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Abstract

This paper proposes a theoretical model of forecasts formation which implies that

in presence of information observation and forecasts communication costs, rational

professional forecasters might find it optimal not to revise their forecasts continuously,

or at any time. The threshold time- and state-dependence of the observation reviews

and forecasts revisions implied by this model are then tested using inflation forecast

updates of professional forecasters from recent Consensus Economics panel data for

France and Germany. Our empirical results support the presence of both kinds of

dependence, as well as their threshold-type shape. They also imply an upper bound

of the optimal time between two information observations of about six months and

the co-existence of both types of costs, the observation cost being about 1.5 times

larger than the communication cost.
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1 Introduction

Carroll [2003] has shown that the opinion of professional forecasters spreads to firms and

households, and hence also influences their expectations and decisions. It is also now well

known that central banks across the world monitor surveys of professional forecasters very

closely. In fact, in recent years, they have tried to influence agents expectations through

policies such as forward guidance for instance. Thus, understanding how these expectations

are formed is crucial.

Recent empirical evidence from forecast surveys data reveals “forecasts stickiness”. As

found from various forecast surveys by e.g. Coibion and Gorodnichenko [2012], Andrade and

Le Bihan [2013], Dovern [2013], Coibion and Gorodnichenko [2015], Dovern, Fritsche, Loun-

gani and Tamirisa [2015], forecasters fail to systematically update their forecasts and/or

their information set. As will be discussed later in the paper, this is also a feature of

our German and French panel data of professional forecasters from Consensus Economics

database. It reveals that an average of 43% only revise their monthly forecast of yearly

inflation rate for target years between 2000 and 2015.

These findings are inconsistent with the full information rational expectation hypothesis

in a frictionless setup. Nevertheless, sticky information à la Mankiw and Reis [2002] or

noisy information à la Woodford [2002] and Sims [2003] have been put forward in the re-

cent literature as possible explanations of this forecast stickiness. In the noisy information

model, agents continuously update their information set but have an imperfect access to

it at each period. In the information stickiness model, information about macroeconomic

conditions diffuses slowly through the agents because of either cost of acquiring informa-

tion or costs to re-optimization. Therefore, it takes time for the population to reach full

information and decisions are not always made from current information. Consequently,

Mankiw and Reis [2002] assume that at each period, only a fraction of the agents update

their information set on the current state of the economy while the rest of them continues

to make decisions based on outdated information.
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Yet, sticky and noisy information models have testable implications in terms of forecasts

series properties. Coibion and Gorodnichenko [2012], using various forecast surveys of con-

sumers, firms, central bankers, and professional forecasters, provide evidence of information

rigidities and point to the noisy information model as the most compatible with their sur-

vey data. From a panel of forecasts for real GDP growth rate of individual institutions

from 36 countries from 1989 to 2010, Dovern et al. [2015] find that individual forecasts are

updated rather frequently but there is some degree of information rigidities in the average

forecast revision, which suggests that imperfect information among the forecasters stems

from noisy information model. Coibion and Gorodnichenko [2015] also point to a high de-

gree of information rigidity. In the sticky information framework, their empirical findings

correspond to an average duration of six to seven months between information updates,

while in the noisy information setup, they imply that new information receives less than

half of the weight it would have under full-information relative to prior beliefs. Finally,

using ECB Survey of Professional Forecasters which is a quarterly panel of 90 forecasting

units in the Euro area, Andrade and Le Bihan [2013] find predictable and biased forecast

errors as well as disagreement among forecasters when they update their forecasts, which

suggests that both sticky and noisy information assumptions may be good candidates to

describe expectation formation. However, based on an estimated expectations model com-

bining both sticky and noisy information, they show that there is more stickiness in experts

forecasts than their model is able to generate.

It is worth noticing that neither noisy nor sticky information models acknowledges any

state dependence in the expectations formation process. In these frameworks, state changes

impact the forecast errors but not the forecast update frequency. The latter is continuous

by assumption in the noisy information model and fixed by a constant exogenous parameter

in the sticky information model. Yet, it seems reasonable to provide for the possibility that

large state changes increase the forecast update probability since they are likely to produce

large forecast errors. This is consistent with state-dependence in the information updating
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process as introduced in Bonomo and Carvalho [2004], Gorodnichenko [2008], Woodford

[2009] or Alvarez, Lippi and Paciello [2011]’s models. In these contributions, observation

imperfections are associated to menu costs so as to study price-setting decisions: either

lumped together as in Bonomo and Carvalho [2004] or Woodford [2009] or separately as in

Alvarez et al. [2011]. In a subsequent paper, Alvarez, Lippi and Paciello [2015] show from

a general equilibrium model calibrated on US data that both costs, modelled separately,

are required to predict real effects of monetary shocks that are more persistent than in

the corresponding menu-cost model, but smaller than in the observation-cost model. As

summarized by these authors, the case of observation cost only, yields “time-dependent”

rules while the case of menu cost only, yields “state-dependent” price setting rules. The

rationale underlying the state dependence basically stems from the envelope theorem: as

long as the cost of adjustment is greater than the cost of non-adjustment, the price remains

unchanged. Yet, in the neighborhood of the optimum, where the value function slope is

very flat, the loss stemming from not adjusting is very small — it can be shown to be

of a second order magnitude compared to the change in the state variable. This in turn

explains stickiness even in presence of very small menu costs1, unless the change in the

state variable is large enough.

