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Abstract

This article establishes a direct proof of the equivalence between two incomplete
rankings of distributions of an ordinal attribute. The first ranking is the possibility
of going from one distribution to another by a finite sequence of Hammond trans-
fers. The second ranking is the intersection of two dominance criteria introduced
by Gravel et al.(Economic Theory, 71 (2021), 33-80). The proof constructs an algo-
rithm that provides a series of Hammond transfers, between any two distributions
related by the intersection of the two dominances.
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Introduction

A Pigou-Dalton transfer (Dalton(1912), Pigou(1920)) is a mean-preserving transfer
of resources from a relatively well-endowed individual to a less well-endowed one, that
preserves the rank between the donator and the recipient. A Pigou-Dalton transfer is
commonly considered as a natural definition of inequality reduction when applied to a
cardinal variable. A cardinal variable, is in effect, measured uniquely up to a positive
affine transformation. Because of this, the preservation of the mean by a Pigou-Dalton
transfer is a meaningful operation for a cardinal variable because the ranking of two distri-
butions according to their mean remains unchanged if an increasing affine transformation
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is applied to the unit of measurement. If, however, the metric of the attribute is defined
up to a strictly increasing transformation, as is the case when the distributed attribute
is ordinal, then the mean is no longer a "reliable" magnitude that needs to be preserved
by the transfer. This observation is at the core of recent criticism of the Pigou-Dalton
transfer when applied to an ordinal attribute (Abul-Naga and Yalcin (2008), Allison and
Foster (2004), Apouey (2007), Cowell and Flachaire (2017), Gravel et al. (2021)).

How can we define inequality reduction when the attribute studied is ordinal? To an-
swer this question, consider the following example of distributions of self-reported health
status (SRHS) categorized into: poor, fair, good, very good and excellent. Suppose a
simple distribution is composed of Chloé, who is in poor health, and Tom, who is in
excellent health. If we measure health using a metric assigning the values "1, 2, 3, 4,
5" to the respective categories of "poor, fair, good, very good, and excellent", then the
distribution in which both Tom and Chloé are in good health can be obtained by a Pigou-
Dalton transfer. However, with the alternative metric "1, 2, 3, 4, 6", we cannot reach
the distribution where Tom and Chloé are in good health by a Pigou-Dalton transfer.
Indeed, what is "taken" from Tom in terms of health units is not equal to what is "given"
to Chloé with this alternative metric.

To provide a more appropriate definition of inequality reduction for an ordinal vari-
able, we need to loosen the requirement that what is taken must equal what is given. If
we simply demand that Tom’s health level decreases and Chloé’s health level increases,
then the distribution where both are in good health will always be viewed as less unequal,
regardless of the metric employed. This concept of inequality reduction was introduced
by Hammond (1976) in his minimal equity principle.

According to Hammond’s principle, reducing the gap between the attributes’ endow-
ments of two agents reduces inequality irrespective of whether or not what is taken from
the highly endowed agent is equal to what is given to the less endowed agent. The
present paper is interested in the empirical verification of the possibility of going from a
distribution to another by a finite sequence of such Hammond transfers.

The recent literature (Gravel et al.(2019), Gravel et al.(2021)) has provided two dif-
ferent answers to this problem. The first answer applies to comparisons of distributions of
an ordinal attribute that can take continuously many values (e.g. PISA scores). In that
case we know from Gravel et al.(2019) that the possibility of going from a distribution to
another by a finite sequence of Hammond transfers is equivalent to ranking distributions
according to the intersection of the Leximin1 and the anti-Leximax2 criteria. Since the
two criteria are easily verifiable empirically, the problem of identifying an empirical test
for the possibility of going from a distribution to another by a finite sequence of Ham-

1The Leximin is the lexicographic extension of the well-known Maximin.
2The anti-Leximax is the lexicographic extension of the Minimax, the Minimax prefers the distribution

where the better-off agent has the lower utility.
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mond transfers is solved for distributions of a continuous ordinal variable. The second
answer applies to distributions of an ordinal variable that can take only finitely many
values, like the health categories considered in the example above. In order to identify
when a distribution is obtained from another by a finite sequence of Hammond transfers,
Gravel et al.(2021) introduced two tests constructed from two curves, namely the H-curve
which is a weighted sum of the cumulative density function, and the H̄-curve which is
a weighted sum of the survival function3. The first test checks whether the H-curves
of two distributions cross each other. Gravel et al.(2021) show that the H-curves don’t
cross (what is referred to as the H-dominance) if and only if the distribution for which
the H-curve lies below can be obtained from the other distribution by a finite sequence
of Hammond transfers and/or increments. In Gravel et al.(2021), an increment defines
an elementary rise in efficiency in a distribution, described as an improvement in the
endowment of the attribute of one agent everything else remaining the same for all other
agents. The second test makes an analogous analysis using the H̄-curve. Gravel et al
(2021) prove that the H̄-curve of one distribution lies nowhere above the H̄-curve of a
second distribution (what is referred to as the H̄-dominance) if and only if it is possible
to reach the first distribution from the second by a finite sequence of Hammond transfers
and/or decrements, a decrement being the opposite of an increment (i.e. the deterioration
of an agent attribute).

Since increments and decrements are transformations that work in opposite directions
and Hammond transfers are recognized as worth doing transformations by both types of
dominance, it seems natural to ask the following question: Is the simultaneous occurrence
of the two dominance an empirical test for the possibility of going from the dominated to
the dominating distribution by a finite sequence of Hammond transfers only? The main
contribution of this paper is to provide a positive answer to this question.

Gravel et al. (2021) have provided a somewhat indirect proof that such a positive
answer can be provided. Their proof is built on the fact that Hammond transfers have
the structure of a discrete cone (see Magdalou (2019)). Following this approach, they show
that when there is double dominance, it is always possible to write the difference between
the two distributions as a combination of Hammond transfers. However, because this
method focuses on the difference between distributions, it allows the addition of phantom
agents4 to both distributions. Hence, what Gravel et al. (2021) have established is that
if there is both H and H̄-dominance between two distributions, then it is possible to add
non-existing (dummy) agents with specific values of the attribute to both distributions in
such a way that one can go from the phantom-augmented dominated distribution to the
phantom-augmented dominating distribution by a finite sequence of Hammond transfers.

3If we note F() the cumulative, 1-F() is the survival function
4Here, I reuse a terminology employed by Gravel and Moyes(2012)
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In the current paper, I prove that we can go from the dominated to the dominating
distribution by a finite sequence of Hammond transfers without adding dummy agents.
The proof consists of an algorithm5 that always provides a series of Hammond transfers to
reach the actual dominant distribution from the actual dominated one without resorting
to any other modifications of the distributions.

I will also use this algorithm to investigate whether one could identify an empirical
test that corresponds precisely to the possibility of going from one distribution to another
by Median-Preserving Hammond transfers.

A Hammond transfer, by definition, does not preserve any measure of the "size of
the cake" (such as the mean or median). However, as recalled above, inequality re-
duction typically preserves the mean in the literature on inequality measurement for
cardinal attributes. Several recent approaches focusing on defining inequality for ordi-
nal attributes consider that inequality reduction should preserve the median (see Allison
and Foster(2004), Abul-Naga and Yalcin(2008)). Recently, Gargani and Gravel (2025)
axiomatically demonstrated that the median is the only measure of the size of the cake
that is ordinally consistent. Therefore, if we adopt the perspectives of both the ordinal
and cardinal literature, arguing that inequality reduction should preserve a measure of
the size of the cake, median-preserving transfers can be viewed as the ordinal equivalent
to mean-preserving transfers.

It would be nice to identify an implementable test that enables one to verify if one
distribution has been obtained from another by means of a finite sequence of median-
preserving Hammond transfers. While the current paper does not provide such a test,
it explores a first question in that direction that is of some interest. The question is
based on the famous Hardy et al. (1952) theorem6, which says that when comparing two
distributions with the same mean, the Lorenz curve of distribution d lies nowhere below
the Lorenz curve of distribution d′ if and only if one can go from d′ to d by a finite sequence
of mean-preserving transfers. A similar equivalence for median-preserving transfers could
be the following: We observe the double dominance between two distributions, with the
same median, if and only if it is possible to reach the dominant from the dominated
distribution by a finite sequence of median-preserving transfer. Is this theorem true? The
if part of this theorem is true simply because a median-preserving transfer is a specific type
of Hammond transfer. However, the only if part of the theorem is false because there are
some cases of double dominance between distributions with the same median for which it
is impossible to reach the dominant distribution by a series of median-preserving transfers.
This thus leaves open the important question: Which restriction of the double dominance
test -in addition to the requirement that it applies to two distributions with the same

5The reader can use the algorithm at https://algorithmhammond.streamlit.app
6See Kolm (1969), Atkinson (1970) and Dasgupta et al. (1973) for the discovery of this theorem by

economists.
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median- would capture the possibility of going from the dominated to the dominating
distribution by median-preserving Hammond transfers only?

The remainder of this paper is organised as follows. Section 1 introduces the basic
notations, section 2 states and proves the theorem and explains the algorithm, section 3
discusses the notion of median-preserving transfer, and finally, section 4 concludes.

1 Main Notation

Throughout this article, I denote by L ≥ 3 the number of different possible values of
the attribute that I refer to as categories. The attribute is taken to be ordinally mea-
sured. This means that the categories are all strictly ordered (from worst to best) but
that no other meaning than this ordering can be assigned to the numbers that can be
applied without loss of generality to those categories. I consider a population distribution
d ∈ NL among different categories: d = (nd

1, ..., n
d
L) with nd

i the number of individuals in
distribution d who are in category h ∈ {1, ..., L} and satisfying

∑L
h=1 n

d
h = n for some

population size7 n. The formal definition of a Hammond transfer, underlying Hammond’s
equity principle, is as follows.

Definition 1 (Hammond transfer) Distribution d ∈ NL is obtained from distribution
d′ ∈ NL by means of a Hammond transfer, if there exist categories 1 ≤ g < i ≤ j < l ≤ L

such that:

If i < j : nd
h = nd′

h ,∀h ̸= g, i, j, l

nd
g = nd′

g − 1, nd
i = nd′

i + 1

nd
j = nd′

j + 1, nd
l = nd′

l − 1

If i = j : nd
h = nd′

h ,∀h ̸= g, i, l

nd
g = nd′

g − 1, nd
i = nd′

i + 2

nd
l = nd′

l − 1

In plain English, a Hammond transfer is a reduction in the gap between two individ-
uals’ attribute endowments, all other individuals’ situations remaining the same.

Example 1 (Two distributions of education degrees)

Degree d′ = (3, 5, 1, 1) d = (2, 7, 0, 1)

No degree 3 2

Bachelor 5 7

Master 1 0

PhD 1 1

7Comparisons of distributions with differing numbers of individuals can be made thanks to the Dalton
(1920) replication axiom.
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In example 1, d is obtained from d′ by a Hammond transfer. I aim to demonstrate
the equivalence between performing such Hammond transfers a finite number of times
and achieving a distribution that is considered better by two dominance criteria. These
two dominance criteria are constructed from the cumulative distribution function and the
survival function associated to a distribution d ∈ NL.

Definition 2 (Cumulative and Survival Functions)

∀h ∈ {1, ..., L}, F (d, h) =
h∑

i=1

nd
i

n
and F̄ (d, h) = 1− F (d, h)

The H-dominance is constructed as follows from the cumulative function:

Definition 3 (H-dominance) For any two distributions d and d′ in NL, we say that d
H-dominates d′, if the following holds:

∀h ∈ {1, ..., L− 1}, H(d, h) ≤ H(d′, h),

where, H(d, 1) = F (d, 1) and ∀h ≥ 2, H(d, h) =
h−1∑
i=1

2h−1−iF (d, i) + F (d, h)

Gravel et al. (2021) have shown that H-dominance between two distributions is equiv-
alent to the possibility of going from the dominated to the dominating distribution by
a finite sequence of Hammond transfers and/or increments. An increment is defined as
follows:

Definition 4 (Increment) Distribution d ∈ NL is obtained from distribution d′ ∈ NL

through an increment, if there exists a category i ∈ {1, ..., L− 1} such as:

nd
h = nd′

h ,∀h ̸= i, i+ 1

nd
i = nd′

i − 1, nd
i+1 = nd′

i+1 + 1

By calling a decrement the opposite of an increment8, i.e. the deterioration of an
agent’s outcome. Gravel et al. (2021) showed that we observe H̄-dominance between
two distributions if and only if the dominant distribution can be obtained from the dom-
inated one by a series of Hammond transfers and/or decrements. The H̄-dominance is
constructed from the survival function as follows:

8Formally, a distribution d is obtained from d′ by a decrement if and only if d′ is obtained from d by
an increment.
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Definition 5 (H̄-dominance) For any two distributions d and d′ in NL, we say that
d H̄-dominates d′, if the following holds:

∀h ∈ {1, ..., L− 1}, H̄(d, h) ≤ H̄(d′, h),

where, H̄(d, L− 1) = F̄ (d, L− 1) and ∀h ≤ L− 2, H̄(d, h) =
L−1∑

i=h+1

2i−h−1F̄ (d, i) + F̄ (d, h)

These two dominance criteria are therefore interested in comparing the values of the
H and H̄-curves between different distributions, which is why I will use the following
notation:

∆(d′,d)H(h) = H(d′, h)−H(d, h)

∆(d′,d)H̄(h) = H̄(d′, h)− H̄(d, h)

∆(d′,d)F (h) = F (d′, h)− F (d, h)

∆(d′,d)F̄ (h) = F̄ (d′, h)− F̄ (d, h)

(Note that, ∆(d′,d)F (h) = −∆(d′,d)F̄ (h))

Moreover, for the rest of the article, I will keep denoting d′, the dominated distribution,
and d, the dominant one.

2 Main Result

In their main result, Gravel et al. (2021) showed indirectly that if we want to single
out Hammond transfers, we should look at the intersection of both dominance criteria.
In this paper, the following theorem is proved directly.

Theorem 1 Let d and d′ be two distinct distributions in NL. The two following
statements are equivalent:

(i) d can be obtained from d′ by a finite series of Hammond transfers.
(ii) For all h ∈ {1, ..., L− 1} ∆(d′,d)H(h) ≥ 0 and ∆(d′,d)H̄(h) ≥ 0

The tricky part of the proof consists of establishing that (ii) implies (i). To prove
this implication, I build an algorithm that provides a list of Hammond transfers that
allow us to reach the dominant distribution from the dominated one. The Hammond
transfers performed by the algorithm are such that the resulting distribution remains
weakly dominated by the initial dominant distribution. In other words, the algorithm
aims to return a Hammond transfer that preserves the double dominance.
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Between the curves of d′ and the curves of d, there are some gaps for some categories
h ∈ {1, ..., L}, denote these gaps md′

h > 0 and md′

h > 0, these gaps could be defined as
follows:

md′

h = H(d′, h)−H(d, h)

m̄d′

h = H̄(d′, h)− H̄(d, h)

When a transfer preserves the double dominance, it reduces the gaps. Hence if d′′ is
a distribution obtained from d′ by means of a Hammond transfer preserving the double
dominance, then for all categories h ∈ {1, ..., L}, md′′

h ≤ md′

h and m̄d′′

h ≤ m̄d′

h , with the
inequalities being strict for at least one category. Since it is a discrete framework with a
finite number of individuals, the gaps will be null after a finite number of iterations9 of the
algorithm, meaning that the dominant distribution has been reached by the algorithm.

The first part of this algorithm consists in defining a set of categories from which some
Hammond transfers preserving the double dominance can be done.

