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allocate their income between a standard good and a status good to maximize a Cobb-Douglas
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their neighbors’ average consumption. Loss aversion has a profound impact. If loss aversion

is large enough relative to income heterogeneity, a continuum of Nash equilibria appears and
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losses.
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1 Introduction

We often compare ourselves to others. Following Veblen (1899), a vast literature has docu-

mented the importance of conspicuous consumption. The consumption of goods like clothing

and cars, appears to be driven, in part, by considerations of social status.1 Comparisons

are rooted in the social structure. People generally have different reference groups, which

may include family, friends, and colleagues. Consumption in our reference group defines a

reference level to which we compare our own consumption. Do we then react in symmetric

ways to status gains and losses? The literature on loss aversion stresses the importance of

asymmetries in the response to deviations from reference points. People appear to place more

weight on relative losses than on relative gains.2 The literature on conspicuous consumption

has largely ignored loss aversion, however.

In this paper, we introduce loss aversion into the network model of conspicuous consump-

tion of Ghiglino and Goyal (2010). Agents allocate their income between a standard good and

a status good to maximize a Cobb-Douglas utility. Agents are embedded in a social network

and compare their own status consumption to the average consumption among their network

neighbors. Under loss aversion, status losses from a negative difference to the reference level

are larger in magnitude than status gains from a positive difference of the same size. We

analyze the network game induced by these social preferences.

We find that loss aversion has a profound impact on outcomes. Our main result establishes

the existence of two mutually exclusive domains. In the conformism domain, there is a

continuum of Nash equilibria where all agents consume the same quantity of status good.

This domain only appears under loss aversion. In the differentiated domain, there is a unique

Nash equilibrium where agents consume different quantities of the status good. We provide a

simple, explicit condition characterizing the boundary between these two domains and valid

for any connected network. Indeterminate, conformist equilibria appear if and only if loss

aversion is large enough relative to income heterogeneity.
1See, e.g., Charles, Hurst, and Roussanov (2009).
2Kahneman and Tversky (1979) introduced prospect theory to help explain decisions under risk, see also

Tversky and Kahneman (1992). A key ingredient in prospect theory is loss aversion with respect to a given
reference point. Loss aversion also appears to play an important role in explaining riskless choices, see Thaler
(1980) and Barberis (2013) for a survey.
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Intuitively, the kink in the utility functions induced by loss aversion means that agents

are extra motivated to avoid status losses. They really want not to consume less than the

average consumption of their network neighbors. When the comparison network is connected

and income heterogeneity is not too high, the interplay of these motives across the network

leads all agents to consume the same amount of status good. This pure conformism becomes

untenable, however, when incomes are too different. In that case, we show that consumption

of the status good for the richest agents always lies strictly above their reference levels, while

it lies strictly below for the poorest agents.

An important first step in our analysis is to compute agents’ best responses. Without loss

aversion, the best response is linear in the average consumption among network neighbors

with slope strictly lower than 1, see Ghiglino and Goyal (2010). By contrast, we show that

with loss aversion, the best response is piecewise linear with three pieces. Crucially, we show

the emergence of an intermediate domain where the best response is precisely equal to the

reference level - and hence with a slope equal to 1. The best response is also continuous and

strictly increasing overall, implying that the consumption game is supermodular.

In a last step, we assess the robustness of our results. We show that our main result

extends to a setup with heterogeneity in concerns for status and in loss aversion. This het-

erogeneity tends to reduce the emergence of conformism. We then provide preliminary results,

and conditions under which the emergence of a continuum of conformist equilibria is guaran-

teed, when agents maximize some general increasing and quasi-concave utility function. We

find that agents may still act as pure conformists over some intermediate range.

Our analysis contributes to the literature on conspicuous consumption. Our model builds

on the early literature on status games, as formalized by Frank (1985) and developed by

Hopkins and Kornienko (2004). As in these papers, we assume that agents allocate expendi-

tures between two goods, a standard good and a status good. Frank (1985) and Hopkins and

Kornienko (2004) assume that an agent cares about their rank in the overall consumption

distribution, i.e., about the proportion of agents with a status consumption lying below own

consumption. By contrast and following the literature on keeping up with the Joneses, we

assume that utilities depend on a reference level of consumption.3 We further assume that
3See, e.g., Abel (1990), Clark and Oswald (1998), Ljungqvist and Uhlig (2000).
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each agent may have a different reference group, defining a network of comparisons as in

Ghiglino and Goyal (2010). We provide the first analysis of the impact of loss aversion and

find that it can lead to pure conformism in status good consumption.

Closer to our work, Friedman and Ostrov (2008) consider a continuum of identical con-

sumers also allocating income between a standard good and a status good. In their frame-

work, an agent cares about the difference between their status consumption and the status

consumption of everyone else, with possibly different weights on positive and negative dif-

ferences. By contrast, we tackle the more realistic - and more technically challenging - case

of a finite society, where the action of one agent may have non-negligible impacts on oth-

ers. Further, we characterize outcomes for any distribution of incomes and any connected

network, without imposing the network to be complete. We show that pure conformism

on status consumption only emerges when loss aversion is large enough relative to income

heterogeneity.