In fact, empirical evidence of state dependence in the expectations formation process

has been found by Dovern [2013] and Coibion and Gorodnichenko [2015]: According to

their results, the degree of information rigidity declines significantly during recessions.

Hence, agents appear to adjust the resources devoted to the collection and processing

1A few papers have tried to evaluate these costs quantitatively. Amongst them, Levy, Bergen, Dutta

and Venable [1997] evaluate the menu costs to amount to 0.7% of revenues or 35.2% of net margins for a

large US supermarket chain : this computation includes the labor cost of changing shelf prices, the costs

of printing and delivering new price tags, the costs of mistakes made during the price change process,

and the cost of in-store supervision of the price change process. Using data from a large U.S. industrial

manufacturer, managerial costs (information gathering, decision-making and internal communication costs

included) are found to be six times as large as menu costs by Zbaracki, Ritson, Levy, Dutta and Bergen

[2004]. More recently, Stella [2014] evaluates the total cost from changing price to lie in the range of 0.22%

to 0.59% of revenues, and of 11.05% to 29.32% of net margins.
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of information in response to economic conditions. In this paper, we claim that some

kind of menu costs might be the missing ingredient to generate state-dependence and

therefore explain the observed degree of forecast stickiness. To our knowledge, it hasn’t

been incorporated in existing forecast formation models so far. The goal of this paper

is to fill this gap by developing a forecast formation model which yields both time- and

state-dependent forecast updates. To this end, we introduce separate observation costs

and “communication” costs in a model of inflation forecast formation.2 The implications of

our theoretical model will then be tested empirically from Consensus Economics country-

specific professional forecasters panels for France and Germany. Professional forecasters

survey data provide a conservative benchmark as these forecasters are amongst the most

informed agents. Moreover, as stressed earlier, their opinion spreads to firms and households

and is also very closely monitored by central banks as they play an important role in the

conduct of monetary policy. As will be seen later, our empirical results support the presence

of both time- and state-dependence, as well as their threshold-type shape implied by our

model. They also imply an upper bound of the optimal time between two information

observations of about six months, which corresponds to Coibion and Gorodnichenko [2015]’s

finding from data of inflation forecasts from the US Survey of Professional Forecasters

(SPF): their evaluation of the degree of information rigidity implies an average duration

of six to seven months between information updates. Finally, we also report evidence of

the co-existence of both types of costs, the observation cost being about 1.5 times larger

than the communication cost. This latter result is in line with Zbaracki et al. [2004]’s

finding that managerial costs, which compare to our observation costs when transposed

to a large U.S. industrial manufacturer price setting problem, are much larger than menu

costs, which are the analogues of our communication costs, again transposed to a firm price

setting problem.

2Indeed, the rest of the paper will focus on inflation forecasts, as they have been widely studied so that

the results are readily comparable to previous work. However, our model can easily be adapted to e.g.

GDP growth rate forecasts.
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The paper is organized as follows. Section 2 presents our proposed model of inflation

forecast formation and its implications for the forecast updates dynamics. Section 3 de-

scribes the data and proposes a first analysis of unconditional probabilities of forecasts

revisions. Section 4 presents the binary choice models used to explore empirically the

time- and state-dependence of forecast updates as well as the estimation results. Section 5

concludes.

2 A Model of Forecast Formation

As noticed in the introduction, a promising recent branch of the literature on firms price

setting behavior has associated observation imperfections to menu costs. In particular,

Alvarez et al. [2011] combine separately observation and menu costs in the firms program,

which results in both time- and state-dependent price setting rules. We shall develop an

inflation forecast formation model which is formally close to their set-up. In particular,

we show that a natural model of inflation forecast does incorporate the two types of cost

mentioned just above, leading to an optimal control problem which may be solved with the

tools developed by Alvarez et al. [2011].

Let us present our problem. Time is continuous and t ∈ (0, 1). Suppose we are in a

base period, say t = 0, where the forecast is equal to πf (0). From there on, we seek to

forecast the inflation rate at date t = 1. The instantaneous quadratic loss function faced

by a representative professional forecaster is:

(

πf(t)− π∗
f (t)

)2
, (1)

where πf (t) is the value at time t, with 0 < t ≤ 1, of his “official” forecast of inflation rate

at t = 1. As long as a new forecast has not been publicly adjusted and communicated,

πf (t) is constant, equal to πf(0). π
∗
f (t) is the optimal value of this forecast, i.e. the one

which would prevail if the information set available at date t was up to date and without

any adjustment friction or cost. We will refer to it as the target forecast. As usual, it
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is assumed that the forecaster’s objective is to produce the best possible forecast, which

amounts to minimize the distance between his forecast and the optimal forecast. The latter

is a stochastic target forecast.