2.1 An Important Set of Categories.

I use the cumulative distribution function to define the set of ordered categories
{h0, ..., hK} ⊂ {1, ..., L} as follows.

h0 = min({h ∈ {1, ..., L− 1} | ∆(d′,d)F (h) > 0}) and,
{h1, ..., hK} = {h ∈ {h0 + 1, ..., L} | ∆(d′,d)F (h) ≥ 0 and ∆(d′,d)F (h− 1) < 0}

The category h0 is the first category at which the value of the cumulative of d′ is
greater than the value of the cumulative of d. The cumulative value of d′ is higher in
h0, but this cannot be the case for all categories after h0; otherwise, d would not H̄-
dominates d′. Therefore, there must be a crossing point between the cumulative values,
i.e., at which the cumulative value of d′ becomes strictly lower than that of d. After
this crossing point, there must be a category for which the value of the cumulative d′

will once again be greater than or equal to that of d. Let say informally that in such
an occurrence, the cumulative of both distributions "meet again". Therefore, using this
informal expression, the elements of the set {h1, ..., hK} are the categories for which the
cumulative "meet again" after a crossing point.

Five properties of the set {h0, ..., hK} will play a key role in establishing the possibility
of performing a Hammond transfer from d′ to either d or to another distribution that
remains dominated by d (the proof of these properties, as well as of all formal results of

9See Faure and Gravel(2021) for additional difficulties of building an algorithm when the variable is
continuous.
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this paper, are provided in the Appendix):

Property 1 ∀k ∈ {0, ..., K}, nd′

hk
≥ 1

Property 2 K + 1 ≥ 2

Property 3 ∀k ∈ {0, ..., K − 1}, hk ≤ hk+1 − 2

Property 4 ∀k ∈ {0, ..., K − 1} and ∀h ∈ {hk, ..., hk+1 − 1}, if ∆(d′,d)F (h) ≥ 0 then
∀h′ ∈ {hk, ..., h}, ∆(d′,d)F (h′) ≥ 0

From property 1, all categories in the set {h0, ..., hK} contain at least one individual
in the distribution d′. Moreover, this set always contains at least two elements (property
2) and there is always for all k ∈ {0, ..., K − 1}, at least one category between hk and
hk+1 (property 3). Property 4 states that for categories in the set {hk, ..., hk+1 − 1} there
is a category h such that for categories in the set {hk, ..., hk+1 − 1} and strictly below h,
the differences in the cumulative functions are positive whereas for categories above or in
h, the differences of the cumulative functions are strictly negative.

Following the first three properties, it is possible to do a Hammond transfer of an
individual from the category hk to the just above category hk + 1 combined with the
transfer of an individual from the category hk+1 to the category just below hk+1 − 1.
Since it consists in going up one category at the bottom in exchange of going down one
category at the top, I will refer to it as a "Pigou-Dalton transfer". The proof will use
this kind of transfer - that is also a Hammond transfer - as a diagnostic tool for the
possibility of making a Hammond transfer preserving the double dominance. The detail
of the algorithmic procedure is provided in the next section.

2.2 The Algorithm

When a Pigou-Dalton transfer described above preserves the double dominance, the
algorithm does this Pigou-Dalton transfer in order to reach the dominant distribution
from the dominated. Hence, the question that must be faced is: What do we do when
none of the Pigou-Dalton transfers described above preserve the double dominance?

To answer this question, I consider the following two mutually exclusive possibilities
in which none of the Pigou-Dalton transfers preserve the double dominance. Denote dk

(with k ∈ {0, ..., K − 1}), a distribution obtained from d′ by a Pigou-Dalton transfer
described in the previous section.

Case 1. There is a distribution dk obtained from d′ by means of a Pigou-Dalton
that doesn’t preserve the H̄-dominance.

Case 2. All distributions dk obtained from d′ by means of a Pigou-Dalton preserve
H̄-dominance.

9



In case 1, the algorithm goes through the dk distributions in ascending order, i.e. from
d0 to dK−1. It stops at the first dk distribution that does not preserve the H̄-dominance. I
call this distribution dt, with t = min({k ∈ {0, ..., K−1} | ∃h ∈ {1, ..., L−1}, H̄(dk, h) <

H̄(d, h)}). Note that, when t ≥ 1, dt−1 doesn’t preserve the H-dominance, otherwise
dt−1 would preserve the double dominance, as it already preserves the H̄-dominance by
definition of t.

In the algorithm, case 1 is divided in three mutually exclusive sub-cases that are
treated in propositions 1 to 3 (see section 2.3). In order to explain how I divide case 1
in three sub-cases, I need to introduce a particular category. Suppose that d′′ ∈ NL is a
distribution obtained from d′ by a Hammond transfer. Then I define hmax(d

′′) as follows:

hmax(d
′′) = max({h ∈ {1, ..., L− 1} | ∆(d′,d′′)H̄(h) > ∆(d′,d)H̄(h)})

In plain English, hmax(d
′′) is the first category from the top, at which the preservation

of H̄-dominance of d′′ over d is broken. In case 1 and by definition of t, the category
hmax(dt) exists and satisfies the two following properties:

Property 5 For all k ∈ {1, ..., K − 1}, ∆(d′,d)F (hmax(dk)) ≥ 1
n

Property 6 For all k ∈ {1, ..., K − 1}, hmax(dk) ∈ {h0, ..., hk+1 − 2}

I use the category hmax(dt) to distinguish between the following three sub-cases of
case 1:

Case 1a. hmax(dt) ≤ ht

Case 1b. hmax(dt) > ht and there is a category h ∈ {ht, ..., hmax(dt)} such as
∆(d′,d)F (h) ≥ 2

n

Case 1c. hmax(dt) > ht and for all categories h ∈ {ht, ..., hmax(dt)}, ∆(d′,d)F (h) ≤ 1
n

For case 1a I provide a Hammond transfer that preserves the double dominance in
Proposition 1, while cases 1b and 1c are treated in propositions 2 and 3 respectively. The
intuition behind these propositions is the following. The Pigou-Dalton leading to the
distribution dt generates variations of the H̄-curve that are too large. Therefore in order
for a transfer to preserve the double dominance, it needs to generate smaller variations of
the H̄-curve than the Pigou-Dalton transfer. For example, in appendix, Table 4 describes
the variations generated by the Hammond transfer performed in Proposition 1, as it can
be seen in Table 4, most of the variations of the H̄-curve are null. In cases 1b and
1c the Hammond transfer defined in Proposition 1 does not necessarily preserve the H-
dominance, therefore the Hammond transfers defined in propositions 2 and 3 are built to
generate lower variations of the H-curve than the transfer defined in Proposition 1.
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Note that in order to encounter case 1, the algorithm go through the distributions dk
in ascending order. An other possible approach would have been to define the algorithm
to go through distributions in descending order, i.e from dK−1 to d0. This descending
approach is symmetric to the ascending approach. The descending approach corresponds
in fact to the approach used in case 2. Indeed, in case 2, the algorithm goes through the
dk distributions in descending order. It stops at the first dk distribution that does not
preserve the H-dominance. Because in case 2, all distributions dk preserve H̄-dominance
and it is assumed that none of the Pigou-Dalton transfers preserve double dominance,
the distribution dK−1 can’t preserve the H-dominance. Hence, in case 2, the algorithm
will stop at the distribution dK−1.

Case 2 is divided in three mutually exclusive sub-cases that are treated in propositions
4 to 6 (see section 2.4). In order to explain how I divide case 2 in three sub-cases, I
parallel the approach of case 1 by introducing the following category hmin(d

′′) defined for
any distribution d′′ ∈ NL obtained from d′ by a Hammond transfer:

hmin(d
′′) = min({h ∈ {1, ..., L− 1} | ∆(d′,d′′)H(h) > ∆(d′,d)H(h)})

hmin(d
′′) is the first category from the bottom, at which the preservation of H-

dominance of d′′ over d is broken. It is clear that the category hmin(dK−1) exists in
case 2. The following two properties of this category are worth noticing.

Property 7 For all k ∈ {0, ..., K − 1}, ∆(d′,d)F̄ (hmin(dk)) ≥ 1
n

Property 8 For all k ∈ {0, ..., K − 1}, hmin(dk) ∈ {hk + 1, ..., hK − 1}

The three sub-cases of case 2 are distinguished as follows:

Case 2a. hmin(dK−1) = hK − 1

Case 2b. hmin(dK−1) < hK − 1 and there is a category h ∈ {hmin(dK−1), ..., hK − 1}
such as ∆(d′,d)F̄ (h) ≥ 2

n

Case 2c. hmin(dK−1) < hK − 1 and for all categories h ∈ {hmin(dK−1), ..., hK − 1},
∆(d′,d)F̄ (h) = 1

n
.

For case 2a, I provide a Hammond transfer that preserves the double dominance in
Proposition 4, cases 2b and 2c are treated in propositions 5 and 6 respectively. The
transfers performed in propositions 4 to 6 follow a logic somewhat symmetrical to the
case 1. In case 2, the Pigou-Dalton transfer leading to the distribution dK−1 generates
variations of the H-curve that are too large. Table 9 of the Appendix shows the variations
generated by the Hammond transfer performed in Proposition 4. As can be seen in this
table, most of the variations of the H-curve are null. In cases 2b and 2c the Hammond
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transfer defined in Proposition 4 does not necessarily preserve the H̄-dominance, there-
fore the Hammond transfers defined in propositions 5 and 6 are built to generate lower
variations of the H̄-curve than the transfer defined in Proposition 4.

I present the propositions covering case 1 and case 2 in the two next sections.

2.3 Case 1

The Hammond transfer preserving the double dominance in the case 1a is provided
in the following proposition.

Proposition 1 Suppose t ∈ {0, ..., K − 1}. Additionally, suppose that if t ≥ 1, then
dt−1 doesn’t preserve the H-dominance. Under these conditions, if hmax(dt) ≤ ht and
d′′ ∈ NL, is obtained from d′, by the following Hammond transfer:

nd′′

h = nd′

h , ∀h ̸= ht, ht+1 − 1, ht+1

nd′′

ht
= nd′

ht
− 1, nd′′

ht+1−1 = nd′

ht+1−1 + 2

nd′′

ht+1
= nd′

ht+1
− 1

Then d′′ preserves the double dominance.

The distribution obtained from the Hammond transfer defined in Proposition 1 pre-
serves the double dominance when hmax(dt) ≤ ht but not necessarily when ht < hmax(dt).

When ht < hmax(dt), the second Hammond transfer, presented in Proposition 2, ap-
plies when there is at least one category in the set {ht, ..., hmax(dt)}, such that the value
of the difference between the cumulative functions is greater or equal to 2

n
.

Proposition 2 Suppose t ∈ {0, ..., K−1}, and ht < hmax(dt). Moreover suppose that
there is a category h ∈ {ht, ..., hmax(dt)} such as ∆(d′,d)F (h) ≥ 2

n
. Additionally, suppose

that if t ≥ 1, then dt−1 doesn’t preserve the H-dominance. Under these conditions, by
defining the category e = min({{h ∈ {ht, ..., hmax(dt)} | ∆(d′,d)F (h) ≥ 2

n
}), if d′′ ∈ NL, is

obtained from d′, by the following Hammond transfer:

nd′′

h = nd′

h , ∀h ̸= e, ht+1 − 1, ht+1

nd′′

e = nd′

e − 1, nd′′

ht+1−1 = nd′

ht+1−1 + 2

nd′′

ht+1
= nd′

ht+1
− 1

Then d′′ preserves the double dominance.

The Hammond transfer performed in Proposition 2 is quite similar to the transfer
performed in Proposition 1. If the category e, defined in Proposition 2, is equal to ht,
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then the transfers performed in the two propositions are the same. When e ̸= ht, the
transfer in Proposition 1 preserves the H̄-dominance, but it is too efficient to preserve
the H-dominance. Hence the transfer proposed in Proposition 2 is relatively less efficient.
Indeed, the distribution obtained from the Hammond transfer defined in Proposition 2,
can be reached by adding some decrements to the distribution obtained by the Hammond
transfer defined in Proposition 1. However the transfer in Proposition 2 can’t be done
when there isn’t any category for which the value of the difference in the cumulative
functions is greater or equal to 2

n
.

The last sub-case of case 1, covered in Proposition 3, is when, for all categories
h ∈ {ht, ..., hmax(dt)}, ∆(d′,d)F (h) ≤ 1

n
.

Proposition 3 Suppose t ∈ {0, ..., K−1}, and ht < hmax(dt). Moreover suppose that
for all categories h ∈ {ht, ..., hmax(dt)}, ∆(d′,d)F (h) ≤ 1

n
. Additionally, suppose that if

t ≥ 1, then dt−1 doesn’t preserve the H-dominance. Under these conditions, by defining
the categories e = min({h ∈ {ht+1, ..., hmax(dt)+1} | ∆(d′,d)F (h−1) > ∆(d′,d)F (h)}) and
j = min({h ∈ {e + 1, ..., ht+1} | ∆(d′,d)F (h − 1) < ∆(d′,d)F (h)}), if d′′ ∈ NL, is obtained
from d′ by the following Hammond transfer:

If e < j − 1 : nd′′

h = nd′

h , ∀h ̸= ht, e, j − 1, j

nd′′

ht
= nd′

ht
− 1, nd′′

e = nd′

e + 1

nd′′

j−1 = nd′

j−1 + 1, nd′′

j = nd′

j − 1

If e = j − 1 : nd′′

h = nd′

h , ∀h ̸= ht, e, j

nd′′

ht
= nd′

ht
− 1, nd′′

e = nd′

e + 2

nd′′

j = nd′

j − 1

Then d′′ preserves the double dominance.

The transfer of Proposition 3 is also quite similar to the transfer performed in Propo-
sition 1. If the category e, defined in Proposition 3, is equal to ht+1−1 then the transfers
performed in the two propositions are the same. When e < ht+1 − 1 and the category
j, defined in Proposition 3, is equal to ht+1, the transfer in Proposition 1 is too efficient
to preserve the H-dominance. Consequently the transfer proposed in Proposition 3 is
relatively less efficient. Indeed, when e < ht+1−1 and j = ht+1, the distribution obtained
from the Hammond transfer defined in Proposition 3, can be reached by applying a series
of decrements to the distribution obtained from the Hammond transfer defined in Propo-
sition 1. Finally when e ̸= ht+1−1 and j < ht+1 the transfer in Proposition 1 still doesn’t
necessarily preserve the H-dominance but not necessarily because it is too efficient. Here,
the distribution obtained from the Hammond transfer defined in Proposition 1 can be
reached by applying a Hammond transfer and an increment to the distribution obtained
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from the Hammond transfer defined in Proposition 3.
To end the demonstration, I must consider the case 2, discussed above, where all the

Pigou-Dalton transfers preserve the H̄-dominance.

2.4 Case 2

The first subcase of case 2 is handled with the following Proposition 4.

Proposition 4 Suppose that dK−1 doesn’t preserve the H-dominance. Additionally
suppose that hmin(dK−1) = hK − 1. Under these conditions, if d′′ ∈ NL, is obtained from
d′ by the following Hammond transfer:

nd
h = nd′

h , ∀h ̸= hK−1, hK−1 + 1, hK

nd
hK−1

= nd′

hK−1
− 1, nd

hK−1+1 = nd′

hK−1+1 + 2

nd
hK

= nd′

hK
− 1

Then d′′ preserves the double dominance.

The distribution obtained from the Hammond transfer defined in Proposition 4 pre-
serves the double dominance when hmin(dK−1) = hK − 1 but not necessarily when
hK − 1 > hmin(dK−1).

When hK − 1 > hmin(dK−1), the transfer presented in Proposition 5 applies when
there is at least one category in the set {hmin(dK−1), ..., hK − 1}, such that the value of
the difference between the survival functions is greater or equal to 2

n
.

