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I Introduction

In a groundbreaking study, Banerjee et al. (2013) propose a new measure, diffusion cen-

trality, to capture the extent to which a piece of information given to an agent eventually

diffuses in a network. Diffusion centrality is the expected number of times all agents hear

about the information, in a simple model of information diffusion. It admits a simple ex-

plicit expression related to a discounted sum of powers of the network’s adjacency matrix

and nests the well-known eigenvector and Katz-Bonacich centralities. Banerjee et al. (2013)

show that diffusion centrality performs well empirically by using it to explain take-up rates

of a microfinance loan program in rural India. Two important recent papers build on this

notion. Banerjee et al. (2018) show how diffusion centrality can help explain agents’ability

to identify others’effectiveness at diffusing information. In a context of political competi-

tion, Cruz, Labonne & Querubín (2017) propose a theory of political intermediation where

citizens’requests for favors from politicians are transmitted through the social network.

Their theory predicts that candidates with higher diffusion centrality should receive more

votes. They show empirically that the eigenvector centrality of a politician in the family

network is indeed associated with a higher vote share in data from the Philippines.

We identify and address some modelling inconsistencies in these three papers, and ob-

tain three main results.We first clarify the precise theoretical foundations behind the notion

of diffusion centrality. Contrary to what is claimed in Banerjee et al. (2013) and Banerjee et

al. (2018), diffusion centrality does not emerge from a model where “at each iteration every

informed node tells each neighbor with probability q”, Banerjee et al. (2013, p.1236498-6).1

Rather, only nodes receiving the information at t − 1 have any likelihood of transmitting

it to their neighbors at t. In other words, informed nodes transmit the information only

if they received it in the previous period. Further, we show that diffusion centrality relies

on an additional implicit assumption: if an agent receives the information from k different

sources in period t − 1, she must transmit the information independently k times to her

neighbors in period t. Relaxing either assumption leads to different computations and

1Similarly, Banerjee et al. (2018) write on p.18-19: “In each period, with probability wij ∈ (0, 1],
independently across pairs of neighbors and history, each informed node i informs each of its neighbors j
of the piece of information and the identity of its original source.”
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centrality notions.

We then assess the theoretical approach of Cruz, Labonne & Querubín (2017). We

show that their model relies on two important implicit assumptions. When an agent sends

a request for a favor to a politician, this politician must provide a new favor every time

she hears about the request. Moreover, this targeted request is retransmitted by the same

politician and to the same agent during information diffusion. We argue that both assump-

tions are quite unnatural in this context. In addition, they imply that the number of favors

provided is infinite under the parametrization used in the empirical analysis, see Section

3. We propose two changes.

First, we propose to adapt the measure of diffusion centrality to targeted requests for

favors. We assume that the request for a favor is not retransmitted by the request’s target

nor to the request’s initiator during information diffusion. We define the targeting centrality

of an agent as the expected number of times this agent receives other people’s requests for

favors under these natural assumptions of no retransmission. This yields our second result:

we derive an explicit formula for targeting centrality. We show that this new measure has

similar computational complexity, but differs significantly from diffusion centrality in some

contexts.2

Second, we assume that the agent sends a request for a specific favor, which can there-

fore be granted only once. Her expected utility is then proportional to the probability that

her request will reach the politician. Theoretically, these probabilities are not simply re-

lated to the expected number of times the politician hears about the request. In our third

result, we provide a general formula to compute the reachability of an agent - the sum of

the probabilities that targeted messages will reach her - based on the inclusion - exclusion

principle. This formula is combinatorially complex, which confirms that computing these

probabilities is computationally hard. Obtaining numerical approximations of arbitrary

precision is straightforward but can still be computationally intensive.

Alternatively and as proposed by Banerjee et al. (2013), researchers could make use of

2Our formula is valid under the assumption that the number of periods is infinite, which is a main-
tained assumption of Cruz, Labonne & Querubín (2017). Our measure thus extends Katz-Bonacich and
eigenvector centrality.
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proxies: simpler measures which are easier to compute and may be highly correlated with

reachability. Proxies’usefulness varies, however, and may depend on specific features of the

context. We conjecture that targeting centrality will provide a significantly better proxy

than diffusion centrality in situations of targeted requests like political intermediation.