Our analysis also contributes to the literature on games played on networks, surveyed in

Bramoullé and Kranton (2016) and Jackson and Zenou (2015). To our knowledge, the only

papers looking at status games on networks are Ghiglino and Goyal (2010) and Immorlica

et al. (2017). Immorlica et al. (2017) consider a game where agents take a costly action which

confers both private benefits and social status. The utility depends on a weighted sum of the

differences between own action and the actions of neighbors taking a higher action. There is

no weight on positive differences, an assumption akin to extreme loss aversion.4 By contrast,

we analyze the choices of consumers allocating income across two categories of goods. The

relative weights on positive and negative differences can vary, covering situations of no loss

aversion (equal weights), extreme loss aversion (zero weights on positive differences), and

intermediate cases. We uncover the existence of two domains: one with a continuum of

conformist equilibria, and one with a unique differentiated equilibrium.

As described above, we introduce loss aversion in the model of Ghiglino and Goyal (2010).5

4Immorlica et al. (2017) assume that an agent compares their action with the action of every other agent
and then aggregates these pairwise comparisons by premultiplying with exogenous network weights. By
contrast, comparisons operate through an network-based reference level in our framework.

5Ghiglino and Goyal (2010) develop a general equilibrium analysis with exchange, endogenizing the price
of the goods. By contrast, we consider exogenous prices, as in Frank (1985) and Hopkins and Kornienko
(2004). Leaving the offer unspecified allows the results to be relevant for general market structures. For
example, production of the goods could be competitive, monopolistic, or include rigidities or incompleteness.
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In the absence of loss aversion, best responses are linear and the equilibrium is unique. A

remarkable implication of our main result is that equilibrium uniqueness is non-generic. Even

an arbitrarily small wedge between the weights on negative and positive differences gives rise

to a continuum of equilibria, and this holds even with arbitrarily small concerns about others’

consumption. Loss aversion can lead to pure conformism in status consumption, a feature

absent from Ghiglino and Goyal (2010).

Finally, our analysis contributes to the literature on loss aversion. Introduced by Kahne-

man and Tversky (1979) to analyze decisions under risk, loss aversion has also been proved

useful to help explain riskless choices, see Thaler (1980) and Barberis (2013) for a survey.

A central challenge in this literature is to develop a better understanding of the formation

of reference points.6 In a context of relative concerns, the ideas that agents have different

reference groups and that an agent’s reference level is built from consumption in their refer-

ence groups are very natural, and have empirical support. Across different contexts, people

appear to compare themselves to their neighbors, family, and colleagues.7 We provide the

first analysis of the impact of loss aversion on conspicuous consumption in a network context.

2 The Model

We introduce loss aversion into a network model of conspicuous consumption. We consider a

society of n consumers. Each agent i allocates her budget wi > 0 between the consumption

of a standard good, xi ≥ 0, and of a status good, yi ≥ 0. The price of the standard good is

normalized to 1 and let p denote the relative price of the status good. The budget constraint

is xi + pyi ≤ wi.

Agents are embedded in a directed social network, describing comparison relationships.

Denote by Ni the comparison group of agent i, of size |Ni|. We consider a connected network;

any agent can be reached from any other agent through an indirect path in the network. This
6“The central idea in prospect theory is that people derive utility from “gains” and “losses” measured

relative to a reference point. But in any given context, it is often unclear how to define precisely what a gain
or loss is, not least because Kahneman and Tversky offered relatively little guidance on how the reference
point is determined.”, see Barberis (2013), p.178. For decisions under risk, Kőszegi and Rabin (2006) propose
a framework where an agent’s reference point is their expectation held in the recent past about outcomes.

7See, e.g., Clark and Senik (2010), Luttmer (2005), Neumark and Postlewaite (1998).

4



implies that no agent is socially isolated, ∀i, Ni 6= ∅. Each agent compares his consumption

of the status good, yi, to the average consumption in her comparison group, ȳi =
∑
j∈Ni

yj

|Ni| .

Denote by G the interaction matrix such that gij = 1
|Ni| if j ∈ Ni and gij = 0 if j /∈ Ni. Thus,

ȳi =
∑

j gijyj.

Agents’ preferences are described by the following Cobb-Douglas utility function, which

depends on own consumption of the standard good and of own and peers’ consumption of

the status good.

ui(xi, yi,y−i) = xσi ϕ(yi,y−i)
1−σ

with

ϕ(yi,y−i) = yi + α+(yi − ȳi) if yi ≥ ȳi

ϕ(yi,y−i) = yi + α−(yi − ȳi) if yi ≤ ȳi

where σ ∈ (0, 1) represents the consumption elasticity of the standard good and α− ≥

α+ ≥ 0 capture how much agents compare their consumption of the status good to others’

consumption. Note that this utility function is well-defined, and greater than or equal to zero,

when ϕ(yi,y−i) ≥ 0. For completeness, we assume that ui = −L < 0 when ϕ(yi,y−i) < 0.

