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Abstract

We examine the e�ciency and environmental consequences of assigning species-speci�c
common-property rights, considering a Lotka-Volterra model in which �sheries are spe-
cialized in the harvesting of a single species. We show that the fragmentation of the
ecosystem implies the tragedy of the anticommons even when �sheries compete for the
resource. Indeed, contrasting the private exploitation equilibrium with the socially opti-
mal solution, we demonstrate that the predator stock is too high while the prey stock is
too low under private property rights. A puzzling result is that the "abundant" species
is actually underused because of insu�cient economic incentives; however, the scarce and
high-priced species does not necessarily su�er from overexploitation. Biological interac-
tions are consequently the main driver of stock depletion. Finally, we investigate how to
simultaneously solve both the tragedy of the commons and that of the anticommons and
analyze the economic costs of regulating only the tragedy of the commons.
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1. Introduction

Over the past few decades, considerable e�orts have been made to ensure sustainable
exploitation of �sheries resources. Various management tools have been widely imple-
mented globally; however, rights-based management tools seem to have been the most
powerful instruments to overcome overexploitation (see, among others, Costello et al.
[10], Newell et al. [44] and Péreau et al. [45]). However, these tools have not systemat-
ically provided successful results to ensure sustainable �shing. Many studies have thus
examined why regulations may be ine�ective in managing �sh stock. However, none of
the analyses associates the failure of rights-based management with the tragedy of the
anticommons. This study �lls this gap by examining how a species-based management
system may imply issues associated with anticommons resources. We speci�cally analyze
a system that exclusively assigns property rights over a speci�c species for a limited group
of �sheries while species are in a prey-predator relationship.

The literature on �sheries management is essentially driven by comparisons between
desirable catch levels and actual harvest rates. One strand of studies contrasts open-access
regimes with sole ownership (e.g., Clark and Munro [9], Plourde and Yeung [46], Quirk
and Smith [49], and Smith [50]), while another contrasts socially optimal outcomes with
the Nash equilibrium (e.g., Munro [42], Levhari and Mirman [35], and Plourde and Yeung
[46]). More recently, the literature has been extended to address other issues, particularly
those associated with multispecies and spatial considerations. Such modeling re�nements
introduce new externalities that give rise to further economic interactions that still lead
to a misalignment between socially optimal outcomes and private solutions. This then
raises the question of how to regulate harvest to achieve optimal stock levels.

Various instruments have therefore been implemented globally; however, failures ap-
pear to increase. Thompson identi�es 13 stocks at very low levels despite a reduction in
the �shing mortality rate. More recently, in 2009, Worm et al. [59] showed that 63% of
166 �sh stocks mostly coming from North America, Europe, South Africa, Australia, and
New Zealand remained below the management-target levels. In a broader study, Hilborn
et al. [26] �nd that 24% of 882 �sh stocks worldwide have low biomass but high �shing
pressure. This evidence has raised questions about the form of the regulation. Studies
have speci�cally addressed the issue of which instrument is the most e�cient (e.g., Han-
nesson and Kennedy [22] and Weitzman [58]). Rights-based management systems have
been largely advocated because these instruments provide incentives to achieve socially
optimal outcomes. However, such management tools are also designed to limit �shing
pressure to overcome the tragedy of the commons. We may indeed wonder if the design
of inappropriate management targets may be among the reasons for management failures,
which may raise further issues.

Broadly, property rights attempt to assign exclusive rights to speci�c areas or �sh
species. Territorial-use rights for �sheries typically grant rights to individuals to exploit
a resource within a given area. Consequently, the resource is fragmented along with
the spatial division. Similarly, species-based property rights allocate catch shares for a
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given species to several �sheries. Examples of such a system are individual �shing quotas
on blue �n tuna in Australia or on surf clam in the United States, as well as the well-
known Icelandic system for cod species. Once again, the resource could be considered as
fragmented in the sense that management targets concentrate on single-species statuses,
with no consideration of the biological interactions and role played by �sh species in
the ecosystem. Consequently, the implementation of these management systems make
anticommon resources appear to incentivize �sheries to underuse the resource (Heller
[24] and Buchanan and Yoon [6]), especially when there is one species that is relatively
less valuable. The purpose of this study is thus to examine when the tragedy of the
anticommons arises and how to resolve it in a prey-predator system.

In this study, we consider two groups of a limited number of �sheries each of which
has exclusive rights to harvest a single, speci�c species. Each �shery thus competes with
others within a given �shing industry, but not with those from the other �shing industry
and ignores the biological interdependencies between the two species. As usual in the
literature, we also consider heterogeneous market prices. Very few studies on multispecies
management account for the economic trade-o� involved in the exploitation of a prey-
predator system (e.g., Mendelssohn [40], Hannesson [20], and Flaaten [14]). Interestingly,
Hannesson [20] shows that the joint exploitation of both species is optimal over a speci�c
range of relative prices; otherwise, only the predators should be harvested. Relative
prices are interestingly de�ned based on biomass transfer between trophic levels as prey
and predators may actually be considered as a unique resource that is converted into
di�erent organisms. Based hereon, we also consider relative prices to account for the
di�erent values in equivalent biomass. We speci�cally assume that the relatively less
valuable resource is the predator species as this raises a complex economic question. The
conversion of high-priced prey into predators induces a social cost ignored by the predator
�sheries. Similarly, prey �sheries ignore the social costs of leaving too many prey to be
converted into predators.

We use a standard dynamic approach to analyze the tragedy of the commons and
that of the anticommons in the long run. Under the species-speci�c common-property
rights, we �rst show that the tragedy of the commons arises within both �shing industries
while the tragedy of the anticommons results from the interaction between the �shing
industries. Second, we compare the long-term e�ort and stock levels resulting from opti-
mal management with outcomes under species-speci�c common-property rights. We show
that the global e�ort of the predator-�shing industry is too low and the predator popula-
tion remains too high because the predator �shers ignore the social bene�t of increasing
predator harvesting. More surprisingly, we observe a too-low prey stock while the global
e�ort level may also be too low. This result is due to the intense natural predation be-
cause the prey �sheries ignore the social costs implied by leaving prey to be converted into
predators. Finally, we introduce a system of subsidies to simultaneously overcome all the
issues. Nevertheless, we show that regulating only the usual tragedy of the commons may
lead to a decrease in the two �sheries' aggregate bene�t, and that it generates additional
public spending to correct the tragedy of the anticommons.
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The rest of the paper is organized as follows: In the next section, we provide some
background to models of multispecies management, with a speci�c focus on the literature
that accounts for relative prices of prey-predator populations. Section 3 introduces the
model. Section 4 derives harvesting strategies under species-speci�c property-rights and
socially optimal regimes. A comparison of the outcomes under the two regimes is presented
in Section 5. We �rst compute some comparative statics to analyze the e�ect of �shery
size; we then draw a comparison with respect to stock sizes and e�ort levels. Section 6
discusses the regulation of the tragedies of the commons and anticommons. Section 7
concludes. An appendix contains all the proofs.

2. Background to multispecies management

Fisheries management has been in�uenced by several stages of evolution in the method-
ological approaches since the static modeling to contrast open access with the maximum
sustainable yield (Gordon [19], Scott [57]). Dynamic modeling was then introduced to con-
trast the open-access regime with sole ownership (e.g., Clark and Munro [9], Plourde and
Yeung [46], Quirk and Smith [49], and Smith [50]). Clark and Munro [9] especially revisit
the �golden rule� to characterize the level of natural capital at a steady-state equilibrium.
Finally, other studies contrast the socially optimal outcome with the Nash equilibrium.
For instance, Munro [42], Levhari and Mirman [35], and Plourde and Yeung [46] com-
pare the non-cooperative solution with the optimal exploitation of competition between a
limited number of economic agents who share �sh stocks to examine an additional e�ect
resulting from strategic interaction. Hannesson [21] speci�cally investigates the impact
of the number of agents required to achieve cooperation and shows that cooperation is
less likely to emerge as the number of agents rises. Broadly, all these studies identify
the commons issue and show how unregulated �sheries lead to economic ine�ciencies.
However, most of the studies restrict their analyses to single-species �sheries.