II Foundations

We consider a standard model of information diffusion in a network, as in Banerjee et

al. (2013, 2018) and Cruz, Labonne & Querubín (2017). A finite number n of agents are

embedded in a fixed social network G, where gij = 1 if i is linked with j and gij =

0 otherwise. Information is transmitted in discrete iterations. In period 0, one agent

initially has the relevant piece of information. In period t, agents in a specific subset

transmit the information independently to each of their neighbors with probability α and

these stochastic transmissions may independently occur several times within the period.

Information diffusion ends in period T .

To fully specify the process of information diffusion, we must make assumptions on

which agents transmit information and how many times these agents transmit the infor-

mation within a period. On the first feature, two alternative assumptions are possible.

Assumption (IS): Information as a stock. All informed agents transmit the informa-

tion at t.

Assumption (IF): Information as a flow. Only agents who received the information at

t− 1 transmit it at t.

Assumption (IS) says that every informed agent transmits the information at t. Thus,

agents who received the information for the first time in t − 1 behave like agents who

received the information in earlier periods. Transmission of information in a given period

then depends on the stock of informed agents. By contrast, only agents who just received

the information transmit it under assumption (IF). In this case, receiving the information,

again or for the first time, prompts its retransmission. Informed agents who do not receive

3



the information again in t− 1 do not send it in period t, and transmission of information

now depends on the flow of informed agents.

On the second feature, we again distinguish between two natural assumptions.

Assumption (UM): Unique retransmission of multiple signals. If agent i receives

the information from distinct sources at t − 1, she retransmits the information only once

at t.

Assumption (MM): Multiple retransmission of multiple signals. If agent i re-

ceives the information from S distinct sources at t − 1, she retransmits the information

independently S times at t.

Next, we introduce some notions and notations. Let nij(T ) denote the expected number

of times agent j hears about the information within the first T periods when the information

is initially given to agent i. Let nij = limT→∞ nij(T ). Define ni(T ) =
∑

j nij(T ) as the

expected number of times all agents hear about the information when it is initially given

to i, and ni = limT→∞ ni(T ). A walk of length t in G connecting i to j is a set of t agents

i1 = i, i2, ..., it = j such that ∀s < t, gisis+1 = 1. LetWij(T ) be the set of walks connecting i

to j in G and of length less than or equal to T and letWij be the set of all walks connecting

i to j. Given walk w, let l(w) be the length of the walk. Given two walks w and w′, let

w∩bw′ denote the intersection of the beginning of the two walks. For instance if w = {iklj}

and w′ = {ikmj}, w ∩b w′ = {ik}. Our first result characterizes precisely when ni(T ) is

equal to diffusion centrality.

Proposition 1 Consider a model of information transmission in discrete iterations. Under

assumptions (IF) and (MM),

nij(T ) =
∑

w∈Wij(T )

αl(w) =

T∑
t=1

αt[Gt]ij.

Under assumptions ((IS) and (MM)) or ((IF) and (UM)), this equality does not generally

hold.
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Proof: Take any two walks of size t originating in i and ending in j, w and w′. Let e

be the node at the end of intersection w ∩b w′ (e = i if the intersection is empty). Under

(IF) the probability that the message will reach e is αl(w∩bw
′). Once the walks separate,

it follows from (MM) that two independent messages travel among the remaining parts

of the two walks. Conditional on reaching e, one message has probability αl(w)−l(w∩bw′)

of reaching j and the other reaches j with probability αl(w
′)−l(w∩bw′). Thus, the expected

number of messages from i that reach j over these two walks is αl(w∩bw
′)(αl(w)−l(w∩bw′) +

αl(w
′)−l(w∩bw′)) = αl(w) + αl(w

′). Generalizing the argument to any number of walks tells us

that nij(T ) =
∑

w∈Wij(T ) α
l(w). Since [Gt]ij is the number of walks of length t originating

in i and ending in j, nij(T ) =
∑T

t=1 α
t[Gt]ij.

