity where 6 is an
unknown parameter. Bayesian inference provides posterior draws for the
parameters, leading to a much larger definition for the group of developing
countries since E(f|z) = 169.2 (14.03), as illustrated in the left panel of
Figure 1. We have now 39 countries in that group instead of 15 in Ravallion
et al. (2009). Posterior draws are then converted into posterior draws for the
poverty line using:

0 = LS00 108(C) + A ur) UG, < 69) o)

i

where n; is the number of observations in the first regime given the j draw
(c; was discarded as it was not significantly different from 0). The posterior
expectation of the IPL is found to be $1.48 (0.036), a rather greater value
than the $1.25 IPL of the World Bank which by the way does not belong
to the credible HPD region of 90% [1.30, 1.65], leading thus to a substantial
and significant revision as displayed in the right panel of Figure 1.

3 Poverty indices and poverty curves

Poverty indices are a way to summarize the left tail of an income distribution
f(x), obeying different types of axioms (see e.g. the survey of Zheng 1997).
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Figure 1: Posterior distribution of # and of the IPL

Poverty indices are thus particular transformations of the income distribu-
tion. In a Bayesian Bayesian framework, the usual route is to consider a
parametric model f(z|6) for the income distribution. Once we have obtained
draws from the posterior distribution of 6, we can transform these draws
into draws of various poverty indices. Because there is no universal rule for
selecting a particular poverty index, Jenkins and Lambert (1997) introduced
TIP curves which document at the same time the three dimensions of poverty
for each quantile of f(z|f). Later Ravallion and Chen (2003) considered that
growth is favourable to the poor if the lower quantiles of f(x|6) increase more
than its higher quantiles.

3.1 Modelling the income distribution

A mixture of distributions accounts for the fact that the population is made
of different groups with specific characteristics while the belonging to a par-
ticular group is not observed. The general formulation of a finite mixture
with K members is:

f(z]0) = Zﬁkfk z|6),

where 7 are the weights summing to 1 and ), the parameters of each member.
Mixtures have very nice properties due to their linearity. In particular, the
mean and the cumulative distribution (CDF) have direct expressions with:

E(z|0) = Zﬁk/ z fi(|0k) dx

and



So the mean is weighted average of the mean of each component and the
CDF is the weighted average of each component CDF. Various choices have
been made in the Bayesian literature. Gunawan et al. (2020) used a mixture
of three gamma densities for Australia to evaluate the posterior distribution
of a head count index. They study the impact of using or not sampling
weights and show that it leads to different evaluations of poverty. Ndoye
and Lubrano (2014) use a mixture of two Pareto distributions to analyse top
wage inequality in the US. Lubrano and Ndoye (2016) opting for a mixture
of lognormals derive the posterior density of a Gini inequality index and de-
tail the decomposition of the Generalized Entropy index. In this paper, we
review the choice of modelling f(z]0) as a mixture of lognormal densities.

The lognormal density is noted:

1 log z — u)?
faalo) = exp— 8L K (10)
To\ 2T 20
with CDF': |
Fy(z]0) = @ (M) ’ (11)
o

where @ is the Gaussian CDF. The mean and variance are:

E(z|0) = "+ /2 Var(z]f) = (7 — 1)e®*7" (12)

The first partial moments are (see e.g. Jawitz 2004):

/OZ cfa(z]d) = et (10g(z> ;“ - "2) (13)
/ T2 aale) = e (log(z) —nz 2"2) (14)

0 o

Mixtures of distributions are usually estimated using a Gibbs sampler,
considering a mixture as an incomplete data problem. An auxiliary integer
variable ( allocates each observation x; to a member of the mixture, identi-
fied by its label so that conditionally on a given sample allocation [(; = k],
each component of the mixture can be analysed separately using a natural
conjugate prior. An algorithm is detailed in Lubrano and Ndoye (2016) while
Fourrier-Nicolal and Lubrano (2020) consider the case of sampling weights
and zero incomes (see also Gunawan et al. 2020). The posterior distribution
of various poverty indices can be obtained as transformations of the m draws
collected in the Gibbs output, indexed by j. From these m draws, we can
compute a mean, a standard error, a posterior confidence interval and plot
the posterior density.