Recent studies address further issues, including multispecies management (Hannesson
[20], Ströbele W.J. and Wacker [54], Doyen et al. [11], or recently, Quérou and Tomini [47]-
[48]. It is now widely recognized that several �sh stocks are embedded in an ecosystem and
that all the species interact ecologically in the ecosystem. More precisely, an ecosystem's
organisms are distributed according to their feeding positions along a continuum of trophic
levels. A series of interconnected trophic levels then forms a food web in which species'
interactions involve a transfer of the same biomass from lower to higher levels through
consumption. Broadly, we can thus consider that all the species within an ecosystem
may be considered as di�erent representations of the same resource. Furthermore, the
literature on marine ecosystems outlines that speci�c organisms play a dominant role in
ecosystems' dynamics; however, top-down forces such as �shing activities or changes in
environmental conditions may also alter the population sizes of the organisms in lower
trophic levels (Lindegren et al. [36]). In a recent economic study, Lai et al. [34] develop
a multispecies model with three trophic levels to numerically analyze the impact of the
abundance of a predator (grey seal) and that of prey (young herring) on the salmon
stock and �sheries under di�erent management scenarios in the Baltic Sea. The authors
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interestingly discuss the economic losses for �sheries due to a higher level of predator
abundance or lower level of prey abundance, emphasizing the trade-o� between species
and �sheries. Similarly, Blanquist et al. [5] consider the empirical implications of the
bene�ts and costs related to grey seals for the harvest and stock size of cod in Nordic
Baltic Sea countries. Hoekstra and van den Bergh [31] analyze another type of trade-
o� considering the economic bene�t from prey harvesting against conservation bene�ts
from non-harvested predators and investigate the possible extinction of the non-harvested
species. Kellner et al.[33] show that temporary or permanent �shing moratoriums can be
a solution when accounting for non�shing values in a multispecies bioeconomic model for
the Caribbean area. Quérou and Tomini [47] also show that a ban of prey harvesting
is socially acceptable when �shermen harvest both species. Consequently, this evidence
consolidates the idea of considering a single species as only one part of a more global
resource: the ecosystem. Such a consideration raises several more complex questions
on how to allocate e�ort across species, how to regulate stocks and the ecosystem, but
also on stock availability and the consequences of �shing activities. Furthermore, the
identi�cation of the desirable stock level within a multispecies model remains an open
question as biological interdependencies involve spillovers into all the �sheries even when
they speci�cally target only one species.

Surprising results from a few previous studies on multispecies management illustrate
how the characterization of optimal stock levels may be a complex task. Indeed, there
may be situations in which the population of one species may be optimally lower than its
level under open access. For instance, May et al. [39] discuss a speci�c case in which prey
will be almost exclusively harvested when the discount rate is high, even if predators are
the most valuable species. Actually, predators are initially heavily exploited; however, the
only alternative is then to harvest prey instead of waiting for predator stock to recover.
Mendelssohn [40] examines the qualitative properties of optimal policies for stochastic
multispecies models and shows that less valuable species should be reduced to very low
levels, while the stock of more valuable species should be close to the single-species opti-
mum. Hannesson [20] speci�cally looks for economic conditions under which both species
can be simultaneously harvested. The joint exploitation of both species is optimal over a
speci�c range of relative prices; otherwise, only predators should be harvested. Price lim-
its are characterized based on biomass transfer between trophic levels. Speci�cally, upper
limits are reached when the value of prey rises when they are converted into predators.
He provides some intuition using numerical illustrations that subsidies may be required
to align the social optimum with free-access. Flaaten [14] provides similar intuitive obser-
vations: One species might be exploited at an economic loss and such exploitation might
be subsidized because the optimal long-run stock was lower than the stock level under
open access based on speci�c parameter values. Fischer and Mirman [16] also point out
a too-low exploitation of predators but a too-high exploitation of prey when economic
agents behave non-cooperatively. Interestingly, such studies emphasize the in�uence of
economic variables on the exploitation of resource stocks. However, these studies address
neither the reasons for the under-exploitation of one species nor the related issues or pol-
icy implications. In contrast, we help to �ll this gap by considering a con�icting situation
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in which predators' population growth only depends on the prey population, which is
also the most valuable species, and both species are under a regime of species-speci�c
common-property rights.

3. The model

We consider a standard Lotka-Volterra model in which the prey population, x(t),
follows logistic growth in the absence of predators and harvest, i.e., this population grows
at a rate, r > 0, but is limited by the carrying capacity, K > 0. Prey are harvested in
quantity Hx(t) and su�er from predation. A proportion, a > 0, of the prey biomass is
killed per unit of predator. If y(t) denotes the predator population, an amount, ax(t)y(t),
of prey increases the predator population at a biomass conversion rate, α > 0. This last
population declines given the intrinsic mortality rate, δ > 0, and harvesting, Hy(t). The
dynamics of the prey population, x(t), and those of predators, y(t), are thus characterized
as follows:

ẋ(t) = x(t)
(
r
(

1− x(t)
K

)
− ay(t)

)
−Hx(t), (1)

ẏ(t) = y(t) (aαx(t)− δ)−Hy(t). (2)

We can easily compute a �rst reference point,
(
xN , yN

)
, to assess the stock status when

the two species coexist but are not harvested. The pristine steady state is given as follows,
considering δ

aα
< K:1

xN = δ
aα

and yN = r
a

(
1− δ

aαK

)
. (3)

When harvesting is introduced, we distinguish between two independent �shing indus-
tries, s = x, y, each comprising a �xed number of �sheries. More precisely, we consider
nx > 1 �sheries in the prey-�shing industry and ny > 1 �sheries in the predator-�shing
industry. All �sheries are fully specialized, i.e., they target a single-species population.2

Consequently, the global harvest level, Hx and Hy, is the sum of individual catches within
each industry. Assuming a standard Schaefer harvest function, an individual catch lin-
early depends on the e�ort level of the jth �shery in industry s, es,j, and stock abundance
at each time period:3

hs,j(t) = es,j(t)s(t). (4)

1Two other steady-state equilibria may exist: (i) when the two species are driven to extinction, and
(ii) when only the prey population survives and consequently reaches the maximum level, K. However
the steady-state equilibrium when the two species coexist is the only stable one.

2Following the literature on single-species management (e.g., Kasperski [32]), we consider that �sh-
ermen use a perfectly selective harvest technology such that they cannot participate in other �sheries.
This assumption is credible when we consider a prey-predator model. For instance, small pelagic gears
allow for a better targeting of small coastal pelagic species such as herrings or sardines, or other prey of
larger and oceanic pelagic �shes.

3The �shing-production function usually depends on a constant catchability parameter, θ > 0, to
capture the e�ciency of a �shery. We voluntarily omit the parameter for simplicity as it does not a�ect
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Thus, the aggregated e�ort levels are such that Es(t) =
∑ns

j=1es,j(t) and the global harvest
for each industry is given by Hs(t) =

∑ns

j=1es,j(t)s(t) for s = x, y.

Considering competitive markets, we have constant and species-speci�c market prices,
ps, and cs denotes costs per unit of e�ort. The pro�t at time t of the jth �shery in industry
s is therefore given by the following:

Πs,j (es,j(t), s(t)) = (pss(t)− cs)︸ ︷︷ ︸
≡πs(s(t))

es,j(t), (5)

where πs (s (t)) denotes the species-speci�c pro�t per unit of e�ort.

Each �shery will be incentivized to harvest only when pro�ts are non-negative. Specif-
ically, the minimum prey- and predator-stock levels

(
xmin, ymin

)
for which pro�ts are

non-negative are respectively as follows:

xmin =
cx
px

and ymin =
cy
py
. (6)

Furthermore, the minimum stock levels must be lower than the pristine stock levels (3) to
ensure the entry of �sheries into the two industries, xmin < xN and ymin < yN . All �sheries
will then maximize the present values of their own current pro�ts by choosing their e�ort
paths, es,j(t), with respect to the dynamics of the �sh population. We moreover assume
a constant discount rate, ρ, which is larger than the maximum growth rates for prey and
predators, r (αaK − δ), respectively.

We recall that a prey-predator relationship involves a transfer of biomass from lower
to higher trophic levels through the consumption of prey. Consequently, we can contrast
the economic value of one unit of biomass at the lower level, px, with what we may have
harvesting the converted quantity of biomass at the upper level, αpy. We speci�cally
assume that the value of a species is higher than that of the biomass converted into
predators:

px > αpy (7)

This assumption is quite intuitive. From the biological literature (Lindeman [37]), the
ten percent law indicates that most of the energy available at one level in an ecosystem is
lost when transferred to an upper level, and only 10% is converted into organisms. This
means that this assumption is true as long as the unit price for the predator does not
exceed ten times that of the prey.