We assume that it is costly for the forecaster, or forecasting unit, to update his information

set and hence to observe π∗
f (t): each time he does so, it incurs a fixed cost θ > 0. Indeed,

on top of i.e. data bank subscription fees, it takes time, or hours worked, to collect and

process all relevant information and include it in the corresponding relevant files. This cost

also includes the hours worked to process formally the new pieces of information — like the

potential update or re-estimation of the forecasting model and/or the time devoted to run

it again with the updated information set. To sum up, it includes all costs related to the

knowledge or observation of π∗
f (t). In the following, this cost will be labelled “observation

cost”.

Beside, it is also costly to adjust “officially” the forecast, i.e to adjust πf (t): at the very

least, communication costs are involved. To capture this essential side of the story, we

introduce just like Alvarez et al. [2011] a “menu cost”, ψ > 0, which can be labelled in

our framework “adjustment” cost. In short, they do cover all the costs associated with the

official release of the revised forecast, such as public communication, writing of reports,

interview with the media, etc. This cost also includes the loss of the forecaster’s credibility

from its institution’s customers which would follow too frequent forecast revisions.

We assume that at time t = 0, the forecaster pays the cost θ and observes π∗
f (0). Then,

until the next observation of the target forecast, E(π∗
f (h)|I0) = π∗

f(0) where I0 is the in-

formation set observed at time t = 0. Indeed, with π∗
f (0) = E(π(1)|I0), where π(1) is the

inflation rate at t = 1, we have:

E
(

π∗
f (h)|I0

)

= E (E (π(1)|Ih) |I0) = E (π(1)|I0) = π∗
f (0) (2)
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Hence, the target forecast dynamics is given by:

π∗
f(h) = π∗

f(0) + sσ
√
h,

where s is a standard normal and σ2 is the variance per unit of time..

Let π̃f(t) ≡ πf (t)− π∗
f(t), denote the gap between the current and the target forecasts.

We define the “uncontrolled” forecast gap as the forecast gap π̃f(t) between two observa-

tions of π∗
f (t) and before a new adjustment of πf(t). It follows that starting from π̃f (0) at

time t = 0, the uncontrolled forecast gap evolves as:

π̃f (h) = π̃f (0)− sσ
√
h. (3)

As will be shown below, at optimum there will be adjustments at finite time in accordance

with the loss minimization objective, which will make the forecast gap process globally

stationary.

In this setup, the problem of the forecaster is to choose the time elapsed until the next

observation of the target forecast, 0 < T ≤ 1, which will cost θ, as well as the number

of forecast adjustments between two observations (at t = 0 and T respectively), J ∈ N ,

occurring at successive dates 0 ≤ t1, t2, ..., tJ < T , each one incurring an adjustment cost

ψ. He also chooses the size of the forecast update so that the expected value of the forecast

gap on adjustment is π̂f,j , with j = 1, . . . , J .

As it is stated, the problem is formally similar to the one treated by Alvarez et al.

[2011]. There are two apparent differences:

1. The first difference comes from the fact that the timing of the next observation, that

is the choice of T , is bounded by the forecast horizon, 1. There is no upper bound

of this sort in Alvarez et al. [2011]. However, this is a pure control constraint, the

simplest one from the mathematical point of view, and we show in our empirical

section that it’s never binding in practice. Without loss of generality, we shall omit

it hereafter to unburden the presentation.
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2. The second is even more lenient. The law of motion assumed by Alvarez et al.

[2011] for the target has a time drift (µ ≥ 0), which also shows up in the law of

motion of the analogous stochastic gap.3 While nonzero drifts make sense in their

framework (as they are concerned with price setting and the time drift corresponds

indeed to inflation), they do not in ours. As a result, from this point of view, our

problem corresponds to a special case in Alvarez et al. [2011], explicitly treated in

their Section V, pp 1928-1934.

Henceforth, we shall use the same formalism and methodology as in Alvarez et al.

[2011]. Let V (π̃f ) denote the value function of the forecaster at the time of an observation

of the forecast gap π̃f , and VJ(π̃f) the best value that the forecaster can reach by making

J forecast updates between observations. Then, note that:

V (π̃f ) = min
J≥0

VJ(π̃f), so that J⋆(π̃f) = argmin
J≥0

VJ(π̃f ), (4)

where J⋆(π̃f ) is the optimal number of forecast updates. The corresponding Bellman equa-

tions can be written accordingly. To ease the exposition, suppose that J ∈ {0, 1}, that’s at

most one forecast update is optimal. This will turn out to be true for our forecast formation

model. Let’s denote π̃f = π̃f (0) the value of the forecast gap at time t = 0

For J = 0, the conditional value function for the forecaster problem writes:

V0(π̃f ) = θ +min
T

∫ T

0

e−ρt(π̃2
f + σ2t)dt+ e−ρT

∫ ∞

−∞

V (π̃f − sσ
√
T )dN(s). (5)

The first component of the right member of V0(π̃f) is of course the information observation

cost, while the second one is the time t = 0 expected loss between t = 0 and T . In the

third (continuation) component, N(.) is the probability density function of a Gaussian

distribution.