Proposition 5 Suppose that dK−1 doesn’t preserve the H-dominance but does pre-
serve the H̄-dominance. Moreover suppose that hK − 1 > hmin(dK−1). Additionally, sup-
pose there is a category h ∈ {hmin(dK−1), ..., hK − 1} such that ∆(d′,d)F̄ (h) ≥ 2

n
. Under

these conditions, by defining e = max({h ∈ {hmin(dK−1), ..., hK − 1}|∆(d′,d)F̄ (h) ≥ 2
n
}),

if d′′ ∈ NL, is obtained from d′ by the following Hammond transfer:

nd′′

h = nd′

h , ∀h ̸= hK−1, hK−1 + 1, e+ 1

nd′′

hK−1
= nd′

hK−1
− 1, nd′′

hK−1+1 = nd′

hK−1+1 + 2

nd′′

e+1 = nd′

e+1 − 1

Then d′′ preserves the double dominance.

As was the case for case 1, it can be observed that the Hammond transfer performed in
Proposition 5 is quite similar to that performed in Proposition 4. In fact if the category e
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of Proposition 5 is equal to hK−1, then the two transfers are the same. When e < hK−1

the transfer in Proposition 4 preserves the H-dominance but is too inefficient to preserve
the H̄-dominance. Consequently the transfer proposed in Proposition 5 is relatively
more efficient. Indeed, the distribution obtained from the Hammond transfer defined in
Proposition 5, can be reached by adding a series of increments to the distribution obtained
by the Hammond transfer defined in Proposition 4. However the transfer in Proposition
5 can’t be done when there isn’t any category for which the value of the difference of the
survival functions is greater or equal to two.

Hence the last case to be treated by the following Proposition 6 is when, for all cate-
gories h ∈ {hmin(dK−1), ..., hK−1},∆(d′,d)F̄ (h) = 1

n
.

Proposition 6 Suppose that dK−1 doesn’t preserve the H-dominance. Moreover
suppose that hK − 1 > hmin(dK−1). Additionally, suppose that for all categories h ∈
{hmin(dK−1), ..., hK −1}, ∆(d′,d)F̄ (h) = 1

n
. Under these conditions, if d′′ ∈ NL, is obtained

from d′ by the following Hammond transfer:

If hK−1 + 1 < hmin(dK−1) : nd′′

h = nd′

h , ∀h ̸= hK−1, hK−1 + 1, hmin(dK−1), hK

nd′′

hK−1
= nd′

hK−1
− 1, nd′′

hK−1+1 = nd′

hK−1+1 + 1

nd′′

hmin(dK−1)
= nd′

hmin(dK−1)
+ 1, nd′′

hK
= nd′

hK
− 1

If hK−1 + 1 = hmin(dK−1) : nd′′

h = nd′

h , ∀h ̸= hK−1, hK−1 + 1, hK

nd′′

hK−1
= nd′

hK−1
− 1, nd′′

hK−1+1 = nd′

hK−1+1 + 2

nd′′

hK
= nd′

hK
− 1

Then d′′ preserves the double dominance.

The transfer of Proposition 6 is also quite similar to the transfer performed in Propo-
sition 4. If the category hmin(dK−1), is equal to hK−1 + 1 then the transfers performed
in the two propositions are the same. When hmin(dK−1) > hK−1 + 1 the transfer in
Proposition 4 is too inefficient to preserve the H̄-dominance. Consequently the transfer
proposed in Proposition 6 is relatively more efficient. Indeed, the distribution obtained
from the Hammond transfer defined in Proposition 6 can be reached by applying a se-
ries of increments to the distribution obtained from the Hammond transfer defined in
Proposition 4.

3 Discussion on Median-Preserving Transfers

In this section, I am interested in whether the algorithm can be used to introduce
a new dominance criterion to detect if a distribution can be obtained from another by
a finite sequence of median-preserving transfers. The definition of a median-preserving
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transfer that I use is straightforward: A distribution d is obtained from a distribution d′

by a median-preserving transfer if and only if d is obtained from d′ by a Hammond trans-
fer and both distributions have the same median. In the context of this paper, a plausible
conjecture would consist of comparing the H-curve and the H̄-curve of distributions with
the same median.

Conjecture Let d and d′ be two distinct distributions in NL. The two following
statements are equivalent:

(i) d can be obtained from d′ by a finite series of median-preserving transfers.
(ii) d and d′ have the same median. And, for all h ∈ {1, ..., L − 1} ∆(d′,d)H(h) ≥ 0

and ∆(d′,d)H̄(h) ≥ 0

I show that this conjecture is false by providing the following counter-example: take
d′ = (2, 1, 0, 2) and d = (0, 3, 1, 1). d′ and d have the same median, the category 2.
Moreover, d can be obtained from d′ by a finite series of Hammond transfers. However,
in this series, there is a Hammond transfer that doesn’t preserve the median. See below
the entire series provided by the algorithm.

From the algorithm, the series is composed of two transfers. The first one consists
of transferring one individual from category 1 to category 3 and another individual from
category 4 to category 3, which leads to the distribution d′′ = (1, 1, 2, 1), for which the
median is not category 2. Because the number of categories and individuals is relatively
small in this example, it is easy to see that we must go through the distribution d′′ to
reach the distribution d by a series of Hammond transfers. Hence, the median must
change at some point in the series of Hammond transfers.

4 Conclusion

Although Gravel et al. (2021) showed that the H and H̄-dominance of one distribution
over another is equivalent to the possibility of going from the dominated distribution to
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the dominant distribution by a finite sequence of Hammond transfers, these authors could
not directly establish the equivalence and had to resort to indirect theorems from convex
analysis that allow for the possibility for adding phantom agents to both distributions.
The present article is the first to prove directly the possibility of reaching the dominant
from the dominated distribution by a series of Hammond transfers only.

This article developed new insights into the relationship between the dominance crite-
rion introduced by Gravel et al. (2021) and Hammond’s notion of transfer. I hope these
insights will serve for future research. One direction for this research has been discussed
at the end of the last section. It concerns median preserving Hammond transfers. Ham-
mond transfers preserving the median are particularly interesting. Several approaches
to ordinal inequality measurement (see, e.g. Alison and Foster (2004)) have argued that
reducing inequality should preserve the median. However, none of them define inequality
reduction as a median preserving transfer. A more in-depth study of median preserving
transfer could lay the foundations for a median-based approach to measure inequality
and provide new interesting tools to compare with traditional mean-based tools.
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Appendix A

Technical Appendix

In this part of the appendix, I provide several preliminary results that are essential in demonstrating
the main result.

The Pigou-Dalton transfers discussed in section 2.1 are not formally defined. I define them now:

Definition 6 (dk distributions) For k ∈ {0, ...,K − 1}, a distribution dk ∈ NL is defined as follows:

If hk + 1 < hk+1 − 1 : ndk

h = nd′

h ,∀h ̸= hk, hk + 1, hk+1 − 1, hk+1

ndk

hk
= nd′

hk
− 1, ndk

hk+1 = nd′

hk+1 + 1

nd
hk+1−1 = nd′

hk+1−1 + 1, nd
hk+1

= nd′

hk+1
− 1

If hk + 1 = hk+1 − 1 : ndk

h = nd′

h ,∀h ̸= hk, hk + 1, hk+1

ndk

hk
= nd′

hk
− 1, ndk

hk+1 = nd′

hk+1 + 2

nd
hk+1

= nd′

hk+1
− 1

From properties 1,2 and 3 these Pigou-Dalton transfers are always feasible.
The following Lemmas are extensively used to prove Propositions 1 to 6.
Lemma 1

∀h ∈ {2; ...;L} :

∆(d′,d)H(h) =

h−1∑
i=1

∆(d′,d)H(i) + ∆(d′,d)F (h)

and
∀h ∈ {1; ...;L− 1} :

∆(d′,d)H̄(h) =

L∑
i=h+1

∆(d′,d)H̄(i) + ∆(d′,d)F̄ (h)

Proof I prove the first equality by induction.
I start with the category 2:

∆(d′,d)H(2) = H(d′, 2)−H(d, 2)

= F (d′, 1) + F (d′, 2)− F (d, 1)− F (d, 2)

= ∆(d′,d)H(1) + ∆(d′,d)F (2)

Suppose by induction that for a category h ∈ {2, ..., L− 1} the equality of Lemma 1 is verified, then in
h+ 1:

∆(d′,d)H(h+ 1) =

h∑
i=1

2h−iF (d′, i) + F (d′, h+ 1)−
h∑

i=1

2h−iF (d, i)− F (d, h+ 1)

= 2H(d′, h)− F (d′, h)− 2H(d, h) + F (d, h) + ∆(d′,d)F (h+ 1)

= 2

h−1∑
i=1

∆(d′,d)H(i) + 2∆(d′,d)F (h)−∆(d′,d)F (h) + ∆(d′,d)F (h+ 1)

=

h−1∑
i=1

∆(d′,d)H(i) +

h−1∑
i=1

∆(d′,d)H(i) + ∆(d′,d)F (h) + ∆(d′,d)F (h+ 1)

=

h∑
i=1

∆(d′,d)H(i) + ∆(d′,d)F (h+ 1)
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The proof of the second equality of Lemma 1 is similar, it is then left to the reader.

Lemma 2. Suppose the distribution dk obtained from d′ by means of a Pigou-Dalton transfer,
with k ∈ {0, ...,K − 1}, doesn’t preserve the H̄-dominance, such that h0 ≤ hmax(dk)− 1. Then for any
category h ∈ {hmax(dk) + 2, ..., hK − 1}, the following equality holds:

∆(d′,d)H(h) = 2h−hmax(dk)

hmax(dk)−1∑
i=h0

∆(d′,d)H(i) +

h∑
i=hmax(dk)

∆(d′,d)F (i)

+

h−2∑
i=hmax(dk)

2h−2−i
i∑

j=hmax(dk)

∆(d′,d)F (j)

Proof I proceed by induction.
I start with the category hmax(dk) + 2, using Lemma 1:

∆(d′,d)H(hmax(dk) + 2) =

hmax(dk)+1∑
i=h0

∆(d′,d)H(i) + ∆(d′,d)F (hmax(dk) + 2)

=

hmax(dk)∑
i=h0

∆(d′,d)H(i) + ∆(d′,d)H(hmax(dk) + 1) + ∆(d′,d)F (hmax(dk) + 2)

= 2

hmax(dk)∑
i=h0

∆(d′,d)H(i) + ∆(d′,d)F (hmax(dk) + 1) + ∆(d′,d)F (hmax(dk) + 2)

= 2

hmax(dk)−1∑
i=h0

∆(d′,d)H(i) + 2∆(d′,d)H(hmax(dk)) +

hmax(dk)+2∑
i=hmax(dk)+1

∆(d′,d)F (i)

= 4

hmax(dk)−1∑
i=h0

∆(d′,d)H(i) + 2∆(d′,d)F (hmax(dk)) +

hmax(dk)+2∑
i=hmax(dk)+1

∆(d′,d)F (i)

= 4

hmax(dk)−1∑
i=h0

∆(d′,d)H(i) + ∆(d′,d)F (hmax(dk)) +

hmax(dk)+2∑
i=hmax(dk)

∆(d′,d)F (i)

Suppose by induction that for a category h ∈ {hmax(dk) + 2, ..., hK − 2} the equality of Lemma 2 is
verified, then in h+ 1:

∆(d′,d)H(h+ 1) =

h∑
i=1

2h−i∆(d′,d)F (i) + ∆(d′,d)F (h+ 1)

=

h∑
i=1

2h−i∆(d′,d)F (i) + ∆(d′,d)F (h+ 1) + ∆(d′,d)F (h)−∆(d′,d)F (h)

= 2∆(d′,d)H(h) + ∆(d′,d)F (h+ 1)−∆(d′,d)F (h)

By replacing ∆(d′,d)H(h) by the equality in Lemma 2, it gives:

∆(d′,d)H(h+ 1) = 2h+1−hmax(dk)

hmax(dk)−1∑
i=h0

∆(d′,d)H(i) +

h+1∑
i=hmax(dk)

∆(d′,d)F (i)

+

h−1∑
i=hmax(dk)

2h−1−i
i∑

j=hmax(dk)

∆(d′,d)F (j)
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Lemma 3 For any category h ≥ h0 + 2, the following equality holds:

∆(d′,d)H(h) =

h∑
i=h0

∆(d′,d)F (i) +

h−2∑
i=h0

2h−2−i
i∑

j=h

∆(d′,d)F (j)

Proof I proceed by induction. I start with the category h0 + 2:

∆(d′,d)H(h0 + 2) =

h0+1∑
i=h0

2h0+1−i∆(d′,d)F (i) + ∆(d′,d)F (h0 + 2)

= 2∆(d′,d)F (h0) +

h0+2∑
i=h+1

∆(d′,d)F (i)

Suppose by induction that for a category h ∈ {h0+2, ..., L− 1} the equality of Lemma 3 is verified, then
in h+ 1:

∆(d′,d)H(h+ 1) = 2∆(d′,d)H(h) + ∆(d′,d)F (h+ 1)−∆(d′,d)F (h)

= 2

h∑
i=h0

∆(d′,d)F (i) +

h−2∑
i=h0

2h−1−i
i∑

j=h

∆(d′,d)F (j) + ∆(d′,d)F (h+ 1)−∆(d′,d)F (h)

=

h+1∑
i=h0

∆(d′,d)F (i) +

h−1∑
i=h0

2h−1−i
i∑

j=h

∆(d′,d)F (j)

Lemma 4 For any category h ≤ hK − 3, the following equality holds:

∆(d′,d)H̄(h) =

hK−1∑
i=h

∆(d′,d)F̄ (i) +

hK−1∑
i=h+2

2i−h−2
hK−1∑
j=i

∆(d′,d)F̄ (j)

Proof I proceed by induction. I start with the category hK − 3:

∆(d′,d)H̄(hK − 3) = 2∆(d′,d)F̄ (hK − 1) + ∆(d′,d)F̄ (hK − 2) + ∆(d′,d)F̄ (hK − 3)

=

hK−1∑
i=hK−3

∆(d′,d)F̄ (i) + ∆(d′,d)F̄ (hK − 1)

Suppose by induction that for a category h ∈ {1, ..., hK − 3} the equality of Lemma 4 is verified, then in
h− 1:

∆(d′,d)H̄(h− 1) =

hK−1∑
i=h

2i−h∆(d′,d)F̄ (i) + ∆(d′,d)F̄ (h− 1)

=

hK−1∑
i=h

2i−h∆(d′,d)F̄ (i) + ∆(d′,d)F̄ (h− 1) + ∆(d′,d)F̄ (h)−∆(d′,d)F̄ (h)

= 2∆(d′,d)H̄(h) + ∆(d′,d)F̄ (h− 1)−∆(d′,d)F̄ (h)

= 2

hK−1∑
i=h

∆(d′,d)F̄ (i) +

hK−1∑
i=h+2

2i−h−1
hK−1∑
j=i

∆(d′,d)F̄ (j) + ∆(d′,d)F̄ (h− 1)−∆(d′,d)F̄ (h)

=

hK−1∑
i=h−1

∆(d′,d)F̄ (i) +

hK−1∑
i=h+1

2i−h−2
hK−1∑
j=i

∆(d′,d)F̄ (j)

Lemma 5 Suppose the distribution dk obtained from d′ by means of a Pigou-Dalton transfer, with
k ∈ {0, ...,K − 1}, doesn’t preserve the H-dominance, such that hK − 1 > hmin(dk). Then, for any
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category h ∈ {h0, ..., hmin(dt)− 2}:

∆(d′,d)H̄(h) = 2hmin(dt−1)−h
hK−1∑

i=hmin(dt−1)+1

∆(d′,d)H̄(i)

+

hmin(dt−1)∑
i=h

∆(d′,d)F̄ (i) +

hmin(dt−1)∑
i=h+2

2i−h−2

hmin(dt−1)∑
j=i

∆(d′,d)F̄ (j)

Proof Similar to the four previous Lemmas.