This means that agent i wants to consume at least α−

1+α−
ȳi units of status good before starting

to consume the standard good.

This formulation nests well-known cases. When α− = α+ = 0, there is no social compar-

ison. Agents have standard Cobb-Douglas preferences and xi = σwi and yi = (1− σ)wi
p
.

When α− = α+ = α > 0, there is social comparison without loss aversion. This is the

benchmark case analyzed in Ghiglino and Goyal (2010). An agent’s consumption depends

on her peers’ consumption, defining a simultaneous, complete information network game.

The budget constraint binds, implying xi = wi − pyi. The utility as a function of status

consumption only is ui(yi,y−i) = (wi − pyi)
σ((1 + α)yi − αȳi)

1−σ with yi ∈ [0, wi
p

]. This

yields, ∂ui
∂yi

= (− pσ
wi−pyi + (1+α)(1−σ)

(1+α)yi−αȳi )ui. And
∂ui
∂yi

= 0⇔ yi = σ α
1+α

ȳi + (1− σ)wi
p
when ui > 0.

When α is not too high, individual best response is linear and there exists a unique

Nash equilibrium to the consumption game. Denote by I the identity matrix. The unique

5



equilibrium is interior and equal to

y =
1− σ
p

(I− σ α

1 + α
G)−1w

Under income homogeneity, in particular, this reduces to yi = 1−σ
1−σ α

1+α

w
p
. An increase in the

importance of social comparison, as measured by α, unambiguously increases the consump-

tion of the status good and decreases the consumption of the standard good.

Our main contribution is to introduce the possibility of loss aversion in status seeking.

When α− > α+, the social losses from having a consumption level of the status good below

peers’ average are larger in absolute value than the social gains from having a status con-

sumption above peers’ average. This introduces a kink in the utility function, which is not

differentiable around the reference level yi = ȳi. Our main objectives are then to characterize

the Nash equilibria of the consumption game under social comparison and loss aversion, and

to understand how loss aversion affects equilibrium behavior.

3 Results

We develop our analysis in several steps. We first derive the individual best response of an

agent under loss aversion. We show that the best response is an increasing, piecewise linear

function with three pieces. A key implication of loss aversion is to induce pure conformist

behavior over an intermediate range. We then present our main result on Nash equilibria.

We uncover the existence of two mutually exclusive and qualitatively different domains. In a

first domain, every agent plays the same action and there is a continuum of Nash equilibria.

In a second domain, there is a unique Nash equilibrium and agents play different actions.

3.1 Individual best response

As a preliminary remark, note that the budget constraint implies that yi ∈ [0, wi
p

] and hence

that ȳi ∈ [0, w̄i
p

]. Therefore, an agent can afford the minimal level of consumption of status

good for every possible consumption levels of her peers if and only if wi ≥ α−

1+α−
w̄i and we

maintain this assumption in what follows.
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We next derive the individual best response in the consumption game. Denote by fi(y−i)

the best response of agent i, i.e., the solution to the problem of maximizing ui(yi,y−i) =

(wi − pyi)σϕ(yi,y−i)
1−σ under the constraint that yi ∈ [0, wi

p
]. Note that ui is continuous,

and hence admits a maximum on the compact interval [0, wi
p

]. Further, we show that ln(ui)

is strictly concave on this interval’s interior, and hence ui admits a unique maximum. Let

a− = α−

1+α−
and a+ = α+

1+α+ , such that 0 ≤ a+ ≤ a− ≤ 1.

Proposition 1. The individual best response of agent i in the consumption game is equal to:

fi(y−i) = σa+ȳi + (1− σ)wi
p

if ȳi ≤ 1−σ
1−σa+

wi
p

fi(y−i) = ȳi if 1−σ
1−σa+

wi
p
≤ ȳi ≤ 1−σ

1−σa−
wi
p

fi(y−i) = σa−ȳi + (1− σ)wi
p

if ȳi ≥ 1−σ
1−σa−

wi
p

Proof. We first show that ln(ui) is strictly concave over ]0, wi
p

[. When i consumes at least

the minimal amount of status good, we have:

ln(ui) = σln(wi− pyi) + (1− σ)ln((1 +α−)yi−α−ȳi) if yi ≤ ȳi and ln(ui) = σln(wi− pyi) +

(1− σ)ln((1 +α+)yi−α+ȳi) if yi ≥ ȳi. This yields ∂ln(ui)
∂yi

= − pσ
wi−pyi + (1−σ)(1+α−)

(1+α−)yi−α−ȳi if yi ≤ ȳi

and ∂ln(ui)
∂yi

= − pσ
wi−pyi + (1−σ)(1+α+)

(1+α+)yi−α+ȳi
if yi ≥ ȳi.