3.2 Posterior draws for poverty indices

The general class of poverty indices of Foster et al. (1984) writes:

FGT(z, a) = /0 (1= /2 f(2) da, (15)

The poverty head-count ratio or poverty rate H corresponds to aw = 0. It
leads to a simple solution:

K ()
. ; logz —p
H(z69) =Y e (#) - (16)

k=1
j 2
L 940292 <logz — ug) — a,f”)] (17)
z oW
k

For @ = 2, we have to evaluate

z 2 2 1 P
/0 f(x)dx—;/o xf(a:)dxjt?/o 22 f () dx.
Using (11), (13), (14), we get:

& (logz — u)_geMJQ/zq) (log(z) — - 02)+i62/‘+2"2<b (log(z) — - 202)

o z

so that for a mixture of lognormals we have:

K () : () 2(5)
. ; 1 — 2 207 1 - -
FGT(Z|9(j),2) — E 77I(ﬁ]) [(I) (C)ngMk> — _6M+o'k( )/2q> ( og z ,U/@) O )
k=1

O

, . (4) 2(5)
4 %e2ﬂ;(€])+202(])® (10g(2) - :uk‘J B 20k ’ )] ) (18)

z (4)



The Watts (1968) poverty index writes:

Wi(z)=— /OZ log(z/z) f(z) dx. (19)

Muller (2001) gave its expression when f(x) is a lognormal:

W(z) = (logz — pu)® (long—u) +o¢ (long—,u) )

where ¢ is the Gaussian probability density. The generalization to mixtures
provides:

K ( ) logz _ ,U(J) IOgZ _ ,U(J)
k=1 Uk Uk

The revision of Sen index by Shorrocks (1995) leads to:

z

s57(:) = 2 [ (=01~ Ple) @) da, (20
0
as expressed in Davidson (2009). We can decompose it into:
SST(z)/2=FGT(z,1) — /Z(z —2)F(z) f(x) dx.
0

The last integral is related to the Gini index and has no analytical solu-
tion. In a similar situation, Lubrano and Ndoye (2016) proposed to evaluate
numerically the integral for each draw of the parameters, using a Simpson
rule.

3.3 TIP curves

The TIP curve of Jenkins and Lambert (1997) documents the three dimen-
sions of poverty for each quantile of the income distribution up to the quantile
corresponding to the poverty line z:
F~(p)
TIP(p, ) = / (1—2/2)0(z < 2)f(x) da.

0

Letting ¢ = F~1(p), we can decompose this equation into:

TIP(p,2) /f dx——/yf()d:v—p——GL() for p < F(2),

9



where GL(p) is the generalized Lorenz curve. The whole expression has an
analytical form for the lognormal distribution. But this is of little use as it is
not possible to find the closed expression of GL(p) when f(z) is a mixture.
So it is better to consider directly:

K q K
1 q
1122 =S [ Salaliod) =2 Y [ afaGelpn,of) da,
k=1 0 k=1 0

where the quantile ¢ has to be calculated separately. This presentation relies
on the two-equation definition of the Lorenz curve, in use before Gastwirth
(1971). Both integrals have an analytical solution leading to:

) ) Ing" — 1
TIP(o09) = 3 |o (RO

k=1 Uii
, , o
B leﬂz(fbrﬂi(j)/?q) In ¢V — /Lg) - ak(]) (21)
2 o '
k

The difficulty is that the left-hand side is a function of p while the right-hand
side is a function of ¢q. For each draw of #, we have to solve numerically the

equation: o
F(q910Y) = p, (22)

for each point of a predefined grid on p. This is a feasible problem because it
is of dimension one on a finite interval defined by the range of x. Brent (1971)
algorithm is very efficient in this case. Note that Lander et al. (2020) advo-
cate a different approach: For each draw of the MCMC output, they generate
a vector of incomes from the posterior predictive distribution p(z]0)) and
find for a given grid of p the empirical quantile function, using interpolation.
The feasibility of the method is illustrated in Figure 2, extracted from
Fourrier-Nicolal and Lubrano (2020). It depicts the evolution of child poverty
in Germany between 2002 and in 2011. The period has experienced a dra-
matic change in family social allowances. In each panel, vertical lines repre-
sent poverty headcount, horizontal lines poverty intensity and the curvature
of the TIP curves poverty inequality. The fact that credible intervals do not
overlap indicates that child poverty has significantly changed over the period.
It increased a lot between 2002 and 2006 to finally decrease between 2007
and 2011. The change in family social policy has managed to cut the regular
increase in child poverty that was documented in Corak et al. (2008).

