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Abstract 

We address the question of the measurement of social welfare and inequalities in the context 

of partially-ordered health variables. We propose a general framework based on the assumption 

that the distribution of well-being states forms an m-dimensional Boolean lattice. To this end, the 

distribution of well-being states is constructed based on the prevalence of a finite number of 

illnesses where each state represents the number of illnesses an individual may suffer from. The 

implementation of the framework involves breaking down the Boolean lattice into a set of linear 

extensions where all health states become fully ordered. The linear extensions account for all 

possible ordering of the health states based on the depth of health problems (i.e., the severity of 

health conditions). Having constructed these linear extensions, we then proceed on ranking 

distributions in terms of welfare by applying appropriate dominance criteria and employ aggregate 

metrics to provide a numerical representation of the social welfare and inequality associated with 

each distribution. An illustrative application of the methodology is provided.   
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1. Introduction  

Welfare and inequality analysis relying on ordinal attributes has received a rising interest in 

the literature (e.g., Cuhadaroglu 2022; Gravel et al. 2021; Makdissi and Yazbeck 2017; Cowell and 

Flachaire 2017; Muller and Trannoy 2011; Erreygers and Van Ourti 2011; Abul Naga and Yalcin 

2008; Allison and Foster 2004). Previous literature has hitherto focused on ordinal (categorical) 

variables (e.g., self-reported health status, life satisfaction and happiness), where well-being states 

can be fully ordered – i.e., all states are comparable. In this context, appropriate dominance criteria 

and inequality metrics have been advanced and applied to rank different distributions and measure 

the degree of inequality (e.g., Makdissi and Yazbeck 2014; Abul Naga and Yalcin 2008). 

In population surveys, it is quite common to find information on individuals’ wellbeing 

available in the form of a series of questions querying whether (or not) an individual has a given 

attribute (e.g., an illness). The resulting list of attributes allows to generate two distinct types of 

well-being variables: a nominal variable (e.g., types of illnesses) and a fixed-scale variable (e.g., 

the number of illnesses). In the context of a nominal variable such as the types of illnesses, 

Erreygers and Van Ourti (2011) and Makdissi and Yazbeck (2014) pointed out that one can only 

assign subjects to different groups without ranking them. Under such conditions, standard welfare 

and inequality metrics cannot be applied. However, in the case of a fixed-scale variable, standard 

measures are shown to be readily applied given the absolute (real) zero indicating the complete 

absence of illness (Erreygers and Van Ourti 2011). In the context of a multiple categorical variable, 

Makdissi and Yazbeck (2014) suggested to transform the available information on the width of 

health problems (e.g., vision, hearing, speech, …) into a ratio-scale variable – constructed by 

counting the number of attributes in which an individual is considered to have a health problem.  
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 However, the use of the Alkire and Foster’s (2011) counting approach to derive a measure 

of inequality based on the breadth of health problems involves two caveats. The first is emphasized 

by Makdissi and Yazbeck (2014) and relates to the loss of information on the depth of health 

problems (i.e., the severity of health conditions). The second stems from the fact that many survey 

data do not provide further information on the depth of health problems. Thus, by merely counting 

the number of attributes, or assuming one particular ordering of the health states, one may run the 

risk of comparing the incomparable.  

This paper seeks to address the measurement problems that arise when well-being states are 

a priori incomparable. We propose a general framework based on the assumption that the 

distribution of well-being states forms an 𝑚 -dimensional Boolean lattice. To this end, the 

distribution of well-being states is constructed based on the prevalence of a finite number of 

attributes where each state represents, for instance, the number of health problems an individual 

suffers from. The implementation of this framework involves breaking down the Boolean lattice 

into a set of linear extensions where all well-being states become fully ordered. 

To illustrate, consider, for instance, an ordinal health variable ℎ = (ℎ1, … , ℎ𝐾), where 𝐾 is 

the number of health states. Let ℎ1 be the worst health state while ℎ𝐾 is the best health state. The 

variable ℎ is totally-ordered if all health states can be compared such that ℎ1 ≼ ℎ2 ≼ ⋯ ≼ ℎ𝐾, 

where ≼ is a binary order relation. The variable ℎ is said to be partially-ordered if there is at least 

two health states 𝑟, 𝑠 ∈ {1,… , 𝐾} such that ℎ𝑟 and ℎ𝑠 are incomparable. For example, let ℎ =

(ℎ1, ℎ2, ℎ3, ℎ4) where ℎ1 indicates the presence of a chronic and an infectious illness, ℎ2 and ℎ3 

indicate the presence of a chronic illness and an infectious illness, respectively, while ℎ4 indicates 

no illness. It is obvious that having one illness, ℎ2 or ℎ3, is not as bad as having two illnesses, ℎ1, 

and worse than having no illness, ℎ4. However, in the absence of additional information on the 
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depth of health problems, it may not be possible to conclude that ℎ2 is worse than ℎ3 or ℎ3 is worse 

than ℎ2. This kind of partially-ordered sets (POSET) can be visualised using a two-dimensional 

Boolean lattice (Fattore et al. 2014; Davey and Priestley 2002). We, therefore, apply the lattice 

theory that allows permuting all the possible combinations of health sates.  

The lattice theory has recently been applied to study different socio-economic phenomena 

such as fuzzy multidimensional material deprivation (e.g., Fattore et al. 2011), and cooperative 

game theory (e.g., Alonso-Meijide et al. 2017; Caulier et al. 2015; Grabisch 2010). However, to 

the best of our knowledge, there has hitherto been no previous endeavours to apply this approach 

to social welfare and inequality analysis where health is the main attribute of individuals’ well-

being. This paper seeks therefore to introduce a general framework that is suitable for the analysis 

of partially-ordered variables which form a Boolean lattice.  

The main contribution of this paper consists in converting the Boolean lattice of a distribution 

into a set of totally-ordered distributions. This is conducted by constructing all possible linear 

orderings of the lattice – the linear extensions – which are formed from the permutations of all 

incomparable elements in the lattice. In our example above, the set of all possible linear orderings 

contains only two elements {(ℎ1, ℎ2, ℎ3, ℎ4), (ℎ1, ℎ3, ℎ2, ℎ4)}, which result from the permutations 

of the incomparable health states, ℎ2 and ℎ3. Note that, the first element of the set is obtained by 

assuming that ℎ2 is more severe than ℎ3 while the second element is obtained by assuming that ℎ3 

is more severe than ℎ2. Having constructed these linear extensions, one can proceed on ranking 

different distributions of health states using dominance criteria. We first illustrate and discuss the 

application of the first-order stochastic dominance and the Hammond dominance criteria in the 

context of partially-ordered sets. We then proceed by employing appropriate social welfare 

function (Gravel et al. 2021) and inequality index (Abul Naga and Yalcin 2008) to provide a 
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summary measure of the level of social welfare and the degree of inequality associate with each 

distribution. 