Under (IS), the expected number of messages is generally higher than provided by

diffusion centrality. For instance, consider the line 1 − 2 − 3 with T = 2. Under (IF),

we have n11(2) = α2, n12(2) = α and n13(2) = α2, leading to a diffusion centrality of

n1(2) = α+ 2α2 for agent 1. By contrast under (IS), agent 1 may retransmit to agent 2 at

period 2. This now yields n12(2) = 2α and n1(2) = 2α + 2α2.

1

2

3

4 5

Figure 1. Diffusion centrality can necessitate multiple retransmissions of signals.

Next, consider the network depicted in Figure 1 and T = 3. When agent 1 initially

sends the information, at time 2 agent 4 may receive messages both from agent 2 and

agent 3. Diffusion centrality yields n15(3) = α3[G3]15 = 2α3, which assumes that agent 3

retransmits both messages in period 3. By contrast, n15(3) = α3 under (UM). QED.

Proposition 1 clarifies the theoretical foundations behind diffusion centrality. As dis-

cussed in the Introduction, this result allows us to correct a minor inconsistency in the

descriptions of the models in Banerjee et al. (2013, 2018). The neat interpretation of diffu-

sion centrality only holds in a setup where recently informed nodes retransmit the informa-

tion. This indicates yet another difference between the models of information transmission
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underlying the two centrality notions proposed by Banerjee et al. (2013). Note that in-

formation is treated as a stock rather than a flow in the process of information diffusion

that underlies their structural estimations and that gives rise to communication centrality.3

Therefore, communication centrality relies on assumption (IS), while diffusion centrality

relies on assumption (IF).

III Extensions: Diffusion of Targeted Requests

A Motivation

We next discuss and assess the theoretical approach developed in Cruz, Labonne &Querubín

(2017). The authors build a model of political intermediation, where a request for a favor

by a citizen is transmitted to the elected politician through the social network. In the

model, two candidates A and B compete for votes. Voter i derives utility UA
i from the

clientelistic goods and services received from candidate A if elected. We reproduce two key

paragraphs of the paper.4

“We assume that requests for goods and services are passed on through the social

network. If voter i wants to receive a clientelistic good, she needs to enlist the help of

intermediaries that will connect her personally to the incumbent. Let α be the probability

that each intermediary passes on the request successfully. A walk of length m between

voter i and candidate A will yield the desired outcome (i.e., the favor, good, or service will

be provided) with probability αm. The voter derives utility b from accessing the service.

Thus, voter i’s expected access to clientelistic goods and services is a decreasing function

of the network distance between her and the elected candidate.

The social network is captured by the adjacency matrix G. The elements (gij) of the

matrix take a value one if i and j are connected and zero otherwise. The elements of Gm,

3“In each subsequent period, households that have been informed in previous periods pass information
to each of their neighbors, independently, with probability qP if they are participants and with probability
qN if they are not.”, Banerjee et al. (2013, 1236498-2).

4The authors adopt notation A to denote both a candidate and the adjacency matrix of the network.
For clarity and consistency, we denote the adjacency matrix by G, its elements by gij and the number of
walks of length m by gij,m and make use of these notations when reproducing the paragraphs.
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denoted (gij,m), capture walks of length m between i and j. Taking all potential walks into

account, voter i’s utility if A is elected is given by

UA
i = b

∞∑
m=1

giA,mα
m.

Vote share becomes:

V SA =
1

2
+

b

2Nσ

∑
i

(

∞∑
m=1

giA,mα
m −

∞∑
m=1

giB,mα
m)

V SA =
1

2
+

b

2Nσ

∞∑
m=1

(
∑
i

giA,mα
m −

∑
i

giB,mα
m).”, Cruz, Labonne & Querubín (2017, p. 3010).