10
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90% credible intervals are represented by dotted lines. In black solid line is represented the
TIP curve at the beginning of each sub-period. The red dashed line corresponds to the TIP
curve of the end of each subperiod.

Figure 2: The three I's of child poverty in Germany

3.4 Pro-poor growth

The Growth Incidence Curve (GIC) of Ravallion and Chen (2003) can be
approximated by the difference between the logs of two quantile functions:

9:(p) = log Q;(p|0;) — log Q:—1(p|0s—1). (23)

Because the quantile function corresponds to the first derivative of the gen-
eralized Lorenz curve, Fourrier-Nicolal and Lubrano (2021) proposed two al-
ternative ways for finding a parametric formulation for the GIC curve. The
first method relies on finding the quantile function associated to a mixture of
lognormal distributions. This requires solving (22) as seen above. The sec-
ond method uses a direct modelling of the Lorenz curve. Several parametric
forms were proposed in the literature, using one parameter (Chotikapanich
1993), two parameters (Kakwani and Podder 1973) or three parameters with
Villasenor and Arnold (1989) or Kakwani (1980). The latter is built around
the Beta density with:

L(pla) = p — aop™ (1 — p)*, (24)
leading to the quantile function:
Q(pla) = 7 x (1 — agayp™ (1 — p)* + agagp™ (1 — p)*2~1).

Bayesian inference on the parameters of (24) is obtained by considering the
linear regression:

A

log(p; — Li) = log(ag) + aq log(p;) + a log(1 —p;) +€;, € ~ N(O, 02), (25)
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where L; = L(p; = i/n) = Z;'.:ly[j]/g, y[7] being the order statistics. Ob-
taining random draws from this quantile function requires some care as:

Qpla,y) = Fexpu?) x (1—exp(ay’)ap™ (1 — p)™?
—i—exp(aéj))aéj)pag])(l — p)aéj)’l), u? ~ N(0, 029,

4 Restricted stochastic dominance

With restricted stochastic dominance, we can compare two poverty situa-
tions, whatever the social welfare function. By restricted stochastic domi-
nance, we mean that two income distributions are compared up to a com-
mon poverty line (Davidson and Duclos 2000, 2013). Lander et al. (2020)
use mixtures of gamma densities to model the income distribution in In-
donesia. They develop Bayesian tests of stochastic dominance and restricted
stochastic dominance. They compute posterior probabilities for stochastic
dominance for the poorest 10% of the population, to assess whether their
situation has improved over time. Comparing TIP curves is another way for
testing restricted stochastic dominance at the second order while comparing
two GICs relates to first order stochastic dominance.

Hypothesis testing is the domain where there is the greatest difference
between classical and Bayesian approaches. Essentially in a Bayesian frame-
work there is no privileged hypothesis. Two hypotheses Hy and H; are com-
pared by means of the ratio between their posterior probability, the famous
Bayes factor Pr(Hy|y)/Pr(H:|y). We can also simply compute the posterior
probability of Hj.

4.1 TIP dominance

TIP dominance compares two TIP curves defined for populations A and B.

Definition 1 Distribution A TIP dominates distribution B for a given poverty
line z if TIPa(p,z) < TIPg(p, z),¥p € [0, F(2)].

As underlined in Davidson and Duclos (2000), TIP dominance is related to
restricted second order stochastic dominance. Testing for TIP dominance in
a Bayesian frameworks leads first to compute for each draw of 6 a vector
d(p|@) of dimension S corresponding to the grid over p:

d(pl0) = TIPa(p, z|04) — T1Pgp(p, z|0p).

12



The condition §(z,p|f) < 0 defines a logical vector of zeros and ones. It is
then equivalent to check any of the three conditions:

H 1[o(p:|0) < 0] =1, max 1[o(p:|0) < 0] =1, miin I[—0(p:|0) > 0] = 1.

i=1

So for instance:

Pr (m;xxd(p|y)<0) - /9 ]I{maxé(pW) <0] o (0)y)do

12

il Z [maxa (p|6D) < 0] (26)

The range of p has to be slightly restricted because all TIP curves are zero
at p = 0. So the practical range for the test should be something like p €
[0.01, F'(z)], values adopted in e.g. Davidson and Duclos (2013).