The paper is organised as follows. Section 2 presents the methodology used to provide an 

ordering of distributions of partially-ordered health variables using stochastic dominance criteria 

and social welfare and inequality metrics. Section 3 illustrates our methodology in the context of a 

group of five MENA region countries. Section 4 illustrates the application of our methodology 

under some monotonicity restrictions. Section 5 concludes the paper. 

2. Methodology 

We consider a population of 𝑛 ≥ 2 individuals. Health status for each individual is measured 

using a set of 𝑚 ≥ 2 illnesses. Each illness is represented by a dichotomized variable that takes 1 

if individual has the illness and 0 otherwise. Assume that these illnesses are denoted by 

𝑑1, 𝑑2, … , 𝑑𝑚. An individual may report no illness, 𝜙, or having 𝒹 illnesses, 0 < 𝒹 ≤ 𝑚. The 

number of all possible combinations of health states is, thus, 𝐾 = 2𝑚. Each health state is assigned 

an integer 𝑘 = 1,… , 𝐾. Let ℎ = (ℎ1, … , ℎ𝐾) denotes the vector of health states ranked from the 

worst (ℎ1) to the best (ℎ𝐾). For simplicity, we consider 𝑚 = 3, hence 𝐾 = 8 and the set of all 

possible health states is 

ℎ = (ℎ1, … , ℎ8) = ({𝑑1, 𝑑2, 𝑑3}, {𝑑1, 𝑑2}, {𝑑1, 𝑑3}, {𝑑2, 𝑑3}, {𝑑1}, {𝑑2}, {𝑑3}, 𝜙) 

where ℎ1 = {𝑑1, 𝑑2, 𝑑3} is the worst health state and ℎ8 = 𝜙 is the best health state. The number 

of individuals in health state 𝑘 is 𝑛𝑘. Let 𝑓 = (𝑓1, … , 𝑓8) be the probability density function (PDF) 

of health states where 𝑓𝑘 = 𝑛𝑘 𝑛⁄ , 𝑘 = 1,… ,8 is the share of individuals with health state 𝑘. The 

corresponding CDF is 𝐹 = (𝐹1, … , 𝐹8) where 𝐹𝑘 = ∑ 𝑓𝑙
𝑘
𝑙=1 , 𝑘 = 1,… ,8. Let ≼ be a binary relation 

on a set 𝑋 that is reflexive, antisymmetric and transitive (Davey and Priestley 2002). Let 𝑥𝑖 and 𝑥𝑗 

(𝑖 ≠ 𝑗) be two elements in the set 𝑋. Conventionally, the two elements are said to be comparable 



7 

 

if either 𝑥𝑖 ≼ 𝑥𝑗  or 𝑥𝑗 ≼ 𝑥𝑖, otherwise, the two elements are incomparable – denoted by 𝑥𝑖 ∥ 𝑥𝑗.  If 

𝑥𝑖 ≼ 𝑥𝑗 , then 𝑥𝑖 is said to be worse than (or less preferred to) 𝑥𝑗. In what follows, 𝑋 might be the 

set of health states or the set of vectors (distributions) of health states. In this section, we first 

provide a cursory description of the partially-ordered sets of health states. Then, we define the 

possible linear extensions of these sets and the dominance criteria that enable to order different 

distributions of partially-ordered sets of health states. Finally, we define a suitable social welfare 

function and inequality measure for the comparison of ordered health variables.    

2.1 Partially-Ordered Health States  

Let 𝔻 be a set of 𝐾 health states that are measured by the number of illnesses that an 

individual may report in a survey data. Assume that these illnesses are independent and can only 

be partially-ordered; i.e., some of the health states are a priori incomparable. The set of all possible 

health states, 𝔻, consists of the following: 

   𝔻𝑚 = {{𝑑1, 𝑑2, … , 𝑑𝑚}, 𝑃({𝑑𝑖},𝑚 − 1), 𝑃({𝑑𝑖},𝑚 − 2),… . , 𝑃({𝑑𝑖}, 1), 𝜙} (1) 

where 𝑃(𝑑𝑖, 𝑚 − 𝑙), 𝑙 = 1,… ,𝑚 − 1 is a permutation of the set of 𝑚− 𝑙 illnesses. If 𝑚 = 3, then  

𝔻3 = {{𝑑1, 𝑑2, 𝑑3}, 𝑃({𝑑𝑖}, 3 − 1), 𝑃({𝑑𝑖}, 3 − 2), 𝜙} 

𝔻3 = {{𝑑1, 𝑑2, 𝑑3}, 𝑃({𝑑𝑖}, 2), 𝑃({𝑑𝑖}, 1), 𝜙} 

𝑃({𝑑𝑖}, 2) is all possible permutations of the sets that contain two illnesses and 𝑃({𝑑𝑖}, 1) is all 

possible permutations of the sets that contain one illness. Hence  

𝔻3 = {{𝑑1, 𝑑2, 𝑑3}, {𝑑1, 𝑑2}, {𝑑1, 𝑑3}, {𝑑2, 𝑑3}, {𝑑1}, {𝑑2}, {𝑑3}, 𝜙} 

where {𝑑𝑔}, {𝑑𝑔, 𝑑𝑟} ≼ 𝜙 and {𝑑1, 𝑑2, 𝑑3} ≼ {𝑑𝑔}, {𝑑𝑔, 𝑑𝑟}, 𝑔, 𝑟 = 1,2,3. The state of having one 

illness, {𝑑𝑔}, or two illnesses {𝑑𝑔, 𝑑𝑟} are clearly worse than the state 𝜙 and better than the state 

{𝑑1, 𝑑2, 𝑑3}. However, the states within the subsets of one illness {{𝑑𝑔}, 𝑔 = 1,2,3 } and two 
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illnesses {{𝑑𝑔, 𝑑𝑟}, 𝑔, 𝑟 = 1,2,3 } are incomparable. For instance, {𝑑1} ∥  {𝑑2} ∥ {𝑑3}. 