Therefore, ∂ln(ui)
∂yi

is continuous and strictly decreasing until yi reaches ȳi from the left and

then, again, continuous and strictly decreasing when yi increases from ȳ+
i . Moreover, ln(ui)

is left and right differenntiable at yi = ȳi and

∂ln(ui)

∂yi
(ȳ−i ) = − pσ

wi − pȳi
+

(1− σ)(1 + α−)

ȳi
>
∂ln(ui)

∂yi
(ȳ+
i ) = − pσ

wi − pȳi
+

(1− σ)(1 + α+)

ȳi

The left-derivative at yi = ȳi is larger than the right-derivative, and hence ln(ui) is strictly

concave.

Since ln(ui) is a strictly concave function over ]0, wi
p

[, tends to −∞ at both extremes,

and has a kink at ȳi, it has a unique interior maximum and there are two possible cases.

Either ∂ln(ui)
∂yi

= 0 and yi 6= ȳi. Or ∂ln(ui)
∂yi

(ȳ−i ) ≥ 0 and ∂ln(ui)
∂yi

(ȳ+
i ) ≤ 0, and the maximum lies

precisely at the kink, yi = ȳi.

If yi < ȳi, then ∂ln(ui)
∂yi

= 0 ⇒ yi = σa−ȳi + (1 − σ)wi
p
. This is a valid solution only if

σa−ȳi + (1− σ)wi
p
< ȳi. If yi > ȳi, then ∂ln(ui)

∂yi
= 0⇒ yi = σa+ȳi + (1− σ)wi

p
. This is a valid
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Figure 1: Individual best response under loss aversion

solution only if σa+ȳi + (1− σ)wi
p
> ȳi. Otherwise, the maximum lies at the kink yi = ȳi.

We illustrate Proposition 1 in Figure 1. We depict how agent i’s consumption of the

status good yi depends on the average consumption among her peers, ȳi. Three domains

appear. When the social reference level is low, the agent is in a domain of status gains. Her

consumption level is linear in ȳi with slope σa+ < 1. When the social reference level is high,

the agent is in a domain of status losses. Her consumption level is also linear in ȳi with

slope σa− < 1. The slope in the loss domain is higher than in the gain domain due to loss

aversion, a− > a+. Note, also, that these two straight lines have the same intercept, (1−σ)wi
p
.

Crucially, we see the emergence of an intermediate domain, when ȳi ∈ [ 1−σ
1−σa+

wi
p
, 1−σ

1−σa−
wi
p

]. In

this domain, the agent behaves as a pure conformist and sets her consumption level equal to

the social reference level, yi = ȳi. Intuitively, the agent in this domain can avoid social losses,

but cannot afford social gains. This conformism domain only appears under loss aversion

when α− > α+ and its size increases when the wedge between social gains and social losses

expands.

An important implication of Proposition 1 is that the best response of an agent is strictly

increasing over her strategy space. This implies that the consumption game is supermodular.8

8See e.g. Milgrom and Roberts (1990) and Vives (1990) for classical references on supermodular games.
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A well-known consequence is that there exist a lowest and a highest Nash equilibrium, ymin

and ymax, such that for any Nash equilibrium y, ∀i, ymini ≤ yi ≤ ymaxi . In addition, an

increase in wi leads to a weak increase in the best response of agent i, and hence to a weak

increase in the action of every agent in both the lowest and highest Nash equilibrium. We

will be using these properties in the proof of our main Theorem below.

3.2 Nash equilibria

To provide some intuition for our main result, we show how to determine Nash equilibria

graphically with two agents. We depict the best responses of the two agents in the same

graph and under three scenarios in Figure 2. A profile is a Nash equilibrium iff it lies at

the intersection of the two curves. In the upper panel, the two agents have equal incomes,

w1 = w2. We see that there is a continuum of Nash equilibrium, where both agents choose

the same level of status good, and this continuum corresponds precisely to the conformist

portions of the best-responses. In the middle panel, we assume that agent 2 is now richer than

agent 1, w2 > w1, and that the income difference is not too high. Agent 2’s best response is

now shifted upwards. We see that there is still a continuum of conformist Nash equilibria,

corresponding to the portion of the 45 degree line which is common to both best-responses.

In the lower panel, we depict a case where agent 2 is now much richer than agent 1. Agent

2 best response is shifted upwards even further. There is now a unique Nash equilibrium, at

the intersection of the domain of status gains for agent 2 and of status losses for agent 1. In

this equilibrium, y2 > y1, the richer agent earns strict status gains while the poorer agent

earns strict status losses.

