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1 Introduction

In this paper, we emphasize the link between demand shocks and expectation-
driven fluctuations based on the existence of sunspot equilibria. More precisely, we
investigate the extent to which standard one-sector sunspot models with positive
externalities and variable capacity utilization can account for “boom-bust cycles”
characterized by procyclical covariations of most macroeconomic variables and a
hump-shaped output response when the model is submitted to a pure sunspot
shock.

The traditional view put forward in the DSGE literature is that fluctuations
are triggered by shocks on economic fundamentals. However, since Cass and Shell
(1983), a field of economic research has been developed to analyze the role of
agents’ expectations in the understanding of macroeconomic fluctuations. In par-
ticular, researchers have highlighted the fact that agents can collectively change
their expectations due to exogenous reasons, not necessarily related to economic
fundamentals. In turn, these changes in expectations generate fluctuations which
validate ex-post the initial expectations and are thus consistent with rational ex-
pectations, i.e. sunspot fluctuations are based on self-fulfilling prophecies.

The first sunspot model using the framework of the RBC/DSGE literature
(Benhabib and Farmer, 1994) was shown to perform as well as, or even better than,
the canonical RBC model (Farmer and Guo, 1994). However, a major hurdle this
literature faced was that the existence of sunspot equilibria required very large
levels of increasing returns to scale, inconsistently with the data. This weakness
was considered one of the main challenge for the macroeconomic sunspot literature
until Wen (1998) proposed a simple extension consisting in introducing a variable
capital utilization rate in the Benhabib-Farmer setup, in the spirit of Greenwood
et al. (1988).1 It was shown that this simple extension to the canonical one-
sector model was sufficient to allow for the existence of sunspot fluctuations under
low and empirically plausible levels of increasing returns. Moreover, Benhabib
and Wen (2004) showed that this model could also explain many dimensions of
observed business cycles when the model is submitted to correlated fundamental
and sunspot shocks. In particular, the model is able to account for Pigou cycles:
periods of booms and busts triggered by exogenous changes in agents’ expectations
and affecting most macroeconomic variables. The Benhabib-Wen (henceafter BW)
model then put an end to years of discussions about the credibility of sunspot
models and their ability to explain salient features of observed business cycles.

Yet, a careful examination of the results presented by BW reveals that there
remains one dimension for which the model is not entirely satisfactory. While

1An alternative explanation is to introduce a two-sector setup with increasing returns affecting
mostly the investment good sector. See Dufourt et al. (2015).
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a positive sunspot shock does generate procyclical movements in consumption,
hours worked, investment and output – consistently with the data – these impulse
responses are not hump-shaped. This is problematic since, starting with the seminal
analysis of Blanchard and Quah (1989), there exists a bulk of empirical literature
showing that the typical impulse response of output to a properly defined (through
various assumptions) “demand shock” is hump-shaped. Clearly, for an explanation
of actual business cycles based on sunspot/self-fulfilling prophecies to be fully
convincing, these models should be able to replicate all the main stylized facts
associated with a canonical demand shock identified in the empirical literature.

The aim of this paper is thus twofold. First, we observe that in the initial
BW model, very tight restrictions on the specification of preferences and on the
production side of the economy are considered. These restrictions imply in turn
very specific values for some crucial economic parameters that are known to affect
not only the local stability properties of the models, but also their business cycle
properties: the elasticity of intertemporal substitution (EIS) in consumption, the
degree of increasing returns to scale (IRS), the wage-elasticity of labor supply,
and the capital-labor elasticity of substitution in production. From a theoretical
point of view, it is thus important to assess whether the result that indeterminacy
can occur under low degrees of increasing returns to scale in the BW setup is
robust when we consider the whole range of empirically credible values for these
parameters. As a result, we provide in the first part of the paper a complete
analysis of the local stability properties of the model as a function of these various
economic parameters.

Second, based on the whole picture of the ranges of values for which the model is
locally indeterminate, we assess whether the inability of the BW model to replicate
a hump-shaped output dynamics in response to a pure sunspot shock is robust –
i.e., structural to the model – or if it is due to the fact that this model was evaluated
under too strong restrictions regarding the specifications of individual preferences
and the production function.

Our main findings can be summarized as follows. First, we prove that, un-
der the class of general additively separable preferences and a general production
function, local indeterminacy occurs through Flip and Hopf bifurcations for a large
set of values for the degree of IRS, the EIS in consumption and the capital-labor
elasticity of substitution, provided that the labor supply elasticity is large. In
particular, the degree of IRS can be made arbitrarily small when the other pa-
rameters are in an appropriate range. Likewise, indeterminacy can occur for a
range of values for the capital-labor elasticity of substitution that extends well
beyond one – including, when the degree of IRS is not too large, the case a per-
fect factor complementarity. Second, we perform a quantitative analysis of the
model directed toward the ability to replicate a hump-shaped dynamics of output
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in response to a pure sunspot shock. We show that, from a theoretical point of
view, a standard one-sector model with variable capacity utilization in the spirit
of BW is able to reproduce such a hump-shaped dynamics, while maintaining the
procyclicality of all the main macroeconomic variables along the business cycle
(boom-bust cycles). The key ingredients for obtaining this result are to consider a
value for EIS in consumption in the upper range of available empirical estimates,
a quite substantial increase in the degree of factor substitutability compared to
the Cobb-Douglas production function, and a slightly larger degree of IRS than
considered in the BW model. On the other hand, we also show that the obtained
hump-shaped dynamics is too persistent to be considered entirely consistent with
observed data, leading us to conclude that the puzzle is improved but not entirely
solved.

This remaining of this paper is organized as follows. We present a generalized
version of the one-sector model with variable capital utilization rate in section
2, as well as the corresponding intertemporal equilibrium and steady state. We
derive the local stability properties and local bifurcations in section 3. In section
4 we discuss the ability of our model to account for the stylized facts associated
with a canonical demand shock when the source of the business cycle is a pure
sunspot shock. We also check the robustness of our results considering extended
formulations with habit formation in consumption or dynamic learning by doing
in production. We conclude in section 5.

2 The Model

We consider a closed economy framework in the spirit of Wen (1998) and Benhabib
and Wen (2004). The economy is composed of a large number of identical infinitely-
lived agents and a large number of identical producers. Agents consume, supply
labor and accumulate capital subject to a variable capacity utilization rate that
also influences the depreciation rate of capital. Firms produce the unique final
good which can be used either for consumption or investment. All markets are
perfectly competitive, but there are externalities in production.

2.1 The Production Structure

The production sector is composed of a large number of identical firms which
operate under perfect competition. Output Yt is produced by combining labor Lt
and capital services utKt, where ut is the capital utilization rate. The technology
of each firm exhibits constant returns to scale with respect to its own inputs and
we consider that knowledge diffusion occurs, in the sense that each of the many
firms benefits from positive externalities due to the contribution of the average
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level of labor L̄ and capital services ūK̄. These external effects are exogenous and
not traded in markets. The production function is

Yt = Af(utKt, Lt)e(ūtK̄t, L̄t) (2.1)

where A > 0 is a scaling technology parameter and e(ūtK̄t, L̄t) is the externality
variable. Our first departure from BW is that we do not restrict the production
function to be Cobb-Douglas. Rather, our production function is general and
satisfies:

Assumption 1. f(uK,L) is C2 over R2
++, increasing in (uK,L), concave over

R2
++ and homogeneous of degree one. e(ūK̄, L̄) is C1 over R++ and increasing in

(ūK̄, L̄).