Furthermore, not all elements in the different subsets are comparable: while {𝑑𝑔, 𝑑𝑟} is worse than 

{𝑑𝑔}, ∀𝑟 ≠ 𝑔, {𝑑𝑔} is incomparable to {𝑑𝑠, 𝑑𝑟} ∀ 𝑠, 𝑟 ≠ 𝑔; that is either {𝑑𝑔} ≼ {𝑑𝑠, 𝑑𝑟} or 

{𝑑𝑠, 𝑑𝑟} ≼ {𝑑𝑔}. Given incomparability between some elements in the relation defined over the set 

in Eq. 1, the relation ≼ is not a unique complete order. In this case, ≼ is said to be a partially-

ordered relation, hence 𝔻 is a partially-ordered set (𝑃𝑂𝑆𝐸𝑇) – denoted as 𝑃 = (𝔻,≼).  

The 𝑃𝑂𝑆𝐸𝑇, 𝑃, can be depicted using the Hass Diagram (also known as Boolean lattice 

ordering) of dimension 𝑚 = 3, denoted as 𝐵3 (Figure 1).  

Insert Figure 1 here  

 

 

As can be seen from Figure 1, 𝐵3 has the following sets of comparable and incomparable pairs – 

denoted respectively as 𝐶𝑜𝑚𝑝(𝐵3) and 𝐼𝑛𝑐(𝐵3): 

𝐶𝑜𝑚𝑝(𝐵3) = {
(𝜙, {𝑑𝑔}), (𝜙, {𝑑𝑔, 𝑑𝑟}), (𝜙, {𝑑1, 𝑑2, 𝑑3}), (𝑑𝑔, {𝑑𝑔, 𝑑𝑟}),

(𝑑𝑔, {𝑑1, 𝑑2, 𝑑3}), ({𝑑𝑔, 𝑑𝑟}, {𝑑1, 𝑑2, 𝑑3})
} (2) 

{d2}

Ø

{d1}

{d1, d2}

{d1, d2, d3}

{d1, d3}

{ d3}

{d2,d3}

Figure 1: Boolean Lattice of Dimension m=3
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∀𝑔, 𝑟 = 1,2,3 and 𝑔 ≠ 𝑟 

𝐼𝑛𝑐(𝐵3) = {(𝑑𝑔, 𝑑𝑟), ({𝑑𝑔}, {𝑑𝑟 , 𝑑𝑠}), ({𝑑𝑔, 𝑑𝑟}, {𝑑𝑔, 𝑑𝑠})}  

∀ 𝑔, 𝑟, 𝑠 = 1,2,3 and 𝑔 ≠ 𝑟 ≠ 𝑠 

(3) 

In general, the total number of comparable and incomparable pairs of a set 𝔻 of dimension 𝑘 is 

 𝐶2
𝐾 = (

𝐾
2
) =

𝐾!

(𝐾 − 2)! 2!
=
𝐾(𝐾 − 1)(𝐾 − 2)!

(𝐾 − 2)! 2
=
𝐾(𝐾 − 1)

2
 (4) 

In our case, where 𝐾 = 8, the number of all pairs is 8(8 − 1) 2⁄ = 28 of which 19 pairs are 

comparable, which equals to the size of the set 𝐶𝑜𝑚𝑝(𝐵3): |𝐶𝑜𝑚𝑝(𝐵3)| = 19, and 9 pairs are 

incomparable, which equals to the size of the set 𝐼𝑛𝑐(𝐵3): |𝐼𝑛𝑐(𝐵3)| = 9.  

A set that includes comparable elements is referred to as ≼-chain, while a set that includes 

incomparable elements is referred to as  ≼-antichain. The set of chains in Figure 1 includes: 𝐶1 =

{𝜙, {𝑑3}, {𝑑2, 𝑑3}, {𝑑1, 𝑑2, 𝑑3}}, and 𝐶2 = {𝜙, {𝑑3}, {𝑑1, 𝑑3}}. The set of antichains in Figure 1  

includes: 𝐴1 = { {𝑑1}, {𝑑2}, {𝑑3}}, and 𝐴2 = {{𝑑2}, {𝑑1, 𝑑3}}. The size of the largest chain is the 

height of 𝑃 and the size of the largest antichain is the width of 𝑃. In our case, the height is four and 

the width is three.  

2.2 Complete (Linear) Order Extensions  

A social welfare function shall provide an order extension of 𝐵𝑚, which produces a complete 

ranking of health states. A linear extension is a total (linear) order of the POSET, 𝑃, which does 

not contain incomparable elements. A linear extension can be obtained by imposing some 

restrictions on the incomparable health states. For instance, by assuming that 𝑑1 ≼ 𝑑2 ≼ 𝑑3 

(assumption 1), the set of incomparable pairs in Eq. 3 reduces to: 

𝐼𝑛𝑐(𝐵3) = {({𝑑𝑔}, {𝑑𝑟 , 𝑑𝑠})},   ∀𝑔, 𝑟, 𝑠 = 1,2,3 and 𝑔 ≠ 𝑟 ≠ 𝑠  (5) 
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Since the elements of two illnesses are still incomparable, such restriction yields the non-

linear (incomplete order) extension of 𝐵3 given in Figure 2-A. Another plausible restriction is to 

assume further that {𝑑1, 𝑑2} ≼ {𝑑1, 𝑑3} ≼ {𝑑2, 𝑑3} (assumption 2), then the extension of 𝐵3 given 

in Figure 2-B is a linear (complete order) extension. This linear extension can be expressed as:  

 𝐸 = {{𝑑1, 𝑑2, 𝑑3}, {𝑑1, 𝑑2}, {𝑑1, 𝑑3}, {𝑑2, 𝑑3}, {𝑑1}, {𝑑2}, {𝑑3}, 𝜙} (6) 

Insert Figure 2 here 

 

Assumption 1 and 2 yield an ordering of the subset of one illness and the subset of two 

illnesses, respectively. Each of these two  subsets can be ordered in 3! manners. For example, the 

elements {𝑑1}, {𝑑2}, {𝑑3} can be ordered in the following manners: 𝑑1 ≼ 𝑑2 ≼ 𝑑3, 𝑑1 ≼ 𝑑3 ≼ 𝑑2, 

𝑑2 ≼ 𝑑1 ≼ 𝑑3, 𝑑2 ≼ 𝑑3 ≼ 𝑑1, 𝑑3 ≼ 𝑑1 ≼ 𝑑2, or 𝑑3 ≼ 𝑑2 ≼ 𝑑1. Thus, we will obtain from this 

Ø

{ d3}

{d2}

{d1}

{d1, d3}

{d1, d2, d3}

Ø

{ d3}

{d2}

{d1}

{d2, d3}

{d1, d3}

{d1, d2}

{d1, d2, d3}

{d1, d2} {d2, d3}

Figure 2: Incomplete vs. complete order 

extensions of B3 

Incomplete order extension Complete order extension
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ordering 3! × (
3
2
) ! = 36 linear extensions. Furthermore, the element 𝑑𝑔 is incomparable to 

{𝑑𝑟 , 𝑑𝑠} ∀𝑟, 𝑠 ≠ 𝑔. This means that, for example, in the linear extension in Figure 2, 𝑑3 ∥ {𝑑1, 𝑑2}. 