For J = 1 it becomes (with the simplified notation π̂f = π̂f,1 the adjusted forecast at time

t1):

3See equation (1) in Alvarez et al. [2011], page 1917.
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V1(π̃f) = θ + min
T,π̂f ,t1

∫ t1

0

e−ρtπ̃2
fdt+

∫ T

0

e−ρtσ2tdt + e−ρt1
[

ψ +

∫ T−t1

0

e−ρtπ̂2
f

]

dt

+e−ρT
∫ ∞

−∞

V (π̂f − sσ
√
T )dN(s). (6)

The unconditional value function is hence given by:

V (π̃f) = min{V0(π̃f), V1(π̃f )}. (7)

Because of the quadratic functions involved, it is possible to provide with a partial analytical

characterization of the solutions to these Bellman equations.4 Let us first focus on the

optimal forecast revisions before turning to the optimal time between observations.

2.1 Optimal forecast revision

Using results in Alvarez et al. [2011]5, Proposition 2.1 below can be established straight-

forwardly.

Proposition 2.1 Let θ > 0, ψ > 0 and σ > 0.

(i) J⋆(π̃f ) ≤ 1, ∀π̃f ∈ R.

(ii) if π̃f is such that J⋆(π̃f ) = 1, then the forecast update is full and occurs instanta-

neously (π̂f = 0 and t1 = 0).

This proposition means that for the loss function given by Eq. (1) and the forecast gap

process defined in Eq. (3), there will be at most one forecast update/adjustment between

two forecast target observations and if there is one, it will be fully and instantaneously

adjusted to the updated forecast target. The intuition of this result is as follows. If ψ and

4Alvarez et al. [2011] do solve the more general case with positive time drift in Eq. (2). As mentioned

above, only the zero drift case is relevant here.
5Actually, Alvarez et al. [2011] get the same characterization even if the law of motion (2) has a time

drift provided its absolute value is small enough. See Proposition 1, page 1921. Our case — zero time drift

— is indeed a very elementary special case.
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σ are strictly positive, it is immediate to see that in case of inflation forecast adjustment,

π̂f = 0. Then the optimal choice of the forecaster is to reset the forecast gap to zero.

Indeed, it follows from Eq. (3) that the expected value of the forecast gap remains at zero

between observations. Consequently, there are no gains to expect from a forecast update

without the new pieces of information acquired thanks to an observation. By contrast, due

to the fixed adjustment cost ψ > 0, the losses involved by a forecast update are strictly

positive. So, it is not optimal to adjust the forecast between information set updates. Using

the same type of arguments, one can also readily get why the adjustment, if any, should

not only be full but also instantaneous. Indeed, if t1 > 0, then the forecaster will incur

losses in the time interval [0; t1[. Because the presence of “menu costs” typically induces

that adjustments only occur if the gaps are sufficiently large, delaying cannot be optimal as

it involves starting the adjustment at such values of the gap: the corresponding trajectory

of losses is clearly dominated by a trajectory where adjustment is made instantaneously.

Hence π̂f = 0 and t1 = 0. A first result of our theoretical model of forecasts formation

is that forecasts plans, i.e. progressive revision of forecasts between two updates of the

information set, are not optimal. The forecast revision, if any, is full and instantaneous at

the observation time.

Notice that the resulting Bellman equation (6) can be rewritten as:

V1 = ψ + θ +min
T,π̂f

∫ T

0

e−ρt(π̂2
f + σ2t)dt+ e−ρT

∫ ∞

−∞

V (π̂f − sσ
√
T )dN(s). (8)

Remark that V1 does not depend on π̃f since t1 = 0. Hence the value function is given by:

V (π̃f ) = min{V0(π̃f ), V1}, (9)

One can see immediately that the value function V is symmetric around π̃f = 0 and

increasing for |π̃f | < π̄, where π̄ is a threshold value such that V1 > V0(π̃) for π̃f ∈ (−π̄, π̄).

Hence (−π̄, π̄) defines the range of inaction in which no forecast adjustment occurs. It

means that when π̃f is smaller than π̄ in absolute value, then the inflation forecast is not

adjusted. Since V is not differentiable at π̃f = π, the value function is discontinuous,
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non-smooth at the boundaries of the inaction band. These properties are summarized in

the next proposition6:

Proposition 2.2 The value function V is symmetric around π̃f = 0, and V is strictly

increasing in π̃f for 0 < π̃f < π̄. V ′(π̃) = 0 for π̃f > π̄ and V is not differentiable at

π̃f = π̄.