Firms rent effective capital units at the real rental rate rt and hire labor at the
unit real wage wt. The profit maximization program of the firm,

max
{Yt,Lt,utKt}

Yt − wtLt − rtutKt,

leads to the standard demand function for effective capital utKt and labor Lt:

rt = Af1(utKt, Lt)e(ūtK̄t, L̄t) (2.2)

wt = Af2(utKt, Lt)e(ūtK̄t, L̄t) (2.3)

We can compute the share of capital in total income s(uK,L), the elasticity of
capital-labor substitution σ(uK,L) and the elasticities of the externality variable
with respect to labor εeL(ūK̄, L̄) and capital εeK(ūK̄, L̄):

s(uK,L) = uKf1(uK,L)
f(uK,L)

∈ (0, 1), σ(uK,L) = − (1−s(uK,L))f1(uK,L)
uKf11(uK,L)

> 0 (2.4)

εeK(ūK̄, L̄) = e1(ūK̄,L̄)K̄

e(ūK̄,L̄)
, εeL(ūK̄, L̄) = e2(ūK̄,L̄)L̄

e(ūK̄,L̄) (2.5)

It can be noted that the choice of a Cobb-Douglas production function, as in BW,
implies σ(uK,L) = 1 whereas the use of a general production function entails
σ(uK,L) ∈ (0,+∞). To simplify notation, we now denote by s, σ, εeK and εeL
the corresponding elasticities evaluated at the steady-state. In order to allow
for a direct comparison with BW, we also introduce the following assumption on
externalities

Assumption 2. The externalities satisfy εeK = sΘ and εeL = (1 − s)Θ with
Θ > 0 the level of increasing returns.

In this case, we get indeed εeK + εeL = Θ, as assumed in BW.
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2.2 Households

There exists a continuum of mass 1 of identical households maximizing their ex-
pected lifetime utility subject to a capital accumulation constraint. The represen-
tative household supplies elastically an amount of labor l ∈ [0, `] at each period,
with ` > 1 its endowment of labor. It derives utility from consumption c and leisure
L = `− l according to an additively separable instantaneous utility function

U(c,L) = u(c) +Bv(L)

where B > 0 is a scaling parameter, which satisfies:

Assumption 3. u(c) and v(L) are respectively C2 over R+ and [0, `], increas-
ing and concave. Moreover, limx→0 v

′(x)x = +∞ and limx→+∞ v
′(x)x = 0, or

limx→0 v
′(x)x = 0 and limx→+∞ v

′(x)x = +∞.2

We also introduce the intertemporal elasticity of substitution in consumption and
the elasticity of labor supply with respect to wage:

εcc(c) = − u′(c)
u′′(c)c

, εlw(l) = − v′(L)
v′′(L)l

(2.6)

Our utility function generalizes the one considered by BW, since they impose
a logarithmic consumption specification associated with a unitary elasticity of
intertemporal substitution (EIS) in consumption εcc(c) = −u′(c)/(u′′(c)c) = 1,
and a linear specification with respect to leisure implying an infinitely-elastic labor
supply with εlw(l) = +∞. Our more general assumptions enable us to consider
the whole range of positive values for both of these elasticities.

The capital stock kt is owned and accumulated by households and the utiliza-
tion rate of capital, ut, is an endogenous variable. Households rent capital services
utkt to firms at the real rental rate rt. Increasing the utilization rate thus increases
the services of capital but it also has a direct impact on the depreciation rate of
capital. The latter is a convex function of the utilization rate, such that

δt =
uγt
γ
∈ (0, 1), with γ > 1 (2.7)

The capital accumulation equation constraint can now be written as follows:

kt+1 = (1− δt)kt + wtlt + rtutkt − ct (2.8)

with k0 given.
Combing (2.7) and (2.8), the consumer thus solves the following lifetime utility

maximization program (where β ∈ (0, 1) is the discount factor)

2If v(x) = x1−χ/(1− χ) with χ ≥ 0 the inverse of the elasticity of labor, the first part of the
boundary conditions is satisfied when χ > 1 while the second part holds if χ ∈ [0, 1).

5



max
{ct,kt+1,lt,ut}t=0...∞

E0

+∞∑
t=0

βt [u(ct) +Bv(`− lt)]

s.t. kt+1 =
(

1− uγt
γ

)
kt + wtlt + rtutkt − ct

k0 given

(2.9)

The first-order conditions for an interior solution can be written as

Bv′(`− lt) = wtu
′(ct) (2.10)

u′(ct) = βEtRt+1u
′(ct+1) (2.11)

rt = uγ−1
t (2.12)

where Rt = 1− δt + rtut is the net return factor on capital. An optimal path must
also satisfy the transversality condition:

lim
t→+∞

E0β
tu′(ct)kt+1 = 0 (2.13)

Equation (2.10) is the consumption-leisure trade-off equation, (2.11) is the con-
sumption-saving arbitrage equation (i.e., the Euler equation), and (2.12) deter-
mines the optimal utilization rate of capital.

2.3 General Equilibrium

A symmetric general equilibrium is a sequence of prices {wt, rt} and quantities
such that all markets clear, Lt = lt and Kt = kt for any t, and the externality
variable satisfies (utKt, Lt) = (utKt, Lt).

It is easy to use some of the equilibrium conditions to reduce the dynamic
system defining a general equilibrium to its minimal dimension. We can first
observe that combining (2.2) with (2.12) gives ut as a function of capital and
labor, namely ut = ν(kt, lt). Similarly, we can derive a consumption demand
function c(kt, lt) by implicitly solving the consumption-leisure trade-off equation
(2.10) with respect to ct. Finally, from the capital accumulation equation (2.8)
and the Euler equation (2.11), we can derive that a general equilibrium of this
economy is a sequence {kt, lt} satisfying the following two-dimensional system of
differential equations in k and l:

Af(ν(kt, lt)kt, lt)e(ν(kt, lt)kt, lt) + (1− δt)kt − c(kt, lt)− kt+1 = 0

βEtRt+1u
′(c(kt+1, lt+1))− u′(c(kt, lt)) = 0

(2.14)

with δt = ν(kt, lt)
γ/γ and Rt = 1− δt + Af1(ν(kt, lt)kt, lt)ν(kt, lt)e(ν(kt, lt)kt, lt).

Definition 1. An intertemporal equilibrium is a path {kt, lt}t≥0, with (kt, lt) ∈
R++ × (0, `) and k0 > 0, that satisfies equations (2.14) and the transversality
condition (2.13).
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2.4 Normalized Steady State and Linearization

A steady state is a 4-uple (k∗, l∗, u∗, c∗) such that:

Af1(u∗k∗, l∗)u∗e(u∗k∗, l∗) = 1−β(1−δ∗)
β

≡ θ
β

Af1(u∗k∗, l∗)u∗e(u∗k∗, l∗) = u∗γ−1

c∗ = Af(u∗k∗, l∗)e(u∗k∗, l∗)− δ∗k∗

Bv′(`− l∗) = Af2(u∗K∗, l∗)e(u∗K∗, l∗)u′(c∗)

(2.15)

with δ∗ = u∗γ/γ. Considering the rental rate as defined by (2.2) together with
equations (2.11) and (2.12) evaluated at the steady state, we derive the explicit
value of u∗ as

u∗ =
(
γ(1−β)
β(γ−1)

)1/γ
(2.16)

We conclude from this expression that δ∗ = (1 − β)/[β(γ − 1)]. Equivalently, if
δ is calibrated, the corresponding value for γ is γ∗ = [1 − β(1 − δ)]/(βδ). We
can also use the scaling parameters A and B in order to give conditions for the
existence of a normalized steady state (NSS in the sequel) which remains invariant
to parameter changes, for example a NSS such that k∗ = l∗ = 1.