I now prove all the properties of the set {h0, ..., hK} discussed in sections (2.1) and (2.2).

Property 1 ∀k ∈ {0, ...,K}, nd′

hk
≥ 1

Proof Note that for all h < h0, ∆(d′,d)F (h) = 0. Hence in h0:

∆(d′,d)F (h0) = nd′

h0
− nd

h0
> 0 =⇒ nd′

h0
> 0

In hk, with k ∈ {1, ...,K}, ∆(d′,d)F (hk) ≥ 0 and ∆(d′,d)F (hk − 1) < 0, knowing that:

∆(d′,d)F (hk) = ∆(d′,d)F (hk − 1) + nd′

hk
− nd

hk
≥ 0

Then we must have nd′

hk
− nd

hk
> 0 =⇒ nd′

hk
> 0

Property 2 K + 1 ≥ 2

Proof Here I prove that the following sets are non empty:

A = {h ∈ {1, ..., L} | ∆(d′,d)F (h) > 0}

B = {h ∈ {2, ..., L} | ∆(d′,d)F (h) ≥ 0 and ∆(d′,d)F (h− 1) < 0}

Denote a = min({h ∈ {1, ..., L}|∆(d′,d)H(h) > 0}).
Because d dominates d′, for all categories h ∈ {1, ..., L}, ∆(d′,d)H(h) ≥ 0. Hence by definition of a,

for all categories h < a, ∆(d′,d)H(h) = 0. Using Lemma 1:

∆(d′,d)H(a) = ∆(d′,d)F (a)

Hence ∆(d′,d)F (a) > 0, so the set A is non empty.

Denote b = max({h ∈ {1, ..., L}|∆(d′,d)H̄(h) > 0}).
For all categories h > b, ∆(d′,d)H̄(h) = 0. Using Lemma 1, we get:

∆(d′,d)H̄(b) = ∆(d′,d)F̄ (b) = −∆(d′,d)F (b)

Hence ∆(d′,d)F (b) < 0, so the set B is non empty because by definition of b, ∆(d′,d)F (b + 1) ≥ 0.
Indeed, if ∆(d′,d)F (b + 1) < 0 we would have ∆(d′,d)H̄(b + 1) > 0 which is impossible by definition of b.
To conclude note that |A|+ |B| = K + 1 ≥ 2.

Property 3 ∀k ∈ {0, ...,K − 1}, hK ≤ hk+1 − 2
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Proof Suppose by contradiction that there is a k ∈ {0, ...,K − 1} such that hk ≥ hk+1 − 1. In this
case because hk < hk+1 we must have hk = hk+1−1. However in hk+1−1, ∆(d′,d)F (hk+1−1) < 0 which
is in contradiction with the definition of hk.

Property 4 ∀k ∈ {0, ...,K − 1} and ∀h ∈ {hk, ..., hk+1 − 1}, if ∆(d′,d)F (h) ≥ 0 then ∀h′ ∈
{hk, ..., h}, ∆(d′,d)F (h′) ≥ 0

Proof Suppose by contradiction that there is a k ∈ {0, ...,K − 1} such that for a category h ∈
{hk, ..., hk+1−1}, with ∆(d′,d)F (h) ≥ 0 and there is a category h′ ∈ {hk, ..., h}, such that ∆(d′,d)F (h′) < 0.
It is then possible to define the following category:

a = max({h′′ ∈ {hk, ..., h}|∆(d′,d)F (h′′) < 0})

By definition of a, ∆(d′,d)F (a+ 1) ≥ 0, moreover by definition of the set {h1, ..., hK}, we must have
a+ 1 = hk+1 which is impossible because a+ 1 ≤ h < hk+1.

By definition of b, ∆(d′,d)F̄ (b − 1) ≥ 1
n =⇒ ∆(d′,d)F (b − 1) ≤ − 1

n hence we must have b = hk+1,
which is impossible.

Before proving the last properties of the set {h0, ..., hK}, two Claims are needed, namely Claims 1
and 2. Which establish that if a Hammond transfer preserves the double dominance for all the categories
in the set {h0, ..., hK − 1} then the dominance is also preserved for all categories in the set {1, ..., L}. In
other words, the analysis can be restricted to the set {h0, ..., hK − 1}.

Claim 1 Suppose a distribution d′′ obtained from d′ by means of a Hammond transfer, such that
for all categories h < h0, ∆(d′,d′′)F (h) = 0 and for all categories h > hK − 1, ∆(d′,d′′)F (h) = 0. If for all
categories h ∈ {h0, ..., hK − 1}, ∆(d′,d′′)H̄(h) ≤ ∆(d′,d)H̄(h) then for all categories h ∈ {1, ..., L}, we have
∆(d′,d′′)H̄(h) ≤ ∆(d′,d)H̄(h).

Proof Note that for all categories h ∈ {hK , ..., L}:

∆(d′,d)H̄(h) = ∆(d′,d′′)H̄(h) = 0

In h0 − 1, knowing that ∀h < h0, ∆(d′,d)F (h) = 0 and by using Lemma 1:

∆(d′,d)H̄(h0 − 1) =

hK−1∑
i=h0

∆(d′,d)H̄(i)

Similarly:

∆(d′,d′′)H̄(h0 − 1) =

hK−1∑
i=h0

∆(d′,d′′)H̄(i)

Because for all categories h ∈ {h0, ..., hK − 1},:

∆(d′,d′′)H̄(h) ≤ ∆(d′,d)H̄(h)

It is clear that:

∆(d′,d′′)H̄(h0 − 1) ≤ ∆(d′,d)H̄(h0 − 1)

22



Suppose by induction for a category h ∈ {2, ..., h0−1} that we have for all categories h′ ∈ {h, ..., hK−1}:

∆(d′,d′′)H̄(h′) ≤ ∆(d′,d)H̄(h′)

Then in h− 1:

∆(d′,d′′)H̄(h− 1) =

hK−1∑
i=h

∆(d′,d′′)H̄(i) ≤
hK−1∑
i=h

∆(d′,d)H̄(i) = ∆(d′,d)H̄(h− 1)

Claim 2 Suppose a distribution d′′ obtained from d′ by means of a Hammond transfer, such that
for all h < h0, ∆(d′,d′′)F (h) = 0 and for all categories h > hK − 1, ∆(d′,d′′)F (h) = 0. If for all cate-
gories h ∈ {h0, ..., hK − 1}, ∆(d′,d′′)H(h) ≤ ∆(d′,d)H(h) then for all categories h ∈ {1, ..., L}, we have
∆(d′,d′′)H(h) ≤ ∆(d′,d)H(h).

Proof Similar to Claim 1.

Property 5 For all k ∈ {1, ...,K − 1}, hmax(dk) ∈ {h0, ..., hk+1 − 2}

Proof Note that for all h ≥ hk+1, F̄ (d′, h) = F̄ (dk, h). Hence ∆(d′,dk)H̄(h) = 0. Moreover in
hk+1 − 1, ∆(d′,dk)F̄ (hk+1 − 1) = 1

n . Using Lemma 1, we have:

∆(d′,dk)H̄(hk+1 − 1) =
1

n

It can be shown that:

∆(d′,d)H(hk+1 − 1) ≥ 1

n

First if k = K − 1:

∆(d′,d)H(hK − 1) = ∆(d′,d)F (hK − 1) ≥ 1

n

Finally if k < K − 1:

∆(d′,d)H̄(hk+1 − 1) =

L∑
i=hk+1

∆(d′,d)H̄(i) + ∆(d′,d)F̄ (hk+1 − 1)

∆(d′,d)H̄(hk+1 − 1) ≥ ∆(d′,d)H̄(hK − 1) + ∆(d′,d)F̄ (hk+1 − 1)

∆(d′,d)H̄(hk+1 − 1) ≥ 1

n

Hence hmax(dk) < hk+1 − 1. Finally, note that for all h ≤ hk, F̄ (d′, h) = F̄ (dk, h), hence, from Claim 1,
hmax(dk) must be greater or equal to h0.

Property 6 For all k ∈ {1, ...,K − 1}, ∆(d′,d)F (hmax(dk)) ≥ 1
n

Property 6 will be shown below to be implied by Claim 4 (to be stated).

Property 7 For all k ∈ {0, ...,K − 1} hmin(dk) ∈ {hk + 1, ..., hK − 1}

Proof Note that for all h < hk, F (d′, h) = F (dk, h), hence ∆(d′,dk)H(h) = 0. Moreover in
hk, ∆(d′,dk)F (hk) =

1
n . Using Lemma 1:

∆(d′,dk)H(hk) =
1

n
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It can be shown that:

∆(d′,d)H(hk) ≥
1

n

First if k = 0:

∆(d′,d)H(h0) = ∆(d′,d)F (h0) ≥
1

n

Finally if k > 0:

∆(d′,d)H(hk) =

hk−1∑
i=1

∆(d′,d)H(i) + ∆(d′,d)F (hk)

∆(d′,d)H(hk) ≥ ∆(d′,d)H(h0) + ∆(d′,d)F (hk)

∆(d′,d)H(hk) ≥
1

n

Hence hmin(dk) > hk. Finally, note that for all h ≥ hk+1, F (d′, h) = F (dk, h), hence, from Claim 2,
hmin(dk) must be smaller or equal to hK − 1.

Property 8 For all k ∈ {0, ...,K − 1} ∆(d′,d)F̄ (hmin(dk)) ≥ 1
n

Property 8 will be shown to be implied by Claim 3 stated and proved below.

In order to prove Claim 3, the following two tables provide the value of the variations in the H and
H̄-curves that result from performing specific Pigou-Dalton transfers.

h ∆(d′,dk)H(h)

(If any) h ≤ hk − 1 0

hk
1
n

hk + 1 ≤ h ≤ hk − 2 2h−hk−1−1

n

hk
2ht−hk−1−2

n
− 1

n

h ≥ hk+1
2h−hk−1

n
− 2h−hk+1

n

Table 1: ∆(d′,dk)H(h)

h ∆(d′,dk)H̄(h)

For h ≥ hk+1 0

hk+1 − 1 1
n

hk + 1 ≤ h ≤ hk+1 − 2 2hk+1−2−h

n

hk
2hk+1−2−ht

n
− 1

n

(If any) h ≤ hk − 1 2hk+1−2−h

n
− 2hk−1−h

n

Table 2: ∆(d′,dk)H̄(h)

These two tables enable the statement and proof of the following important Claim. Claim 3 applies
when a Pigou-Dalton transfer doesn’t preserve the H̄-dominance, it gives a minimal value to the differ-
ences between the cumulative functions of d′ and d.

Claim 3 Suppose that the distribution dk, with k ∈ {0, ...,K−1}, doesn’t preserve the H-dominance.
If hmin(dk) < hk+1 − 1 then:

∀h ∈ {hk + 1, ..., hmin(dk)},
hmin(dk)∑

i=h

∆(d′,d)F̄ (i) ≥ 1

n

And, ∀h ∈ {h0, ..., hk},
hmin(dk)∑

i=h

∆(d′,d)F̄ (i) ≥ 0
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Otherwise, if hmin(dk) ≥ hk+1 − 1 then:

∀h ∈ {hk + 1, ..., hmin(dk)},
hmin(dk)∑

i=h

∆(d′,d)F̄ (i) ≥ 2

n

And, ∀h ∈ {h0, ..., hk},
hmin(dk)∑

i=h

∆(d′,d)F̄ (i) ≥ 1

n

Proof Suppose k ∈ {0, ...,K − 1}, by definition of hmin(dk)):

∆(d′,d)H(hmin(dk)) < ∆(d′,dk)H(hmin(dk)) (1)

Rewriting the left term of this inequality, using Lemma 1 gives:

hmin(dk)−1∑
i=h0

∆(d′,d)H(i)) + ∆(d′,d)F (hmin(dk)) < ∆(d′,dk)H(hmin(dk)) (2)

From Table 1, for all h < hk:

∆(d′,dk)H(h) = 0

Moreover in hk:
∆(d′,d)H(hk) ≥

1

n
= ∆(d′,dk)H(hk)

Hence hmin(dk) ∈ {hk + 1, ..., hK − 1}.

First, I treat the case when h0 + 1 = hmin(dk). In this case, the previous Inequality (2) can be
written as follows:

∆(d′,d)H(h0) + ∆(d′,d)F (h0 + 1) < ∆(d′,d)H(dk, h0 + 1) (3)

Note that because h0+1 = hmin(dk), we must have i = 0, and ∆(d′,d)H(dk, hi+1) = 1
n . So Inequality

(3) becomes:

∆(d′,d)H(h0) + ∆(d′,d)F (hmin(dk)) <
1

n
(4)

Moreover, ∆(d′,d)H(h0) = ∆(d′,d)F (h0) ≥ 1
n , hence from Inequality (4) we get:

0 < ∆(d′,d)F̄ (h0 + 1)

=⇒ 1

n
≤ ∆(d′,d)F̄ (h0 + 1)

Finally, if I come back to Inequality (3), the following inequality completes the proof for the specific
case when h0 + 1 = hmin(dk)

∆(d′,d)F̄ (h0) + ∆(d′,d)F̄ (hmin(dk)) > − 1

n

=⇒ ∆(d′,d)F̄ (h0) + ∆(d′,d)F̄ (hmin(dk)) ≥ 0

I turn to the general case when hmin(dk) ∈ {h0 + 2, ..., hK − 1}. Using Lemma 1 on the left term of
Inequality (2), we get:

2

hmin(dk)−2∑
i=h0

∆(d′,d)H(i) +

hmin(dk)∑
i=hmin(dk)−1

∆(d′,d)F (k) < ∆(d′,d)H(dk, hmin(dk)) (5)
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It is possible to generalise the Inequality (5) for any category u ∈ {h0, ..., hmin(dk)− 2}:

u∑
i=h0

∆(d′,d)H(i) +

hmin(dk)−2∑
i=u

i∑
j=h0

∆(d′,d)H(i) +

hmin(dk)∑
i=u+1

∆(d′,d)F (i) < ∆(d′,d)H(dk, hmin(dk)) (6)

From Inequality (6), when u = h0, I can develop the left term and obtain:

hmin(dk)−2∑
i=h0

i∑
j=h0

∆(d′,d)H(j) +

hmin(dk)∑
i=h0

∆(d′,d)F (i) < ∆(d′,d)H(dk, hmin(dk)) (7)

From inequalities (2), (6) and (7), we write the following inequalities:

hmin(dk)−1∑
i=h0

∆(d′,d)H(i))−∆(d′,d)H(hmin(dk)) < ∆(d′,d)F̄ (hmin(dk))

u∑
i=h0

∆(d′,d)H(i) +

hmin(dk)−2∑
i=u

i∑
j=h0

∆(d′,d)H(j)−∆(d′,dt−1)H(hmin(dk)) <

hmin(dk)∑
i=u+1

∆(d′,d)F̄ (i)

hmin(dk)−2∑
i=h0

i∑
j=h0

∆(d′,d)H(j)−∆(d′,dk)H(hmin(dk)) <

hmin(dk)∑
i=h0

∆(d′,d)F̄ (i)