4. Harvesting strategies

We now analyze harvesting strategies under two property-right regimes: A common-
property right with exclusive rights on speci�c species and a social planner optimizing

the following analysis.
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the harvesting of the two species. Under the common-property regime with exclusive
rights, all �sheries within a speci�c industry compete for a single stock and ignore species'
interactions. We refer to such a situation as a species-speci�c common-property regime.

4.1. Species-speci�c common-property regime

In this regime, a �shery, j, chooses its e�ort levels over time, es,j(t), to maximize the
present value of its stream of pro�t by accounting for the stock dynamics of the targeted
species, Eqs. (1) and (2). Fisheries take as granted the behavior of other �sheries within
the same industry and the stock of the other resource.

Formally, the problem of the jth prey �shery is expressed as follows:

max
ex,j(t)

∫ ∞
0

πx (x (t)) ex,j(t) exp−ρt dt (8)

ẋ(t) = x(t)
[
r
(

1− x(t)
K

)
− ay(t)− ex,j(t)−

∑nx

k=1,k 6=jex,k(t)
]
.

The singular control solution solves the following condition:

πx(x)− λx,jx = 0. (9)

As usual, we �nd that the pro�t per unit of e�ort and per unit of stock must be equal to
the shadow value of the resource, λjx. At the steady state, the shadow value satis�es the
following condition:

ρλx,j − π
′

x(x)ex,j + λx,j
rx
K

= 0. (10)

Similarly, for the jth predator �shery, we obtain the following maximization problem:

max
ey,j(t)

∫ ∞
0

πy (y(t)) ey,j(t) exp−ρt dt (11)

ẏ(t) = y(t)
(
aαx(t)− δ − ey,j(t)−

∑ny

k=1,k 6=jey,k(t)
)
.

The singular control solution solves the following condition:

πy(y)− λy,jy = 0. (12)

Eq. (12) states that the economic agent, j, will choose an e�ort level such that the pro�t
per unit of e�ort is equal to the total shadow value of the resource, λy,jy . In the long
run, the shadow value of the predators' stock solves for the following:

ρλy,j − π
′

y(y)ey,j = 0. (13)

Henceforth, a steady-state solution under a speci�es-speci�c property regime is de�ned
by the set of conditions (9), (10), (12), and (13), with ẋ(t) = ẏ(t) = 0 respectively in
Eqs.(9) and (12). The shadow values must be respectively equal to species-speci�c pro�ts
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per unit of e�ort and per unit of biomass:

∀j, λx,j = λx =
πx(x)

x
, and ∀j, λy,j = λy =

πy(y)

y
. (14)

Using the stationary conditions in (10) and (13), we can then characterize the individual
�shing e�orts by the following:

∀j, ex,j = ex =
(
ρ+ rx

K

)
πx(x)

xπ′
x(x)

and ∀j, ey,j = ey = ρπy(y)

yπ′
y(y)

. (15)

Plugging (14) and (15) into the two stock dynamics, we obtain a system of equations that
provides the two long-run stocks:

ρπx(x)
x

= π
′
x(x)
nx

(
r
(
1− x

K

)
− ay

)
− r

K
πx(x), (16)

ρπy(y)

y
=

π′
y(y)

ny
(αax− δ). (17)

Basically, the left-hand sides of Eqs. (16) and (17) are the returns on the investment
of the rent induced by the last unit of prey and predator harvests, respectively, while the
right-hand sides outline the private rates of return of leaving a unit of species s in the
sea. This value can be seen as a private conservation value for species s. Speci�cally, the
conservation value for the prey species is given by the stock e�ect on individual pro�t net
of the loss induced by the decrease in the prey growth rate. The conservation value for
the predator species depends only on the stock e�ect on individual pro�t.

Let us now further discuss the system of Eqs. (16) and (17) and observe that the two
solutions can be expressed as two implicit functions of the number of �sheries in the two
industries, respectively x(nx, ny) and y(nx, ny). We now want to restrict our analysis to
a situation in which the two species coexist while they are jointly harvested in the long
run. This speci�cally requires an upper bound on the number of prey �sheries. A high
number of prey �sheries actually depletes too much of the stock of prey. Due to biological
interaction, this restricts food for predators. As such, the predator population may reach
the minimum level under which harvesting is not pro�table, ymin. From Eq. (17), such
a situation with non-active predator �sheries, Ey = 0, leads to a long-run stock level of
prey equal to the natural level, xN . To avoid obtaining a steady-state solution (xN , ymin),
we assume that the marginal return on the last unit of prey harvest is lower than the
return from leaving it in the sea. This incentive to spare the resource increases the prey
population. Formally, the assumption is as follows:

ρπx(xN )
x

< π
′
x(xN )
nx

(
r
(

1− xN

K

)
− aymin

)
− r

K
πx(x

N), (18)
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which provides the following upper bound on nx:

nx <
π
′
x(xN )

(
r

(
1−x

N

K

)
−aymin

)
(
ρ+

rxN

K

)
πx(xN )
xN

≡ n̄. (19)

In the remainder of the paper, we thus restrict the number of prey �shers below this
threshold n̄. The following proposition summarizes the main properties of the stationary
solution under a speci�es-speci�c common-property regime.

Proposition 1. If 1 < nx < n̄, we can say the following:
(i) There exists a unique steady-state solution for the system of Eqs.(16) and (17) in which
both species coexist, x(nx, ny) > 0 and , y(nx, ny) > 0.
(ii) The long-run harvest strategies are characterized by the two e�ort levels, ex(nx, ny) > 0
and ey(nx, ny) > 0, given by Eq.(15).
(iii) Pro�ts per unit of e�ort are positive in each industry, πx(nx, ny), πy(nx, ny) > 0.

4.2. Sole ownership

Thus far, we have considered that the property rights to a species-speci�c stock are
exclusive to a community of �sheries. We now assume a sole owner who aims at managing
the collective use of the stocks of the two species. Basically, they will choose the e�ort
levels, es,j(t), for all �sheries j in both industries s = x, y to maximize the discount value
of the sum of the pro�t streams, accounting for the two population dynamics given by
Eqs. (1) and (2). For consistency, we maintain the assumption that nx < n̄. As �sheries
remain symmetric within the industry, the sole owner's problem is de�ned as follows:

max
ex(t),ey(t)≥0

∫ ∞
0

(nxπx (x(t)) ex(t) + nyπy (y(t)) ey(t)) exp−ρt dt,

ẋ(t) = x(t)
(
r
(

1− x(t)
K

)
− ay(t)− nxex(t)

)
, (20)

ẏ(t) = y(t) (aαx(t)− δ − nyey(t)) .

As previously, considering ẋ(t) = ẏ(t) = 0, we only highlight the steady-state conditions:

πx(x)− λxx = 0, (21)

πy(y)− λyy = 0, (22)

ρλx − nxπ
′

x(x)ex + λx
rx
K
− λyaαy = 0, (23)

ρλy − nyπ
′

y(y)ey + aλxx = 0. (24)

The �rst two optimality conditions, (21) and (22), de�ne the shadow values as in Eqs.(9)
and (12) but those values are now evaluated at di�erent points. Eqs. (23) and (24),
in contrast to Eqs.(10) and (13), now account for the number of �sheries as well as the
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biological interaction. Speci�cally, in Eqs. (23) and (24), we account for the e�ect of stock
variation on the industry's aggregate pro�t and the marginal value of the other species.