Proposition 1. Under Assumptions 1-3, there exist A∗, B∗ > 0 such that when
A = A∗ and B = B∗, a NSS satisfying (k∗, l∗, c∗) = (1, 1, (θ − sβδ∗)/sβ) is the
unique solution of (2.15).

Proof. See Appendix 6.1.

Using a continuity argument we derive from Proposition 1 that there exists an in-
tertemporal equilibrium for any k0 in the neighborhood of k∗. In the rest of the pa-
per, we evaluate all the shares and elasticities previously defined at the NSS. From
(2.4) and (2.5), we consider indeed s(u∗, 1) = s, σ(u∗, 1) = σ, εeK(u∗, 1) = εeK ,
εeL(u∗, 1) = εeL, εcc(c

∗) = εcc and εlw(1) = εlw.

Finally, we log-linearize the model in order to analyze the local dynamics around
the NSS for different values of four crucial parameters which are the intertemporal
elasticity of substitution in consumption εcc, the elasticity of the labor supply εlw,
the elasticity of capital-labor substitution σ and the degree of increasing returns
to scale Θ. In what follows, we provide a detailed theoretical analysis of local
stabilities and local bifurcations as function of these crucial parameters.

3 Local Stability and Bifurcation Analysis

Our model is composed of one forward looking variable, hours worked, and one
predetermined variable, the capital stock, i.e. (2.14) is two-dimensional. Since time
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is discrete, one can use the geometrical method developed by Grandmont, Pintus
and De Vilder (1998) to study the local stability properties of our normalized
steady state, as well as the emergence of local bifurcations.

Lemma 1. Under Assumptions 1-3, the characteristic polynomial is

P (λ) = λ2 − λT +D (3.1)
with

D = 1
β

[
1 +

Θθ(γ−1)
(

1+ σ
εlw

)
(γ−1)[θ(1−s)+s]+ 1

εlw
[σ(γ−1)+1−s]−Θ

[
1+σ(1−s)(γ−1)β(1−δ)+ sσ

εlw

]
]

T = 1 +D + θ(γ−1)
βs

(θ−βδs)(1−s)
(

1+ εcc
εlw

)
−Θ
[
εcc(θ−βδs)

(
1+ sσ

εlw

)
−(1−s)(θ−σβδs)

]
(γ−1)[θ(1−s)+s]+ 1

εlw
[σ(γ−1)+1−s]−Θ

[
1+σ(1−s)(γ−1)β(1−δ)+ sσ

εlw

]
(3.2)

Proof. See Appendix 6.2.

We study the variation of the Trace T and Determinant D when one of our pa-
rameter of interest is made to vary continuously in its admissible range. To avoid
considering a large number of cases that are not relevant empirically, we restrict
the possible values of the amount of increasing returns Θ, and we also introduce
some specific parametric values for δ, β and s which are consistent with quarterly
US data:

Assumption 4. δ = 0.025, β = 0.99, s ∈ (0.25, 0.35) and Θ ≤ Θmax = min{(1−
s)/sσ, 0.42}.3

We derive from these parametric restrictions the following property:

Lemma 2. Under Assumptions 1-4, ∂D/∂εlw > 0, limεlw→0D > 1 and D < 1 if
and only if

Θ > Θ ≡ (γ−1)[θ(1−s)+s]
1+σ(1−s)(γ−1)β(1−δ) ∈ (0,Θmax) (3.3)

and
ε`w > ε̂`w ≡ σ(γ−1)+1−s−Θσs

[1+σ(1−s)(γ−1)β(1−δ)](Θ−Θ)

Proof. See Appendix 6.3.

As is usual in the sunspot literature, a large enough amount of IRS and a large
enough elasticity of labor are required to get a locally indeterminate steady state.
From now on, we then introduce these lower bound restrictions on Θ and ε`w,
together with some upper bound on the EIS εcc in order to simplify the analysis
without loss of generality.

3The values for δ and β are almost universally shared in the RBC/DSGE literature, together
with a capital share around 0.3. The restriction on the size of externalities Θ is based on the
estimated degree of aggregate IRS for the US economy by Basu and Fernald (1997) and ensures
that the labor demand function has a standard negative slope.
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Assumption 5. Θ > Θ, εlw > ε̂`w and εcc ≤ ε̄cc ≡
1−s

Θmax
+
θ(1−s)
θ−βδs

1+ 1−s
Θmaxεlw

.4

In this analysis of local stability and local bifurcation, we choose the elasticity
of capital-labor substitution σ to be our bifurcation parameter. As discussed in
Section 2.1, σ ∈ (0,∞). In order to derive the local stability properties of the
steady state, we consider the locus of points (T (σ),D(σ)) as σ is made to vary
continuously in (0,∞). One can indeed define a line denoted ∆σ as follows :
D = ∆σ(T ) = ST + C, which is independent of σ. The slope of the latter, S, is
the ratio of the partial derivatives of the Determinant and T race with respect to
σ.5 Obvious computations show that D′(σ) > 0 and, under Assumptions 4 and 5,
T ′(σ) > 0, so that S = D′(σ)/T ′(σ) > 0.

Locating the line ∆σ in the (T ,D) plan allows to provide a full stability and
bifurcation analysis. Indeed all configurations are described trough the considera-
tion of three lines. On the one hand, an (AC) line is associated with an eigenvalue
of the Jacobian matrix which is equal to one when P (1) = 0. On the other hand,
an (AB) line is associated with an eigenvalue equal to minus one when P (−1) = 0.
Moreover, a segment [BC] is associated with two eigenvalues which are complex
conjugates and have modulus equal to one when D = 1 and T ∈ (−2, 2). As a
result, the steady state is a saddle-point when P (1) < 0(> 0) and P (−1) > 0(< 0).
Also, the steady state is a sink when P (1) > 0, P (−1) > 0 and D < 1. In other
words, the dynamics is locally indeterminate in the triangle ABC. Finally, in all
other cases, the steady state is a source.

We show in Appendix 6.1 that beside the lower bound Θ as defined in Lemma
2, there exists an upper bound Θ̂ ∈ (Θ,Θmax) for the level of IRS which leads to
two different types of locations for the ∆σ line. This critical value is defined as
follows

Θ̂ ≡
2s(1+β)

{
(γ−1)[θ(1−s)+s]+ 1−s

εlw

}
+θ(γ−1)(1−s)(θ−βδs)

(
1+ εcc

εlw

)
2s[1+β−θ(γ−1)]+θ(γ−1)[εcc(θ−βδs)−(1−s)θ]

(3.4)

It can be proved that when Θ ∈ [0,Θ) the steady state is always saddle-point
stable while we get the following geometric configurations when Θ > Θ.

Figure 1 depicts the case where Θ ∈ (Θ, Θ̂). When σ = 0, the dynamics is
locally determinate. As σ increases, the dynamics remains locally determinate
until σ = σF . At this value, a Flip bifurcation occurs and the dynamics becomes
locally indeterminate. As the ∆σ line crosses the triangle ABC, the steady state

4Our restriction on the EIS in consumption implies εcc ∈ (2.41, 2.698), so that, depending on
the value of the elasticity of labor, we consider the whole range of empirical estimates we have
found for this parameter (see among others Campbell (1999), Kocherlakota (1996), Mulligan
(2002), Vissing-Jorgensen and Attanasio (2003), and Gruber (2013), who obtained estimates
ranging between 0 and 2.3).