Thus, another linear extension can be obtained if we assume that {𝑑3} ≼ {𝑑1, 𝑑3}. The respective 

linear extension is: 

  𝐸′ = {{𝑑1, 𝑑2, 𝑑3}, {𝑑1, 𝑑2}, {𝑑3}, {𝑑1, 𝑑3}, {𝑑2, 𝑑3}, {𝑑1}, {𝑑2}, 𝜙} (7) 

There are another 12 linear extensions resulting from the permutations of 𝑑𝑔 with {𝑑𝑟 , 𝑑𝑠}. The 

total number of linear extensions, 𝐸𝑖 , 𝑖 = 1,… , ℯ is, thus, ℯ = 48.  

2.3 Stochastic Dominance of Partially-Ordered Sets  

For totally-(linearly-) ordered continuous health variables, comparisons of distributions in 

terms of welfare can be achieved using the FOSD criterion (Hammond et al. 2014; Yalonetzky 

2013; Muller and Trannoy 2011). Consider two CDFs of health distributions, 𝐹1 and 𝐹2, where 

health states are ranked from the worst to the best health state. The distribution 𝐹2 is said to first-

order stochastically dominants 𝐹1 – written as 𝐹1 ≼𝐹𝑂𝑆𝐷 𝐹
2 – if 𝐹𝑘

2 ≤ 𝐹𝑘
1  ∀𝑘 = 1, … ,8 where 𝐹𝑘

1 

is the 𝑘𝑡ℎ coordinate of the distribution 𝐹1. In this case, 𝐹2 is said to exhibit higher welfare than 

𝐹1. This section constructs the conditions for ordering a pair of distributions in terms of social 

welfare for partially-ordered health variables. In this case, there will be ℯ linear extensions of each 

health distribution. Let 𝑓1,𝑖 and 𝑓2,𝑖 be two PDFs of the 𝑖𝑡ℎ linear extension of the first and second 

health distributions, respectively, defined as follows: 

 

𝑓1,𝑖 = (𝑓1
1,𝑖, … , 𝑓8

1,𝑖) 

𝑓2,𝑖 = (𝑓1
2,𝑖, … , 𝑓8

2,𝑖) 

(8) 

where 𝑓𝑘
𝑗,𝑖

 is the share of the population with health state, 𝑘 = 1, … , 𝐾 = 8, in distribution 𝑗 =

1, 2 and linear extension 𝑖 = 1,… , ℯ = 48. The corresponding CDFs are  
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𝐹1,𝑖 = (𝐹1
1,𝑖, … , 𝐹8

1,𝑖) 

𝐹2,𝑖 = (𝐹1
2,𝑖, … , 𝐹8

2,𝑖) 

(9) 

 

where 𝐹𝑘
𝑗,𝑖
= ∑ 𝑓𝑙

𝑗,𝑖𝑘
𝑙=1 , ∀ 𝑗 = 1, 2,  𝑘, 𝑙 = 1,… ,8 and 𝑖 = 1,… ,48. For each linear extension, 𝐸𝑖,  

there are three possible cases of FOSD between 𝐹1,𝑖 and 𝐹2,𝑖: 𝐹1,𝑖 ≼𝐹𝑂𝑆𝐷 𝐹
2,𝑖 or 𝐹2,𝑖 ≼𝐹𝑂𝑆𝐷 𝐹

1,𝑖 

or 𝐹1,𝑖 ∥𝐹𝑂𝑆𝐷 𝐹
2,𝑖. The dominance criteria can be established as in Definition 1. 

Definition 1: Let 𝔻 be a POSET of 𝐾 health states. For any two health distributions 𝐹1 and 𝐹2 ∈

𝔻, 𝐹1 first-order stochastically dominates 𝐹2 – written as 𝐹2 ≼𝐹𝑂𝑆𝐷 𝐹
1 – if        

 𝐹𝑘
1,𝑖 ≤ 𝐹𝑘

2,𝑖  ∀ 𝑘 = 1,… , 𝐾, 𝑖 = 1,… , 𝐼  (10) 

where 𝐼 is the number of all possible linear extensions. Eq. 10 suggests that 𝐹1 exhibits higher 

social welfare than 𝐹2 if  𝐹2 ≼𝐹𝑂𝑆𝐷 𝐹
1 for all linear extensions. As will be shown below (in Section 

3), the CDFs of any two health distributions may cross for some linear extensions. Thus, the relation 

≼𝐹𝑂𝑆𝐷 which is defined over the set 𝔻×𝔻 does not allow for comparisons of the two distributions. 

A weaker dominance criterion than the FOSD is, thus, in order. A possible order extension which 

preserves the original order relation ≼𝐹𝑂𝑆𝐷 but allows for a larger subset of linear extensions to be 

ordered is the Hammond dominance criterion – denoted as ≼𝐻 (Gravel et al  2021). Let 𝐹 ∈ 𝔻 be 

a distribution of health states. Define the 𝑘-dimensional Hammond distribution function (HDF) 

𝐻:𝔻 → [0, 2𝑘−1]𝑘 as  

 𝐻(𝐹) = (𝐻1(𝐹),… ,𝐻𝑘(𝐹)) (11) 

where the 𝑘𝑡ℎ coordinate of the Hammond function, 𝐻𝑘(𝐹):𝔻 → [0, 2𝑘−1] is defined by  

 𝐻𝑘(𝐹) =∑2𝑘−𝑙𝑓𝑙

𝑘

𝑙=1

 (12) 
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The values of the first and last coordinates of the HDF are, respectively, 𝐻1(𝐹) = ∑ 21−𝑙𝑓𝑙
𝑘=1
𝑙=1 =

𝑓1 = 𝐹1 and 𝐻8(𝐹) = 64𝐹1 + 32𝐹2 + 16𝐹3 + 8𝐹4 + 4𝐹5 + 2𝐹6 + 𝐹7 + 𝐹8. For any two 

distributions 𝐹1, 𝐹2 ∈ 𝔻, the Hammond dominance criteria for partially-ordered health variables 

can be established as in Definition 2.  