These computations and Proposition 1 imply that A’s vote share is an affi ne func-

tion of
∑

i niA defined above (under assumptions (IF) and (MM)). Since G is symmetric,

nij(T ) = nji(T ) and
∑

i niA =
∑

i nAi = nA and hence vote share simply depends on

the candidates’Katz-Bonacich centrality: V SA = 1
2

+ b
2Nσ

(nA − nB). This is the central

theoretical prediction that the authors bring to data.

We observe several inconsistencies in this description. Note that a voter’s benefit is

linear in the number of requests successfully passed to the incumbent. These computations

therefore implicitly assume that every successful request translates into a new favor. This is

inconsistent with voter i asking for a specific favor. In addition, Cruz, Labonne & Querubín

(2017) further assume that α = 1/λmax(G) where λmax(G) is G’s largest eigenvalue. In that

case, the number of successful requests diverges to infinity and this model predicts that

politicians will provide an infinite number of favors.5

Another, perhaps more subtle, issue concerns the way information diffuses in the net-

work. In this context of political intermediation, note that the piece of information trans-

mitted by agents explicitly mentions the identities of the request’s sender and target. It

corresponds to the statement: “Agent i needs a favor from politician A”. Current com-

5Cruz, Labonne & Querubín (2017) incorrectly claim on p.3011: “For this particular value of α, Katz
centrality is equal to eigenvector centrality”. As α → 1/λmax(G), Katz-Bonacich centrality nA diverges
to infinity. It is the ratio nA/nB which converges to the ratio of the eigenvector centralities of the two
candidates.
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putations assume that this information is retransmitted by A and to i during information

diffusion. However, it seems more sensible to assume that the request is not retransmitted

by its target nor to its initiator during diffusion.

The approach proposed by Cruz, Labonne & Querubín (2017) has great merit. The

insight that political competition depends on the intermediation of favors in the network

seems important, and deserves proper theoretical foundations. We thus propose to modify

their framework as follows. In a first stage, we assume that a request for a favor is not

retransmitted to its sender nor by its target during information diffusion. We obtain an ex-

plicit formula for the expected number of times a politician hears about a citizen’s request.

This leads to a new centrality measure, which entails similar computational complexity

but differs significantly from diffusion centrality.

In a second stage, we relax the assumption that every successful request leads to a new

favor. Rather, we assume that an agent sends a request for a specific favor, which can be

granted only once. An agent’s expected utility is then proportional to the probability that

the incumbent will hear about her request.6 We provide a general formula to compute these

probabilities, based on the inclusion - exclusion principle.

B Targeting Centrality

Consider a model of information transmission, as in Section 2 ,where i sends her request for

a favor in period 1 and T tends to infinity. From Proposition 1, we know that under (IF)

and (MM) niA =
∑

w∈WiA
αl(w) counts the expected number of times the request reaches

the incumbent and Cruz, Labonne & Querubín (2017) assume that UiA is proportional

to niA. Next, assume that if an agent other than A receives the request in period t, she

transmits it independently to each of her neighbors except for i in period t + 1, and if

A receives the request in period t, she does not retransmit it. Thus, the request is not

retransmitted by its target A nor to its sender i. Denote by n̄iA the expected number of

6Alternatively, we could assume that the probability piA of the request being granted is increasing in the
number of times the incumbent hears about it: piA = p(niA) with p : R+ → [0, 1]. Under this assumption,
vote share depends on

∑
i p(niA), which differs, again, from diffusion centrality and now also depends on

properties of the function p(.).
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times i’s request reaches A under these alternative assumptions. Let W̄iA denote the set of

walks connecting i to A and such that i only appears at the beginning of the walk and A

only appears at the end of the walk. Denote by G[i] the network over n−1 nodes obtained

by removing i and her links.

Proposition 2 Suppose that i’s request for a favor from A 6= i diffuses in the network

under assumptions (IF) and (MM) and that i’s request is not retransmitted to i or by A

during information diffusion. The expected number of times i’s request reaches A is equal

to

n̄iA =
∑

w∈W̄iA

αl(w) =
niA(G)

[1 + nii(G)][1 + nAA(G[i]))]
=

niA(G)

[1 + nii(G[A])][1 + nAA(G)]
.