Hereafter, we add superscript s to denote the long-term optimal solutions. From the
stock dynamics, given ẋ(t) = ẏ(t) = 0, we immediately obtain the steady-state values of
e�ort levels as functions of the steady-state stock levels {xs, ys}:

esx = 1
nx

(
r
(
1− xs

K

)
− ays

)
and esy = 1

ny
(aαxs − δ) . (25)

We also directly observe from Eqs. (21) and (22) that the shadow prices, λsx and λ
s
y, are

equal to the long-run rent per unit of stock:

λsx = π(xs)
xss

and λsy = π(ys)
ys

. (26)

Finally, using Eqs.(25) and (26), we obtain the conditions required for the long-run levels
of the two population stocks:

ρπx(xs)
xs

= π
′

x(x
s)
(
r
(
1− xs

K

)
− ays

)
− r

K
πx(x

s) + αaπy(y
s), (27)

ρπy(ys)

ys
= π′y(y

s)(αaxs − δ)− aπx(xs). (28)

The left-hand side of each equation is again the return on the investment of the rent
induced by the last unit of harvest; however, the right-hand side is now the social rate of
return on leaving a unit of a species in the sea. Considering all the terms on the right-
hand side, we refer to them as the social conservation value for species s. Speci�cally, in
Eq.(27), the �rst two terms re�ect the stock e�ect of prey on the aggregated pro�ts net of
the loss induced by a decrease in the prey growth rate. The last term measures the positive
trophic externality of the population of prey on that of predators. Indeed, leaving one
unit of prey in the sea increases the predator population by a rate of αa. Thus, without
changing the predator-�shing e�ort, the pro�tability of predator harvesting increases by
αaπy(y

s). In Eq.(28), the �rst term again depicts the externality of the stock of predators
while the second term captures the negative trophic externality. An additional predator
decreases the population of prey by a rate of a, hence, at a given e�ort, the pro�tability
of harvesting prey.

In contrast to our previous species-speci�c common-property regime, pro�ts do not
need to be positive in both industries because the compensation principle applies. In
the prey industry, we observe that the steady-state stock of prey should be greater than
the pristine level, xs > xN , due to the predator dynamics (see Eq. 20). Because we
have assumed that xmin is lower than xN , we can immediately conclude that the prey
�sheries' pro�t, πx(x

s), is positive. However, this is not the case for predator �sheries.
Indeed, observing the right-hand side of Eq.(28), we �nd that the social conservation
value, π′y(y)(αax− δ)− aπx(x), is negative. This value decreases with x due to the price
structure, px > αpy, and reduces to −aπx(xN) < 0 when x = xN . As xs ≥ xN when
predators subsist at the steady state, this suggests that the predator �sheries' pro�t,
πy(y

s), is negative. The next proposition describes the sole owner's equilibrium.
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Proposition 2. If 1 < nx < n̄, we can say the following:
(i) There exists a unique steady-state solution given by the system of Eqs.(27) and (28)
in which both species coexist, xs, ys > 0.
(ii) Both species are harvested and the �shing e�orts, esx, e

s
y > 0, are given by Eq.(25).

(iii) The pro�t per unit of e�ort is positive for prey, πx(x
s) > 0, and negative for predators,

πy(y
s) < 0.

Proposition 2 shows that the sole owner's harvest strategies are to exploit both species
even if harvesting predators is costly. This result is typically driven by biological exter-
nality, given that the species at the lower trophic level is more valuable at that level than
when converted into the upper level. By contrast, we outline that no �shing e�ort will be
engaged when pro�ts are negative under a species-speci�c property regime, and this case
speci�cally arises for a high number of prey-speci�c �sheries.

5. Commons versus anticommons

Thus far, we have characterized the species-speci�c common-property regime and sole
owner's outcome. We can now analyze how the tragedies of the commons and anticom-
mons arise in this model. The �rst tragedy is related to the competition between �sheries
within industries because of the common property, while the second tragedy is a conse-
quence of the design of property rights induced by an exclusive specialization that neglects
the biological interaction. We essentially proceed in two steps. We �rst analyze the e�ects
of a change in the number of �sheries in each industry when the resource is managed under
our species-speci�c common-property regime. Second, we contrast private property-rights
management with socially optimal management.

The analysis of the e�ects of a change in the number of �sheries in each industry
draws mainly on the implicit function theorem in the system represented by (16) and
(17). These results are proven in Appendix C. Tables 1 and 2) summarize the results for
the prey- and predator-�shing industries, respectively..

x(nx, ny) Ex(nx, ny) ex(nx, ny) πx(nx, ny)

Nb of prey �sheries (nx) − + − −
Nb of predator �sheries (ny) + + + +

Table 1: Number of �sheries and prey harvesting

y(nx, ny) Ey(nx, ny) ey(nx, ny) πy(nx, ny)

Nb of predator �sheries (nx) − − − −
Nb of prey �sheries (ny) − + − −

Table 2: Number of �sheries and predator harvesting
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Tables 1 and 2 show that both stocks are a�ected by the sizes of the �sheries. This
indicates direct and indirect e�ects of a change in the size of a given industry on the
steady-state stocks. The direct e�ect depicts the tragedy of the commons while the
indirect e�ect results from the anticommons issue induced by specialization.

For instance, if we consider the prey-�shing industry, a larger number of prey �sheries
decreases the long-term �sh stock due to a higher aggregated harvesting-e�ort level while
the individual e�ort and pro�t per unit of e�ort decrease. These are the key components
of the tragedy of the commons. Typically, a rise in the number of prey �sheries diminishes
the private conservation value for prey (see Eq.(16)). This mechanically leads to a new
steady state with less prey and a higher aggregated catch e�ort. This also induces a
negative externality on all the �sheries in the industry as they individually end up with a
lower catch e�ort and smaller pro�ts. A very similar observation can be made about the
predator-�shing industry (see Table 2).

The observed e�ects due to the tragedy of the commons within an industry spill over
into the other industry due to biological interactions. Fewer prey due to an additional prey
�shery mechanically reduces the predator population and results in a negative externality
on that industry. This reduces not only the aggregated and individual �shing e�orts
but also each predator �shery's pro�t (see the second line of Table 2). In contrast,
fewer predators save prey and induce a positive externality on the prey-�shing industry.
As depicted in the second line of Table 1, the higher the number of predator �sheries,
the smaller the prey population, and the smaller the individual and aggregated prey-
harvesting e�orts and pro�t of each prey �shery. It should even be noticed that these
results hold independently of the size of each industry. This means that these externalities
remain even if a regulator solves the tragedy of the commons in each of the industries. This
is typically because of the anticommons e�ect. Due to the specialization and subsequent
exclusivity, the property-rights system still shares a single ecological system.

For a better understanding of the commons and anticommons e�ects, let us now
contrast the outcomes of the two property regimes. To isolate each of them, let us �rst
address the case in which each industry is controlled by a single specialized �shery, i.e.,
nx = ny = 1. In this case, the sole owner only accounts for the externalities induced by
the biological interaction. In a second step, we extend the comparison to all �sheries in
both industries.

In predator-prey models, it is well known that fewer predators improve the prey pop-
ulation, the high-priced species in our model. This induces a social bene�t due to this
release of predation. To bene�t from this advantage, the sole owner has therefore an incen-
tive to raise the harvest e�ort above the level chosen by predator �sheries. This suggests
predator under�shing under our species-speci�c property regime, i.e., Ey(1, 1) < Es

y. Con-
sequently, the predator population is higher in this case than in the sole owner's situation,
i.e., y(1, 1) > yS. Moreover, the sole owner's decision leads the predator-�shing industry
to operate at a negative pro�t, according to Proposition 2. Hence, y(1, 1) > ymin > yS

because pro�ts per e�ort are increasing in stock.
The comparison of outcomes for the prey industry is not as straightforward. Let us
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recall the private and social conservation values for prey respectively introduced in Eqs.
(16) and (27). Under the assumption on prices, i.e., px > αpy, both are decreasing with the
size of the predator population and are, in the case of a single prey �shery, identical when
y = ymin. Because y(1, 1) > ymin > yS, this means that the private conservation value
is always lower than the social conservation value independently of the size of the prey
population. This clearly suggests a lower prey stock under the species-speci�c property
regime than in the sole owner's case, i.e., x(1, 1) < xS. However, in contrast to the
intuition, we observe prey under�shing, i.e., Ex(1, 1) < Es

x. Prey �sheries ignore the
social bene�t they generate by increasing the harvest of high-priced prey. To derive this
social bene�t, the sole owner must raise the harvesting e�ort above the level chosen by
the prey �shery.