We can now state our main Theorem, which shows that the logic of this example extends

to any connected network among n agents. Let wmin and wmax denote the minimal and

maximal wealth levels among agents. A richest agent is an agent with wealth wmax while a

poorest agent has wealth wmin. Say that agent i earns strict satus gains in Nash equilibrium y

when ȳi < 1−σ
1−σa+

wi
p
, and hence by Proposition 1, yi = σa+ȳi+(1−σ)wi

p
> ȳi. She earns status

gains if ȳi ≤ 1−σ
1−σa+

wi
p
, and hence yi ≥ ȳi. Similarly, agent i earns strict status losses when

ȳi >
1−σ

1−σa−
wi
p

and yi = σa−ȳi + (1 − σ)wi
p
< ȳi. She earns status losses when ȳi ≥ 1−σ

1−σa−
wi
p
,

and yi ≤ ȳi.
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+
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Figure 2: Nash equilibria with two agents
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Theorem 1. Consider any connected comparison network.

(Conformism and Indeterminacy) If wmax
1−σa+ ≤

wmin
1−σa− , then a profile y is a Nash equilibrium if

and only if y = (y, y, ..., y) with y ∈ [ 1−σ
1−σa+

wmax
p
, 1−σ

1−σa−
wmin
p

].

(Differences and Uniqueness) If wmax
1−σa+ > wmin

1−σa− , then there is a unique Nash equilibrium y

and ∀i, 1−σ
1−σa−

wmin
p
≤ yi ≤ 1−σ

1−σa+
wmax
p

. Richest agents earns strict status gains while poorest

agents earn strict status losses.

Proof. (1) Assume first that wmax
1−σa+ ≤

wmin
1−σa− .

(1.1) Consider a profile y = (y, y, ..., y) where everyone plays the same action and y ∈

[ 1−σ
1−σa+

wmax
p
, 1−σ

1−σa−
wmin
p

]. For every i, ȳi = y. By Proposition 1, playing yi = y = ȳi is a best

response when 1−σ
1−σa+

wi
p
≤ y ≤ 1−σ

1−σa−
wi
p
. These inequalities hold since

1− σ
1− σa+

wi
p
≤ 1− σ

1− σa+

wmax
p
≤ y ≤ 1− σ

1− σa−
wmin
p
≤ 1− σ

1− σa−
wi
p

This shows that the conformist profiles described in the first part of the Theorem are indeed

Nash equilibria.

(1.2) Let us show that these are the only Nash equilibria in this domain. Recall, ymin

and ymax denote the lowest and highest Nash equilibria of the game. By (1.1) we know

that ∀i, ymini ≤ 1−σ
1−σa+

wmax
p

. This implies that ȳmini ≤ 1−σ
1−σa+

wmax
p

. Since by assumption
1−σ

1−σa+
wmax
p
≤ 1−σ

1−σa−
wmin
p

, we have ȳmini ≤ 1−σ
1−σa−

wi
p
. By Proposition 1, this implies that no

agent is in the domain of strict social losses and hence ∀i, ymini ≥ ȳmini . We can then invoke

the following elementary graph-theoretic property. Consider a directed, connected network

such that ∀i, yi ≥ ȳi. Then ∀i, yi = y.

To see why, let i0 be an agent with lowest value of yi. By assumption, yi0 ≥ ȳi0 . However,

ȳi0 =

∑
j∈Ni0

yj

|Ni0|
and since yj ≥ yi0 , ȳi0 ≥ yi0 . Therefore, yj = yi0 , for every j ∈ Ni0 . Apply the

same argument to the neighbors of the neighbors of i0. Then, repeat until the whole network

is covered, which is possible since the network is connected.

Therefore, everyone must play the same action in the lowest equilibrium. By (1.1), this

implies that ymini = 1−σ
1−σa+

wmax
p

. Similarly, since ymax is the highest Nash equilibrium,

∀i, ymaxi ≥ 1−σ
1−σa−

wmin
p

. This implies that ȳmaxi ≥ 1−σ
1−σa−

wmin
p

, and hence ȳmaxi ≥ 1−σ
1−σa+

wi
p
.

By Proposition 1, no agent is in the domain of strict social gains and ∀i, ymaxi ≤ ȳmaxi . Since
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the network is connected, all agents also play the same action in the largest equilibrium and

ymaxi = 1−σ
1−σa−

wmin
p

.

To conclude, note that any other Nash equilibrium y must satisfy ymini ≤ yi ≤ ymaxi .

This implies that 1−σ
1−σa+

wmax
p
≤ yi ≤ 1−σ

1−σa−
wmin
p

and hence 1−σ
1−σa+

wi
p
≤ yi ≤ 1−σ

1−σa−
wi
p
. By

Proposition 1, every agent is then in the conformist range: yi = ȳi, implying that everyone

plays the same action.

(2) Assume now that wmax
1−σa+ > wmin

1−σa− and let S = {y : ∀i, 1−σ
1−σa−

wmin
p
≤ yi ≤ 1−σ

1−σa+
wmax
p
}.

(2.1). Let us first show that all Nash equilibria belong to S and, moreover, that f(S) ⊂ S.