By definition , for any category h < hmin(dk), ∆(d′,d)H(h) ≥ ∆(d′,dk)H(h), hence, the previous
system of inequalities become:

hmin(dk)−1∑
i=h0

∆(d′,dk)H(i)−∆(d′,dk)H(hmin(dk)) < ∆(d′,d)F̄ (hmin(dk)) (8)

u∑
i=h0

∆(d′,dk)H(i) +

hmin(dk)−2∑
i=u

i∑
j=h0

∆(d′,dk)H(j)−∆(d′,dk)H(hmin(dk)) <

hmin(dk)∑
i=u+1

∆(d′,d)F̄ (i) (9)

hmin(dk)−2∑
i=h0

i∑
j=h0

∆(d′,dk)H(j)−∆(d′,dk)H(hmin(dk)) <

hmin(dk)∑
i=h0

∆(d′,d)F̄ (i) (10)

I first focus on the left hand side of Inequality (8). Applying Lemma 1:

hmin(dk)−1∑
i=h0

∆(d′,dk)H(i)−∆(d′,dk)H(hmin(dk)) = −∆(d′,dk)F (hmin(dk))

Moreover, for all possible hmin(dk) ∈ {hk+1, ..., hK−1}, such that hmin(dk) ̸= hk+1−1, ∆(d′,dk)F (hmin(dk)) =

0, then from Inequality (8):

0 < ∆(d′,d)F̄ (hmin(dk))

=⇒ 1

n
≤ ∆(d′,d)F̄ (hmin(dk))

Otherwise if hmin(dk) = hk+1 − 1, ∆(d′,dk)F (hmin(dk)) = − 1
n and then:

1

n
< ∆(d′,d)F̄ (hmin(dk))

=⇒ 2

n
≤ ∆(d′,d)F̄ (hmin(dk))
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Let me now focus on the left hand side of Inequality (9). I prove the following equality by induction,
for u ∈ {h0, ..., hmin(dk)− 2}:

hmin(dk)−2∑
i=u

i∑
j=h0

∆(d′,dk)H(j)−∆(d′,dk)H(hmin(dk))

= −∆(d′,dk)H(u+ 1)−
hmin(dk)∑
i=u+2

∆(d′,dk)F (i) (11)

Applying (11) on the left hand side of Inequality (9):

u∑
i=h0

∆(d′,dk)H(i)−∆(d′,dk)H(u+ 1)−
hmin(dk)∑
i=u+2

∆(d′,dk)F (i) <

hmin(dk)∑
i=u+1

∆(d′,d)F̄ (i)

Using Lemma 1, for any u ∈ {h0, ..., hmin(dk)− 2}:

−
hmin(dk)∑
i=u+1

∆(d′,dk)F (i) <

hmin(dk)∑
i=u+1

∆(d′,d)F̄ (i) (12)

Finally, replacing the left hand side of Inequality (10) with (11), I obtain:

−∆(d′,d)H(dk, h0 + 1)−
hmin(dk)∑
i=h0+2

∆(d′,dk)F (i) <

hmin(dk)∑
i=h0

∆(d′,d)F̄ (i) (13)

Using Lemma 1, I obtain from Inequality (13):

−
hmin(dk)∑

i=h0

∆(d′,dk)F (i) <

hmin(dk)∑
i=h0

∆(d′,d)F̄ (i)

Claim 4 is symmetric to Claim 3. It applies when a Pigou-Dalton transfer doesn’t preserve the
H-dominance, it gives a minimal value to the differences between the survival functions of d′ and d.

Claim 4 Suppose the distribution dk with k ∈ {0, ...,K − 1} doesn’t preserve the H̄-dominance. If
hmax(dk) > hk :

∀h ∈ {hmax(dk), ..., hk+1 − 2},
h∑

i=hmax(dk)

∆(d′,d)F (i) ≥ 1

n

And, ∀h ∈ {hk+1 − 1, ..., hK − 1},
h∑

i=hmax(dk)

∆(d′,d)F (i) ≥ 0

Otherwise, if hmax(dk) ≤ hk:

∀h ∈ {hmax(dk), ..., hk+1 − 2},
h∑

i=hmax(dk)

∆(d′,d)F (i) ≥ 2

n

And, ∀h ∈ {hk+1 − 1, ..., hK − 1},
h∑

i=hmax(dk)

∆(d′,d)F (i) ≥ 1

n

Proof Similar to Claim 3.
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Appendix B

Proof of Propositions 1 to 6

Proposition 1
Through this proof call d′′, the distribution obtained from d′ by the Hammond transfer. I provide

the variations generated by this transfer in Tables 3 and 4.

h ∆(d′,d′′)H(h)

(If any) h ≤ ht − 1 0

ht ≤ h ≤ ht+1 − 2 2h−ht

n

h = ht+1 − 1 2h−ht

n
− 2

n

h ≥ ht+1

2h−ht

n
− 2h−ht+1+2

n
+

2h−ht+1

n

Table 3: ∆(d′,d′′)H(h)

h ∆(d′,d′′)H̄(h)

For h ≥ ht+1 0

ht+1 − 1 1
n

ht ≤ h ≤ ht+1 − 2 0

(If any) h ≤ ht − 1 2ht−1−h

n

Table 4: ∆(d′,d′′)H̄(h)

Along the proof I suppose that t ∈ {0, ...,K − 1}. Additionally suppose that if t ≥ 1 then dt−1

doesn’t preserve the H̄-dominance. Finally, recall that from Property 5 hmax(dt) ∈ {h0, ..., ht+1 − 2},
here I suppose that hmax(dt) ≤ ht.

Under these conditions, I will first show that d′′ preserves the H-dominance (Part 1) and then that
it also preserves the H̄-dominance (Part 2).

Part 1, the H dominance. From Table 3 and Claim 2, I only focus on categories h ∈ {ht +

1, ..., hK − 1}.
Indeed, for any categories strictly below ht, ∆(d′,d′′)H(h) = 0, which is, by definition of the dom-

inance, always smaller or equal to ∆(d′,d)H(h). Moreover ∆(d′,d)F (ht) ≥ 0. Using Lemma 1, when
t > 0:

∆(d′,d)H(ht) =

ht−1∑
i=h0

∆(d′,d)H(i) + ∆(d′,d)F (ht) ≥
1

n
= ∆(d′,d′′)H(ht)

And if t = 0:

∆(d′,d)F (h0) = ∆(d′,d)H(h0) ≥
1

n
= ∆(d′,d′′)H(h0)

Hence I will only focus on categories h ∈ {ht + 1, .., hK − 1}. Note that for these categories,
h ≥ hmax(dt) + 1. I decompose this inequality into two possibilities:

(i) h ≥ hmax(dt) + 2 or (ii) h = hmax(dt) + 1

I also decompose (i) in two sub-cases:

(ia) h ≥ hmax(dt) + 2 and h0 ≤ hmax(dt)− 1

(ib) h ≥ hmax(dt) + 2 and h0 = hmax(dt)
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I start with the sub-case (ia). By definition of h0, ∆(d′,d)H(h0) ≥ 1
n . Hence for any category h ∈

{ht + 1, ..., hK − 1}:

2h−hmax(dt)

hmax(dt)−1∑
i=h0

∆(d′,d)H(i) ≥ 2h−hmax(dt)

n
(14)

Moreover from Claim 4, ∀h ∈ {hmax(dt), ..., hK − 1}:

h∑
i=hmax(dt)

∆(d′,d)F (i) ≥ 0 (15)

Finally I can combine the previous inequalities (14) and (15) leading to the following inequality for
any category h ∈ {ht + 1, ..., hK − 1}, such that h ≥ hmax(dt) + 2:

2h−hmax(dt)

hmax(dt)−1∑
i=h0

∆(d′,d)H(i) +

h∑
i=hmax(dt)

∆(d′,d)F (i) +

h−2∑
i=hmax(dt)

2h−2−i
i∑

j=hmax(dt)

∆(d′,d)F (j)

≥ 2h−hmax(dt)

n

Hence from Lemma 2, for any category h ∈ {ht + 1, ..., hK − 1}, such that h ≥ hmax(dt) + 2:

∆(d′,d)H(h) ≥ 2h−hmax(dt)

n
(16)

Because in Proposition 1, the main assumption states that hmax(dt) ≤ ht, the previous Inequality (16)
leads to the following inequality, which concludes case (ia):

∆(d′,d)H(h) ≥ 2h−ht

n
≥ ∆(d′,d′′)H(h)

I now turn to the case (ib), where h ≥ hmax(dt)+2 and h0 = hmax(dt). Because h0 = hmax(dt) ≤ ht,
from Claim 4:

∀h ∈ {h0, ..., ht+1 − 2},
h∑

i=h0

∆(d′,d)F (i) ≥ 2

n

∀h ∈ {ht+1 − 1, ..., hK − 1},
h∑

i=h0

∆(d′,d)F (i) ≥ 1

n

From Lemma 3, for any category h ∈ {ht + 1, ..., hK − 1}, such that h ≥ h0 + 2:

∆(d′,d)H(h) =

h∑
i=h0

∆(d′,d)F (i) +

h−2∑
i=h0

2h−2−i
i∑

j=h0

∆(d′,d)F (j)

From Lemma 3 and Claim 4, the following inequality holds for any category h ∈ {ht + 1, ..., ht+1 − 2},
such that h ≥ h0 + 2:

h∑
i=h0

∆(d′,d)F (i) +

h−2∑
i=h0

2h−2−i
i∑

j=h0

∆(d′,d)F (j) ≥ 2

n
+

h−2∑
i=h0

2h−1−i

n

≥ 2h−h0

n

Moreover from Table 3, for any h ∈ {ht + 1, ..., ht+1 − 2}:

∆(d′,d′′)H(h) =
2h−ht

n
≤ 2h−h0

n
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For h ∈ {ht+1 − 1, ht+1}:

h∑
i=h0

∆(d′,d)F (i) +

h−2∑
i=h0

2h−2−i
i∑

j=h0

∆(d′,d)F (j) ≥ 1

n
+

h−2∑
i=h0

2h−1−i

n

≥ 2h−h0

n
− 1

n

Similarly, again from Table 3, for any h ∈ {ht+1 − 1, ht+1}:

∆(d′,d′′)H(h) ≤ 2h−ht

n
− 1

n

Finally to conclude the case i(b) for h ∈ {ht+1 + 1, ..., hK − 1}, Lemma 3 implies:

∆(d′,d)H(h) =

h∑
i=h0

∆(d′,d)F (i) +

ht+1−2∑
i=h0

2h−2−i
i∑

j=h0

∆(d′,d)F (j) +

h−2∑
i=ht+1−1

2h−2−i
i∑

j=h0

∆(d′,d)F (j)

Using Claim 4, once again one obtains:

∆(d′,d)H(h) ≥ 1

n
+

ht+1−2∑
i=h0

2h−1−i

n
+

h−2∑
i=ht+1−1

2h−2−i

n

≥ 1

n
+

2h−h0

n
− 2h−ht+1+1

n
+

2h−ht+1

n
− 1

n

≥ 2h−h0

n
− 2h−ht+1

n

Moreover, from Table 3, ∆(d′,d′′)H(h) ≤ 2h−h0

n − 2h−ht+1

n :

For any h ∈ {ht+1 + 1, ..., hK − 1}

Which concludes case (ib). I now turn to case (ii), where the focus is on category hmax(dt) + 1 ∈
{ht + 1, ..., hK − 1}. I decompose case (ii) in two sub-cases:

(iia) h0 = ht

(iib) h0 < ht

In case (ii), hmax(dt) = ht, otherwise hmax(dt)+1 could not be an element of the set {ht+1, ..., hK −1}
and be smaller or equal to ht + 1 as assumed in the proposition. Also note that if ht + 1 = ht+1 − 1,
from row 3 on Table 3:

∆(d′,d′′)H(ht + 1) = 0

Hence, to focus on the non-trivial part of case (ii), I need to assume that ht + 1 ≤ ht+1 − 2. Because
hmax(dt) = ht and ht + 1 ≤ ht+1 − 2, from Claim 4, in ht + 1:

∆(d′,d)F (ht) + ∆(d′,d)F (ht + 1) ≥ 2

n

Moreover, from Table 3:

∆(d′,d′′)H(ht + 1) ≤ 2

n

It concludes case (iia), because when h0 = ht, in ht + 1:

∆(d′,d′)H(ht + 1) = ∆(d′,d)F (ht) + ∆(d′,d)F (ht + 1)
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Finally in case (iib), by using Lemma 1, I conclude that:

∆(d′,d)H(ht + 1) =

ht∑
i=h0

∆(d′,d)H(i) + ∆(d′,d)F (ht + 1)

= 2

ht−1∑
i=h0

∆(d′,d)H(i) + ∆(d′,d)F (ht) + ∆(d′,d)F (ht + 1) ≥ 2

n

Part 2, the H̄ dominance. From Table 4 and Claim 1, I only focus on categories h ∈ {h0, ..., ht−2}.
Indeed for categories h ∈ {ht+1, ..., hK − 1} ∪ {ht, ..., ht+1 − 2}:

∆(d′,d′′)H̄(h) = 0

Which is, by definition of the dominance, always smaller or equal to ∆(d′,d)H̄(h). By definition of
categories ht − 1 and ht+1 − 1:

∆(d′,d)F̄ (ht − 1) ≥ 1

n
and ∆(d′,d)F̄ (ht+1 − 1) ≥ 1

n

By using Lemma 1, it gives:

∆(d′,d)H̄(ht − 1) =

hK−1∑
i=ht

∆(d′,d)H̄(i) + ∆(d′,d)F̄ (ht − 1) ≥ 1

n

∆(d′,d)H̄(ht+1 − 1) =

hK∑
i=ht+1

∆(d′,d)H̄(i) + ∆(d′,d)F̄ (ht+1 − 1) ≥ 1

n

From Table 4:

∆(d′,d′′)H̄(ht − 1) =
1

n
and ∆(d′,d′′)H̄(ht+1 − 1) =

1

n

Hence, I will only focus on categories h ∈ {h0, ..., ht− 2}. Note that these categories only exist when
t > 0. I treat the two following possibilities:

(i) hmin(dt−1) = hK − 1 or (ii) hmin(dt−1) ∈ {ht−1 + 1, ..., hK − 2}

It is important to note from Table 4 that for any h ∈ {h0, ..., ht − 2}:

∆(d′,d′′)H̄(h) =
2ht−1−h

n

Hence in both cases (i) and (ii) I will show that for any h ∈ {h0, ..., ht − 2}:

∆(d′,d′)H̄(h) ≥ 2ht−1−h

n

I start with case (i). Because in this case hmin(dt−1) = hK − 1 ≥ ht−1, from Claim 3:

∀h ∈ {ht−1 + 1, ..., hK − 1},
hK−1∑
i=h

∆(d′,d)F̄ (i) ≥ 2

n

∀h ∈ {h0..., ht−1},
hK−1∑
i=h

∆(d′,d)F̄ (i) ≥ 1

n

For any category h ∈ {h0, ..., ht − 2}, from Lemma 4:

∆(d′,d)H̄(h) =

hK−1∑
i=h

∆(d′,d)F̄ (i) +

hK−1∑
i=h+2

2i−h−2
hK−1∑
j=i

∆(d′,d)F̄ (j)
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Using Claim 3, for any categories h ∈ {ht−1 + 1, ..., hK − 1}, it gives:

hK−1∑
i=h

∆(d′,d)F̄ (i) +

hK−1∑
i=h+2

2i−h−2
hK−1∑
j=i

∆(d′,d)F̄ (j) ≥ 2

n
+

hK−1∑
i=h+2

2i−h−1

n

≥ 2hK−h−1

n

Recalling that ht < hK , one gets:

2ht−1−h

n
<

2hK−h−1

n

Turning to categories h ∈ {ht−1 − 1, ht−1}, we have:

hK−1∑
i=h

∆(d′,d)F̄ (i) +

hK−1∑
i=h+2

2i−h−2
hK−1∑
j=i

∆(d′,d)F̄ (j) ≥ 1

n
+

hK−1∑
i=h+2

2i−h−1

n

≥ 2hK−h−1

n
− 1

n

It can be shown that:

2hK−h−1

n
− 1

n
≥ 2ht−1−h

n

Indeed, because we are in a discrete setting:

ht < hK =⇒ ht ≤ hK − 1

So,
2ht−h

n
≤ 2hK−h−1

n
=⇒ 2ht−1−h

n
≤ 2hK−h−1

n
− 1

n

Finally, for categories h ∈ {h0, ..., ht−1 − 2}, Lemma 4 can be written as follows:

∆(d′,d)H̄(h) =

hK−1∑
i=h

∆(d′,d)F̄ (i) +

ht−1∑
i=h+2

2i−h−2
hK−1∑
j=i

∆(d′,d)F̄ (j)

+

hK−1∑
i=ht−1+1

2i−h−2
hK−1∑
j=i

∆(d′,d)F̄ (j) (17)

With the help of Claim 3, (17) can be decomposed into the following two inequalities:

hK−1∑
i=h

∆(d′,d)F̄ (i) +

ht−1∑
i=h+2

2i−h−2
hK−1∑
j=i

∆(d′,d)F̄ (j) ≥ 1

n
+

ht−1∑
i=h+2

2i−h−2

n
(18)

hK−1∑
i=ht−1+1

2i−h−2
hK−1∑
j=i

∆(d′,d)F̄ (j) ≥
hK−1∑

i=ht−1+1

2i−h−1

n
(19)

Summing (18) and (19) yields:

∆(d′,d)H̄(h) ≥ 2ht−1−h−1

n
+

2hK−h−1

n
− 2ht−1−h

n

≥ 2hK−h−1

n
− 2ht−1−h−1

n

To conclude case (i), it can be shown that:

2hK−h−1

n
− 2ht−1−h−1

n
≥ 2ht−1−h

n
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Indeed, since hK − 2 ≥ ht:

2hK−h−2

n
≥ 2ht−1−h

n

=⇒ 2hK−h−1

n
− 2hK−h−2

n
≥ 2ht−1−h

n

Moreover, note that:

−2ht−1−h−1

n
≥ −2hK−h−2

n

=⇒ 2hK−h−1

n
− 2ht−1−h−1

n
≥ 2hK−h−1

n
− 2hK−h−2

n

Hence, we have:

2hK−h−1

n
− 2ht−1−h−1

n
≥ 2ht−1−h

n

I now turn to case (ii), where hmin(dt−1) ∈ {ht−1+1, ..., hK−2}. In this case, I proceed by contradiction.
Suppose that there exists a category hmax(d

′′) ∈ {h0, ..., ht − 2}. Then in hmax(d
′′):

∆(d′,d)F (hmax(d
′′)) ≥ 0 (20)

Indeed, suppose that Inequality (20) doesn’t hold. Then, using Lemma 1:

∆(d′,d)H̄(hmax(d
′′)) =

hK−1∑
i=hmax(d′′)+1

∆(d′,d)H̄(i) + ∆(d′,d)F̄ (hmax(d
′′))

Moreover by definition of hmax(d
′′), it leads to the following inequalities:

∆(d′,d)H̄(hmax(d
′′)) ≥

hK−1∑
i=hmax(d′′)+1

∆(d′,d′′)H̄(i) +
1

n

≥
ht−1∑

i=hmax(d′′)+1

2ht−1−i

n
+

1

n

≥ 2ht−1−hmax(d
′′)

n
= ∆(d′,d′′)H̄(hmax(d

′′))

Hence, Inequality (20) must hold. We can deduce from this inequality that:

hmax(d
′′) < hmin(dt−1) (21)

Indeed, recall from Property 7:

hmin(dt−1) ∈ {ht−1 + 1, ..., hK − 1}

Whenever hmin(dt−1) > ht − 2 or hmax(d
′′) < ht−1 + 1 it is trivial that Inequality (21) holds. When

hmin(dt−1) ≤ ht− 2 and hmax(d
′′) ≥ ht−1+1, both categories belong to the set {ht−1+1, ..., ht− 2}, on

this set, from the property 4 it is impossible for a category h′ for which ∆(d′,d)F (h′) ≥ 0 to be greater
than a category h′′ for which ∆(d′,d)F (h′′) < 0. Because, from Property 8, ∆(d′,d)F (hmin(dt−1)) < 0 , we
deduce that Inequality (21) holds. I now decompose Inequality (21) into two sub-cases:

(iia) hmax(d
′′) = hmin(dt−1)− 1

(iib) hmax(d
′′) ∈ {h0, ..., hmin(dt−1)− 2}
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I start with (iia). Then hmin(dt−1)− 1 ∈ {h0, ..., ht − 2}, from Lemma 1:

∆(d′,d)H̄(hmin(dt−1)− 1) = 2

hK−1∑
i=hmin(dt−1)+1

∆(d′,d)H̄(i) + ∆(d′,d)F̄ (hmin(dt−1))

+ ∆(d′,d)F̄ (hmin(dt−1)− 1) (22)

I can rewrite (22) as:

∆(d′,d)H̄(hmin(dt−1)− 1) = 2

ht∑
i=hmin(dt−1)+1

∆(d′,d)H̄(i) + 2

hK−1∑
i=ht+1

∆(d′,d)H̄(i)

+ ∆(d′,d)F̄ (hmin(dt−1)) + ∆(d′,d)F̄ (hmin(dt−1)− 1) (23)

I decompose the right hand side of (23) into the following three inequalities:

ht∑
i=hmin(dt−1)+1

∆(d′,d)H̄(i) ≥
ht∑

i=hmin(dt−1)+1

∆(d′,d′′)H̄(i), by definition of hmax(d
′′)

hK−1∑
i=ht+1

∆(d′,d)H̄(i) ≥ 1

n
, because ∆(d′,d)H̄(hK − 1) ≥ 1

n

From Claim 3, ∆(d′,d)F̄ (hmin(dt−1)) + ∆(d′,d)F̄ (hmin(dt−1)− 1) ≥ 0

Hence, summing these three inequalities gives:

∆(d′,d)H̄(hmin(dt−1)− 1) ≥ 2

ht∑
i=hmin(dt−1)+1

∆(d′,d′′)H̄(i) +
2

n
(24)

If ht = hmin(dt−1) + 1 then from Inequality (24) and Table 4:

∆(d′,d)H̄(hmin(dt−1)− 1) ≥ 2

n
=

2ht−1−(hmin(dt−1)−1)

n
= ∆(d′,d′′)H̄(hmin(dt−1)− 1)

Finally, if ht > hmin(dt−1) + 1 then from Inequality (24) and Table 4:

∆(d′,d)H̄(hmin(dt−1)− 1) ≥ 2

ht−1∑
i=hmin(dt−1)+1

2ht−1−i

n
+

2

n
=

2ht−1−(hmin(dt−1)−1)

n

This concludes the case (iia) as it is impossible to have hmax(d
′′) = hmin(dt−1) − 1. I now turn to the

case (iib) where hmax(d
′′) ∈ {h0, ..., hmin(dt−1)− 2}. I distinguish two possibilities in this case:

hK − 1 > hmin(dt−1) or hK − 1 = hmin(dt−1)

Consider first hK − 1 > hmin(dt−1). From Claim 3:

hmin(dt−1)∑
i=h_max(d′′)

∆(d′,d)F̄ (i) ≥ 0

In this case from Lemma 5, we have for hmax(d
′′) ∈ {h0, ..., hmin(dt−1)− 2}:

∆(d′,d)H̄(hmax(d
′′)) = 2hmin(dt−1)−hmax(d

′′)
hK−1∑

i=hmin(dt−1)+1

∆(d′,d)H̄(i)

+

hmin(dt−1)∑
i=hmax(d′′)

∆(d′,d)F̄ (i) +

hmin(dt−1)∑
i=hmax(d′′)+2

2i−hmax(d
′′)−2

hmin(dt−1)∑
j=i

∆(d′,d)F̄ (j)
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Moreover:

∆(d′,d)H̄(hK − 1) ≥ 1

n

Hence, from Lemma 5 and Claim 3:

∆(d′,d)H̄(hmax(d
′′)) ≥ 2hmin(dt−1)−hmax(d

′′)

n
(25)

Hence, if hmin(dt−1) ≥ ht − 1, we conclude from Inequality (25) and Table 4:

∆(d′,d)H̄(hmax(d
′′)) ≥ 2ht−1−hmax(d

′′)

n
= ∆(d′,d′′)H̄(hmax(d

′′))

If however hmin(dt−1) < ht − 1, Lemma 5 needs to be rewritten as follows:

∆(d′,d)H̄(hmax(d
′′)) = 2hmin(dt−1)−hmax(d

′′)(

ht−1∑
i=hmin(dt−1)+1

∆(d′,d)H̄(i) +

hK−1∑
i=ht

∆(d′,d)H̄(i))

+

hmin(dt−1)∑
i=hmax(d′′)

∆(d′,d)F̄ (i) +

hmin(dt−1)∑
i=hmax(d′′)+2

2i−hmax(d
′′)−2

hmin(dt−1)∑
j=i

∆(d′,d)F̄ (j)

Once again, from Lemma 5 and Claim 3:

∆(d′,d)H̄(hmax(d
′′)) ≥ 2hmin(dt−1)−hmax(d

′′)(

ht−1∑
i=hmin(dt−1)+1

∆(d′,d′′)H̄(i) +
1

n
)

Note from Table 4 that for any h ≤ ht − 1:

∆(d′,d′′)H̄(h) ≥ 2ht−1−h

n

Hence:

∆(d′,d)H̄(hmax(d
′′)) ≥ 2hmin(dt−1)−hmax(d

′′)(

ht−1∑
i=hmin(dt−1)+1

2ht−1−i

n
+

1

n
)

≥ 2hmin(dt−1)−hmax(d
′′) × 2ht−1−hmin(dt−1)

n

≥ 2ht−1−hmax(d
′′)

n
= ∆(d′,d′′)H̄(hmax(d

′′))

Hence when hK − 1 > hmin(dt−1), hmax(d
′′) cannot exist. Finally I turn to the case when hK − 1 =

hmin(dt−1). Because hmin(dt−1) = hK − 1:

∀h ∈ {h0, ..., hmin(dk)},
hmin(dk)∑

i=h

∆(d′,d)F̄ (i) ≥ 1

n

From Lemma 4:

∆(d′,d)H̄(hmax(d
′′)) =

hK−1∑
i=hmax(d′′)

∆(d′,d′′)F̄ (i) +

hK−1∑
i=hmax(d′′)+2

2i−hmax(d
′′)−2

hK−1∑
j=i

∆(d′,d)F̄ (j)

Using Lemma 4 and Claim 3, it gives:

∆(d′,d)H̄(hmax(d
′′)) ≥ 1

n
+

hK−1∑
i=hmax(d′′)+2

2i−hmax(d
′′)−2

n

≥ 2hK−hmax(d
′′)−2

n
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Knowing that ht < hK , one concludes that:

∆(d′,d)H̄(hmax(d
′′)) ≥ 2ht−hmax(d

′′)−1

n
= ∆(d′,d′′)H̄(hmax(d

′′))

Hence, the category hmax(d
′′) cannot exist, which concludes the proof.

Proposition 2 I provide the variations generated by the Hammond transfer in Tables 5 and 6.

h ∆(d′,d′′)H(h)

(If any) h ≤ e− 1 0

e ≤ h ≤ ht+1 − 2 2h−e

n

h = ht+1 − 1 2h−e

n
− 2

n

h ≥ ht+1

2h−e

n
− 2h−ht+1−2

n
+

2h−ht+1

n

Table 5: ∆(d′,d′′)H(h)

h ∆(d′,d′′)H̄(h)

h ≥ ht+1 0

ht+1 − 1 1
n

e ≤ h ≤ ht+1 − 2 0

(If any) h ≤ e− 1 2e−1−h

n

Table 6: ∆(d′,d′′)H̄(h)

Along the proof I suppose t ∈ {0, ...,K − 1}, and ht < hmax(dt). Moreover suppose that there is a
category h ∈ {ht, ..., hmax(dt)} such that ∆(d′,d)F (h) ≥ 2

n . Additionally, suppose that if t ≥ 1, then dt−1

doesn’t preserve the H-dominance.

Part 1, the H dominance. From Table 5 and Claim 2, I only need focus on categories h ∈
{e+ 1, ..., hK − 1}. It is important to see from Table 5 that for any category h ∈ {e+ 1, ..., hK − 1}:

∆(d′,d′′)H(h) ≤ 2h−e

n

Along the proof, I will systematically show that:

∆(d′,d)H(h) ≥ 2h−e

n

I start with categories h ∈ {e, ..., hmax(dt)}. I proceed by induction. Note that for category {hmax(dt)},
from Property 6, we have:

∆(d′,d)F (hmax(dt)) ≥
1

n

and so for categories h ∈ {e, ..., hmax(dt)}, from property 4, we have:

∆(d′,d)F (h) ≥ 0

Using Lemma 1, in e:

∆(d′,d)H(e) ≥
e−1∑
i=h0

∆(d′,d)H(i) ≥ 1

n
= ∆(d′,d′′)H(e)

36



Now suppose by induction that there is a h ∈ {e, ..., hmax(dt) − 1} such that for all h′ ∈ {e, ..., h},
∆(d′,d)H(h′) ≥ 2h

′−e

n , then, using Lemma 1 in h+ 1:

∆(d′,d)H(h+ 1) ≥
e−1∑
i=h0

∆(d′,d)H(i) +

h−1∑
i=e

2i−e

n
≥ 2h−e

n

Hence, I proved by induction that for any h ∈ {e, ..., hmax(dt)}:

∆(d′,d)H(h) ≥ ∆(d′,d′′)H(h)

I now turn to categories h ∈ {hmax(dt)+1, ..., hK−1} (recall from Property 8 that hmax(dt)+1 ≤ hK−1).
For the category hmax(dt) + 1, by Lemma 1:

∆(d′,d)H(hmax(dt) + 1) = 2

hmax(dt)∑
i=h0

∆(d′,d)H(i) +

hmax(dt)+1∑
i=hmax(dt)

∆(d′,d)F (i) (26)

Moreover for categories h ≥ hmax + 2, we obtain from Lemma 2:

∆(d′,d)H(h) = 2h−hmax(dt)

hmax(dt)−1∑
i=h0

∆(d′,d)H(i) +

h∑
i=hmax(dt)

∆(d′,d)F (i)

+

h−2∑
i=hmax(dt)

2h−2−i
i∑

j=hmax(dt)

∆(d′,d)F (j) (27)

Recall that Claim 4 states that for any categories h ∈ {hmax(dt), ..., hK − 1}:

h∑
i=hmax(dt)

∆(d′,d)F (i) ≥ 0

Using Claim 4, (26) and (27) lead to the following inequality, for any h ∈ {hmax(dt) + 1, ..., hK − 1}:

∆(d′,d)H(h) ≥ 2h−hmax(dt)

hmax(dt)−1∑
i=h0

∆(d′,d)H(i) (28)

In the specific case when hmax(dt) = e, we conclude from Inequality (28) that the following holds
for any categories h ∈ {hmax(dt) + 1, ..., hK − 1}:

∆(d′,d)H(h) ≥ 2h−hmax(dt)

n
=

2h−e

n

Finally, I turn to the case when hmax(dt) > e. I previously proved that for all category h ∈ {e, ..., hmax(dt)}:

∆(d′,d)H(h) ≥ 2h−e

n

Using this result, we conclude from Inequality (28) that the following holds for any category h ∈
{hmax(dt) + 1, ..., hK − 1}:

∆(d′,d)H(h) ≥ 2h−hmax(dt)

hmax(dt)−1∑
i=e

2i−e

n
+ 2h−hmax(dt)

e−1∑
i=h0

∆(d′,d)H(i)

≥ 2h−hmax(dt)

hmax(dt)−1∑
i=e

2i−e

n
+

2h−hmax(dt)

n

≥ 2h−e

n
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Hence, d′′ preserves the H-dominance.