Finally, it remains to extend these results to any possible size of the two industries,
integrating the usual e�ect from the tragedy of the commons. This is fairly straightforward
for the ranking of predator stocks. In this industry, no �shery is willing to operate
at a negative pro�t independently of both industry sizes. It follows that y(nx, ny) >
ymin > yS. From Table 2, we nevertheless know that ∂y

∂nx
< 0 and ∂y

∂ny
< 0. Even if the

stock gap decreases when the size of at least one industry increases, it never disappears.
Thus, the tragedy of the commons in both industries never overcomes the tragedy of
the anticommons in the predator-�shing industry. The results are less evident for the
prey stocks. From the single owner's case, we already know that x(1, 1) < xS. Thus,
an additional prey �shery simply increases this gap by the usual e�ect of the tragedy-of-
the-commons mechanism, i.e., x(nx, 1) < x(1, 1) < xS. However, from Table 1, we know
that ∂x

∂ny
≥ 0 because the tragedy of the commons in the predator industry has a positive

externality on the prey population. We nevertheless show that this opposite e�ect does
not compensate for the anticommons e�ect, i.e., x(nx, ny) < xS.

Let us now compare the e�ort levels. Whatever the management regime, the stationary
predator's e�ort deduced from the predator dynamics is always given by Ey = αax − δ.
Because x(nx, ny) < xS, it follows that Ey(nx, ny) < Es

y. The result is less obvious for the

prey e�ort. Even if Ex(1, 1) < ES
x , Table 1 shows that ∂Ex

∂nx
> 0 and ∂Ex

∂ny
> 0. Thus, if

the upper bound of Ex(nx, ny) is larger than E
s
x, the tragedy of the commons o�sets the

tragedy of the anticommons. Now, observe that this upper bound is reached for nx = n̄
(see Eq. (19)) and ny = +∞ . As nx = n̄ is the size of the prey industry for which the
predator �shing e�ort becomes zero, x(n̄,+∞) must be equal to the pristine level, xN .
Meanwhile, y(n̄,+∞) = ymin is the quantity for which the pro�t in the predator industry
becomes zero due to open access. Thus,

Ex(n̄,+∞) = r
(

1− xN

K

)
− aymin (29)

The next proposition summarizes this discussion.

Proposition 3. By comparing the species-speci�c common-property regime to the sole-
owner solution, we observe the following:
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(i) There is a global under�shing e�ort in the predator industry, i.e., Ey(nx, ny) < Es
y,

which contributes to the emergence of an excessive predator population, i.e., y(nx, ny) >
ys.
(ii) This excessive predation leads to a lower prey population, i.e., x(nx, ny) < xs, which is
enforced by a global under-�shing e�ort, i.e., Ex(nx, ny) < Es

x, if and only if Ex(n̄,+∞) <
Es
x.

6. Multispecies management and �shery policies

Thus far, we have outlined two sources of issues: the tragedy of the commons and that
of the anticommons. Now, we move to the characterization of ecosystem-based �shery
management (EBFM). We �rst derive the optimal regulation scheme to align the species-
speci�c common-property regime with the social optimum. In a second step, we want
to highlight the implications of regulating the tragedy of the anticommons when �shery
cooperatives already exist.

6.1. A species-speci�c global regulation system

We consider that the government aims at implementing two species-speci�c policy
tools, one tool for each �shing industry. From Proposition 3, we know that the government
will be faced with under�shing and thus may decide to grant a subsidy, σs with s = x; y,
per unit of harvest.

Under that landing regulation, each �shery's pro�t (5) becomes:

Πs,j(es,j(t), s(t)) = ((ps + σs)s(t)− cs) es,j(t). (30)

The long-run equilibrium conditions in (16) and (17) required for the level of the two
population stocks at the steady states consequently become:

ρπx(x)
x

= π′
x(x)
nx

(
r
(
1− x

K

)
− ay

)
− r

K
πx(x)− σx

(
ρ+ r

K
− 1

nx
(r(1− x

K
)− ay)

)
, (31)

ρπy(y)

y
=

π′
y(y)

ny
(αax− δ)− σy(ρ− 1

ny
(αax− δ)). (32)

As the purpose is to implement the optimal stock levels, we observe that the right-hand
sides of the conditions in (31) and (32) should be equal to the right-hand sides of conditions
(27) and (28), respectively. We then deduce that the long-run optimal levels of the subsidy
granted to each �shery in the two �shing industries are respectively as follows:

σx(nx) =
−π′

x(x
s) (nx−1)

nx
Es
x − αaπy(ys)

ρ+ r
K
xs − Es

x

nx

with Es
x = r(1− xs

K
)− ays, (33)

σy(ny) =
−π′

y(y
s) (ny−1)

ny
Es
y + aπx(x

s)

ρ− Es
y

ny

with Es
y = αaxs − δ. (34)
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A perusal of the numerators of Eqs. (33) and (34) shows that the subsidy scheme must
be designed to account for the tragedies of the commons and anticommons. A single
instrument, even species-speci�c, thus allows us to capture all the externalities. Indeed,
the �rst term in each of the two equations captures the social costs associated with the
tragedy of the commons, i.e., the marginal impact of stock variation from the other
�sheries in competition. Recall that from Proposition 2, we know that πy(y

s) < 0 and
that πx(x

s) > 0. Then, the second term re�ects the social bene�t associated with the
tragedy of the anticommons. The sign of the policy instrument therefore depends on the
balance between the magnitudes of the two e�ects.4

Under a species-speci�c common-property regime, from Proposition 3, we know that
predators are overpopulated and under�shed despite the presence of the usual tragedy of
the commons. Given a single predator �shery, the tragedy of the anticommons requires
that the predator catch be subsidized. As the number of predator �sheries increases, the
amount of the subsidy decreases, i.e., ∂nyσy(ny) < 0, suggesting that a situation in which
the tragedy of the commons occurs leads to a reduction in the �shing gap between a
common-property regime and the socially optimal scenario. Nevertheless, from Condition
(28), we can easily observe that the externalities resulting from the anticommons o�set the

tragedy of the commons in the predator-�shing industry, i.e., aπx(x
s) > π

′
y(y

s) (ny−1)

ny
Es
y.

This result is due to the fact that predator �sheries do not account for the opportunity
bene�t they will generate in the prey-�shing industry by increasing their catch. Conse-
quently, the government will always grant a subsidy to the predator �sheries.

Similarly, for the prey-�shing industry, we know that the stock is underpopulated al-
though there is under�shing. Without competition among �sheries, when nx = 1, only
the tragedy of the anticommons remains and the government must subsidize the prey
harvest to internalize the opportunity cost of letting prey be converted into predators5.
Moreover, as the number of prey �sheries increases, the amount of the subsidy monoton-
ically decreases. The nature of the policy may even change if the term associated with
the tragedy of the commons, −π′

x(x
s) (nx−1)

nx
Es
x, exceeds the term for the tragedy of the

anticommons, αaπy(y
s). This happens over a given number of prey �sheries, n∗x, de�ned

as follows: 6

n∗x =
π

′
x(x

s)Es
x

π′
x(x

s)Es
x + αaπy(ys)

. (35)

Proposition 4 summarizes the discussion.

Proposition 4. A landing regulation entails implementing a system of species-speci�c

4AS we have assumed that ρ is greater than the maximum growth rate of each of the two species, the
two denominators, those of Eqs. (33) and (34), are positive.

5Subsidizing the prey sector does not necessarily mean decreasing the stock as interaction matters and
the regulator collectively controls the exploitation of the whole ecosystem.

6Using Condition (27), we know that the denominator of the threshold in (35) is strictly positive.
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subsidies for a harvest, de�ned by Eqs. (33) and (34). The regulator may, however,
implement a tax on the prey harvest when nx > n∗x.

6.2. The cost of cooperative �shing rights

This section examines a situation in which there exist cooperative �shing rights. Such
organization generally involves a group of �sheries that share common characteristics,
including target species and �shing technology. In our framework, this corresponds to our
species-speci�c common-property regime when a single �shery manages the industry, i.e.,
when ns = 1 for s = x, y.

This type of agreement that neutralizes the tragedy of the commons neglects the
tragedy of the anticommons and even induces some additional social costs. In a �rst
step, we characterize the social bene�t induced by stopping cooperation in the predator
industry. Second, we assess the additional regulation costs to solve the tragedy of the
anticommons in the presence of a cooperative.