Consider a decrease in incomes w′ such that w′max
1−σa+ = wmin

1−σa− and w′min = wmin. From the

first part of the Theorem, we know that at incomes w′, there is a unique Nash equilibrium

where every agent plays y = 1−σ
1−σa−

wmin
p

. Since the lowest equilibrium decreases weakly when

incomes decrease, this implies that ∀i, ymini ≥ 1−σ
1−σa−

wmin
p

. In particular if i is a poorest agent,

ȳmini ≥ 1−σ
1−σa−

wi
p

and i earns status losses.

Similarly, consider an increase in incomes w′′ such that w′′min
1−σa− = wmax

1−σa+ and w′′max = wmax.

At incomes w′′, there is a unique Nash equilibrium where all agents play y = 1−σ
1−σa+

wmax
p

.

Since the highest equilibrium increases weakly following an increase in incomes, this implies

that ∀i, ymaxi ≤ 1−σ
1−σa+

wmax
p

. If i is a richest agent, ȳmaxi ≤ 1−σ
1−σa+

wi
p

and i earns status gains.

Therefore, for any Nash equilibrum y, 1−σ
1−σa−

wmin
p
≤ ymini ≤ yi ≤ ymaxi ≤ 1−σ

1−σa+
wmax
p

. Any

Nash equilibrium thus belongs to S.

Next, consider y ∈ S. We have: 1−σ
1−σa−

wmin
p
≤ yi ≤ 1−σ

1−σa+
wmax
p

. Therefore, since i’s best

response is increasing, fi( 1−σ
1−σa−

wmin
p

) ≤ fi(yi) ≤ fi(
1−σ

1−σa+
wmax
p

). Since 1−σ
1−σa−

wmin
p
≤ 1−σ

1−σa−
wi
p
,

1−σ
1−σa−

wmin
p

lies in the domain where fi lies weakly above the 45 degree line. Therefore,

fi(
1−σ

1−σa−
wmin
p

) ≥ 1−σ
1−σa−

wmin
p

. Similarly, since 1−σ
1−σa+

wmax
p
≥ 1−σ

1−σa+
wi
p
, 1−σ

1−σa+
wmax
p

lies in the

domain where fi lies weakly below the 45 degree line and hence fi( 1−σ
1−σa+

wmax
p

) ≤ 1−σ
1−σa+

wmax
p

.

This implies that 1−σ
1−σa−

wmin
p
≤ fi(yi) ≤ 1−σ

1−σa+
wmax
p

, and hence fi(y) ∈ S.

(2.2) We now show that the overall best response f is contracting over S. Let i0 be

a richest agent, wi0 = wmax, and j0 be a poorest agent, wj0 = wmin. For any y ∈ S,

ȳi0 ≤ 1−σ
1−σa+

wmax
p

= 1−σ
1−σa+

wi0
p
. By Proposition 1, this implies that fi0(y) = σa+ȳi0 +(1−σ)

wi0
p
.

Similarly, ȳj0 ≥ 1−σ
1−σa−

wmin
p

= 1−σ
1−σa−

wj0
p

and hence fj0(y) = σa−ȳj0 + (1− σ)
wj0
p
.

Next, observe that for any i, y, y′, |fi(y)− fi(y′)| ≤ |ȳi − ȳ′i|. This holds by Proposition
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1 when ȳi and ȳ′i belong to the same domain. In these cases, fi is a linear function of ȳi with

slope lower than or equal to 1. This also holds when ȳi and ȳ′i belong to different domains.

For instance, if ȳi ≤ 1−σ
1−σa+

wi
p

and ȳ′i ≥ 1−σ
1−σa−

wi
p
, then fi(y) ≥ ȳi while fi(y′) ≤ ȳ′i. Thus,

0 ≤ fi(y
′)− fi(y) ≤ ȳ′i − ȳi.

Introduce h the linear function that hi(y) = ȳi if i 6= i0, j0, hi(y) = σa+ȳi if i = i0 and

hi(y) = σa−ȳi if i = j0. This function is represented by the matrix H built from G by

multiplying row i0 by σa+ < 1, row j0 by σa− < 1 and leaving other rows unchanged. Since

G is row-normalized with non-negative entries, the spectral radius of G is 1. From Corollary

2.6 in Azimzadeh (2019), we know that the spectral radius of H is strictly lower than 1 if

and only if there is a walk connecting every i 6= i0, j0 to i0 or to j0. Since the network is

connected, this property holds.

Finally, let ||.||2 denote the Euclidean norm. Then, for any y,y′ ∈ S,

||f(y)− f(y′)||22 = (fi0(y)− fi0(y′))2 + (fj0(y)− fj0(y′))2 +
∑
i 6=i0,j0

(fi(y)− fi(y′))2

||f(y)− f(y′)||22 ≤ (σa+(ȳi0 − ȳ′i0))
2 + (σa−(ȳj0 − ȳ′j0))

2 +
∑
i 6=i0,j0

(ȳi − ȳ′i)2

||f(y)− f(y′)||22 ≤ ||h(y)− h(y′)||22 ≤ ρ(H)||y − y′||22

Therefore, the best response f is contracting with respect to the Euclidean norm on S,

and hence has a unique fixed point.