2.2 Optimal time between observations

As can be seen from Equations (5)-(8), T is a function of π̃f which will be denoted T (π̃f)

hereafter. Since π̂f = 0 at the forecaster optimum, then the optimal time between obser-

vations, conditional on adjustment, is τ ≡ T (0). It follows that T (π̃f) has a maximum

at π̃f = 0 and is symmetric around 0 with an inverted U-shape.7 The function T (·) is

discontinuous and not differentiable at π̃f = π , as stated in Proposition 2.3.8

Proposition 2.3 As ρ ↓ 0, the optimal rule for the time of the next observation of the

forecast gap is given by

T (π̃f) =







τ −
(

π̃f
σ

)2

+ o(|π̃3
f |) if π̃f ∈ (−π, π)

τ, otherwise
(10)

Remark that the optimal rule for the time of the next observation is a threshold function

of the forecast gap. It is also worth noticing that if there is no forecast gap after an

observation, i.e. π̃f = 0, then T(0) is optimal. Finally, T (π̃f) decreases with |π̃f |. When

close to the boundaries of the range of inaction, the forecaster plans an early observation

since the target is likely to cross the threshold.

6The proof of Proposition 2.2 follows the same steps as the proof of Proposition 3 and lemma 1 in

Alvarez et al. [2011]
7Here we use Proposition 4, in Alvarez et al. [2011].
8The proof of Proposition 2.3 following the same steps as the proof of Proposition 4 in Alvarez et al.

[2011], we refer the reader to the latter in order to lighten the presentation.
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Let us now focus on the dynamics of the forecast gap on observation and before ad-

justment. The decision rules described by the threshold π and the function T (·) imply a

stationary Markov process. Let π̃f ∈ R denote the forecast gap immediately after an obser-

vation at time t0. Then, it follows from Proposition 2.1 that the forecast adjustment rule

∆(π̃f ) is zero in the inaction zone and −π̃f otherwise. Assume that the next observation

occurs in T ′ = T (π̃f) periods and the corresponding forecast gap is π̃′
f . Then, it follows

immediately from Proposition 2.3 that:

π̃′
f =







π̃f − sσ

√

τ −
(

π̃f
σ

)2

, if π̃f ∈ (−π, π)
−sσ√τ , otherwise

(11)

Again, this is a threshold process : if the forecast gap is large enough, i.e. larger than π in

absolute value, then it is corrected by setting the forecast to its target and the remaining

gap is entirely imputable to unexpected shocks. π̃′
f increases with |π̃f |. When close to the

boundaries of the range of inaction but still inside it, the forecast gap reaches its largest

values until it hits the boundary and then goes back to its minimum. This is the so-called

S-s rule.

Finally, the next proposition can easily be shown to hold9:

Proposition 2.4 Let θ > 0, ψ > 0 and σ > 0, ψ

θ
< 5.5. As ρ ↓ 0, there exists a unique

solution for T (0) and π and it is such that

(i) T (0) is increasing in ψ and θ,

(ii) π is increasing in ψ and decreasing in θ.

As expected, the time to the next observation after a forecast update, T (0), is increasing

in the observation cost and the width of the inaction band defined by (−π, π) is increasing

in the adjustment cost.

9Here, we use results from Alvarez et al. [2011] pp. 1931-1932.
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3 Forecasts updates data

The empirical analysis below is based on forecasts of annual inflation rate from the monthly

survey data set compiled by Consensus Economics Inc. This data set contains inflation

rate forecasts made by public and private economic institutions such as banks and research

institutes. Due to the fact that Consensus Economics Inc. asks the forecasters to report

their forecasts for the annual inflation rates of the current and next calendar years, the

data set is a three dimensional panel: forecasters indexed by i, target years indexed by t

and horizons indexed by h. For each target year, the data set contains a sequence of 24

forecasts from each forecasters made from January of the year before the target year to

December of the target year. The latter will be labelled h = 0 since this corresponds to

nowcasting. Accordingly, the former will correspond to h = 23.

Let πi,t|h denote agent i forecast of year t inflation rate, made h months before December

of year t. The unconditional probability of updating a forecast for horizon h, denoted λ(i, h)

after Dovern [2013], is given by the probability that a forecast for the same object, e.g.

year t inflation rate, is revised by institution i between two consecutive forecast horizons:

Pr(πi,t|h 6= πi,t|h+1). As noted by Dovern [2013], it can be estimated for each horizon,

assuming that the probability is the same for each institution as:

λ̂(h) =
1

T

T
∑

t=1

1

Nt|h

Nt|h
∑

i=1

1[πi,t|h 6= πi,t|h+1], (12)

where T is the total number of target years in the sample, Nt|h is the number of observed

forecasts for target year t with forecast horizon h and 1[.] is the indicator function which

takes on value 1 if the condition into brackets is verified and zero otherwise.

Our data set includes yearly inflation rate forecasts for the current and next years,

made monthly by individual professional forecasters since January 1998 for target years

from 2000 to 2015. In the subsequent analysis, we will consider country-specific forecast

data. Indeed, this guarantees that the series to forecast, namely the national inflation rate,

is homogenous across forecasting units. Moreover, this will allow to emphasize similarities
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and differences in forecasting behaviour across country, if any. For France and Germany,

the sample includes respectively 36 and 51 forecasters. The main descriptive statistics of

the average probabilities of updating between two consecutive months for h = 22, · · · , 0,

whose expression is given in Eq. (12), are reported in Table 1.10 Figure 1 shows these

update probabilities as a function of the forecast horizon. These basic statistics look quite

Table 1: Descriptive statistics of λ̂(h)