Let us now de�ne the social bene�t as the discounted sum of pro�ts at the steady
state:

Π(nx, ny) =
1

ρ

(
πx(nx, ny)Ex(nx, ny) + πy(nx, ny)Ey(nx, ny)

)
(36)

We aim to contrast the joint pro�t in the presence of cooperative, i.e., Π(1, 1), with
that in a situation in which predator �sheries behave uncooperatively, i.e., Π(1, ny). This
corresponds to examining the impact of an additional predator �shery on the social bene�t.
Recall that pro�ts and e�orts actually depend on the number, ny, only because of stocks.
Thus, the joint pro�t, Π, also depends on ny because of stocks. By applying the usual
chain rule, we obtain the e�ect of an increase in the number of predator �sheries on the
joint pro�t:

1

ρ

[
∂Π

∂x

∂x

∂ny
+
∂Π

∂y

∂y

∂ny

]
> 0 (37)

From Eqs. (16)-(17) and πy(y) > 0, we have ∂Π
∂x

= pxEx(x, y)− r
K
πx(x)+πy(y)αa > 0;

thus, from Table 1, ∂Π
∂x

∂x
∂ny

> 0. Concerning the second term, recall that the long-run prey

stock is higher than the natural level, xN , and the derivative, ∂Π
∂y
, is decreasing in x under

Assumption 7. Moreover, because ∂Π
∂y

= πx(x
N)(−a) + pyEy(x

N) < 0, then, using Table

1, we obtain ∂Π
∂y

∂y
∂ny

> 0. The following proposition summarizes this discussion.

Proposition 5. The tragedy of the commons that occurs in the predator-�shing industry
contributes to achieving a second-best equilibrium even in the presence of the tragedy of
the anticommons, compared with a situation in which both �shing industries are organized
as cooperatives.
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Therefore, there exists a social bene�t of deregulating the predator industry7. Now,
let us show that there is an additional cost of solving the tragedy of the commons in
both industries without considering the tragedy of the anticommons. To do this, consider
that cooperatives are organized within each industry, and let us now characterize the
system of subsidies required to solve the tragedy of the anticommons. From Eqs. (33)
and (34), these subsidies no longer depend on the industry sizes and are equal to σs(ns)
when ns = 1, with s = x, y:

σx(1) =
− aαπy (ys)

ρ+ r
K
xs − Es

x

> 0, σy(1) =
aπx(y

s)

ρ− Es
x

> 0 (38)

Moreover, we know from Eqs. (33) and (34) that the level of the subsidy decreases
with nx and ny, i.e., ∂nxσx(nx) < 0 and ∂nyσy(ny) < 0. Then, we obtain the following:

σx(nx) ≤ σx(1), σy(ny) ≤ σy(1) (39)

As the objective is to implement the socially optimal outcome, this means that the
total amount of subsidies granted by the regulator to �sheries is higher when cooperatives
are organized. We can therefore say the following:

Proposition 6. The cost of public spending is greater when only the tragedy of the com-
mons is internalized than when both the tragedy of the commons and that of the anticom-
mons are globally regulated.

7. Conclusion

This analysis speci�cally contributes to the literature on multispecies management
and complements the literature on the economic tradeo� implied by the exploitation of
species in interaction. In this study, we speci�cally analyze the economic and ecologi-
cal implications of a species-speci�c common-property rights system in a prey-predator
model when the prey species is more valuable when harvested than when converted into
a predator. We �nd that the predator-�shing industry should operate at economic losses
under sole ownership as the losses would be o�set by the opportunity bene�t for the
prey-�shing industry. We also �nd that the tragedy of the commons traditionally arises
within the two separate �shing industries; however, the exclusive rights system implies
the tragedy of the anticommons as the two species are underexploited. A combination
of the two issues leads to (i) a too-low prey stock but an abundant predator population
under a species-speci�c common-property right system and (ii) too-low e�ort levels for
the two �shing industries. We �nally discuss how to regulate these issues and analyze the
implications of regulating only the tragedy of the commons as it may be done in �shery
cooperatives. We especially �nd that a system of subsidies allows the two issues to be

7We can also consider the deregulation of the prey-�shing industry; however, we do not obtain clear-cut
results.
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overcome, while the regulation of the tragedy of the anticommons entails additional costs
when the tragedy of the commons has already been overcome.

This study provides interesting insights into how the tragedy of the anticommons
arises in the context of �sheries. We nevertheless adopt a very simple representation
of the ecosystem as we only consider two species and even one type of interactions. An
immediate question arises as to whether we may observe the same issues considering other
types of biological interactions. For instance, competition between species should entail
reciprocal opportunity bene�ts for other �sheries when one of the competitive species is
harvested. In contrast, mutualistic relationships generate reciprocal opportunity costs.
More broadly, we may improve the analysis by considering more than two species in
interaction. This should speci�cally help us to analyze how the spillovers of harvesting
one species spread over the entire ecosystem, especially with species that are not directly
linked with the targeted species. Finally, we have considered a regulation system based
on the intervention of the government. We may instead analyze a unitization system of
the ecosystem based on cooperation between the two �shing industries. However, this
would drive the analysis of the characterization of a pro�ts-sharing rule, especially of
how the prey-�shing industry would o�set the economic losses of the predator �shing.
Nevertheless, all these considerations would be interesting to develop in future studies.
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Appendix A. Proof of Proposition 1

We essentially have to check that the system comprising Eqs.(16) and (17) admits, for 1 < nx < n̄,
a unique solution (x (nx, ny) , y (nx, ny)) that belongs to the interior of the following set:

∆ =
{

(x, y) ∈ R2
+ : r(1− x

K )− ay ≥ 0 and ααx− δ ≥ 0
}
, (A.1)

and satis�es y (nx, ny) > ymin. The interiority condition ensures that, at the steady state, (i) both species

coexist, i.e., (x (nx, ny) , y (nx, ny)) � 0, (ii) prey are harvested, i.e., ex(nx, ny) = 1
nx

(r(1 − x(nx,ny)
K )

−ay (nx, ny)) > 0, at a positive pro�t level, πx (nx, ny) > 0, because x (nx, ny) > δ
αα ≥ xmin, and (iii)

with the additional result that y (nx, ny) > ymin, pro�ts are strictly positive in the predator sector,
πy (nx, ny) > 0, and predators are harvested, i.e., ey(nx, ny) = 1

ny
(ααx (nx, ny)− δ) > 0.

Let us now note that a steady state that solves Eqs.(16) and (17) is a zero of ϕ̃ : ∆ → R2 given by
the following:

ϕ̃(x, y) =

[
ϕ̃1(x, y)
ϕ̃2(x, y)

]
=

[
(ρ+ r

Kx)πx(x)
x − px

nx

(
r(1− x

K )− ay
)

ρ
πy(y)
y − py

ny
(αax− δ)

]
(A.2)
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and that the condition, nx < n̄, is equivalent to assuming that ϕ̃1(xN , ymin) < 0. Moreover, if the
unique solution is in the interior of ∆, such that x (nx, ny) > δ

αα , the second equation ensures that
y (nx, ny) > ymin.

(o) Method
The proof is based on a homotopy argument. An intuitive presentation can be found in Eaves and

Schmedders [13] (for a more detailed argument, see also Villanacci et al. [55] ch.7 or Hirsch [27] ch.5).
Following their presentation, a complex equation system, ϕ̃(x, y) = 0, has a unique solution in the interior
of ∆ if there exists (i) a simple equation system, ψ̃(x, y) = 0, and (ii) a homotopy, H̃ : [0, 1]×∆ → R2,
given by H̃(x, y, λ) = (1− λ) ϕ̃(x, y) + λψ̃(x, y), with the following properties:

• ψ̃(x, y) = 0 admits a unique solution and 0 is a regular value of both ψ̃ and H̃ (i.e., ∂x,yψ̃ and

∂x,y,λH̃ are of full rank)

• H̃−1(0) is a compact subset of int (∆)× [0, 1], where int denotes the interior

• The det (∂x,yϕ̃) is, at equilibrium, always of the same sign

(i) The choice of ψ̃(x, y)

To construct this function, let us �rst observe that there exists a unique x1 ∈
(
xN ,K

)
with the

property that ϕ̃2

(
x1,

r
a (1− x1

K )
)

= 0 as (i) limx→xN ϕ̃2

(
x, ra (1− x

K )
)

= ϕ̃2

(
xN , yN

)
= ρ

πy(yN )
yN

> 0

because, by the assumption that ymin < yN , (ii) limx→K ϕ̃2

(
x, ra (1− x

K )
)

= ϕ̃2 (K, 0) = −∞ and (iii)
d
dx ϕ̃2

(
x, ra (1− x

K )
)

= ∂xϕ̃2 − r
aK ∂yϕ̃2 = −pyαaNy

− rρcy
aKy2 < 0. Now, let us introduce ψ̃ : ∆ → R2

given by ψ̃(x, y) =

[
x− x̄
y − ȳ

]
, with xN < x̄ < x1 and 0 < ȳ < ymin. This function admits a unique

solution (x, y) = (x̄, ȳ) that is regular because ∂ψ̃(x, y) = I, the identity of R2. We can now construct
H̃(x, y, λ) = (1− λ) ϕ̃(x, y) + λψ̃(x, y). Because this function takes as parameters (x̄, ȳ), the generic
transversality theorem (see Eaves and Schmedders [13]) a�ords us the opportunity to choose (x̄, ȳ) such
that 0 is a regular value of H̃.