Part 2, the H̄ dominance. From Table 6 and Claim 1, I only need to focus on categories
h ∈ {h0, ..., e− 1}. Note that, by definition of e, for categories h ∈ {ht, ..., e− 1}:

∆(d′,d)F̄ (h) ≥ − 1

n

Moreover, by definition of the dominance, in e:

∆(d′,d)H̄(e) ≥ 0

By using Lemma 1:

hK−1∑
i=e+1

∆(d′,d)H̄(i) + ∆(d′,d)F̄ (e) ≥ 0 (29)

From Inequality (29) and the definition of e, we have:

hK−1∑
i=e+1

∆(d′,d)H̄(i) ≥ 2

n
(30)

Given (30), we have in the category e− 1:

∆(d′,d)H̄(e− 1) ≥
hK−1∑
i=e

∆(d′,d)H̄(i)− 1

n
≥ 1

n

Thus I proved that ∆(d′,d)H̄(e − 1) ≥ 1
n . Suppose now by induction that there is a category h ∈

{ht + 1, ..., e− 1} such that for all categories h′ ∈ {h, ..., e− 1}, ∆(d′,d)H̄(h′) ≥ 2e−1−h′

n . Then in h− 1:

∆(d′,d)H̄(h− 1) ≥
hK−1∑
i=e

∆(d′,d)H̄(i) +

e−1∑
i=h

∆(d′,d)H̄(i)− 1

n

=⇒ ∆(d′,d)H̄(h− 1) ≥ 2

n
+

e−1∑
i=h

2e−1−i

n
− 1

n
=

2e−h

n

Hence for any h ∈ {ht, ..., e − 1}, ∆(d′,d)H̄(h) ≥ 2e−1−h

n . To conclude, note from Table 6 that, for
categories h ∈ {ht, ..., e− 1}:

∆(d′,d′′)H̄(h) <
2e−h

n

I omit the proof for categories h ∈ {h0, ..., ht − 1} because it is almost identical to that of Proposition 1.
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Proposition 3 I provide the variations generated by the Hammond transfer in Tables 7 and 8.

h ∆(d′,d′′)H(h)

h < ht 0

ht ≤ h ≤ e− 1 2h−ht

n

e ≤ h ≤ j − 2 2h−ht

n
− 2h−e

n

h = j − 1 2h−ht

n
− 2h−e

n
− 1

n

h ≥ j 2h−ht

n
− 2h−e

n
− 2h−j

n

Table 7: ∆(d′,d′′)H(h)

h ∆(d′,d′′)H̄(h)

h ≥ i 0

j − 1 1
n

e ≤ h ≤ j − 2 2j−2−h

n

ht ≤ h ≤ e− 1 2j−2−h

n
− 2e−1−h

n

h ≤ ht − 1 2j−2−h

n
− 2e−1−h

n
+ 2ht−1−h

n

Table 8: ∆(d′,d′′)H̄(h)

Along the proof I suppose t ∈ {0, ...,K − 1}, and ht < hmax(dt). Moreover suppose that for all
categories h ∈ {ht, ..., hmax(dt)}, ∆(d′,d)F (h) ≤ 1

n . Additionally, suppose that if t ≥ 1, then dt−1 doesn’t
preserve the H-dominance.

Part 1 the H dominance From Table 7 and Claim 2 I only need to focus on categories h ∈
{ht + 1, ..., hK − 1}. Note that for all categories h ∈ {2, ..., L}:

∆(d′,d)H(h) = 2∆(d′,d)H(h− 1) + ∆(d′,d)F (h)−∆(d′,d)F (h− 1) (31)

From (31) and knowing that for categories h ∈ {ht, ..., e − 1}, ∆(d′,d)F (h − 1) ≤ ∆(d′,d)F (h), for these
categories:

∆(d′,d)H(h) ≥ 2∆(d′,d)H(h− 1)

Which implies by induction, that for any h ∈ {ht, ..., e− 1}:

∆(d′,d)H(h) ≥ 2h−ht∆(d′,d)H(ht) ≥
2h−ht

n

Turning to categories h ∈ {e, ..., hK − 1}, I treat two possibilities:

(i) e ≤ hmax(dt) or (ii) e = hmax(dt) + 1

I start with the case (i). For categories h ∈ {e, ..., hmax(dt)}:

∆(d′,d)F (h) ≥ 0

By using Lemma 1, in e:

∆(d′,d)H(e) ≥
e−1∑
i=ht

∆(d′,d)H(i)

≥
e−1∑
i=ht

2i−ht

n

≥ 2e−ht

n
− 1

n
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Suppose by induction that there is a h ∈ {e, ..., hmax(dt)−1} such that for all h′ ∈ {e, ..., h}, ∆(d′,d)H(h′) ≥
2h

′−ht

n − 2h
′−j

n , then in h+ 1:

∆(d′,d)H(h+ 1) ≥
e−1∑
i=ht

∆(d′,d)H(i) +

h∑
i=e

(
2i−ht

n
− 2i−e

n
) ≥ 2h+1−ht

n
− 2h+1−e

n

Hence, I proved by induction that for any h ∈ {e, ..., hmax(dt)}:

∆(d′,d)H(h) ≥ 2h−ht

n
− 2h−e

n

Note from Table 7 that for any h ∈ {e, ..., hmax(dt)}:

∆(d′,d′′)H(h) ≤ 2h−ht

n
− 2h−e

n

For the category hmax(dt) + 1, from Lemma 1:

∆(d′,d)H(hmax(dt) + 1) = 2

hmax(dt)−1∑
i=ht

∆(d′,d)H(i) + ∆(d′,d)F (hmax(dt)) + ∆(d′,d)F (hmax(dt) + 1) (32)

From Claim 4, we obtain from Equality (32) the following inequality:

∆(d′,d)H(hmax(dt) + 1) ≥ 2

hmax(dt)−1∑
i=ht

∆(d′,d)H(i) (33)

Moreover for categories h ∈ {hmax(dt) + 2, ..., hK − 1}, we have from Lemma 2:

∆(d′,d)H(h) = 2h−hmax(dt)

hmax(dt)−1∑
i=h0

∆(d′,d)H(i) +

h∑
i=hmax(dt)

∆(d′,d)F (i)

+

h−2∑
i=hmax(dt)

2h−2−i
i∑

j=hmax(dt)

∆(d′,d)F (j)

Similarly, because of Claim 4, we have for any h ∈ {hmax(dt) + 2, ..., hK − 1}:

∆(d′,d)H(h) ≥ 2h−hmax(dt)

hmax(dt)−1∑
i=h0

∆(d′,d)H(i) (34)

If j < hmax(dt) it is possible to rewrite Inequalities (33) and (34) as follows, for any category h ∈
{hmax(dt) + 1, ..., hK − 1}:

∆(d′,d)H(h) ≥ 2h−hmax(dt)(
e−1∑
i=ht

2i−ht

n
+

hmax(dt)−1∑
i=e

(
2i−ht

n
− 2i−e

n
)) =

2h−ht

n
− 2h−e

n

Finally to conclude case (i), if e = hmax(dt), from Inequalities (33) and (34), for any category h ∈
{hmax(dt) + 1, ..., hK − 1}:

∆(d′,d)H(h) ≥ 2h−hmax(dt)

hmax(dt)−1∑
i=ht

2i−ht

n
=

2h−ht

n
− 2h−e

n

I now turn to the case (ii) where e = hmax(dt) + 1. In category e, we know thanks to Lemma 1:

∆(d′,d)H(e) = 2

hmax(dt)−1∑
i=ht

2i−ht

n
+∆(d′,d)F (hmax(dt)) + ∆(d′,d)F (hmax(dt) + 1) (35)
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From Claim 4, if e ≤ ht+1 − 2, (35) implies:

∆(d′,d)H(e) ≥ 2

hmax(dt)−1∑
i=ht

2i−ht

n
+

1

n

≥ 2e−ht

n
− 1

n
≥ ∆(d′,d′′)H(e)

If however e > ht+1 − 2, i.e e = ht+1 − 1, one can conclude from Claim 4 and (35) that:

∆(d′,d)H(e) ≥ 2

hmax(dt)−1∑
i=ht

2i−ht

n

≥ 2e−ht

n
− 2

n
= ∆(d′,d′′)H(e)

I then turn to categories h ∈ {e+ 1, ..., hK − 1}, from Lemma 2:

∆(d′,d)H(h) = 2h−hmax(dt)

hmax(dt)−1∑
i=h0

∆(d′,d)H(i) +

h∑
i=hmax(dt)

∆(d′,d)F (i)

+

h−2∑
i=hmax(dt)

2h−2−i
i∑

j=hmax(dt)

∆(d′,d)F (j) (36)

For categories h ∈ {e+ 1, ..., ht+1 − 2}, we conclude from Claim 4:

h∑
i=hmax(dt)

∆(d′,d)F (i) ≥ 1

n

Hence, (36) and Claim 4 imply that, for any h ∈ {e+ 1, ..., ht+1 − 2}:

∆(d′,d)H(h) ≥ 2h−hmax(dt)

hmax(dt)−1∑
i=h0

∆(d′,d)H(i) +
1

n
+

h−2∑
i=hmax(dt)

2h−2−i

n
(37)

Recalling that in case (ii), e = hmax(dt) + 1, one can rewrite Inequality (37) as:

∆(d′,d)H(h) ≥ 2h−e+1
e−2∑
i=h0

∆(d′,d)H(i) +
1

n
+

h−2∑
i=e−1

2h−2−i

n

≥ 2h−j+1
e−2∑
i=h0

∆(d′,d)H(i) +
2h−e

n

≥ 2h−e+1
e−2∑
i=ht

2i−ht

n
+

2h−e

n

≥ 2h−ht

n
− 2h−e

n

Note that for any category h ∈ {e+ 1, ..., ht+1 − 2}, from Table 7:

2h−ht

n
− 2h−e

n
≥ ∆(d′,d′′)H(h)

Turning now to categories h ∈ {ht+1 − 1, ..., hK − 1}, we conclude from Claim 4 that:

h∑
i=hmax(dt)

∆(d′,d)F (i) ≥ 0
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Hence (36) and Claim 4, both imply, for any h ∈ {ht+1 − 1, ht+1}:

∆(d′,d)H(h) ≥ 2h−hmax(dt)

n

hmax(dt)−1∑
i=h0

∆(d′,d)H(i) +

h−2∑
i=hmax(dt)

2h−2−i

n

≥ 2h−e+1

n

j−2∑
i=ht

2i−ht

n
+

2h−e

n
− 1

n

≥ 2h−ht

n
− 2h−e

n
− 1

n

Note that ht+1 − 1 ≥ j − 1. Hence from Table 7, we have for any category h ∈ {ht+1 − 1, ht+1}:

∆(d′,d′′)H(h) ≤ 2h−ht

n
− 2h−e

n
− 1

n

Finally, for categories h ∈ {ht+1, ..., hK − 1}, we also deduce from (36) and Claim 4:

∆(d′,d)H(h) ≥ 2h−hmax(dt)

n

hmax(dt)−1∑
i=h0

∆(d′,d)H(i) +

ht+1−2∑
i=hmax(dt)

2h−2−i

n

≥ 2h−e+1

n

e−2∑
i=ht

2i−ht

n
+

ht+1−2∑
i=e−1

2h−2−i

n

≥ 2h−ht

n
− 2h−e

n
− 2h−ht+1

n

Hence, since ht+1 ≥ j, we have for any category h ∈ {ht+1, ..., hK − 1}:

∆(d′,d′′)H(h) =
2h−ht

n
− 2h−e

n
− 2h−j

n

≤ 2h−ht

n
− 2h−e

n
− 2h−ht+1

n

Part 2 the H̄ dominance. From Table 8 and Claim 1, I only need to focus on categories h ∈
{h0, ..., j − 1}. Note that for all categories h ∈ {1, ..., L− 1}:

∆(d′,d)H̄(h) = 2∆(d′,d)H̄(h+ 1) + ∆(d′,d)F̄ (h)−∆(d′,d)F̄ (h+ 1) (38)

In j − 1, ∆(d′,d)F̄ (j − 1) > ∆(d′,d)F̄ (j). Hence, from (38), in j − 1:

∆(d′,d)H̄(j − 1) ≥ 2∆(d′,d)H̄(j) + ∆(d′,d)F̄ (j − 1)−∆(d′,d)F̄ (j) ≥ 1

n

Moreover for categories h ∈ {e, ..., j − 2}:

∆(d′,d)F̄ (h) ≥ 0

It thus follows from Lemma 1, that in j − 2:

∆(d′,d)H̄(j − 2) ≥
hK−1∑
i=j−1

∆(d′,d)H̄(i) ≥ 1

n

Suppose by induction that there is a h ∈ {e+1, ..., j−2} such that for all h′ ∈ {h, ..., j−2}, ∆(d′,d)H̄(h′) ≥
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2j−2−h′

n , then in h− 1:

∆(d′,d)H̄(h− 1) ≥
j−2∑
i=h

∆(d′,d)H̄(i) +

hK−1∑
i=j−1

∆(d′,d)H̄(i)

≥
j−2∑
i=h

2j−2−i

n
+

1

n

≥ 2j−1−h

n

Hence I proved by induction that for any h ∈ {e, ..., j − 2}:

∆(d′,d)H̄(h) ≥ 2j−2−h

n

I now turn to categories h ∈ {ht, ..., e−1}. Note that by definition of e, {ht, ..., e−1} ⊂ {ht, ..., hmax(dt)},
moreover for categories h ∈ {ht, ..., hmax(dt)}, it is assumed that:

∆(d′,d)F̄ (h) ≥ − 1

n
(39)

Hence from Lemma 1, in e− 1:

∆(d′,d)H̄(e− 1) ≥
j−2∑
i=e

∆(d′,d)H̄(i) +

hK−1∑
i=j−1

∆(d′,d)H̄(i)− 1

n

≥
j−2∑
i=e

2j−2−i

n

≥ 2j−1−e

n
− 1

n

For categories h ∈ {ht, ..., e− 2}, knowing that ∆(d′,d)F̄ (h) ≥ ∆(d′,d)F̄ (h+ 1), from (38):

∆(d′,d)H̄(h) ≥ 2∆(d′,d)H̄(h+ 1) (40)

Which implies that for any h ∈ {ht, ..., e− 1}:

∆(d′,d)H̄(h) ≥ 2e−1−h∆(d′,d)H̄(e− 1)

≥ 2e−1−h(
2j−1−e

n
− 1

n
)

≥ 2j−2−h

n
− 2e−1−h

n

The proof for categories h ∈ {h0, ..., ht−1} is omitted because it is almost identical to that of Proposition
1.
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Proposition 4 I provide the variations generated by the Hammond transfer in Tables 9 and 10.

h ∆(d′,d′′)H(h)

(If any) h ≤ hK−1 − 1 0

hK−1
1
n

hK−1+1 ≤ h ≤ hK−1 0

h ≥ hK
2h−hK

n

Table 9: ∆(d′,d′′)H(h)

h ∆(d′,d′′)H̄(h)

For h ≥ hK 0

hK−1+1 ≤ h ≤ hK−1 2hK−1−h

n

hK−1
2hK−1−h

n
− 2

n

(If any) h ≤ hK−1 − 1

2hK−1−h

n
−

2hK−1+1−h

n
+

2hK−1−1−h

n

Table 10: ∆(d′,d′′)H̄(h)

We suppose all through the proof that dK−1 doesn’t preserve the H-dominance and that hmin(dK−1) =

hK − 1.