Proof: A direct application of the arguments of Proposition 1’s proof shows that n̄iA =∑
w∈W̄iA

αl(w). Next, a cycle originating at i is a walk from i to i. Let Ci(G) denote the

union of the set of cycles originating at i in network G and of the empty cycle, and similarly

for CA(G). Each walk from i to A can be uniquely decomposed into: a cycle from i to

i (possibly empty), a walk where i only appears at the beginning and A only appears at

the end, and a cycle from A to A which does not go through i (possibly empty). This

decomposition implies that:

niA =
∑

w∈WiA(G)

αl(w) =
∑

c∈Ci(G),w′∈W̄iA(G),c′∈CA(G[i])

αl(c)+l(w
′)+l(c′)

= (
∑

c∈Ci(G)

αl(c))(
∑

w′∈W̄iA(G)

αl(w
′))(

∑
c′∈CA(G[i])

αl(c
′)).

Since Ci = Wii ∪ {∅},
∑

c∈Ci(G) α
l(c) = 1 +

∑
w∈Wii(G) α

l(w) = 1 + nii(G) and similarly∑
c′∈CA(G[i]) α

l(c′) = 1 + nAA(G[i]).

Similarly, each walk from i to A in G can be uniquely decomposed into: a cycle from

i to i which does not go through A (possibly empty), a walk where i only appears at

the beginning and A only appears at the end, and a cycle from A to A (possibly empty),

leading to the second equality. QED.
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Proposition 2 shows that the expected number of times the request reaches the incum-

bent when the request is not retransmitted by A or to i is simply related to this number in

the absence of constraints on retransmission. The discounted number of walks connecting

i to A when i appears only at the beginning and A appears only at the end is equal to

the discounted number of unconstrained walks connecting i to A divided by the discounted

number of cycles starting at i and by the discounted number of cycles starting at A in G[i].

Thus, if A 6= i, 7

n̄iA =
[αG(I − αG)−1]iA

[I − αG]−1
ii [I − αG[i]]−1

AA

By definition, the targeting centrality of A is n̄A =
∑

i n̄iA and is equal to the expected

number of times A hears about any citizen’s request under these no-retransmission as-

sumptions. Targeting centrality differs from diffusion centrality nA =
∑

i niA. Since it also

relies on elements on inverse matrices of the kind (I − αM)−1, however, its computational

complexity is of the same order of magnitude as for diffusion centrality.

We explore the relation between diffusion centrality and this new measure through

numerical simulations. We consider Erdös-Renyi random graphs with n = 50 agents and

probability of link formation p = 0.2. We pick 1, 000 graphs at random and for each graph,

we compute how the correlation between the two measures varies with α. For small values

of α, only direct links carry weight and targeting and diffusion centrality will hardly differ.

The question is: what happens as α increases? We depict the results in Figure 2. Note

that diffusion centrality is only well-defined for α < αmax = 1/λmax(G) and we represent

the ratio α/αmax on the x axis. We represent how the 5th, 50th and 95th percentiles of the

distribution of correlations vary with α/αmax.

7A direct implication of Proposition 2 is that for any i, j,

[I − αG]−1ii [I − αG[i]]
−1
jj = [I − αG]

−1
jj [I − αG[j]]

−1
ii .

To our knowledge, this provides a novel result in matrix analysis.

10



Figure 2. Correlation between targeting and diffusion centrality.

We see that nA and n̄A are initially very highly correlated but that this close relation

breaks down when α gets close to its maximal value. Correlation is generally decreasing

and concave in α. For values very close to 1/λmax(G), correlation between the two mea-

sures tends to be quite low, about 0.23 for the median network, and displays significant

dispersion, from −0.12 at the 5th percentile to 0.50 at the 95th percentile.8 The correlation

between the two measures is therefore strongly affected by the structure of the network,

and can even be negative.