Because TIP dominance corresponds to restricted second order stochastic
dominance, TTP dominance does not imply less poverty incidence. Using
(16), we have to check the additional condition H(z |9(] ) < H(z|0 j)) and
evaluate the proportion of draws when it is verified.

Finally, when can we say that the situation in A is not statistically dif-
ferent from the situation in B? Equality is rejected if, for at least one value
of ps, d(ps|0) is statistically different from zero. This means that we have
to compute a credible interval for d(ps|@) and see if zero is included in this
interval. If we find a single p, for which zero does not belong to a say 90%
credible interval for §(ps|1), then we can reject at the 90% level that the two
TIP curves are equal.

4.2 GIC dominance

Because a GIC represents the difference between two quantiles functions, it
corresponds to the p-approach to dominance of Davidson and Duclos (2000).
We have first-order stochastic if g;(p) > 0 for all p. Growth has been welfare-
improving in terms of first-order stochastic dominance if g;(p) > 0 for all
p. We have restricted stochastic dominance if the range of p is limited to
p € [0, F(z)]. For each point p of a grid, Fourrier-Nicolai and Lubrano (2021)
evaluate:

1 m
Pr(g:(p) = Z [9:(pl0")) > 0], (27)



which allows us to see for which part of the income distribution the situation
has been improved. The probability of dominance defined as:

NE

Pr(gi(p) > 0) = — 3 Wimin(3,(p165)) > 0]. (25)

<.
Il

A further requirement is that growth has been favourable to the poor,
leading to the vector corresponding to p € [0, F'(2)]:

Pr(g:(p) ~), (29)

SIH

where

log Z 77 e“k 2+Uk 2 log Z 77('] e“l(cj)l+ak 1 (30)

is the j* draw of the average growth rate between ¢ and ¢t — 1 when the two
income distributions are modelled as a mixture of lognormals.

Fourrier-Nicolai and Lubrano (2021) analysed the impact of economic

growth in the UK over the period 1979-1996 under the government of Mar-
garet Thatcher. Using the Family Expenditure Survey, they found that

Table 1: Probability of pro-poor growth

D 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
1979-1988

Pr(g;(p) >~) 0.00 0.00 0.00 0.00 0.00 0.01 0.29 0.93 1.00
1992-1996

Pr(g;(p) >~) 1.00 1.00 1.00 0.99 0.93 0.77 0.58 0.39 0.19

growth has been profitable to the very top quantiles between 1979-1988. The
next period 1992-1996 experienced strong fiscal and redistributive corrections
leading to a situation which was more favourable to the lower quantiles. An
approach using Kakwani modelling of the Lorenz curve did not give funda-
mentally different results.

5 Poverty dynamics

Hasegawa and Ueda (2007) propose to model individual incomes as a sta-
tionary process and derive the distribution of Ravallion (1988) decomposi-
tion of poverty into total, chronic and transitory poverty, using panel data.

14



However, panel data sets are seldom available in developing countries where
the analysis of poverty should be of prime importance. Sadeq and Lubrano
(2018) develop a pseudo panel approach to analyse the impact of the Wall
on poverty entry and poverty persistence in the West Bank.

5.1 Poverty decomposition

TIP curves are a convenient graphical device to represent the three dimen-
sions of poverty, thanks to the decomposability of FGT indices. When a
panel data is available, a further decomposition is possible with total, tran-
sient and chronic poverty, following Ravallion (1988). Let y;; be income for
individual 7 at time ¢. Hasegawa and Ueda (2007) assume that:

Yit = i + Uy, i=1,...,n, t=1,...,T, (31)

where p; represents the steady-state or long term income while u;; denotes
its transient component. For FGT poverty indices expressed as the discrete
counterpart of (15):
n
(e, 2) = Z(l = Yit/2) Wy < 2),
i=1

total, chronic and transient poverty are measured by:

1
Total poverty 7p(z) = TZW(yit,z) (32)
¢

1
Chronic poverty wo(z) = - Z(l — i/ 2) Wya < 2) (33)

Transient poverty 7r(z) = wp(z) —me(z). (34)