Average Min [h] Max [h] h = 22 h = 0

France 44.8% 27.4% [16] 63.3% [9] 28.8% 32.4%

Germany 41.6% 29.9% [19] 61.5% [12] 30.0% 34.2%

homogenous amongst countries. On average over all horizons, 41.6% (Germany) to 44.8%

(France) of forecasters revise their forecasts between two consecutive months. This result

is slightly less than Dovern’s [2013] average estimation of nearly 50% over 14 advanced

economies : The European professional forecasters considered in our study aren’t the most

attentive ones among advanced countries. Nevertheless, this implies a degree of information

rigidity which is much lower than the one obtained from aggregate (or average/median)

forecast. For instance, Coibion and Gorodnichenko [2012] find that the average inflation

forecast across 40 US agents surveyed by SPF is updated every six to seven quarters.11

Similarly high degree of information rigidity is found by Coibion [2010]. Our sample means

that 43.2% of the professional forecasters update their forecasts at the monthly frequency.12

10The panel is heavily unbalanced since a large part of the “individuals” have given their forecast in an

irregular manner. Consequently, a significant part of forecasts observations could not be used to compute

revisions because they are adjacent to missing values. As a result, we are left with a total of 4,990 usable

points for France and 8,202 for Germany.
11By contrast, in our French sample for instance, the update share reaches 78% when the probability of

updating at least once over the last three months is considered.
12The relative frequencies of individual-specific unconditional probability of updating can be obtained by

computing the average of 1[πi,t|h 6= πi,t|h+1] across target years and forecast horizons for each forecaster.

To save space, descriptive statistics of these λ̂(i)’s are not reported here but are availbale upon request.
Note that their mean is again found to be close to 45%.
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Figure 1: Average revision probability as a function of the forecast horizon

As can be seen from Figure 1, there is no obvious linear trend in the revision probability

as horizon increases or decreases, unlike Dovern’s [2013] findings. It can be seen that at-

tentiveness increases until h = 12 (Germany) and h = 9 (France) and decreases afterwards.

The pattern of French update rate shows pronounced seasonality with clear quarterly peaks

in March, June, September and December. This could stem from two reasons. First, it is

likely that the forecasting exercise is done at the quarterly rather than monthly frequency.

Second, the French National Institute of Statistics and Economics Studies releases its first

estimate of quarterly real GDP growth 45 days after the end of the quarter, which means

around the middle of the second month of each quarter. Since the monthly Consensus

Economics Survey is completed before the 12th day of each month, this information is not

available when forming the forecast of the quarter’s second month. It is incorporated in the

quarter’s third month instead, enhancing the revision probability. This quarterly pattern

is also present in Germany, but to a lesser extent and mainly during the target year itself,

i.e. for h = 12, 9, 6 and 3.
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4 Empirical testing of our model’s implications

4.1 Methodology

The empirical testing of our model’s implications in terms of time- and state-dependence

of the inflation forecast updates will rely on the estimation of binary choice models for

panel data. More precisely, the traditional random or fixed effects logit models will be

considered to analyze the conditional probability of forecasts revisions. Using a latent

variable framework, where λ∗i,t,h is a continuous variable that is not observed, it may be

written as

λ∗i,t,h = Xi,tβ + ci + uit

λi,t,h = 1[λ∗i,t,h > 0],

where λi,t,h is an indicator for forecast updates and

Pr(λi,t,h = 1|Xi,t, ci) = G(Xi,tβ + ci),

where G(.) is the logistic CDF for the logit model and the standard normal CDF for the

probit model. Xi,t is a vector of exogenous explanatory variables and ci is an unobserved

individual-specific effect. In the random effect version, it is assumed that Xi,t and ci

are independent and that ci has a Gaussian distribution with zero mean and constant

variance σ2
c so that it is possible to estimate the model by maximum likelihood techniques,

integrating out the unobserved ci from the likelihood. The assumption of independence

between Xi,t and ci is relaxed in the fixed effect version, and in this case, conditional

maximum likelihood estimator is used.13

In order to account for the threshold dynamics of forecasts updates implied by the

theoretical model presented in Section 2, and particularly from equations (10) and (11),

let us introduce a distinction between the switching and non-switching regressors in Xi,t,

denoted respectively by XS
i,t and X

0
i,t.

13All estimations have been performed using version 14.1 of Stata software.
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Two regressors will be allowed to switch according to the size of the forecast gap,

following the results given in Section 2.2: the time elapsed between two observations (T (π̃f))

and the forecast gap itself (π̃f ). The time dependence (T (π̃f )) is captured by a dummy

variable denoted D(d=m), ∀m = 2, 3..., which is equal to one if the unit’s last revision

occurred m months ago and zero otherwise. Since very few observations belong to each

D(d=m) for m ≥ 8, the latter are gathered into D(d≥8). The threshold variable, namely

the forecast gap, is unobservable since the target forecast from which it is evaluated is

unobservable. To circumvent that issue, we will use a proxy denoted Dpm(-1). This is the

last known monthly inflation rate, weighted by its mechanical contribution to the yearly

inflation rate forecast, released at the end of last month/very beginning of the current month