Which measure provides a better proxy is, ultimately, an empirical question and hence

likely depends on the specific context studied. We conjecture that targeting centrality

will perform better in contexts where the transmitted information explicitly mentions the

identities of sender and target and, in particular, in the context of political competition

studied in Cruz, Labonne & Querubín (2017).

In other contexts, the information transmitted may mention the identity of the sender

only or of the target only. In these cases, we can adapt our arguments above to obtain

corresponding corrections. For instance, in the gossip model of Banerjee et al. (2018), the

transmitted information is of the following kind: “Agent i first said that [...]”. Under the

assumption that this information is not retransmitted to i, the expected number of times
8Banerjee et al. (2013, 2018) assume that α = 1/λmax(G) in their empirical implementation of diffusion

centrality with T <∞. Cruz, Labonne & Querubín (2017) also assume that α = 1/λmax(G).
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i’s gossip reaches j is equal to nij/[1 +nii] = [αG(I −αG)−1]ij/[I −αG]−1
ii rather than nij.

Similarly, if the information is not retransmitted by j, the expected number of times i’s

information reaches j is equal to nij/[1 + njj] = [αG(I − αG)−1]ij/[I − αG]−1
jj .

C Reachability

Finally, assume that an agent sends requests for a specific favor, that can be granted only

once. Denote by piA(T ) ∈ [0, 1] the probability of i’s favor request successfully reaching

A within the first T periods and piA = limT→∞ piA(T ). The expected utility of agent i

is now equal to UiA = piAb. Define the reachability of A as
∑

i piA, the overall expected

number of favors provided by the incumbent when every agent sends a request. The vote

share of a candidate is now a simple affi ne function of her reachability. The computation of

these probabilities depends on details of the underlying process of request transmission. We

assume (IF), (MM) and no retransmission by the target or to the sender in what follows;

our result below can be extended to alternative assumptions.

Not surprisingly, reachability does not display the additive property underlying the

counting formula assumed in Cruz, Labonne & Querubín (2017). For instance, suppose

that i has a direct connection with A and an indirect connection through common friend j.

In this case, piA = α+ (1−α)α2 = α+α2−α3. We next derive a general formula based on

the inclusion - exclusion principle, and which could be used for algorithmic implementation.

Let us introduce some notions and notations. Denote by w1∩bw2∩b ...∩bwk the intersection

of the beginning of the k walks w1, w2, ..., wk. Define L(w1, ..., wk) as follows:

L(w1, ..., wk) =

k∑
s1=1

l(ws1)−
∑
s1<s2

l(ws1 ∩b ws2) + ...+ (−1)k+1l(w1 ∩b ... ∩b wk).

The general idea here is to count common beginnings only once. As soon as two walks

separate, however, we add the lengths of the remaining segments. For instance with k = 2,

L(w1, w2) = l(w1) + l(w2)− l(w1 ∩b w2). Finally, write w1 6= ... 6= wk to denote that the k

walks w1, ..., wk are distinct. Let W̄iA(T ) denote the set of walks connecting i to A such

that i only appears at the beginning of the walk and A only appears at the end of the
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walk, and of length less than or equal to T .

Proposition 3 Consider a model of political intermediation under (IF), (MM) and the

assumption that i’s request for a favor from A is not retransmitted to i or by A. The

probability of i’s request successfully reaching A is equal to

piA(T ) =

|W̄iA(T )|∑
k=1

(−1)k+1
∑

w1 6=... 6=wk∈W̄iA(T )

αL(w1,...,wk).

Proof: We consider requests eventually reaching A from a walk in W̄iA(T ) as events. We

know that the request reaches its target if and only if it reaches it through such a walk.

We can than apply the principle of inclusion - exclusion to these events. This implies that

piA(T ) =

|W̄iA(T )|∑
k=1

(−1)k+1
∑

w1 6=... 6=wk∈W̄iA(T )

p(w1 ∧ ... ∧ wk)

where p(w1∧...∧wk) is the probability of the info reachingA through all walks w1, w2, ..., wk.

Next, let us show recursively that p(w1 ∧ ... ∧ wk) = αL(w1,...,wk).