To go from a descriptive point of view to an inferential point of view, Hasegawa
and Ueda (2007) model income by a mixture of k lognormal distributions
for each individual 7, assuming p,; constant over time, but adding an error-
in-variable mechanism. They derive the posterior predictive distribution
of yit, p(yly) and use simulations of § to estimate poverty indices with

ﬂi = Zt gzt/T

An alternative possibility would be to consider (31) as a panel data model
with random individual effects. Let us define the vector of observations for

an individual y; = [y;1,...,yr], the basic panel data model with random
effects of Chib (1996) writes:
yi =+ X0+, ug|o? ~ N(0, o%I7), (35)
i ~ N(0,w?), (36)

15



where ¢ is a vector of 7" ones. With a common random effect p;, the T
incomes of individual 7 become correlated around the individual effect with:

Var(y;|f, 02’w2) =l + u/w? = V,

so that:
yi ~ N(X;8,V).

Bayesian inference on 3, 02 and w? is obtained with a Gibbs sampler corre-
sponding to algorithm 2 of Chib and Carlin (1999) with an informative prior
on o and w? to ease convergence. With a MCMC output for ), ¢20) and
wY) | we can simulate m random draws for y; using:

y ~ N(X:89), 02D Iy + 0/ w? D).

We then transform each nT vector y(j ) = [yi(j )]

MZ(J ) into:

together with the by-product

T (2) = nTzl—yn Iy < 2). (37)
() = 52(1—/# [2) () < 2). (38)

We have thus m posterior draws of the three poverty indices and compute
standard error for each of them.

5.2 Child and adult poverty in East Germany

Using the data set of Fourrier-Nicolai and Lubrano (2020), we analyse how
social transfers were alleviating child poverty compared to adult poverty in
East Germany over the period (2002-2006), just before the most important
social and redistributive reforms introduced by the Hartz plan in 2006. We
consider both disposable and market incomes (after taxes and transfers in-
cluding family allowances or before taxes and allowances, divided by the new
OECD equivalence scale) to build a five year balanced panel. We had 500
children and 1 466 adults without children. The poverty line is defined as
50% of the corresponding median income.

We adjusted a panel data model on the log of the income-to-need ratio,
explained by an intercept, the household size and the number of children in
the household (without the number of children for the adult sample). We
used an informative inverted gamma2 prior on w? with prior mean 0.25, 1 000
draws plus 100 for warming the chain. Posterior draws were then used to
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Table 2: Poverty rate and intensity in East Germany 2002-2006

Poverty rate

Poverty intensity

Total Chronic Transient Total Chronic Transient
Child disposable  0.218 0.071 0.147 0.063 0.012 0.051
(0.012)  (0.013) (0.011)  (0.005)  (0.003) (0.004)
Child market 0.496 0.208 0.289 0.372 0.116 0.255
(0.030)  (0.033) (0.015)  (0.027)  (0.022) (0.012)
Adult disposable  0.185 0.052 0.134 0.050 0.008 0.042
(0.007)  (0.006) (0.005)  (0.003)  (0.001) (0.002)
Adult market 0.649 0.355 0.294 0.557 0.253 0.304
(0.022)  (0.032) (0.012)  (0.023)  (0.026) (0.008)

Standard errors are given between parentheses. Market income represent total income be-
fore taxes and redistribution. Disposable income includes taxes and redistribution and in
particular family allowances. Child corresponds to the population between 1 and 18 years.

Adult are over 18 years and have no child.

simulate incomes and poverty indices with results reported in Table 2. Be-
fore taxes and transfers, there is much more poverty among adults as if poor
adults had decided not to have children. Poverty among adults is mostly
chronic when it is mainly transitory among children. Poverty intensity is
also stronger among adults while being mostly transient. When taxes and
transfers are introduced, total poverty is much reduced, but the reduction
is more important among adults than among children. With transfers, child
and adult poverty become mainly transient while chronic poverty intensity
is reduced to very low levels. We have thus a contrasted impact of social
transfers on the dynamic of poverty in East Germany for that period. As
underlined in Fourrier-Nicolal and Lubrano (2020), the major changes intro-
duced after the Hartz plan reforms in the German redistributive system after
2006 contributed a lot to reduce child poverty.