5We orient the reader to Grandmont et al. (1998) for a detailed presentation of the method.

9



T

D

0 1

1

A

B C

σ = 0
σ =∞

σF •

σH •
σT•

∆σ

T

D

0 1

1

A

B C

σ = 0

σ =∞

σF •

σH •
σT•

∆σ

Figure 1: Local determinacy when Θ ∈ (Θ, Θ̂).

is a sink until σ = σH . At this value, the two eigenvalues of our system of
differential equations are complex conjugates with a modulus equal to one and a
Hopf bifurcation occurs. Between σH and σT , the local dynamics is unstable. One
can note that a transcritical bifurcation occurs when σ = σT which can lead to
the apparition of multiple steady states. Finally, when σ → ∞, the dynamics is
again locally determinate. Local indeterminacy thus occurs through a Flip and a
Hopf bifurcation.

Figure 2 depicts the case where Θ > Θ̂. The main difference with the previous
case is that the locus (T (0), D(0)) is now in the triangle ABC. We also prove in
Appendix 6.1 that we need to introduce a second bound Θ̄ ≤ Θmax to guarantee
the existence of local indeterminacy through a Hopf bifurcation. We then get
basically the same conclusions as in the case Θ ∈ (Θ, Θ̂) except that now there is
no more any flip bifurcation.

T

D

1

1

A

B C

σ = 0

σ =∞
σH •

σT•

∆σ

T

D

1

1

A

B C

σ = 0

σ =∞
σH •

σT•

∆σ

Figure 2: Local determinacy when Θ ∈ (Θ̂, Θ̄).
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We then reach the following Proposition:

Proposition 2. Let Assumptions 1-4 hold and consider the bound Θ as given
by (3.3). Then, when Θ ∈ [0,Θ), the steady state is a saddle-point. Under the
additional Assumption 5, let us consider the bound Θ̂ as given by (3.4). Then
there exist Θ̄ ∈ (Θ̂,Θmax], ε̃`w > 0 and 0 ≤ σF < σH < σT < +∞ such that when
ε`w > max{ε̃`w, ε̂`w}, the following results hold:

(i) If Θ ∈ (Θ, Θ̂), the steady state is
– a saddle-point when σ ∈ (0, σF ),
– a sink, when σ ∈ (σF , σH),
– a source when σ ∈ (σH , σT ),
– a saddle-point when σ ∈ (σT ,∞).

(ii) If Θ ∈ (Θ̂, Θ̄), the steady state is
– a sink when σ ∈ (0, σH),
– a source when σ ∈ (σH , σT ),
– a saddle-point when σ ∈ (σT ,∞).

The lower bound ε̃`w and the Hopf, flip and transcritical bifurcation values are
respectively defined as:

ε̃`w ≡ γ−1+Θ θ−βδs
βδ

Θ(1−s)(γ−1)β(1−δ) ,

σH ≡
(1−β)

[
(γ−1)[θ(1−s)+s]+ 1−s

εlw

]
−Θ[1−β−θ(γ−1)]

(1−β)
{

Θ
[
(γ−1)(1−s)β(1−δ)− θ−βδs

εlwβδ

]
− γ−1
εlw

} ,

σF ≡ {2s[1+β−θ(γ−1)]+θ(γ−1)[εcc(θ−βδs)−θ(1−s)]}(Θ̂−Θ)

s
{

2(1+β)
[
Θ
[
(γ−1)(1−s)β(1−δ)+ s

εlw

]
− γ−1
εlw

]
+Θθ(γ−1)

[
(1−s)βδ− 2

εlw
+
εcc(θ−βδs)

εlw

]} ,
σT ≡

(θ−βδs)(1−s)
(

1+ εcc
εlw

)
−Θ[εcc(θ−βδs)−(1−s)θ]

Θs
[
βδ(1−s)+ εcc(θ−βδs)

εlw

] .

Proof. See Appendix 6.4.

From Proposition 2, we clearly recover the standard result that multiple equilib-
rium paths are ruled out when the amount of IRS is small enough with Θ ∈ [0,Θ).
When the degree of increasing returns to scale is positive but not too large,
Θ ∈ (Θ, Θ̂), there is a minimal amount of capital-labor substitution σF which
is necessary to get local indeterminacy and sunspot fluctuations. As the degree
of IRS gets larger, Θ ∈ (Θ̂, Θ̄), indeterminacy can be obtained with an arbitrarily
small elasticity of substitution between capital and labor, including the case of
strict factor complementarity. In all cases, however, indeterminacy is excluded
when the elasticity of substitution between factors is very large. It is also worth
noting that the additional bound ε̃`w on the elasticity of labor is, beside the upper
bound Θ̄, also introduced to ensure the existence of a Hopf bifurcation. Indeed, if
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Assumptions 1-5 hold with ε`w < ε̃`w, the Hopf bifurcation value and the source
configuration for the steady state no longer exist. The only possible transition is
between the saddle-point and sink configurations through a transcritical or a Flip
bifurcation.

Figure 3: Indeterminacy area and bifurcation loci.

In order to illustrate Proposition 2, and to immediately compare our results
to the conclusions of BW, we assume for now an infinitely elastic labor supply
with ε`w = +∞. Figure 3 displays the determinacy/indeterminacy areas as well
as the corresponding bifurcation loci in the 3-dimensional plane defined by εcc,
Θ and σ when the standard calibration s = 0.3 is considered. Clearly, there
exists a wide range of values for which the model is indeterminate. The BW
model, associated with a unitary elasticity of intertemporal substitution (εcc = 1),
a unitary elasticity of substitution between capital and labor (σ = 1), and a
degree of increasing returns to scale close to its minimum value consistent with
indeterminacy (Θ = 0.11), is just a particular point in this plane which locates
the model relatively “close” to the flip bifurcation locus in the parameter space.
Yet, other, potentially very different, combinations of values for these parameters
are also consistent with an indeterminate steady-state. A general assessment of
whether the BW model with variable capacity utilization is able or not to replicate
the main “stylized facts” associated with a canonical demand shock when the
model is submitted to self-fulfilling changes in expectations requires to consider
the whole range of values for which the model is indeterminate, provided these
values are empirically credible. This is the issue to which we now turn.

12



4 Stylized Facts of Demand Shocks

4.1 Preliminary Considerations

In order to understand why considering alternative configurations for εcc, Θ and σ
is important while keeping ε`w = +∞ as in BW, consider as a starting point the
effects of increasing the elasticity of capital labor substitution σ on the dynamics
of output following a positive sunspot shock. Under our benchmark calibration
with Θ = 0.11, we can apply the formulae in Proposition 2 to obtain that the
steady-state is indeterminate for σ ∈ (σF , σH) with σF ≈ 0.74 and σH ≈ 5.84. We
thus consider four different values for σ: σ = 0.8, σ = 1, σ = 2 and σ = 5.8. Figure
4 displays the IRFs of output associated with a positive sunspot shock. The size
of the shock is set so that the initial output response is 1%.
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−0.005
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sigma = 0.8

sigma = 1

sigma = 2

sigma = 5.8

Figure 4: Output dynamics following a positive sunspot shock for different values
of σ.