Definition 2: Let 𝔻 be a POSET of 𝐾 health states. For any two health distributions 𝐹1 and 𝐹2 ∈

𝔻, 𝐹1 Hammond dominates 𝐹2 – written as 𝐹2 ≼𝐻 𝐹
1 – if      

 𝐻𝑘
1,𝑖(𝐹1) ≤ 𝐻𝑘

2,𝑖 (𝐹2) ∀ 𝑘 = 1,… , 𝐾, 𝑖 = 1,… , 𝐼  (13) 

Similar to the relation ≼𝐹𝑂𝑆𝐷, Eq. 13 suggests that 𝐹1 exhibits higher social welfare than 𝐹2 if  

𝐹2 ≼𝐻 𝐹
1 for all linear extensions. In general, the Hammond dominance criterion enables to extend 

the number of comparable extensions for different distributions. For any two distributions 𝐹1 and 

𝐹2, if there is at least one extension where 𝐹1 Hammond dominates 𝐹2, then either 𝐹1 Hammond 

dominates 𝐹2 for some/all extensions or 𝐹1 and 𝐹2 are incomparable for some extensions. This 

result is summarized in Proposition 1. 

Proposition 1: Let 𝔻 be a POSET of 𝐾 health states. For any two health distributions 𝐹1 and 𝐹2 ∈

𝔻, if there is a linear extension 𝑖′ = 1,… , 𝐼 such that 𝐻1
1,𝑖′(𝐹1) ≤ 𝐻1

2,𝑖′(𝐹2) then  

(i) either 𝐹2,𝑖
′
≼𝐻 𝐹

1,𝑖′ 

(ii) or 𝐹2,𝑖
′
∥𝐻 𝐹

1,𝑖′.  

Proof: Suppose that there is an extension 𝑖′′ such that 𝐹1,𝑖
′′
≼𝐻 𝐹

2,𝑖′′. This implies that 𝐻1
1,𝑖′(𝐹1) >

𝐻1
2,𝑖′(𝐹2) which is a contradiction since 𝐻1

1,𝑖′(𝐹1) ≤ 𝐻1
2,𝑖′(𝐹2).  

2.4 Constructing a Social Welfare Function for POSETs 

A social welfare function (SWF) is conventionally used in the case of totally-ordered 

variables to provide an aggregate numerical representation that allows to compare different 

distributions (e.g., Robert 2018; Asheim et al. 2016). In the case of partially-ordered variables, 
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such a SWF will be evaluated for each possible linear extension. Given that the health variable 

considered in this paper is ordinal, then a suitable SWF is in order. An appropriate SWF for ordinal 

variables, accounts for the number of individuals in each health state, is proposed by Gravel et al 

(2021). This SWF satisfies the Hammond progressive transfers, which is equivalent to the Pigou-

Dalton principle of transfers in the case of ordinal variables. The Hammond progressive transfers 

implies that an increase in an individual’s welfare associated with a decrease in another individual’s 

welfare – holding their positions unchanged – improves the overall social welfare (Hammond 

1976). For a population with 𝐾 health states, the Hammond SWF can be defined as 

 𝑊𝐻 =
1

𝑛
∑𝑛𝑘𝛼𝑘

𝐾

𝑘=1

 (14) 

where 𝑛𝑘 is the size of the population with health state 𝑘, and 𝛼𝑘 is a scale (weight). These weights 

are constructed such that they are increasing at a decreasing rate with the best health state being 

attached the highest weight. To illustrate the intuition underlying this choice of the vector 𝛼 =

(𝛼1, … , 𝛼𝐾), we define the best and the worst health PDFs, 𝑓 and 𝑓, respectively, as follows 

 

𝑓 = (0,… , 0,
𝑛

𝑛
) 

𝑓 = (
𝑛

𝑛
,… , 0, 0) 

(15) 

For the best distribution, 𝑓 , all the population reports no illness while for the worst distribution, 𝑓, 

all the population reports the three illnesses. Using Eq. 14, the corresponding SWF of the 

distributions 𝑓 and 𝑓 can be defined, respectively, as 

 𝑊𝐻(𝑓) =
1

𝑛
(∑ 0+

𝐾−1

𝑙=1

𝑛 𝛼𝐾) = 𝛼𝐾 (16) 
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𝑊𝐻(𝑓) =
1

𝑛
(𝑛 𝛼1 +∑0

𝐾

𝑙=2

) = 𝛼1 

The monotonicity property of the SWF implies that the best distribution shall exhibit higher welfare 

than the worst distribution. Accordingly, 𝛼1 < 𝛼𝐾. In general, let 𝑓𝑘 and 𝑓𝑘
′
 be two PDFs such 

that all the population reports the health state 𝑘 and 𝑘′, respectively, where 𝑘 < 𝑘′. The 

corresponding SWFs are 𝑊𝐻(𝑓
𝑘) = 𝛼𝑘 and 𝑊𝐻(𝑓

𝑘′  ) = 𝛼𝑘′. An increasing SWF implies that 

𝑊𝐻(𝑓
𝑘) < 𝑊𝐻(𝑓

𝑘′  ), hence 𝛼𝑘 < 𝛼𝑘′ . Moreover, the strict concavity property implies that the 

SWF is increasing at a decreasing rate. Let 𝑓𝑘, 𝑓𝑘
′
 and 𝑓𝑘

′′
 be three PDFs such that all the 

population reports the health state 𝑘, 𝑘′ and 𝑘′′, respectively, where 𝑘 < 𝑘′ < 𝑘′′. As shown, an 

increasing SWF implies that 𝑊𝐻(𝑓
𝑘) < 𝑊𝐻(𝑓

𝑘′  ) < 𝑊𝐻(𝑓
𝑘′′  ). Strict concavity implies that 

𝑊𝐻(𝑓
𝑘′  ) −𝑊𝐻(𝑓

𝑘 ) > 𝑊𝐻(𝑓
𝑘′′  ) −𝑊𝐻(𝑓

𝑘′  ). Accordingly, 𝛼𝑘′ − 𝛼𝑘 > 𝛼𝑘′′ − 𝛼𝑘′. A possible 

choice of the vector of weights 𝛼 that will be used in Section 3 is  

 𝛼𝑘 =∑(
1

2
)
𝑙𝑘−1

𝑙=1

≡

{
 
 

 
 
(
1

2
)
0

= 1, 𝑘 = 1

𝛼𝑘−1 + (
1

2
)
𝑘−1

, 𝑘 > 1

 (17) 

The choice of the weights is arbitrary except that these weights shall be increasing at a decreasing 

rate. Eq. 17 shows that the differences between the weights attached to different health states 

decrease with health states. The vector of differences between health states is 

𝛼𝑘 − 𝛼𝑘−1 = (
1

2
, (
1

2
)
2

, (
1

2
)
3

, (
1

2
)
4

, … , (
1

2
)
7

 ) 