5.3 Poverty dynamics using pseudo panels

Poverty dynamics can be analysed using a bivariate dynamic probit model
which explains between two periods the transition between two states, poor
and non-poor. Stayers or chronic poverty is being poor both at ¢ — 1 and t.
Poverty entry is not being poor at ¢ — 1 and entering poverty at ¢, transitory
poverty is being poor at t —1 and getting out of poverty at . Cappellari and
Jenkins (2004) considers three equations for explaining the poverty status
dynamics along with a correction for attrition explained in a third equation
as individuals might not be missing at random. This model requires consec-
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utive observations to build up data pairs for dynamic analysis, which are not
always available, especially in developing countries. The purpose of Sadeq
and Lubrano (2018) was to use an adapted version of this model to measure
the impact of the Wall built on the West Bank after 2002 on poverty dynam-
ics in occupied territories. In two repeated cross-sectional waves of 2004 and
2011 from Palestinian Ezpenditure and Consumption Survey, a variable in-
dicated if a household was impacted or not by the Wall. Sadeq and Lubrano
(2018) considered a pseudo panel as an incomplete data problem. Inside the
loop of a Gibbs sampler, they explain the income-to-needs ratio (negative
for being under poverty) using time invariant data for 2004 and 2011 and
the grouping techniques of Deaton (1985) and Verbeek and Vella (2005) to
generate the missing values and recover information on p, the correlation pa-
rameter between the two periods error terms. Then they use both observed
and latent variables to explain the income-to-needs ratio for 2011, this time
conditionally on being poor in 2004 and being affected or not by the Wall.
We have thus two ways of measuring poverty dynamics and the final effect
of the wall on poverty dynamics is determined by the difference between a
marginal probability and a conditional probability taking into account the
effect of the Wall. The paper is rather technical and its equations will not
be fully detailed here.

Taking into account the Wall has a large effect on poverty dynamics. For
those who were already poor in period 1, the wall increases their probability
of staying poor by 58 percentage points. For those who were not in poverty,
the probability of entering into poverty during the second period is increased
by 18 percentages points.

We have reproduced in Figure 3 the posterior densities of these probabil-
ities, using plain lines. We compare these probabilities to those obtained un-
der a non-informative prior on p, using dashed lines. With a non-informative
prior on p, the differential in probability of poverty entry is slightly increased
while the differential in poverty persistence is slightly decreased. But these
differences are mild, even if the prior information had a sizable influence on
the posterior density of p.

6 Conclusion and further reading

The reader might understand that we made a restricted presentation. We
assumed most of the time that the income distribution could be represented
by a mixture of lognormals. The Double Pareto lognormal distribution of
Reed and Jorgensen (2004) could be an alternative. For Bayesian inference
using a Gibbs sampler, see Ramirez-Cobo et al. (2010).
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Figure 3: Posterior density of poverty persistence
and poverty entry differentials due to the Wall

We assumed that individual survey data were available. In many cases
only group data are available. Groups can correspond to fixed bounds re-
porting the number of households inside each cell. For instance the American
Community Survey provides income data at the level of School Districts in
the form of ten income classes. Groups can have variable bounds, each group
containing the same proportion of individuals. This is convenient for report-
ing income shares as does the World Inequality data base. To each case
corresponds a specific statistical problem as surveyed in Eckernkemper and
Gribisch (2020). Chotikapanich and Griffiths (2000), Griffiths et al. (2005),
Chotikapanich and Griffiths (2005), Kakamu (2016), Kakamu and Nishino
(2019) contributed also to this field.

For many authors, the spatial dimension has to be taken into account
for measuring poverty. Haughton and Phong (2003) estimate poverty rates
in Vietnam provinces, considering poverty as a binomial process (poor and
non-poor) within clusters represented by administrative districts that are
then aggregated. Wieczorek and Hawala (2011) study spatial poverty in the
US at the county level. County poverty rates p; are then explained in a
logit model. Their main objective is to to predict poverty rates, taking into
account county size and sampling design. Nawawi et al. (2020) use a Poisson
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Log-Linear Leroux Conditional Autoregressive model with different neigh-
bourhood matrices for explaining poverty rates in 66 districts of Kelantan,
Malaisia, in 2010 by various socio-economic indicators.
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