As Figure 4 clearly illustrates, the dynamics of output is non-monotonous in all
cases. Yet, when the elasticity of capital-labor substitution is small or moderate,
the output response does not display the “hump” typically identified in the empiri-
cal literature. In particular, when σ = 1, we recover the inability of the BW model
to account for this fact. However, Figure 4 also shows that when the elasticity
of capital-labor substitution is further increased, the dynamics of output becomes
more and more persistent and eventually becomes hump-shaped when σ gets close
to σH , its maximal value consistent with indeterminacy. From a theoretical point
of view, this result is important since it proves that a standard one-sector stochas-
tic growth model with variable capacity utilization is not structurally unable to
reproduce a hump-shaped dynamics of output when the model is submitted to
pure (i.i.d.) sunspot shocks.
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In Figure 5, we perform the same exercise except that, starting from the BW
model with εcc = σ = 1 and Θ = 0.11, we now increase the degree of increasing
return to scales from Θ = 0.11 to a maximal value of Θ = 0.4. The same result
basically obtains, albeit slightly attenuated. A hump-shaped dynamics occurs for
degrees of IRS above 30%.
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Figure 5: Output dynamics following a positive sunspot shock for different values
of Θ.

To understand the results in Figures 4 and 5, it is useful to remind some
well-known results in the theory of bifurcations. In particular, it is known that
generically, when a parameter crosses its bifurcation value, there exists an invariant
orbit that “surrounds” the steady-state and which influences the local dynamics
of the variables. If the bifurcation is subcritical, this invariant orbit emerges when
the steady-state is a sink. It is repelling and defines a basin of attraction within
which the steady-state is locally stable. When the bifurcation is supercritical, the
limit cycle is stable and attracts trajectories outside the steady-state.

Figure 6 displays this invariant orbit in the plane (k, y) when the value for σ is
sufficiently close to its Hopf bifurcation value, σH . Interestingly, the shape of this
curve is pointing to the top and to the right, suggesting that, following a sunspot
shock implying that output jumps out of the steady-state, both the capital stock
and output are expected to continue increasing for some periods of time. In other
words, the dynamics of the model along the limit cycle is hump-shaped.

A general result is therefore that in order to obtain a hump-shaped dynamics
of output in the variable capacity utilization model, it is sufficient to choose a
calibration that locates the model sufficiently “close” to the Hopf bifurcation locus.
In this case, the local dynamics of output following an i.i.d. sunspot shock will be
sufficiently influenced by the limit cycle. As an illustration of this general result,
we display in Figure 6 the dynamic trajectories associated with a 1% sunspot
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Figure 6: Dynamic trajectories and the limit orbit.

shock, but now the in (k, y) plane. We consider two meaningful values for σ:
σ = 1, corresponding to the BW model, and σ = 5.8, a value close to the Hopf
bifurcation value σH . The influence of the limit cycle on the dynamics is clear
when σ is close to the Hopf bifurcation value.

4.2 Quantitative Assessment

Our examples displaying a hump-shaped dynamics were obtained by increasing
either the degree of capital-labor substitution or the degree of IRS independently.
In both cases, the hump was obtained for values of these parameters that were
too large to be considered empirically credible (a value of 5.8 for the capital-labor
elasticity of substitution or a degree of aggregate IRS greater than 30%). Yet,
Figure 3 reveals that it is also possible to make the model closer to the Hopf bifur-
cation locus by combining a moderate increase in Θ and a moderate increase in σ.
In this section, we thus perform an evaluation of the model based on what can be
judged as “realistic” parameter values. Still assuming for now ε`w = +∞, we con-
sider the most favorable configuration for which σ, Θ and εcc are set in the upper
range of empirically credible estimates for these parameters. Accordingly, we fix
Θ = 0.16, which corresponds to the point estimate obtained by Basu and Fernald
(1997) for aggregate value-added in the US economy. We allow for a substantial
deviation from the Cobb-Douglas technology by increasing the capital-labor elas-
ticity of substitution to σ = 3, consistently with the upper range of estimates for
this elasticity obtained in the empirical literature.6 Finally, although the Hopf
bifurcation is independent of εcc (see proposition 2), we found that considering a

6There is no clear agreement on the size of the elasticity of capital-labor substitution σ in the
empirical literature. The lower estimates belong to the range (0.4,0.9), as shown in León-Ledesma
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large EIS in consumption helps getting a hump-shaped dynamics.7 We thus set
εcc = 2.3, associated with the upper range obtained by Gruber (2013).

Figure 7 displays the Impulse Response Functions of the main macroeconomic
variables when the model is submitted to a pure sunspot shock using this config-
uration (DVV calibration). For comparison purposes, we also display the IRFs
obtained with the BW model. We observe that the DVV model is able to explain
not only “boom-bust” cycles triggered by self-fulfilling changes in expectations,
but also a hump-shaped dynamics of output. The latter feature is in sharp con-
trast with the results obtained under the BW configuration. To understand this
result, consider the system of equations (2.14) and assume that for some exogenous
reason, agents expect that the rental rate of capital rt+1 will be high in the next
period, so that Rt+1 is also high. When the model is close to the Hopf bifurcation,
agents expect that this increase in the interest rate will be much more persistent
than in the BW configuration. This leads to a persistent boom in investment,
associated with a large increase in the capital stock – far greater than in the BW
model – and a corresponding persistent increase in the rate at which this capital
stock is expected to be used.8 An expected persistent increase in capital services
in turn implies that labor demand is expected to be high for a long period of
time. As a result, the representative household expects a sustained period of high
real wages, leading him to increase its consumption level significantly, by a much
larger extent than in the BW configuration. Since the dynamics of consumption is
hump-shaped (as a result of consumption smoothing motives – a standard result
in the RBC literature), a significant increase in consumption in turn implies a
hump-shaped dynamics of output.

These positive results should not, however, conceal the dimensions over which
the model is less satisfactory. In our view, the main deficiency of the model is that
the “shape” of the hump does not really resemble the one obtained in the empirical
literature estimating the macroeconomic effects of a standard demand shock. In
particular, the dynamics implied by the model is not sufficiently hump-shaped,
and it is too persistent.

et al. (2010), Klump et al. (2007, 2012) and McAdam and Willman (2013). By contrast, the
largest estimates obtained by Duffy and Papageorgiou (2000) and Karagiannis et al. (2005)
range in the interval (1.24,3.24).

7Changing the value of εcc actually influences the shape of the invariant orbit. When εcc
increases, the limit cycle points more to the top, which is consistent with a hump-shaped dy-
namics.

8According to (2.12), the dynamics of the utilization rate is directly related to the dynamics
of rt.
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Figure 7: Impulse Response Functions to a sunspot shock.
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4.3 Robustness

We now assess whether our conclusion is robust to alternative assumptions. We
first depart from the infinite labor supply elasticity specification associated with
Hansen’s (1985) model of indivisible individual labor supply with employment lot-
teries and perfect unemployment insurance that was considered up to now as in
BW. We consider instead alternative calibrations regarding the aggregate labor
supply elasticity that remain compatible with indeterminacy. We show that con-
sidering finite labor supply elasticities does not help to render the dynamics of
output closer to the data when the model is submitted to sunspot shocks.

We then consider more significant changes to the model. Following the DSGE
literature that had early emphasized that the canonical RBC model lacks en-
dogenous propagation mechanisms (Cogley and Nason (1995), Rotemberg and
Woodford, 1996), we consider two of the most popular extensions proposed in the
literature to enhance the dynamics of output in response to exogenous shocks:
introducing habit formation in consumption, in the spirit of Boldrin et al. (2001),
Jaimovich (2008) and others, and introducing a richer class of production functions
associated with dynamic learning by doing, in the spirit and Chang et al. (2002).9

We show that none of these extensions help to better replicate the hump-shaped
dynamics of output following a sunspot shock.