In order to bound the values of the SWF in the interval [0,1], the SWF defined in Eq. 14 can 

be normalized as follows    
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 𝑊𝑁(𝑓) =
𝑊𝐻(𝑓) −𝑊𝐻 (𝑓)

𝑊𝐻(𝑓) −𝑊𝐻 (𝑓)
 (18) 

Using Eq. 14 and Eq. 17, Eq. 18 can be expressed as  

 𝑊𝑁(𝑓) =

1
𝑛
∑ 𝑛𝑘𝛼𝑘
𝐾
𝑘=1 − 𝛼1

𝛼𝐾 − 𝛼1
 (19) 

Eqs. 18 and 19 show how the welfare value of a distribution is relatively far from that of the worst 

distribution. Since the range of the values of the SWF will vary based on the choice of the weights, 

𝛼𝑘, the normalization of the SWF brings the values of  𝑊 into the fixed range [0,1]. Some intuition 

of using a normalized version of the SWF is to allow comparison of different distributions if 

different weights are assigned to health states in each distribution. For any two PDFs 𝑓1 and 𝑓2, 

the dominance criteria of social welfare for partially-ordered health variables defined in Eq. 19 can 

be established as in Definition 3.  

Definition 3: Let 𝔻 be a POSET of 𝐾 health states. For any two health distributions 𝐹1 and 𝐹2 ∈

𝔻, 𝐹1 exhibits higher social welfare than 𝐹2 – written as 𝐹2 ≼𝑊 𝐹1 – if      

 𝑊𝑁(𝑓
1,𝑖) ≥ 𝑊𝑁(𝑓

2,𝑖) ∀   𝑖 = 1,… , 𝐼  (20) 

where 𝑓𝑗,𝑖 is the PDF of extension 𝑖 of distribution 𝑗.  

2.5 Measuring Inequality for POSETs Distributions 

Inequality metrics can be used to provide a single-valued measure to compare different 

distributions. The standard measures of inequality such as the Gini index or the Atkinson index are 

inappropriate for ordinal variables (Abul Naga and Yalcin 2008). One approach to compare 

distributions of an ordinal variable with finite categories is the method developed by Abul Naga 

and Yalcin (2008). This inequality measure can be applied to compare distributions of ordinal 

health data which have the same median health state. As is shown in Section 3, most of individuals 
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in survey data report no illness, thus, the median health state is the last (best) state. Therefore, we 

can employ the inequality index proposed by Abul Naga and Yalcin (2008) for ordered response 

health data. In our context, this inequality index can be defined as 

 𝐼(𝐹) = 1 − (
2∑ |𝐹𝑘 − 0.5|

𝐾
𝑘=1 − 1

𝐾 − 1
) (21) 

As shown in Eq. 21, this inequality index is based on the CDF only, thus, it is insensitive to values 

assigned to the different health states. 

Definition 4: Let 𝔻 be a POSET of 𝐾 health states. For any two health distributions 𝐹1 and 𝐹2 ∈

𝔻, 𝐹1 exhibits lower inequality than 𝐹2 – written as 𝐹2 ≼𝐼 𝐹
1 – if      

 𝐼(𝐹1,𝑖) ≤ 𝐼(𝐹2,𝑖) ∀   𝑖 = 1, … , 𝐼  (22) 

Similar to the dominance criteria, Definition 4 states that the distribution 𝐹1 exhibits lower 

inequality than the distribution 𝐹2 if the degree of inequality is lower in distribution 𝐹1 than in 

distribution 𝐹2 for all possible linear extensions.  

3. An Empirical Application  

To illustrate the proposed methodology, we use data on three main morbidities from the 

available World Health Surveys (WHS 2000-2001) that have been conducted in five MENA 

countries: Egypt, Iran, Lebanon, Syria and Turkey. The WHS offer a detailed list of illnesses (up 

to 15 illnesses and health problems) declared by adult respondents (18 years old and above). For 

the purpose of this application, we consider the distributions of three major illnesses: 𝑑1 =

𝑐𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑠; 𝑑2 = 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑠, and 𝑑3 = 𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠. The first illness 

includes heart diseases, high blood pressure and stroke while the second includes in addition to 

pulmonary diseases, chronic bronchitis. Table 1 summarizes the frequency distributions of these 

illnesses in the five countries under consideration.  

Insert Table 1 here  
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Table 1: Descriptive Statistics of the five health distributions for the five MENA countries 

  Egypt Iran Lebanon Syria Turkey 

 𝜙 3466 7612 2414 7605 4412 

{𝑑1} 465 1031 368 762 318 

{𝑑2} 239 490 202 435 292 

{𝑑3} 115 131 52 140 53 

{𝑑1, 𝑑2} 85 265 94 199 73 

{𝑑1, 𝑑3} 99 149 94 151 36 

{𝑑2, 𝑑3} 9 7 8 15 9 

{𝑑1, 𝑑2, 𝑑3} 12 32 13 37 10 

𝑛 4490 9717 3245 9344 5203 

 

 

Table 1 shows that the number of individual reporting three illnesses is the lowest in Turkey 

(with a proportion of population of 0.19%), whilst the highest proportion of individuals with three 

illnesses is observed in Lebanon (0.40%).  

FOSD and Hammond Dominance  

We first illustrate, in Table 2.a and Figure 3, the construction of the CDF and HDF for one 

of the possible 48 linear extensions that corresponds to the following linear extension 

 𝐸1 = {{𝑑1, 𝑑2, 𝑑3}, {𝑑1, 𝑑2}, {𝑑1, 𝑑3}, {𝑑2, 𝑑3}, {𝑑1}, {𝑑2}, {𝑑3}, 𝜙} (23) 

Insert Table 2.a here  

 

Table 2.a: The CDF and HDF of five health distributions for a possible linear extension  