For any walk w, the probability that a request will travel all the way through w is

p(w) = αl(w). Next, take two walks w 6= w′ originating in i. The chain rules tells us that

p(w ∧w′) = p(w) p(w′|w) where p(w′|w) is the probability that i’s request will go through

w′ conditional on having gone through w.

p(w′|w) = p(w′ \ (w ∩b w′)|w) = αl(w
′)−J(w,w′)

with J(w,w′) denoting the number of links initially common to w and w′: J(w,w′) =

l(w ∩b w′). Hence,

p(w ∧ w′) = αl(w)+l(w′)−l(w∩bw′) = αL(w,w′).

Assume now that we have proven that p(w′1 ∧ ... ∧ w′k−1) = αL(w′1,...,w
′
k−1) for any set of

k − 1 walks originating in i (k ≥ 2) and that we have constructed J((w′1 ∧ ... ∧ w′k−2), w)

for any {w1, ..., wk−2} and w that originates in i.
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Take a set of k walks originating in i: {w1, ..., wk}. Clearly,

p(w1 ∧ ... ∧ wk) = p(w1 ∧ ... ∧ wk−1) p(wk|w1 ∧ ... ∧ wk−1). (1)

The probability that a request will go through wk conditional on having gone through all

walks in {w1, ...wk−1} is the probability that it will go through the remainder of wk once

we remove the initial links that may have been accounted for:

p(wk|w1 ∧ ... ∧ wk−1) = αl(wk)−J((w1∧...∧wk−1),wk) (2)

where J((w1 ∧ ...∧wk−1), wk) is the number of links initially common to ((w1 ∧ ...∧wk−1))

and wk. Notice that J((w1 ∧ ... ∧ wk−1), wk) equals the number of links initially common

to both wk and (w1 ∧ ...∧wk−2) plus the number of links initially common to both wk and

wk−1 minus the double counting:9

J((w1∧...∧wk−1), wk) = J((w1∧...∧wk−2), wk)+J(wk−1, wk)−J((w1∧...∧wk−2), wk−1∩bwk)).

(3)

Using (2) in (1) along with our induction hypothesis tells us that

p(w1 ∧ ... ∧ wk) = αL(w1,...,wk−1) αl(wk)−J((w1∧...∧wk−1),wk).

Expanding the terms in (3), we get

l(wk)− J((w1 ∧ ... ∧ wk−1), wk) = l(wk)−
∑

s∈{1,..k−1}

l(ws ∩b wk) + ...+ (−1)k−1l(w1 ∩b ... ∩b wk)(4)

= L(w1, ..., wk)− L(w1, ..., wk−1). (5)

It follows that p(w1 ∧ ... ∧ wk) = αL(w1,...,wk). QED

Note that the first term in the formula is equal to
∑

w∈W̄iA(T ) α
l(w) which, by a direct

extension of the first part of Proposition 2, is equal to n̄iA(T ). Proposition 3 then clarifies

9The number of links common to (w1 ∧ ... ∧ wk−2) and the initial intersection between wk and wk−1.
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the difference between the number of times A is expected to hear about i’s request and

the probability that A will hear about it. This formula is combinatorially complex, which

confirms that computing these probabilities in practice is computationally hard. Applied

researchers then have two options. One is to rely on numerical simulations to obtain approx-

imate values of these probabilities. This is straightforward but can still be computationally

intensive. Simply generate N realizations of information diffusion at random and count the

number of times K that i’s request for a favor reaches A. Then, K/N converges to piA as

N tends to infinity. A similar numerical procedure underlies the structural estimations in

Banerjee et al. (2013).

Alternatively, and as proposed by Banerjee et al. (2013), researchers can rely on simpler

proxies which are easier to compute and likely to be highly correlated with these probabil-

ities. Proxies vary in their usefulness, however, and the literature still lacks formal results

on why and when we should expect diffusion centrality to perform well empirically. In a

context of targeted requests, such as political intermediation, we conjecture that targeting

centrality may provide a significantly better proxy than diffusion centrality.
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