4.3.1 Reducing labor supply elasticity

As shown in Figure 8, decreasing the aggregate labor supply elasticity has two
effects on the range of parameter values consistent with indeterminacy: first, the
flip bifurcation shifts upward, implying that larger degrees of IRS are required to
maintain the sink property of the steady-state. Second, the Hopf bifurcation locus
also shifts upward and eventually disappears when εlw crosses a lower threshold.
Quantitatively, the minimum value for Θ consistent with indeterminacy quickly in-
creases when εlw gradually decreases. For example, when εlw = 10, indeterminacy
requires that Θ exceeds 0.2. When εlw = 5, indeterminacy is already eliminated
for all empirically plausible values for Θ.

9Note that this lack of endogenous persistence does not actually apply to our model, since
white noise sunspot shocks do generate a persistent dynamics of output, as shown in Figures 4
and 5. Yet, considering these extensions is worwhile since they are known to influence the shape
of output dynamics in response to shocks.
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Figure 8: Indeterminacy area for different values of εlw.

Yet, it remains interesting theoretically to assess whether decreasing the ag-
gregate labor supply elasticity could help improving the fit of the model with the
data. In Figure 9, we thus compare the results obtained under our benchmark
calibration associated with εlw = ∞ with those obtained under a similar calibra-
tion for all parameters except that εlw is now calibrated to εlw = 12, the minimum
value consistent with indeterminacy. The figure clearly shows that the results are
worsened under this alternative calibration. This result is easily explained by the
fact that εlw = 12 < ε̃`w and thus the Hopf bifurcation no longer exists. More
precisely, if reducing εlw does enable to reduce the persistence in the response of
output to a sunspot shock, the dynamics is no longer hump-shaped. Moreover,
in unreported results, we have experienced with alternative calibrations combin-
ing smaller labor supply elasticities with larger degrees of IRS to preserve the
indeterminacy property. None of these experiments helped to improve the results.

4.3.2 Habits in consumption

We now introduce habit formation in consumption. There are different ways of
doing this, and we chose to adopt a generalized specification of the instantaneous
utility function in Boldrin et al. (2001) with internal habits in consumption. We
thus consider the following instantaneous utility function:

u(ct, ct−1, lt) = (ct−bct−1)1−ρ

1−ρ +Bv (`− lt)
with b ∈ (0, 1) the parameter of habit formation.
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Figure 9: Output dynamics following a positive sunspot shock for different values
of εlw.

Solving the consumer’s intertemporal utility maximization problem, we obtain
the new first-order conditions characterizing optimal consumption choices:

Bv′ (`− lt) = wtλt

λt = (ct − bct−1)−ρ − βbEt (ct+1 − bct)−ρ

λt = βEtRt+1λt

replacing equations (2.10–2.11) above. All the other equations are the same.
Clearly, when b = 0 we recover our benchmark model with λt = u′(ct) = c−ρt
and a constant EIS in consumption εcc = 1/ρ. When b > 0, the EIS in consump-
tion is also constant but is now given by εcc = (1 − b)/ρ. Using a continuity
argument, all our theoretical characterizations of the local stability properties of
the steady-state hold in a small neighborhood of b = 0. In order to consider larger
values for b, we rely on numerical simulations. Figure 10 displays the flip, Hopf
and transcritical bifurcation loci for different values of b ranging between 0 and
0.7. As can be seen, when b is positive but not too large, the model remains in the
indeterminacy area for most empirically credible values for εcc, σ, and Θ. When
b is increased further, however, the indeterminacy area progressively shrinks, due
to a quantitatively significant downward shift in the Hopf bifurcation locus.

In Figure 11, we display the Impulse Response Functions of output to a positive
sunspot shock when the value of b is progressively increased, considering two alter-
native calibrations for the other structural parameters. The initial BW calibration
with εcc = σ = 1 and Θ = 0.11 (see Panel A), and our benchmark calibration with
εcc = 2.3, σ = 3 and Θ = 0.16 (see Panel B). In the first case, we increase b from
0 to 0.7, since the model remains in the indeterminacy area for this whole set of
values. In the second case, we increase b from 0 to 0.3, since the model is no longer
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Figure 10: Indeterminacy area for different values of b.

indeterminate for large values of b under this calibration. As can be seen, in both
cases, the effects are quantitatively marginal: an increase in b is associated with
a slight increase in the persistence of output following a sunspot shock, but the
hump-shaped dynamics is not getting closer to the data.

4.3.3 Dynamic learning by doing in production

We now experience with alternative specifications regarding the productive side of
the economy, and consider as an example an enriched specification of the produc-
tion function displaying dynamic learning by doing à la Chang et al. (2002). The
production function is now:

Yt = Af(utKt, Nt)e(ūtK̄t, N t) (4.1)

where Nt = xtlt are hours worked by the representative household in efficiency
units, N t being the aggregate (economy wide) average, and xt is the skill level of
this household. The latter accumulates as:10

xt = x1−φ
t−1 l

φ
t−1 (4.2)

with φ ∈ (0, 1]. When φ = 0, we recover our benchmark case with xt = xt−1 = x,
i.e. skills are constant over time. The representative firm’s profit maximization

10Chang et al. (2002) consider a non-constant returns-to-scale skill accumulation process. We
rather choose a CRS specification to avoid adding too many additional parameters.
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Figure 11: Output dynamics following a positive sunspot shock for different values
of b.
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problem yields the modified optimality condition for hours worked in efficiency
units:

wt = Af2(utKt, Nt)e(ūtK̄t, N t)

The representative household maximizes its expected intertemporal utility func-
tion subject to the modified budget constraint kt+1 = (1− uγt /γ) kt + wtxtlt +
rtutkt− ct and the skill accumulation equation (4.2). Denoting by ζt the Lagrange
multiplier associated to the latter equation, the first-order conditions with respect
to lt and xt are:

Bv′ (`− lt) = u′(ct)wtxt + βφx1−φ
t lφ−1

t Etζt+1

ζt = u′(ct)wtlt + β(1− φ)x−φt lφt Etζt+1

while other optimality conditions are unchanged.
It turns out that with this specification, the model’s dynamic properties are

drastically changed as soon as φ exceeds 0 by any significant amount. When φ > 0,
the model, reduced to its minimal dimension, involves 4 dynamic equations in 4
variables, among which two of them are state variables. As shown in Figure 12,
when φ = 0.01, the model features a Hopf and a transcritical bifurcation in the
3-dimensional plane defined by εcc, σ and Θ. However, the Hopf bifurcation is no
longer associated with the existence of sunspot equilibria. Indeed, when σ crosses
the Hopf bifurcation value σH , the steady state switches from a saddle path to
a source, associated with locally unstable dynamics. Indeed, when σ < σH , the
model has two stable and two unstable eigenvalues. When σ crosses σH , two
(initially stable) complex conjugate eigenvalues have a modulus crossing 1, and
the steady-state becomes a source associated with four unstable eigenvalues.

The model also features a transcritical bifurcation. Starting from the area for
which the steady state is a saddle, if εcc is increased until it crosses the transcrit-
ical bifurcation curve, one real eigenvalue crosses 1 and the steady state becomes
a source associated with three unstable eigenvalues. If, on the other hand, εcc is
gradually increased starting from the area where the steady-state is a source asso-
ciated with four unstable eigenvalues, crossing the transcritical bifurcation locus
implies that the model remains a source, but now associated with three unstable
eigenvalues. In any case, indeterminacy is ruled out for any empirically credible
values for εcc, σ and Θ.