(2.3) Finally, let us show that status losses (gains) earned by poorest (richest) agents

are strict. Let i be a poorest agent, wi = wmin. Suppose that i’s status losses are not

strict, yi = ȳi = 1−σ
1−σa−

wmin
p

. Since ȳi =
∑
j∈Ni

yj

|Ni| and yj ≥ 1−σ
1−σa−

wmin
p

, yj = 1−σ
1−σa−

wmin
p

for every j ∈ Ni. Therefore, yj ≤ 1−σ
1−σa−

wj
p

and hence by Proposition 1, yj ≥ ȳj. Thus,

ȳj ≤ 1−σ
1−σa−

wmin
p

and hence for every k ∈ Nj, yk = 1−σ
1−σa−

wmin
p

. Repeating the argument

and since the network is connected, ∀k, yk = 1−σ
1−σa−

wmin
p

. By (1.1), 1−σ
1−σa+

wmax
p
≤ 1−σ

1−σa−
wmin
p

,

a contradiction. Therefore, poorest agents earn strict status losses and, through similar

arguments, richest agents earn strict status gains.

13



Theorem 1 uncovers the existence of a conformism domain, where all agents consume the

same level of status good even when they have different incomes. Interestingly, conformism

emerges even though agents do not have a direct preference for conformism. Rather, they

display loss aversion with respect to the social reference level. In other words, agents have

an extra incentive not to fall below the reference level. Theorem 1 shows that the interplay

of loss averse social comparisons over a connected network yields full conformism in status

good consumption when income heterogeneity is not too high.

How does consumption varies with incomes across agents? In the absence of social com-

parison, when α− = α+ = 0, consumption of the status good varies linearly with income with

slope (1−σ)/p while consumption of the standard good varies linearly with income with slope

σ. In the conformism domain, consumption of the status good does not depend on income.

By contrast and since xi = wi − pyi, consumption of the standard good varies linearly with

income across agents and with slope 1. An income difference between two agents is passed

on one-to-one into a difference in the consumption of the standard good. Thus, conformism

on the consumption of the status good is associated with excess variation with income on

the consumption of the standard good.

A continuum of conformist Nash equilibria appears when wmax
1−σa+ < wmin

1−σa− . This key

condition is always satisfied under loss aversion and income homogeneity, when wmax =

wmin. This implies, in particular, that under income homogeneity, equilibrium uniqueness

is non-generic in the parameter space. Even an arbitrarily small departure from no loss

aversion α− = α+ leads to a continuum of equilibria, and this holds even when the interaction

parameters α− and α+ are arbitrarily small.9 For a given magnitude of loss aversion, this

condition is satisfied when income heterogeneity, as measured by the ratio of the highest

to lowest income, is not too high. Formally, wmax
wmin

< 1−σa+
1−σa− . Conversely, for a given level

of income heterogeneity, a continuum of conformist equilibria appears when loss aversion is

large enough. Formally, a− − a+ > wmax−wmin
wmax

( 1
σ
− a+).

By contrast when wmax
1−σa+ > wmin

1−σa− , the consumption game has a unique Nash equilibrium

where agents do not all consume the same level of status good. This holds when incomes
9The length of the interval of possible equilibrium values converges towards zero when α−−α+ converges

to zero.
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are heterogeneous, wmax > wmin, and when loss aversion is absent (as in Ghiglino and Goyal

(2010)) or small enough. In this domain, whether an agent earns status gains or status losses

generally depends on incomes and on agents’ positions in the comparison network. For a

given income profile w, if wmin < wi < wmax there exist networks where i earns status gains

and others where i earns status losses.10 Thus in the uniqueness domain, the relative position

with respect to the reference level is independent on the network only for poorest and richest

agents. Note that conditional on which agent lies in which domain, consumption levels in

equilibrium solve a linear system of equations. While there is no simple explicit formula to

determine which agent lies in which domain, we can leverage algorithmic results from the

literature on supermodular games to compute the Nash equilibrium. We know, in particular,

that a process of synchronous, iterated best responses starting at y = 0 converges quickly,

and via an increasing sequence, to the unique Nash equilibrium.

We can also leverage standard results of comparative statics for supermodulare games.

Note that the whole best response of agent i increases weakly following an increase in wi, α−,

α+ or a decrease in p. Therefore, the actions of all agents in the lowest and in the highest

Nash equilibrium also increase weakly following an increase in wi, α−, α+ or a decrease in p.