 CDF HDF 
 Egypt Iran Lebanon Syria Turkey Egypt Iran Lebanon Syria Turkey 

𝐸𝑖 𝐹𝑖
𝐸 𝐹𝑖

𝐼 𝐹𝑖
𝐿 𝐹𝑖

𝑆 𝐹𝑖
𝑇 𝐻𝑖

𝐸 𝐻𝑖
𝐼 𝐻𝑖

𝐿 𝐻𝑖
𝑆 𝐻𝑖

𝑇 

{𝑑1, 𝑑2, 𝑑3} 0.003 0.003 0.004 0.004 0.002 0.003 0.003 0.004 0.004 0.002 

{𝑑1, 𝑑2} 0.022 0.031 0.033 0.025 0.016 0.024 0.034 0.037 0.029 0.018 

{𝑑1, 𝑑3} 0.044 0.046 0.062 0.041 0.023 0.071 0.083 0.103 0.075 0.043 

{𝑑2, 𝑑3} 0.046 0.047 0.064 0.043 0.025 0.143 0.167 0.208 0.151 0.087 

{𝑑1} 0.149 0.153 0.178 0.125 0.086 0.390 0.440 0.530 0.383 0.235 

{𝑑2} 0.202 0.203 0.240 0.171 0.142 0.833 0.930 1.122 0.813 0.527 

{𝑑3} 0.228 0.217 0.256 0.186 0.152 1.692 1.873 2.261 1.641 1.063 

𝜙 1 1 1 1 1 4.156 4.530 5.265 4.095 2.975 
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Table 2.a clearly show that ∀ 𝑘 = 1,… ,8, 𝐹𝑘
𝑇 ≤ 𝐹𝑘

−𝑇, −𝑇 = {𝐸, 𝐼, 𝐿, 𝑆}, thus 𝐹𝑇 ≤𝐹𝑂𝑆𝐷 𝐹
−𝑇. This 

suggests that Turkey has the least ill-health distribution with the corresponding CDF lying below 

the CDFs of all other countries (see Figure 3). In this case, Turkey appears to have higher health 

welfare compared with all other countries.  

Insert Figure 3 here  

 

Given that the ill-health distributions of some countries cross, we can extent the dominance 

analysis to apply the Hammond dominance criteria. Figure 4 draws the HDFs for the distributions 

pertaining to 𝐸1. As shown, while Egypt and Iran are incomparable under the FOSC criteria, they 

turn out to be comparable under the Hammond dominance criteria, 𝐻𝑘
𝐸 ≤ 𝐻𝑘

𝐼  ∀ 𝑘 = 1,… ,8. 

Insert Figure 4 here  
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Table 2.a also shows that 𝐹𝑘
𝐸 ≤ 𝐹𝑘

𝐿 ∀ 𝑘 = 1, … ,8 suggesting that Egypt dominates Lebanon 

under this linear extension. However, this is not always the case: changing the order of 

incomparable health states results in a change in the rank of distributions. For instance, consider 

the following linear extension: 

 𝐸2 = {{𝑑1, 𝑑2, 𝑑3}, {𝑑2, 𝑑3}, {𝑑1, 𝑑3}, {𝑑3}, {𝑑1, 𝑑2}, {𝑑1}, {𝑑2}, 𝜙} (24) 

where the health state {𝑑3} is supposed to be worse than the health state {𝑑1, 𝑑2}. Under such 

extension, 𝐹𝑘
𝐸 < 𝐹𝑘

𝐿 ∀ 𝑘 ≠ 4 but 𝐹4
𝐸 ≥ 𝐹4

𝐿. This suggests that the two distribution are incomparable 

in the sense of the FOSC, i.e., 𝐹𝐸 ∥𝐹𝑂𝑆𝐷 𝐹
𝐿. However, as soon as Hammond dominance criteria is 

applied, the two distributions pertaining to these two countries under the extension 𝐸2 become now 

comparable with 𝐹𝐸 ≤𝐻 𝐹
𝐿.  

Insert Table 2.b here  

 

Table 2.b: The CDF and HDF of five health distributions for another possible linear extension  

 CDF HDF 
 Egypt Iran Lebanon Syria Turkey Egypt Iran Lebanon Syria Turkey 
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𝐸𝑖 𝐹𝑖
𝐸 𝐹𝑖

𝐼 𝐹𝑖
𝐿 𝐹𝑖

𝑆 𝐹𝑖
𝑇 𝐻𝑖

𝐸 𝐻𝑖
𝐼 𝐻𝑖

𝐿 𝐻𝑖
𝑆 𝐻𝑖

𝑇 

{𝑑1, 𝑑2, 𝑑3} 0.003 0.003 0.004 0.004 0.002 0.003 0.003 0.004 0.004 0.002 

{𝑑2, 𝑑3} 0.005 0.004 0.006 0.006 0.004 0.007 0.007 0.010 0.010 0.006 

{𝑑1, 𝑑3} 0.027 0.019 0.035 0.022 0.011 0.037 0.030 0.050 0.035 0.018 

{𝑑3} 0.052 0.033 0.051 0.037 0.021 0.099 0.073 0.116 0.085 0.046 

{𝑑1, 𝑑2} 0.071 0.060 0.080 0.058 0.035 0.217 0.174 0.261 0.192 0.107 

{𝑑1} 0.175 0.166 0.194 0.140 0.096 0.538 0.454 0.635 0.466 0.274 

{𝑑2} 0.228 0.217 0.256 0.186 0.152 1.129 0.959 1.332 0.978 0.605 

𝜙 1 1 1 1 1 3.030 2.701 3.408 2.770 2.058 

 

Table 3 presents the dominance results for the 48 linear extensions. The value in each cell 

represents the share (out of the 48) of linear extensions where distribution 𝑗 (column) dominates 

distribution 𝑗′ (row). A positive (negative) value means that distribution 𝑗 dominates (dominated 

by) distribution 𝑗′. As shown in Table 3, the health distributions of Egypt and Iran are incomparable 

under the 45 extensions using the FOSD criteria. Interestingly, the Hammond stochastic dominance 

criteria allows, as expected, to extend the 𝐹𝑂𝑆𝐷 as reflected by higher proportions of dominance 

under 𝐻𝐷𝐹 (with Egypt dominating Iran in about 33.3% of the 48 linear extensions). Also of note, 

Lebanon appears to be dominated by all other countries under all linear extensions in the Hammond 

sense (as is captured by the value of -1 in Table 3). To sum up, Table 3 shows that the health 

distribution of Lebanon is always the worst distribution while the health distribution of Turkey is 

always the best under the Hammond dominance criteria. 

Insert Table 3 here  

Table 3: The FOSD and Hammond dominance for the 48 linear extensions  

 CDF HDF 

𝑗\𝑗′ Egypt Iran Lebanon Syria Turkey Egypt Iran Lebanon Syria Turkey 

Egypt . 0 -0.917 0 1 . -0.333 -1 -0.125 1 

Iran 0 . -1 0 1 0.333 . -1 -0.125 1 

Lebanon 0.917 1 . 1 1 1 1 . 1 1 

Syria 0 0 -1 . 0.917 0.125 0.125 -1 . 1 

Turkey -1 -1 1 -0.917 . -1 -1 -1 -1 . 
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Social Welfare and Inequality for Partially-Ordered Health Distributions 

Table 4 presents the results on social welfare and inequality indices for the 48 linear 

extensions. Each cell in row, 𝑗, and column, 𝑗′, reports the proportion of linear extensions where 

country 𝑗 has higher social welfare or inequality as compared to country 𝑗′.  