(ii) H̃−1(0) is a compact subset of int (∆)× [0, 1]

To verify that H̃−1(0) is a compact subset of int (∆) × [0, 1], let us assume the contrary, i.e., there
exists a sequence (xn, yn, λn) → (x∞, y∞, λ∞) with the property that ∀n, (xn, yn, λn) ∈ H̃−1(0) and
(x∞, y∞, λ∞) ∈ ∂∆ × [0, 1]. If y∞ = 0, we observe that ϕ̃2(xn, yn) → −∞ as x∞ �nite and that
ψ̃2(x∞, y∞) = −ȳ, hence H̃2 (x∞, y∞, λ∞) < 0. We can therefore say ∃N > 0, ∀n > N , H̃ (xn, yn, λn) 6=
0, which is the desired contradiction. Now, assume that x∞ = xN and y∞ > ymin. It follows that
ϕ̃2(x∞, y∞) > 0 as (αaxN − δ) = 0 and πy(y∞) > 0 for y∞ > ymin. Moreover, ψ̃2(x∞, y∞) = y∞ − ȳ > 0

because ȳ < ymin. This is again a contradiction because H̃2 (x∞, y∞, λ∞) > 0. If x∞ = xN and
y∞ ≤ ymin, our assumption says that ϕ̃1(xN , ymin) < 0. Because ∂yϕ̃ = apx

N > 0, we deduce that
ϕ̃1(x∞, y∞) < 0. The desired contradiction is achieved by observing that ψ1(x∞, y∞) = xN − x̄ < 0
so that H̃1 (x∞, y∞, λ∞) < 0. Let us �nally consider the case in which r(1 − x∞

K ) − ay∞ = 0. Let

us �rst observe that ϕ̃1(x∞, y∞) > 0 because π(x∞) > 0. Thus, as long as x∞ ≥ x̄, ψ̃1(x∞, y∞) ≥
0, and the contradiction is achieved. If x∞ < x̄, we know by the choice of x̄ < x1 (see point (i))
that ϕ̃2

(
x̄, ra (1− x̄

K )
)
> 0, and as the function is decreasing ϕ̃2

(
x∞,

r
a (1− x∞

K )
)

= ϕ̃2 (x∞, y∞) > 0.

Moreover, by construction of ϕ̃2 this also implies, when x∞ > xN , that y∞ > ȳ, hence ψ̃2(x∞, y∞) > 0,
a contradiction.

(iii) The properties of ∂ϕ̃
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By computation,

det
(
∂(x,y)ϕ̃

)
=

∣∣∣∣∣∣∣∣∣∣∣∣

ρ
cx
x2

+
rpx
K

(
1 + nx
nx

)
︸ ︷︷ ︸

>0

a
px
nx︸︷︷︸
>0

−αa py
ny︸ ︷︷ ︸

<0

ρ
cy
y2︸︷︷︸
>0

∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (A.3)

Appendix B. Proof of Proposition 2

We simply have to prove that the system comprising Eqs. (27) and (28) admits, for nx < n̄, a unique
solution that belongs to the interior of ∆ and now has the property that ys < ymin. This again ensures
that (i) both species coexist, i.e., (xs, ys)� 0, (ii) both species are harvested, i.e.,

(
esx, e

s
y

)
� 0, and (iii)

πsx(xs) > 0 as xmin < xN < xs, and if ys < ymin, πsy(ys) < 0.
This is equivalent to studying the zero of the function, ϕ̂ : ∆→ R2, given by the following:

ϕ̂(x, y) =

[
ϕ̂1(x, y)
ϕ̂2(x, y)

]
=

[
(ρ+ r

Kx)πx(x)
x − pxr(1− x

K ) + pxay − αaπy(y)

ρ
πy(y)
y − py(αax− δ) + aπx(x)

]
(B.1)

As ϕ̃1(xN , ymin) = ϕ̂1(xN , ymin) because πy(ymin) = 0, the assumption that nx < n̄ now becomes
ϕ̂1(xN , ymin) < 0. We �rst verify that ϕ̂(x, y) = 0 admits a unique solution in int(∆), and then that
ys < ymin. For the �rst part, the method, as in the proof of Proposition 1, is based on a homotopy
argument.

(i) Choice of ψ̂(x, y) and regularity of Ĥ

To de�ne this function, let us �rst introduce x0 given by r
(
1− x0

K

)
−aymin = 0 and observe that x0 >

xN because we have assumed that yN > ymin. Now, construct ψ̂ : ∆→ R2 given by ψ̂(x, y) =

[
x− x̄
y − ȳ

]
with xN < x̄ < x0 and 0 < ȳ < ymin. Obviously, ψ̂(x, y) admits a unique and regular solution, (x, y) =

(x̄, ȳ), as ∂ψ(x, y) = I, the identity of R2. We can then de�ne Ĥ(x, y, λ) = (1− λ) ϕ̂(x, y) +λψ̂(x, y) and
use the generic transversality theorem to choose (x̄, ȳ) such that 0 is a regular value of Ĥ.

(ii) Ĥ−1(0) is a compact subset of int (∆)× [0, 1]
Let us assume the contrary, i.e., there exists a sequence, (xn, yn, λn) → (x∞, y∞, λ∞), with the

properties that ∀n, (xn, yn, λn) ∈ Ĥ−1(0) and (x∞, y∞, λ∞) ∈ ∂∆ × [0, 1]. Let us �rst assume that
y∞ = 0. It follows that ϕ̂2(xn, yn) → −∞ as x∞ �nite and ψ(x∞, y∞) = −ȳ. We can therefore say
∃N > 0, ∀n > N , Ĥ (xn, yn, λn) 6= 0, which is the desired contradiction. Now, assume that x∞ = xN . If
y∞ ≥ ymin, ϕ̂2(x∞, y∞) > 0 as (αaxN − δ) = 0, πx(xN ) > 0, πy(y∞) ≥ 0 because y∞ ≥ ymin. Moreover,

ψ̂2(x∞, y∞) = y∞ − ȳ > 0 because ȳ < ymin. Hence, ∃N > 0, ∀n > N , Ĥ (xn, yn, λn) 6= 0. If y∞ < ymin,
we know that ϕ̂1(xN , ymin) < 0 and as ∂yϕ̂1 = a (px − αpy) > 0, it follows that ϕ̂1(x∞, y∞) < 0. The

desired contradiction is achieved by observing that ψ̂1(x∞, y∞) = xN − x̄ < 0. Let us �nally consider the
case in which r(1− x∞

K )−ay∞ = 0. If y∞ ≤ ymin, we can say that πy(y∞) ≤ 0, hence that ϕ̂1(x∞, y∞) =

(ρ + r
Kx∞)πx(x∞)

x∞
− αaπy(y∞) > 0. Moreover, ψ̂1(x∞, y∞) = K

(
1− a

r y∞
)
− x̄ > K

(
1− a

r y
min
)
− x̄

since y∞ ≤ ymin. We also observe that K
(
1− a

r y
min
)

= x0 (see part (i) of the proof). We can therefore

say that ψ̂1(x∞, y∞) > x0 − x̄ > 0 and obtain the desired contradiction. If y∞ > ymin, let us �rst
observe that ϕ̂2(xN , y∞) > 0 as (αaxN − δ) = 0 and, in this case, πx(xN ) > 0, πy(y∞) > 0. Moreover,
∂xϕ̂2 = a (px − αpy) > 0, hence ϕ̂2(x∞, y∞) > 0. The contradiction is obtained by observing that

ψ̂2(x∞, y∞) = y∞ − ȳ > 0.