(Eurostat release). This is a proxy of the drift of the inflation rate between two consecutive

months, which should be incorporated in the new forecast. Assuming the monthly forecasts

are constant, this is a proxy of the forecast gap π̃f . From our theoretical model, we expect

updates to be triggered only by large changes in the state variable: |Dpm(−1)|. Let st

denote the transition function defined as follows:

st = 1(|Dpm(−1)| > γ),

which takes on value 1 for large absolute values of Dpm(-1) and 0 otherwise. Accordingly,

the variables stX
s
i,t and (1−st)Xs

i,t are introduced as regressors along with the non switching

regressors X0
i,t. The threshold estimate γ̂ is obtained by grid search over Γ = [γ15%, γ85%],

as the one which maximizes the Log-likelihood of the logit model described above. Here,

γ15% and γ85% denote the 15% and 85% quantiles of Dpm(-1).

The variables included amongst the non-switching regressors X0
i,t aim at controlling

for various effects which have been shown to influence the forecast updating behavior in

previous empirical studies14. Firstly, in order to capture a potential institutional pattern

of updating within a given quarter, dummies indicating the second and third month of a

quarter, denoted D(2nd) and D(3rd) respectively, are introduced. Secondly, since August

14See for instance Dovern [2013] and Dovern et al. [2015] and references therein.
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is the month when most people are having their summer vacation in the countries consid-

ered, it is also introduced as a dummy variable. Thirdly, we introduce the percentage of

forecasting units which have revised their forecast last month so as to capture a “cascade”

effect (Sha(-1)), as described e.g. in Banerjee [1992] or Graham [1999]. Fourthly, a variable

called |Dev(−1)|, which measures the previous period deviation of the unit’s forecast from

the average in absolute value is considered to capture a possible “herding” effect15. Finally,

in order to take into account a business cycle effect, we introduce a target year fixed-effect.

4.2 Estimation results

The estimation results are reported in Table 2 below. The models estimates presented

below include both individual and target year fixed effect, since the Hausman statistic

p-value strongly rejects the null that both RE and FE models yields the same estimates.

Note that only regressors significant in one country at least are reported in this table.

Let us begin with the non-switching variables, at the bottom panel of the regressors list.

It appears that the update probability is smaller (respectively larger) the second (third)

month of each quarter, revealing an institutional pattern of end-of-quarter forecasting exer-

cise. The August summer vacation effect is particularly strong in France, where the update

probability is decreased by around 7% this month. Then, both the cascade and herding

effects found out by Dovern [2013] are present in our panels. When the proportion of up-

daters is high at some time t, then the updating probability is significantly enhanced in t+1

(variable Sha(-1)). Similarly, the probability to update is significantly increased when a

forecaster’s previous forecast is far from last period average forecast (variable —Dev(-1)—).

Let us now turn to the threshold effect. First, it is worth it noticing that the threshold

models likelihoods are improved compared to their non-switching analogues16. Then, and

surprisingly, the threshold estimates correspond to the 57% quantile of |Dpm(−1)| distri-
15See e.g. Lamont [2002] or Pons-Novell [2003].
16The latters estimates aren’t reported to save space, but their log-likelihoods are -3147.81 and -5100.37

for France and Germany respectively.
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Table 2: Threshold Logit models with fixed effects

FR GE

coef. p-val coef. pval

|Dpm(−1)| > γ̂:

stD(d=3) 0.024 (0.382) 0.061∗∗∗ (0.003)

stD(d=6) 0.184∗∗∗ (0.008) 0.069 (0.156)

st|Dpm(−1)| 0.275∗∗∗ (0.000) 0.345∗∗∗ (0.000)

|Dpm(−1)| ≤ γ̂:

(1− st)D(d=3) 0.090∗∗∗ (0.001) 0.112∗∗∗ (0.000)

(1− st)D(d=6) 0.297∗∗∗ (0.001) 0.140∗∗∗ (0.003)

(1− st)|Dpm(−1)| −0.316 (0.424) −0.784∗∗∗ (0.000)

D(2nd) −0.039∗∗ (0.028) −0.023∗ (0.092)

D(3rd) 0.076∗∗∗ (0.000) 0.067∗∗∗ (0.000)

August −0.074∗∗∗ (0.005) −0.023 (0.226)

Sha(-1) 0.099∗∗ (0.020) 0.245∗∗∗ (0.000)

|Dev(−1)| 0.352∗∗∗ (0.000) 0.035∗∗∗ (0.000)

γ̂ (quantile) 0.068 (57%) 0.085 (57%)

♯ obs 4990 8202

Log-lik -3141.47 -5082.55

No year-FE LR(p-val) 0.003 0.008

♯ i 36 51

Numbers are marginal effects computed at sample means for continuous covariates. For dummies, they show

the effect of moving from one discrete state to the other one. z-statistics are given into parenthesis. (p-value)

*, ** and *** denote 10, 5 and 1% significance levels.
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bution in both countries. This means that the forecast gap does not need to be very large

to trigger more updates among the forecast units of our sample: this only requires the gap

to be slightly above the median.