Insert Table 4 here  

 
Table 4: The SWF and inequality index for the 48 linear extensions  

 𝑆𝑊𝐹 Inequality index 

𝑗\𝑗′ Egypt Iran Lebanon Syria Turkey Egypt Iran Lebanon Syria Turkey 

Egypt . 0.5 1 0.292 0 . 0.813 0 1 1 

Iran 0.5 . 1 0.208 0 0.188 . 0 1 1 

Lebanon 0 0 . 0 0 1 1 . 1 1 

Syria 0.708 0.792 1 . 0 0 0 0 . 1 

Turkey 1 1 1 1 . 0 0 0 0 . 

 

Table 4 shows that, for instance, Syria appears to have higher social welfare and lower 

inequality as compared to Egypt in about 70.8% and 100% of the 48 linear extensions, respectively. 

Overall, results confirm the trends reported in Table 3 on the FOSD and Hammond dominance 

where Turkey appears to have the highest welfare and lowest inequality as compared to all other 

countries under all the 48 linear extensions, while Lebanon appears to have the lowest welfare and 

the highest inequality as compared to all other countries. 

4. Some Restrictions 

As shown in Section 3, there are some cases where the ranking of distributions according to 

the four criteria introduced in this paper is still ambiguous. In order to obtain a clearer ranking, it 

is possible to reduce the number of linear extensions by imposing some restrictions on the health 

states ordering. In general, from a normative point of view, ordering illnesses according to, for 

example, their degree of severity might be problematic. This is because the severity of an illness 

might not be easily measurable and it can be expressed differently from different points of view. 
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However, there have been several attempts to measure the severity of illness using different 

indicators such as the mortality rate. Suppose that 𝑑1 and 𝑑2 can be ranked in terms of the rate of 

mortality where, for example, 𝑑1 is less severe than 𝑑2 – denoted as 𝑑1 ≼ 𝑑2 (restriction 1). This 

restriction assumption implies that {𝑑1, 𝑑3} ≼ {𝑑2, 𝑑3}. This restriction assumption reduces the 

number of linear extensions illustrated in Section 3 to 14. Suppose further that 𝑑1 ≼ 𝑑2 ≼ 𝑑3 

(restriction 2). This implies that {𝑑1, 𝑑2} ≼ {𝑑1, 𝑑3} ≼ {𝑑2, 𝑑3}, hence reduces the number of linear 

extensions to the following two extensions.  

 

𝐸𝑎 = {{𝑑1, 𝑑2, 𝑑3}, {𝑑2, 𝑑3}, {𝑑1, 𝑑3}, {𝑑1, 𝑑2}, {𝑑3}, {𝑑2}, {𝑑1}, 𝜙} 

𝐸𝑏 = {{𝑑1, 𝑑2, 𝑑3}, {𝑑2, 𝑑3}, {𝑑1, 𝑑3}, {𝑑3}, {𝑑1, 𝑑2}, {𝑑2}, {𝑑1}, 𝜙} 

(25) 

Results pertaining to the dominance analysis under (restriction 1 and restriction 2) are illustrated 

in Table 5. The two monotonicity restrictions yield a complete order of the five distributions as 

follows: 𝐿 ≼ 𝐼 ≼ 𝐸 ≼ 𝑆 ≼ 𝑇.  

Insert Table 5 here  

 

Table 5: The SWF and inequality index under restriction 1 and restriction 2  

 𝑆𝑊𝐹 Inequality index 

𝑗\𝑗′ Egypt Iran Lebanon Syria Turkey Egypt Iran Lebanon Syria Turkey 

Egypt . 1 1 0 0 . 0 0 1 1 

Iran 0 . 1 0 0 1 . 0 1 1 

Lebanon 0 0 . 0 0 1 1 . 1 1 

Syria 1 1 1 . 0 0 0 0 . 1 

Turkey 1 1 1 1 . 0 0 0 0 . 

 

 

5. Conclusion 

This paper presents a general framework for the analysis of social welfare when well-being 

states are a priori incomparable. In such context, the distribution of well-being states forms an m-

dimensional Boolean lattice. The basic idea of the present framework is to breakdown the Boolean 
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lattice into a set of linear extensions where all well-being states are totally ordered. Then, the 

different distributions can be evaluated in term of social welfare using appropriate dominance 

criteria as well as inequality metrics. Accordingly, the ranking of two distributions is the result of 

the simple ranking of all possible linear extensions of the original lattice.  When some monotonicity 

restrictions are imposed, the number of linear extensions of each distribution would decrease. 

Accordingly, a full ranking of all distributions can be established. Furthermore, under such 

restrictions, the Hammond SWF and the inequality index provide the same ranking of the 

distributions under consideration.  

The method proposed in this paper can be generalized to the case of 𝑚 illnesses where the 

number of health states is 2𝑚. If we assume, for simplicity, that one illness is as bad as two illnesses 

and two illnesses are as bad as four illnesses, etc., then the number of possible linear extensions is 

ℯ = 𝑚! (
𝑚
2
) !… (

𝑚
𝑚 − 1

) !. For the case where 𝑚 = 4, there will be hundreds of thousands linear 

extensions which may render the tractability and comparison of linear extensions burdensome. A 

possible solution to this problem is to reduce the number of linear extensions. This can be done by 

either imposing some monotonicity restrictions as is shown in Section 4 or by aggregating illnesses 

into three categories, hence reducing the problem to the case presented in this paper.   

The framework introduced in this paper can be also applied to the analysis of social welfare 

in terms of alternative attributes. One example is when the social welfare is measured in terms of 

amenities available for each household. In this case, given that the availability of an amenity is a 

good outcome, then the worst well-being state is having no amenity while the best well-being is 

the availability of all amenities under consideration. Another example includes the analysis of 

multidimensional well-being as measured by richness, healthiness and happiness or any other 

potential welfare attribute. In order to apply the current framework, each of these attribute is 
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assumed to be a binary variable where an individual is said to be rich, happy and health based on 

a certain threshold for each dimension. Then, well-being states can be generated in terms of the 

number of deprivations an individual may suffer from with the worst well-being state being that 

when an individual is poor, unhappy and unhealthy. The well-being states where individuals are 

deprived in only one dimension (poor or unhappy or unhealthy) are incomparable. Of course, a 

variety of possible applications can be analyzed using the framework presented in this paper. 
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