Corollary 1. Let ŵ ≥ w, α̂− ≥ α−, α̂+ ≥ α+ and p̂ ≤ p. Assume ŵmax
1−σâ+ > ŵmin

1−σâ− and
wmax

1−σa+ > wmin
1−σa− . The consumption game has a unique Nash equilibrium ŷ for parameters ŵ,

α̂−, α̂+, p̂ and y for parameters w, α−, α+, p, and ∀i, ŷi ≥ yi.

In the uniqueness domain, all agents weakly increase their consumption of the status good

when agents’ incomes increase, interaction parameters increase, or the relative price of the

status good decreases.

4 Extensions

4.1 Heterogeneity

In our benchmark analysis, agents may only differ in their income levels. We now show that

our main result extends to a setup where agents may also differ in how much they care about
10Agent i earns status gains when she compares herself to poorest agents and status losses when she

compares herself to richest agents.
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status and in their level of loss aversion. Formally, assume that agent i has individual specific

interaction parameters α−i , α
+
i with 0 ≤ α+

i ≤ α−i and wi ≥ α−i
1+α−i

w̄i. Let a−i =
α−i

1+α−i
and

a+
i =

α+
i

1+α+
i

and introduce

ω+
max = max

i

wi
1− σa+

i

and ω−min = min
i

wi
1− σa−i

Theorem 1 then extends as follows.11

Theorem 2. Consider any connected comparison network and heterogeneous interaction

parameters. If ω+
max ≤ ω−min, then a profile y is a Nash equilibrium if and only if y =

(y, y, ..., y) with y ∈ [ω+
max, ω

−
min]. If ω+

max > ω−min, then there is a unique Nash equilibrium y

such that ∀i, ω−min ≤ yi ≤ ω+
max and not all agents play the same action.

Theorem 2 shows that the emergence of two mutually exclusive domains - one with a con-

tinuum of conformist equilibria and another one with a unique equilibrium with different

actions - is robust to the introduction of heterogeneity in status concerns and loss aversion.

This heterogeneity affects the equilibria and tends to reduce the emergence of conformism.

For instance under homogeneous incomes, the key condition ω+
max ≤ ω−min is equivalent to

α+
max ≤ α−min with α+

max = maxi α
+
i and α−min = mini α

−
i . A continuum of conformist equilibria

then appears when the heterogeneity in interaction parameters is not too high.

This setup notably covers the specifications of peer effects in Ghiglino and Goyal (2010)

where the strength of interaction depends on the number of neighbors, through increasing

function S(.). In that case, α−i = S(|Ni|)α− and α+
i = S(|Ni|)α+, and a continuum of

conformist equilibria appears when the dispersion in degrees and in incomes is not too high.

4.2 Utility functions

Our benchmark analysis relies on the assumption that agents have Cobb-Douglas utility.

Providing a full-fledged analysis of the consumption game under status concerns and loss

aversion and for arbitrary networks and utility functions is an interesting - and challenging -

direction of future research. We present some preliminary results here and conditions under

which the emergence of a continuum of conformist equilibria is guaranteed.
11The proof of Theorem 2 follows the same steps as the proof of Theorem 1, we omit it for brevity.
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Consider some utility function u(x, y), increasing and quasi-concave in both arguments.

Denote by x(p, w) and y(p, w) the usual Walrasian demands in the absence of relative com-

parisons, i.e., the solutions to the consumer problem maxx,y≥0 u(x, y) under x+py ≤ w. With

status concerns, assume that agent i seeks to maximize u(xi, ϕ(yi,y−i)) under the budget

constraint xi + pyi ≤ wi. An important first step of the analysis is to determine an agent’s

best response under status concerns but without loss aversion, i.e., when α− = α+ = α. In

that case, the best reponse fi(y−i, α) is equal to12

fi(y−i, α) =
1

1 + α
y(

p

1 + α
,wi −

pα

1 + α
ȳi) +

α

1 + α
ȳi

and hence crucially depends on properties of the Walrasian demand. For instance, the best

response is linear in ȳi iff the Walrasian demand is linear in income, which covers both the

Cobb-Douglas and CES cases.

In general, the best response without loss aversion may be non-linear, in which case the

best response with loss aversion is not piecewise linear. However, the best response under loss

aversion can still have an intermediate range with pure conformist behavior. This notably

happens when fi is increasing in ȳi and in α and, for a given α, crosses the 45 degree line

only once from above. We illustrate a situation where fi is concave in ȳi in Figure 3. As in

Proposition 1, the best response under loss aversion is continuous, increasing and formed of

three pieces. It is first equal to fi(., α+) until it crosses the 45 degree line; it is then equal

to the 45 degree line until fi(., α−) crosses it, above which it is equal to fi(., α−). Therefore,

even with general utility functions the kink induced by loss aversion may lead agents to act

as pure conformists.

12To see why, express the budget constraint as a function of xi and ϕ = (1 + α)yi − αȳi.

17



best response at α+

fi(y‐i)

yi̅

best response at α‐

Figure 3: Non linear best response with loss aversion
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