(iii) The properties of ∂ϕ̂
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It remains to show that det (∂ϕ̂) is sign-invariant at each solution. By computation and the de�nition
of πx(x) and πy(y), the following is immediate:

∂ϕ̂ =

[
ρ cxx2 + 2 r

K px a (px − αpy)
a (px − αpy) ρ

cy
y2

]
(B.2)

Because we evaluate the determinant of the Jacobian matrix for each (x, y) that satis�es ϕ̂(x, y) = 0, we
also observe, after computation, that the diagonal terms can be written as follows:

ρ cxx2 + 2 r
K px = y

x


(
px(ρ− r + rx

K ) + r
Kπx(x) + aαcy + 2 r

K pxx

y

)
︸ ︷︷ ︸

=A

+ a(px − αpy)︸ ︷︷ ︸
=C



ρ
cy
y2 = x

y


(

(ρ+ δ)py − acx
x

)
︸ ︷︷ ︸

=B

+ a(px − αpy)︸ ︷︷ ︸
=C


(B.3)

Because we have assumed that ρ > r, px > αpy and under an additional technical su�cient condition,
(ρ+ δ)py > acx, it is immediate that A,B,C > 0; thus, it follows that

det
(
∂ϕ̂|ϕ̂(x,y)=0

)
=

∣∣∣∣ y
x (A+ C) C

C x
y (B + C)

∣∣∣∣ = AB +AC +BC > 0 (B.4)

(iv) Negativity of the predator �shery's pro�t, πsy(ys) < 0

To verify that ys < ymin, let us observe that ϕ̂2(xN , ymin) = aπx(xN ) > 0 because xN > xmin.
Moreover, we know that xs > xN (interiority) and ∂xϕ̂2 > 0 as px > αpy. It follows that ϕ̂2(xs, ymin) > 0.
As ∂yϕ̂2 = ρ

cy
y2 > 0, we deduce that ys < ymin; otherwise, ϕ̂2(xs, ys) > 0, a contradiction.

Appendix C. Numbers of �sheries and steady state

(i) E�ects of nx and ny on the �sh stock

By applying the implicit function theorem to Eq.(A.2), we know the following:[
∂x
∂θ
∂y
∂θ

]
θ∈{nx,ny}

= −
(
∂(x,y)ϕ̃

∣∣
ϕ̃(x,y)=0

)−1 (
∂(nx,ny)ϕ̃

∣∣
ϕ̃(x,y)=0

)
(C.1)

Moreover, using Eq.(A.3), we can say the following:

−
(
∂(x,y)ϕ̃

∣∣
ϕ̂(x,y)=0

)−1

= −

det
(
∂ϕ̃|ϕ̃(x,y)=0

)
︸ ︷︷ ︸

>0


−1 [

ρ
cy
y2 −a pxnx

αa
py
ny

ρ cxx2 + rpx
K

(
1+nx

nx

) ] =

[
− +
− −

]
(C.2)

and by di�erentiating Eq.(A.2) with respect to nx, ny, we obtain the following:

(
∂(nx,ny)ϕ̃

∣∣
ϕ̂(x,y)=0

)
=

[
px
n2
x

(
r(1− x

K )− ay
)

0

0
py
n2
y
(αax− δ)

]
=

[
+ 0
0 +

]
(C.3)

The signs directly follow from the non-negativity of the harvesting e�orts. From these observations, we
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immediately deduce the following:

∂x

∂nx
≤ 0,

∂x

∂ny
≥ 0,

∂y

∂nx
≤ 0 and

∂y

∂ny
≤ 0 (C.4)

(ii) E�ects of nx and ny on the aggregated e�orts

Because the aggregated e�orts are, at the steady state, given by Ex = r(1− x
K )−ay and Ey = αax−δ,

we know that for all θ ∈ {ny, ny} ,

∂Ex

∂θ = − r
K
∂x
∂θ − a

∂y
∂θ and

∂Ey

∂θ = αa∂x∂θ (C.5)

From (C.4), we directly conclude that ∂Ex

∂nx
≥ 0,

∂Ey

∂nx
≤ 0 and

∂Ey

∂ny
≥ 0. To compute the last derivative, let

us observe, from the de�nition of the steady state (see Eq.(A.2)), that the prey-harvesting e�ort can also

be written as Ex = (ρ+ r
Kx)πx(x)nx

pxx
. It follows that ∂Ex

∂ny
= ∂Ex

∂x
∂x
∂ny

> 0, with ∂Ex

∂x =
(
ρnxcx
pxx2 + rnx

K

)
> 0.

(iii) E�ects of nx and ny on the individual e�orts

From Eq.(A.2), we know that the long-run e�ort levels are given by ex = (ρ + r
Kx)πx(x)

pxx
and ey =

ρ
πy(y)
pyy

. It follows that for θ ∈ {nx, ny},

∂ex
∂θ = d

dx

(
(ρ+ r

Kx)πx(x)
pxx

)
∂x
∂θ =

(
ρ cx
pxx2 + r

K

)
︸ ︷︷ ︸

>0

∂x
∂θ and

∂ey
∂θ = d

dy

(
ρ
πy(y)
pyy

)
∂y
∂θ = ρ cx

pxx2︸ ︷︷ ︸ ∂y∂θ
>0

(C.6)

From point (i), we can therefore conclude that ∂ex
∂nx
≤ 0, ∂ex∂ny

≥ 0,
∂ey
∂nx
≤ 0 and

∂ey
∂ny
≤ 0.

(iv) E�ects of nx and ny on the pro�ts per unit of e�ort

Because these pro�ts are given by πs(s) with s = x, y, we can say that ∂πs(s)
∂θ = ∂πs(s)

∂s
∂s
∂θ with

θ ∈ {nx, ny}. If we now note that ∂πs(s)
∂s = ps > 0 for s = x, y, we can, by Eq.(C.4), obtain ∂πx

∂nx
, ∂πx

∂nx
.

Appendix D. Proof of proposition 3

(i) y(nx, ny) ≥ ymin ≥ ys
From Propositions 1 and 2, we respectively know that πy (y(nx, ny)) ≥ 0 ≥ πy (ys) . The result then

follows from the fact that πy(y) is increasing and πy(ymin) = 0.

(ii) x(nx, ny) ≤ xs

From (i) of Appendix Appendix C, we know that ∂x
∂nx

≤ 0 and ∂x
∂ny

≥ 0; it therefore remains

to show, roughly, that x(1,∞) ≤ xs. More precisely, we know, from Eq. (A.2) with nx = 1, that
ϕ̃ (x(1, ny), y(1, ny)) = 0 and (x(1, nx), y(1, ny)) ∈ ∆, a compact set. (x(1,∞), y(1,∞)) is therefore the
limit of a converging subsequence. Moreover, when ny →∞, the second equation, ϕ̃2 (x(1, ny), y(1, ny)) =

0, becomes ρ
πy(y(1,∞))
y(1,∞) = 0, such that y(1,∞) corresponds to the open access solution, i.e., y(1,∞) = ymin.

If we recall the �rst equation, ϕ̂1(x, y), of the sole owner's system (see Eqs. (27) and (28)), we can say
the following:

0 = ϕ̃1

(
x(1, ny), ymin

)
= ϕ̂1

(
x(1, ny), ymin

)
≥ ϕ̂1 (x(1, ny), ys) (D.1)

The last inequality follows from the fact that ymin ≥ ys (see (i) of this appendix) and that ∂yϕ̂1(x, y) =
a (px − αpy) > 0. Now, let us observe that ∂xϕ̂1(x, y) = ρ cxx2 + 2 r

K px > 0. Because ϕ̂1 (x(1, ny), ys) ≤ 0
and ϕ̂1 (xs, ys) = 0, we can say that x(1,∞) ≤ xs and conclude that x(nx, ny) ≤ xs.

(iii) Ey(nx, ny) ≤ Esy

28



Recall that a stationary predator-harvesting e�ort level is always given by E = αax − δ. Thus, if
x(nx, ny) ≤ xs, then Ey(nx, ny) ≤ ESy .

(iv) Ex(nx, ny) ≤ ESx i� Esx ≤ Ex(n̄,+∞)
Follows from our discussion.
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