Regarding the time dependence of updates, empirical evidence supporting this view

comes from the significant increase in the probability of updating if the last revision has

been made 3 or 6 months ago. With our theoretical model’s implication that forecast

update is triggered immediately after observation if the forecast gap is large enough, this

gives an upper bound estimate for T (0) of 6 months in both regimes, as predicted by the

theoretical model. The six month pattern is even stronger than the 3 month one. This is

particularly true in France, where the probability of update is increased by 18.4% if the last

revision was six months ago compared to 2.4% if it occurred three months ago in the outer

regime. This result holds despite the inclusion of D(2nd) and D(3rd), hence revealing a

pure time dependence effect which is not exclusively imputable to forecasters institutional

framework. Also as expected by the model, the optimal time to next observation can be

shorter in the inaction band, as the estimated coefficients associated to (1− st)D(d=3) are

larger than the ones related to stD(d=3).17

Finally, our empirical results also support the state-dependence of the forecast update

decision rule. Actually, the update probability is significantly increased when the forecast

gap crosses the threshold, by 27.5% in France and 34.5% in Germany. By contrast, this

probability is strongly decreased in the aptly named inaction band. There is a significant

decrease of 78.4% for German data. French updates also decrease, but by 31.6% only and

this result is subject to caution since the z-test p-value is more than 42%. Again, these

conclusions are robust to the random effect version of the logit model.

17The conclusions of these models remain unchanged from random effect logit model estimation and also

if a probit model is substituted to the logit model. The exclusion of institutions who provide less than 20

usable observations does not affect the conclusions neither. These results are not reported to save space

but are available upon request.
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4.3 Empirical evidence of coexistence of observation and adjust-

ment costs

In our set up, the ratio of adjustment to observation costs, ψ/θ, is a non-linear function

of observations to adjustment frequencies ratio, denoted no/na. As shown in Alvarez et al.

[2011], this function is well approximated by:

ψ

θ
≈

(

no
na

− 1

)2

(13)

Amongst those who observe are of course the adjusters, but also the non-adjusters when

the forecast gap (in absolute value) is below the threshold. Yet the latter could also be

inattentive forecasters in the sense that they don’t update because they don’t observe as

well. As a consequence adding up these two categories will give us an upper bound of

the proportion of observers. The adjustment frequency is obtained straightforwardly from

the proportion of adjusters (i.e the ones who have changed their forecasts between two

consecutive months).

Using these approximations, we obtain ψ/θ = 55, 7% in France and 67, 1% in Germany.

Table 3: An evaluation of relative costs

no na ψ/θ

FR 78.6% 45.0% 55.7%

GE 75.9% 41.7% 67.1%

It is worth noting that this ratio is neither zero nor infinity therefore confirming coexis-

tence of both costs. In addition it is below one in both countries, meaning that observation

costs dominate communication costs. Even though applied to price setting rules, conclu-

sions obtained by Zbaracki et al. [2004] have the same flavour as ours in the sense that the

managerial costs of a large U.S. industrial manufacturer (including information gathering,

decision-making, and internal communication costs) are found to be larger than its menu

costs (comparable to the external communication costs of our model).
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5 Conclusion

This paper first develops a theoretical model of forecasts formation which incorporates sep-

arate observation and communication costs. As a result, forecast update decision rule is

found to be both time- and state-dependent. The main model’s implications for forecasts

update process are the following. First, the time between two observations is a non-linear

function of the forecast gap: for small gaps ∈ (−π, π), the closer to the boundaries, the

sooner the next observation. Second, the time between two observations reaches a maximum

when the gap is closed. This maximum time increases in both observation and communi-

cation costs. Third, the forecast update is triggered immediately after observation if the

forecast gap upon observation is large enough in absolute value. If so, the gap is closed by

the update. Fourth, the width of the inaction band is increasing in the adjustment cost

parameter.

The time- and state-dependence of the observations and forecasts revisions implied by

this model are then tested using inflation forecast updates of professional forecasters from

recent Consensus Economics panel data for France and Germany. To this end, conditional

probabilities as estimated from binary choice models are used.

Our findings clearly support time-dependent updates, a result which is compatible with

the observation cost assumption as introduced by Mankiw and Reis [2002]. Indeed, they

point to a strong positive effect when the last update has occurred three and/or six months

ago, even after controlling for the institutions periodic forecast framework (quarterly or bi-

annual). This gives an upper bound estimate of the optimal time between two observations

of six months which is well in line with Coibion and Gorodnichenko [2015]’s estimate of the

average duration between information updates (six to seven months).

Evidence of updates state-dependence is also provided. Actually, a strong positive and

significant effect is found on updates when the forecast gap is larger than the estimated

threshold, as proxied by the last known monthly inflation rate, weighted by its mechanical

contribution to the yearly inflation rate forecast.
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Finally, our results confirm the co-existence of both types of costs with a forecast com-

munication cost smaller than the observation cost. This latter result is very much in line

with Zbaracki et al. [2004] findings for firms price setting decision rules.
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