Finally, Figure 12 shows that a similarly negative conclusion is obtained when
larger values of φ are considered. The main difference is that the Hopf bifurcation
curve progressively shifts downward (and eventually totally disappears) when φ
increases, reducing the area for which the steady-state is a saddle path. Once
again, indeterminacy is ruled out. Thus, introducing dynamic learning by doing
in the production function does not appear to be a promising road to improve
the model’s predictions because it tends to eliminate the possibility of existence
of sunspot fluctuations.
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Figure 12: Indeterminacy area for different values of φ.

At this stage, we are led to conclude that although the one-sector model with
variable capital utilization rate is able to explain crucial features of the estimated
empirical responses of the economy to a standard demand shock, the model is not
yet ready to survive a more stringent data confrontation. Other extensions and/or
refinements to this model are necessary to improve the model’s predictions in this
dimension. We leave this discussion for further research.

5 Conclusion

If one wants sunspot fluctuations based on self-fulfilling prophecies to be more
credible, a requirement is that endogenous fluctuations models replicate the main
stylized facts of a demand shock. Considering a generalized version of the BW
model and allowing for more substitution between intertemporal consumption, a
moderate increase in factor substitutability and a slightly higher degree of increas-
ing returns, we have shown that, from a theoretical point of view, the one-sector
stochastic growth model with variable capacity utilization is able to generate a
hump-shaped dynamics of output in response to a pure sunspot shock. Yet, this
response is too persistent for the model to be directly confronted to the data. Fur-
ther research should be done in order to determine which extension of the model
should be introduced to improve the results in this dimension. Dufourt et al.
(2017) are exploring whether a two-sector stochastic growth model with variable
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capacity utilization enables the model to come closer to the data.

6 Appendix

6.1 Proof of Proposition 1

A steady state is a 4-uple (k∗, l∗, u∗, c∗) such that:

Af1(u∗k∗, l∗)u∗e(u∗k∗, l∗) =
1− β(1− δ∗)

β
≡ θ

β
(6.1a)

Af1(u∗k∗, l∗)u∗e(u∗k∗, l∗) = u∗γ−1 (6.1b)

c∗ = Af(u∗k∗, l∗)e(u∗k∗, l∗)− δ∗k∗ (6.1c)

Bv′(`− l∗) = Af2(u∗K∗, l∗)e(u∗K∗, l∗)u′(c∗) (6.1d)

Using (6.1a) and (6.1b), we find

u∗ =
(
γ(1−β)
β(γ−1)

)1/γ

implying
δ∗ = (1−β)

β(γ−1)

After substitution of this expression into (6.1a), we find that there exists a nor-
malized steady state with k∗ = l∗ = 1 solution of equation (6.1a) if and only if
A = A∗ with

A∗ ≡ θ
β

1
f1(u∗,1)u∗e(u∗,1)

with θ = 1−β(1−δ∗). Including A∗ in (6.1c)-(6.1d) and using the share s = s(u∗, 1)
of capital income, we find

c∗ = θ−sβδ
βs

, θ(1−s)
s

= Bv′(`−1)
u′(c∗)

It follows that (k∗, l∗, c∗) = (1, 1, (θ− sβδ∗)/sβ) is a normalized steady state solu-
tion of the system (6.1a)-(6.1d) if and only if A = A∗ and B = B∗ with

B∗ ≡ θ(1−s)u′(c∗)
sv′(`−1)

6.2 Proof of Lemma 1

Equation (2.12) can be written:

Af1(utKt, lt)ute(utKt, lt) = uγ−1
t

25



Solving this equation gives ut as a function of capital and labor, namely ut =
ν(Kt, lt), which allows us to apply the implicit function theorem to compute the
following elasticities:

ενK(uK, l) = ν1(uK,l)k
ν(uK,l)

=
− 1−s

σ
+εeK

γ−1+ 1−s
σ
−εeK

, ενl(uK, l) = ν2(uK,l)l
ν(uK,l)

=
1−s
σ

+εeL

γ−1+ 1−s
σ
−εeK

(6.2)

From (2.2)-(2.3) and recalling that Rt = 1− δt + rtut, we also derive at the steady
state:

∂w
∂K

K
w

= (1 + ενK)
(
εeK + s

σ

)
, ∂w

∂l
l
w

= εel − s
σ

+ ενl
(
εeK + s

σ

)
∂R
∂K

K
R

= θ(1 + ενK)
(
εeK − 1−s

σ

)
, ∂R

∂l
l
R

= εel + 1−s
σ

+ ενl
(
εeK − 1−s

σ

) (6.3)

We may then compute the following linearized system:(
dKt+1

K∗

dlt+1

l∗

)
= J

(
dKt
K∗

dlt
l∗

)
with

J =

(
1 0
−J21

J22

1
J22

)
×

(
J11 J12

−(1 + ενK)(εeK + s
σ
) −

[
− 1
εlw

+ εeL − s
σ

+ ενK(εeK + s
σ
)
] )

where

J11 = θ
βs

(1 + ενK)(s+ εeK)− δγενK + 1− δ − εcc (θ−βδs)
βs

(1 + ενK)
(
s
σ

+ εeK
)

J12 = θ
βs

[ενl(s+ εeK) + 1− s+ εeL]− δγενl − εcc θ−βδsβs

[
− 1
εlw

+ εeL − s
σ

+ ενl
(
εeK + s

σ

)]
J21 = θ(1 + ενK)(εeK − 1−s

σ
)− (1 + ενK)

(
εeK + s

σ

)
J22 = θ

[
εeL + 1−s

σ
+ ενl

(
εeK − 1−s

σ

)]
−
[
− 1
εlw

+ εeL − s
σ

+ ενl
(
εeK + s

σ

)]
Therefore

D = −J11

J22

[
− 1

εlw
+ εeL −

s

σ
+ ενl

(
εeK +

s

σ

)]
+
J11

J22

(1 + ενK)
(
εeK +

s

σ

)
T =

J11J22 − J12J21

J22

− 1

J22

[
− 1

εlw
+ εeL −

s

σ
+ ενl

(
εeK +

s

σ

)]
Rearranging these expressions leads to the ones expressed in Lemma 1.
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6.3 Proof of Lemma 2

Straightforward computations give

∂D
∂εlw

=
Θθ(γ−1)(1−s)

ε`w

[
1+σ
[

(γ−1)β(1−δ)+Θ[1+σ(γ−1)β(1−δ)]
]]

β
{

(γ−1)[θ(1−s)+s]+ 1
εlw

[σ(γ−1)+1−s]−Θ
[
1+σ(1−s)(γ−1)β(1−δ)+ sσ

εlw

]}2

lim
εlw→0

D = 1
β

[
1 + Θθ(γ−1)σ

σ(γ−1)+1−s−Θσs

] (6.5a)

Assumptions 4 and 5 imply ∂D/∂εlw > 0 and limεlw→0D > 1. Moreover, we derive
that D < 1 if and only if

Θ > Θ = (γ−1)[θ(1−s)+s]
1+σ(1−s)(γ−1)β(1−δ)

and
εlw > εll ≡

σ(γ−1)+1−s−Θσs
[1+σ(1−s)(γ−1)β(1−δ)](Θ−Θ)

with limεlw→ε+ll
D = −∞. It follows also that when Θ ∈ [0,Θ) we get, for any

σ ∈ (0,+∞), 1− T (σ) +D(σ) < 0 and 1 + T (σ) +D(σ) > 0.