Part 1, the H dominance. From Table 9 and Claim 2 I only need to focus on categories {hK−1 +

1, ..., hK − 1}. Note that for all h ∈ {hK−1 + 1, ..., hK − 1}:

∆(d′,d′′)H(h) = 0

Hence, d′′ preserves the H-dominance.

Part 2, the H̄ dominance. From Table 10 and Claim 1, I only need to focus on categories
h ∈ {h0, ..., hK − 2}. I start with the category hK − 2. If hK − 2 ≥ hK−1 +1 we conclude from Claim 3:

∆(d′,d′′)H̄(hK − 2) = ∆(d′,d)F̄ (hK − 2) + ∆(d′,d)F̄ (hK − 1) ≥ 2

n

Otherwise, if hK − 2 = hK−1, from Table 10:

∆(d′,d′′)H̄(hK − 2) = 0

For categories h ∈ {h0, ..., hK − 3}, we conclude from Lemma 4:

∆(d′,d)H̄(h) =

hK−1∑
i=h

∆(d′,d)F̄ (i) +

hK−1∑
i=h+2

2i−h−2
hK−1∑
j=i

∆(d′,d)F̄ (j) (41)

If h ≥ hK−1 + 1, we conclude from Claim 3 and (41):

∆(d′,d)H̄(h) ≥ 2

n
+

hK−1∑
i=h+2

2i−h−1

n

≥ 2hK−h−1

n
= ∆(d′,d′′)H̄(h)

If on the other hand h ∈ {hK−1 − 1, hK−1}:

∆(d′,d)H̄(h) ≥ 1

n
+

hK−1∑
i=h+2

2i−h−1

n

≥ 2hK−h−1

n
− 1

n
≥ ∆(d′,d′′)H̄(h)
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Finally, if h ≤ hK−1 − 2:

∆(d′,d)H̄(h) ≥ 1

n
+

hK−1∑
i=hK−1+1

2i−h−1

n
+

hK−1∑
i=h+2

2i−h−2

n

≥ 2hK−1−h

n
− 2hK−1−1−h

n
≥ ∆(d′,d′′)H̄(h)

Hence d′′ preserves the H̄-dominance.

Proposition 5. I provide the variations generated by the Hammond transfer in Tables 11 and 12.

h ∆(d′,d′′)H(h)

(If any) h ≤ hK−1 − 1 0

hK−1
1
n

hK−1 + 1 ≤ h ≤ e 0

h ≥ e+ 1 2h−e−1

n

Table 11: ∆(d′,d′′)H(h)

h ∆(d′,d′′)H̄(h)

h ≥ e+ 1 0

hK−1 + 1 ≤ h ≤ e 2e−h

n

hK−1
2e−hK−1

n
− 2

n

(If any) h ≤ hK−1 − 1
2e−h

n
− 2hK−1+1−h

n
+

2hK−1−1−h

n

Table 12: ∆(d′,d′′)H̄(h)

Along the proof, it is supposed that dK−1 does not preserve the H-dominance and does preserve the
H̄-dominance. Moreover suppose that hK −1 > hmin(dK−1). It is also supposed that there is a category
h ∈ {hmin(dK−1), ..., hK − 1} such that ∆(d′,d)F̄ (h) ≥ 2

n .

Part 1, the H dominance. From Table 11 and Claim 1, I only need to focus on categories
h ∈ {e+ 1, ..., hK − 1}. By definition of e, we have for these categories:

∆(d′,d)F̄ (h) ≤ 1

n

Moreover, from property 4:

∆(d′,d)F̄ (h) ≥ 1

n

Hence for any category h ∈ {e+ 1, ..., hK − 1}:

∆(d′,d)F̄ (h) =
1

n

Using Lemma 1 and by definition of the dominance, we have in category e:

∆(d′,d)H(e) =

e−1∑
i=h0

∆(d′,d)H(i) + ∆(d′,d)F (e) ≥ 0

Which implies that:

e−1∑
i=h0

∆(d′,d)H(i) ≥ ∆(d′,d)F̄ (e) ≥ 2

n
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Hence in e+ 1:

∆(d′,d)H(e+ 1) =

e∑
i=h0

∆(d′,d)H(i)− 1

n
≥ 1

n

Knowing that for all h ∈ {e+ 1, ..., hK−1}:

∆(d′,d)H(h) = 2h−e−1∆(d′,d)H(e+ 1)

Hence, to conclude:

∆(d′,d)H(h) ≥ 2h−e−1

n

Hence, d′′ preserves the H-dominance.

Part 2, the H̄ dominance. From Table 12 and Claim 1, I only need to focus on categories
h ∈ {h0, ..., e− 1}. Moreover, I only need to focus on the case when e = hK − 1. Indeed, suppose that:

e ≤ hK − 2

In this case the reader can easily verify that the distribution dK−1 can be obtained from d′′ by a Hammond
transfer. It implies that the H̄-curve of dK−1 lies nowhere above the H̄-curve of d′′ and, because it is
assumed that dK−1 preserves the H̄-dominance, it implies that d′′ also preserves the H̄-dominance. I
turn to the non-trivial case, when:

hK − 1 = e

For categories h ∈ {hmin(dK−1), ..., hK − 1}:

∆(d′,d)F̄ (h) ≥ 1

n

Moreover in hK − 1, by definition of e:

∆(d′,d)H̄(hK − 1) ≥ 2

n

Suppose by induction that there is a category h ∈ {hmin(dK−1) + 1, ..., hK − 1} such that for any
h′ ∈ {h, ..., hK − 1}, ∆(d′,d)H̄(h′) ≥ 2hK−1−h′

n , then in h− 1, from Lemma 1:

∆(d′,d)H̄(h− 1) ≥
hK−1∑
i=h

2hK−1−i

n
+

1

n

≥ 2hK−h

n

Hence I just proved by induction that for any h ∈ {hmin(dK−1), ..., hK − 1}:

∆(d′,d)H̄(h) ≥ 2hK−1−h

n

I now turn to the category hmin(dK−1)− 1. First if hmin(dK−1) = hK − 1:

∆(d′,d)H̄(hmin(dK−1)− 1) = ∆(d′,d)F̄ (hmin(dK−1)) + ∆(d′,d)F̄ (hmin(dK−1)− 1)

From Claim 3, if hK − 2 = hK−1 :

∆(d′,d)F̄ (hmin(dK−1)) + ∆(d′,d)F̄ (hmin(dK−1)− 1) ≥ 1

n
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Moreover note that if hK − 2 = hK−1, from Table 12:

∆(d′,d)H̄(hK − 2) =
1

n

Otherwise if hK − 2 > hK−1, from Claim 3:

∆(d′,d)F̄ (hmin(dK−1)) + ∆(d′,d)F̄ (hmin(dK−1)− 1) ≥ 2

n
= ∆(d′,d)H̄(hK − 2)

Second, if hmin(dK−1) = hK − 2, from Lemma 1 and Claim 3:

∆(d′,d)H̄(hmin(dK−1)− 1) ≥ ∆(d′,d)H̄(hK − 1) + ∆(d′,d)H̄(hK − 2) +
1

n

≥ 4

n

Finally, if hmin(dK−1) ≤ hK − 3, from Lemma 1 and Claim 3:

∆(d′,d)H̄(hmin(dK−1)− 1) ≥ 2

hK−1∑
i=hmin(dK−1)+1

∆(d′,d)H̄(i) +

hmin(dK−1)∑
i=hmin(dK−1)+1

∆(d′,d)F̄ (i)

≥ 2

hK−2∑
i=hmin(dK−1)+1

2hK−1−i

n
+ 2∆(d′,d)H̄(hK − 1)

≥ 2(
2hK−1−hmin(dK−1)

n
− 2

n
) +

4

n

≥ 2hK−hmin(dK−1)

n

I now turn to categories h ∈ {h0, ..., hmin(dK−1)− 2}, from Lemma 5:

∆(d′,d)H̄(h) = 2hmin(dK−1)−h
hK−1∑

i=hmin(dK−1)+1

∆(d′,d)H̄(i)

+

hmin(dK−1)∑
i=h

∆(d′,d)F̄ (i) +

hmin(dK−1)∑
i=h+2

2i−h−2

hmin(dK−1)∑
j=i

∆(d′,d)F̄ (j)

If hmin(dK−1) = hK − 2, using Claim 3 and Lemma 5:

∆(d′,d)H̄(h) ≥ 2hmin(dK−1)−h∆(d′,d)H̄(hK − 1)

≥ 2hmin(dK−1)−h+1

n

≥ 2hK−1−h

n

Otherwise, if hmin(dK−1) < hK − 2, for categories h ∈ {h0, ..., hmin(dK−1)} from Lemma 5 and Claim 3:

∆(d′,d)H̄(h) ≥ 2hmin(dK−1)−h∆(d′,d)H̄(hK − 1) + 2hmin(dK−1)−h
hK−2∑

i=hmin(dK−1)+1

∆(d′,d)H̄(i)

+

hmin(dK−1)∑
i=hK−1+1

2i−h−2

n

which can be rewritten as:

∆(d′,d)H̄(h) ≥ 2hmin(dK−1)−h+1

n
+2hmin(dK−1)−h(

2hK−1−hmin(dK−1)

n
− 2

n
)+

2hmin(dK−1)−h−1

n
−2hK−1−1−h

n

≥ 2hK−1−h

n
+

2hmin(dK−1)−h−1

n
− 2hK−1−1−h

n
≥ 2hK−1−h

n

which concludes the proof.

47



Proposition 6. I provide the variations generated by the Hammond transfer in Tables 13 and 14.

h ∆(d′,d′′)H(h)

(If any) h ≤ hK−1 − 1 0

hK−1
1
n

hK−1 + 1 ≤ h ≤
hmin(dK−1)− 1

2h−hK−1−1

n

hmin(dK−1) ≤ h ≤
hK − 1

2h−hK−1−1

n
−

2h−hmin(dK−1)

n

Table 13: ∆(d′,d′′)H(h)

h ∆(d′,d′′)H̄(h)

hmin(dK−1) ≤ h ≤
hK − 1

2hK−1−h

n

hK−1 + 1 ≤ h ≤
hmin(dK−1)− 1

2hK−1−h

n
−

2hmin(dK−1)−1−h

n

hK−1

2hK−1−h

n
−

2hmin(dK−1)−1−h

n
− 1

n

(If any) h ≤ hK−1 − 1

2hK−1−h

n
−

2hmin(dK−1)−1−h

n
−

2hK−1−1−h

n

Table 14: ∆(d′,d′′)H̄(h)

As before, I suppose here that dK−1 does not preserve the H-dominance and that hmin(dK−1) <

hK − 1 and for all h ∈ {hmin(dK−1), ..., hK − 1}, ∆(d′,d)F̄ (h) = 1
n .

Part 1, the H dominance. I only focus on the case when hmin(dK−1) > hK−1 + 1. Indeed
when hmin(dK−1) ≤ hK−1 + 1 it is trivial because for all h ∈ {hK−1 + 1, ..., hK − 1}, ∆(d′,d′′)H(h) = 0.
From Table 13, I only need to focus on categories h ∈ {hmin(dK−1), ..., hK − 1}. Indeed for cate-
gories h ∈ {hK−1, ..., hmin(dK−1) − 1}, ∆(d′,d′′)H(h) = ∆(d′,dK−1)H(h). Turning to categories h ∈
{hmin(dK−1), ..., hK − 1} we note that:

∆(d′,d)F (h) = − 1

n

It implies that:

∆(d′,d)H(h) = 2h−hmin(dK−1)∆(d′,d)H(hmin(dK−1)) (42)

From Lemma 1, in the category hmin(dK−1):

∆(d′,d)H(hmin(dK−1)) ≥ ∆(d′,d)H(hK−1) +

hmin(dK−1)−1∑
i=hK−1+1

∆(d′,d)H(i)− 1

n
(43)

Then, from Inequality (43):

∆(d′,d)H(hmin(dK−1)) ≥
hmin(dK−1)−1∑

i=hK−1+1

∆(d′,d′′)H(i)

≥
hmin(dK−1)−1∑

i=hK−1+1

2i−hK−1−1

n

≥ 2hmin(dK−1)−hK−1−1

n
− 1

n

48



Given this, we conclude from (42) that, for all h ∈ {hmin(dK−1), ..., hK − 1}:

∆(d′,d)H(hmin(dK−1)) ≥
2h−hK−1−1

n
− 2h−hmin(dK−1)

n
= ∆(d′,d′′)H(h)

Part 2, the H̄-dominance. For h ∈ {hmin(dK−1), ..., hK − 1}:

∆(d′,d)H̄(h) = 2hK−1−h∆(d′,d)H̄(hK − 1) ≥ 2hK−1−h

n

In the category hmin(dK−1)− 1:

∆(d′,d)H̄(hmin(dK−1)− 1) = 2

hK−1∑
i=hmin(dK−1)+1

∆(d′,d)H̄(i) +

hmin(dK−1)∑
i=hmin(dK−1)−1

∆(d′,d)F̄ (i) (44)

If hmin(dK−1)− 1 ≥ hK−1 + 1, then from Claim 3 and (44):

∆(d′,d)H̄(hmin(dK−1)− 1) ≥ 2

hK−1∑
i=hmin(dK−1)+1

2hK−1−k

n
+

1

n

=
2hK−hmin(dK−1)

n
− 1

n
= ∆(d′,d′′)H̄(hmin(dK−1)− 1)

Otherwise, if hmin(dK−1)− 1 = hK−1 we conclude again from Claim 3 and (44):

∆(d′,d)H̄(hmin(dK−1)− 1) ≥ 2

hK−1∑
i=hmin(dK−1)+1

2hK−1−i

n

=
2hK−hmin(dK−1)

n
− 2

n
= ∆(d′,d′′)H̄(hmin(dK−1)− 1)

Finally for categories h ∈ {h0, ..., hmin(dK−1)− 2}, we conclude from Lemma 5:

∆(d′,d)H̄(h) = 2hmin(dK−1)−h
hK−1∑

i=hmin(dK−1)+1

∆(d′,d)H̄(i)

+

hmin(dK−1)∑
i=h

∆(d′,d)F̄ (i) +

hmin(dK−1)∑
i=h+2

hmin(dK−1)∑
j=i

∆(d′,d)F̄ (j)

If h ≥ hK−1 + 1, Lemma 5 and Claim 3 both imply:

∆(d′,d)H̄(h) ≥ 2hmin(dK−1)−h
hK−1∑

i=hmin(dK−1)+1

2hK−1−i

n
+

1

n
+

hmin(dK−1)∑
i=h+2

2i−h−2

n

=
2hK−1−h

n
− 2hmin(dK−1)−h−1

n
= ∆(d′,d′′)H̄(h)

In the case where h ∈ {hK−1 − 1, hK−1}, we obtain from Claim 3 that
∑hmin(dK−1)

i=h F̄ (i) ≥ 0. Hence
from Lemma 5 and Claim 3:

∆(d′,d)H̄(h) ≥ 2hK−1−h

n
− 2hmin(dK−1)−h−1

n
− 1

n
= ∆(d′,d′′)H̄(h)

Finally, for h ∈ {h0, ..., hK−1 − 1}, from Lemma 5 and Claim 3:

∆(d′,d)H̄(h) ≥ 2hmin(dK−1)−h
hK−1∑

i=hmin(dK−1)+1

2hK−1−i

n
+

hmin(dK−1)∑
i=hK−1+1

2i−h−2

n

=
2hK−1−h

n
− 2hmin(dK−1)−1−h

n
− 2hK−1−1−h

n
= ∆(d′,d′′)H̄(h)

which concludes the proof.
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