6.4 Proof of Proposition 2

Consider equations (3.2). The strategy consists in locating the line ∆σ in the
(T ,D) plan. For this we have to precisely locate the initial and final points
(T (0),D(0)) and (T (+∞),D(+∞)). We get

D(0) = 1
β

[1−θ(γ−1)](Θ1−Θ)
Θ2−Θ

with

Θ1 ≡
(γ−1)[θ(1−s)+s]+ 1−s

εlw

1−θ(γ−1)
> Θ2 ≡ (γ − 1)[θ(1− s) + s] + 1−s

εlw
> 0

Under Assumptions 4 and 5, we have indeed 1 − θ(γ − 1) > 0, Θ < Θ2 and
Θ1 < Θmax. It follows that

- D(0) > 0 if and only if Θ ∈ (Θ,Θ2) ∪ (Θ1,Θ
max),

- D(0) < 0 if and only if Θ ∈ (Θ2,Θ1).
We also find D(+∞) = 1/β > 1 and we easily show that

- D(0) > D(+∞) when Θ ∈ (Θ,Θ2),
- D(0) ∈ (0, 1) if and only if Θ ∈ (Θ1,Θ

max).
Now we can compute

1− T (+∞) +D(+∞) = θ(γ−1)
β

Θ
[
εcc(θ−βδs)

εlw
+(1−s)βδ

]
γ−1
εlw
−Θ
[
(1−s)(γ−1)β(1−δ)+ s

εlw

]
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Under Assumptions 4 and 5, we get 1 − T (+∞) + D(+∞) < 0. We conclude
therefore that T (+∞) > 2. Similarly, we get

1− T (0) +D(0) = θ(γ−1)
βs

(θ−βδs)(εcc−ε̃cc)(Θ3−Θ)
Θ−Θ2

with

ε̃cc ≡ θ(1−s)
θ−βδs ,Θ3 ≡

(1−s)
(

1+ εcc
εlw

)
εcc−ε̃cc

and thus (εcc − ε̃cc)(Θ3 −Θ) > 0 if εcc ∈ (0, ε̃cc). Under Assumptions 4 and 5, we
easily derive ε̃cc ∈ (0, ε̄cc) and Θ3 > Θmax when εcc ∈ (ε̃cc, ε̄cc) so that we still get
(εcc − ε̃cc)(Θ3 −Θ) > 0. We then conclude

- 1− T (0) +D(0) < 0 when Θ ∈ (Θ,Θ2),
- 1− T (0) +D(0) > 0 for any Θ ∈ (Θ2,Θ

max).
Finally we get

1 + T (0) +D(0) = {2s[1+β+θ(γ−1)]+θ(γ−1)[εcc(θ−βδs)−θ(1−s)]}(Θ−Θ4)
βs(Θ−Θ2)

with

Θ4 ≡
2s(1+β)

{
(γ−1)[θ(1−s)+s]+ 1−s

εlw

}
+θ(γ−1)(1−s)(θ−βδs)

(
1+ εcc

εlw

)
2s[1+β−θ(γ−1)]+θ(γ−1)[εcc(θ−βδs)−θ(1−s)]

Assumptions 4 and 5 imply

2s [1 + β + θ(γ − 1)] + θ(γ − 1) [εcc(θ − βδs)− θ(1− s)] > 0

and Θ4 ∈ (Θ2,Θ1). It follows that
- 1 + T (0) +D(0) > 0 when Θ ∈ (Θ,Θ2) ∪ (Θ4,Θ

max),
- 1 + T (0) +D(0) < 0 when Θ ∈ (Θ2,Θ4).

From all these information we are then able to derive the following conclusions:
i) when Θ ∈ (Θ,Θ2), D(0) > D(+∞) > 1/β, 1 − T (0) + D(0) < 0 and

1 + T (0) +D(0) > 0,
ii) when Θ ∈ (Θ2,Θ4), D(0) < 0, 1−T (0)+D(0) < 0 and 1+T (0)+D(0) < 0,
iii) when Θ ∈ (Θ4,Θ1), D(0) < 0, 1−T (0)+D(0) > 0 and 1+T (0)+D(0) > 0,
iv) when Θ ∈ (Θ1,Θ

max), D(0) ∈ (0, 1), 1− T (0) + D(0) > 0 and 1 + T (0) +
D(0) > 0.

Let us finally compute the value σH such that D(σH) = 0. We get the following
expression

σH =
(1−β)

[
(γ−1)[θ(1−s)+s]+ 1−s

εlw

]
−Θ[1−β−θ(γ−1)]

(1−β)
{

Θ
[
(γ−1)(1−s)β(1−δ)− θ−βδs

εlwβδ

]
− γ−1
εlw

}
Under Assumption 4 we have 1−β−θ(γ−1) < 0. It follows therefore that σH > 0
if and only if

ε`w > ε̃`w ≡
γ−1+Θ θ−βδs

βδ

Θ(1−s)(γ−1)β(1−δ)
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From now on let us assume that ε`w > max{ε̃`w, ε̂`w}. Denoting Θ̂ ≡ Θ4, and
provided T (σH) ∈ (−2, 2), cases i) and ii) are leading to a localisation of the ∆σ

line as in Figure 1 while cases iii) and iv) are leading to a localisation of the ∆σ

line as in Figure 2.
It remains to show that T (σH) ∈ (−2, 2). Straightforward computations yield

T (σH) = 2− (θ−βδs)(1−β)(εcc−εcc)
Θβs

(
1+ σH

εlw

) (Θ̃−Θ)

with

εcc ≡
θ(1−s)(θ−σHβδs)
(θ−βδs)

(
1+ sσH

εlw

) , Θ̃ ≡
(1−s)

(
1+ εcc

εlw

)
(

1+ sσH

εlw

)
(εcc−ε̂cc)

Assumptions 4 and 5 imply εcc ∈ (0, ε̄cc) and Θ̃ > Θ̂. It follows obviously that
T (σH) < 2 when:
- either εcc ≤ εcc as in this case we get (εcc − εcc)(Θ̃−Θ) ≥ 0,
- or εcc ∈ (εcc, ε̄cc) when Θ < Θ̃.
Let us then denote

Θ̄ ≡

{
Θmax when εcc ≤ εcc

max{Θ̃,Θmax} when εcc ∈ (εcc, ε̄cc)

We then conclude that when Θ ∈ (Θ, Θ̄), T (σH) < 2. Straightforward computa-
tions finally also show that T (σH) > −2.

Solving the equation 1 − T (σ) + D(σ) = 0 with respect to σ gives the trans-
critical bifurcation value

σT =
(θ−βδs)(1−s)

(
1+ εcc

εlw

)
−Θ[εcc(θ−βδs)−(1−s)θ]

Θs
[
βδ(1−s)+ εcc(θ−βδs)

εlw

] .

which is always positive under Assumption 4. Solving the equation 1 + T (σ) +
D(σ) = 0 with respect to σ gives the flip bifurcation value

σF = {2s[1+β−θ(γ−1)]+θ(γ−1)[εcc(θ−βδs)−θ(1−s)]}(Θ̂−Θ)

s
{

2(1+β)
[
Θ
[
(γ−1)(1−s)β(1−δ)+ s

εlw

]
− γ−1
εlw

]
+Θθ(γ−1)

[
(1−s)βδ− 2

εlw
+
εcc(θ−βδs)

εlw

]}
which is positive if and only if Θ < Θ̂. The conclusions of Proposition 2 then
follow from all these results and Lemma 2.
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