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1 Introduction

It is well-known since Benhabib and Farmer [2, 3] that local indeterminacy and sunspot fluctua-
tions arise in two-sector models under much more empirically plausible configurations regarding
structural parameters than in their one-sector equivalents. In particular, indeterminacy occurs
for calibrations consistent with a low degree of increasing returns to scale and a standard (neg-
atively sloped) equilibrium labor demand function. Besides, it has been shown that two-sector
models submitted to correlated sunspot and technological shocks are able to account for many
empirical regularities regarding the comovements of consumption and investment over the busi-
ness cycle, and regarding the allocation of labor across these two sectors (Dufourt et al. [6]).
Yet, these results were obtained under a specification of individual preferences derived from
Greenwood et al. [9] (thereafter GHH), which implies that there is no income effect on labor
supply.

From a theoretical point of view, one may thus wonder whether results obtained under GHH
preferences can be extended to a framework in which the magnitude of the income effect on
labor supply differs from zero. While this issue has been the subject of particular attention in
one-sector models (see in particular Jaimovich [13]), no systematic study of the role of income
effects in two-sector models has been provided so far.1 The aim of this chapter is to undertake
such an analysis.

We analyze a version of the Benhabib and Farmer [3] two-sector model with sector-specific
externalities in which we consider a class of utility functions which is flexible enough to encompass
varying degrees of income effect. Our specification of individual preferences is inspired from – but
slightly differs from – the one considered in Jaimovich and Rebelo [14] (JR). This specification
admits as particular (and polar) cases the GHH formulation without income effect and the
canonical specification of King et al. [16] (KPR) used in many DSGEmodels. We analyze how the
local stability properties of the model change when we vary the parameter governing the intensity
of the income effect, and we determine the conditions under which local indeterminacy arises.
We perform this analysis for different configurations regarding the other structural parameters
influencing the wage elasticity of labor supply, the elasticity of intertemporal substitution (EIS)
in consumption, and the degree of increasing returns to scale (IRS).

Our main results can be described as follows. First, we show that local indeterminacy and
sunspot fluctuations occur in 2-sector models under plausible configurations regarding all struc-
tural parameters – in particular regarding the intensity of income effects. Second, we show that
there even exist some configurations for which local indeterminacy arises under any degree of in-
come effect. More precisely, for any given size of income effect, we show that there is a non-empty
range of values for the Frisch elasticity of labor and the elasticity of intertemporal substitution
in consumption such that indeterminacy occurs. This contrasts with the results obtained in one-
sector models in both Nishimura et al. [19], in which it is shown that indeterminacy cannot occur
under either GHH and KPR preferences as long as realistic parameter values are considered, in
particular when the slope of the labor demand function is negative, and in Jaimovich [13] in

1Nishimura and Venditti [20] show that local indeterminacy can occur under both GHH and KPR preferences
− the latter displaying positive income effect − but there is no clear picture of the impact of the income effect
on the occurrence of sunspot fluctuations.
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which local indeterminacy only arises for intermediary income effects.
The rest of this Chapter is organized as follows. We present the model and we characterize

the intertemporal equilibrium in the next Section. In Section 3, we prove the existence of
a unique steady state and we provide the expression of the characteristic polynomial. The
complete set of conditions for local indeterminacy are derived in Section 4. Section 5 provides
some numerical illustrations, while economic intuitions underlying our main theoretical results
are given in Section 6. Some concluding remarks are stated in Section 7, whereas all the technical
details are given in a final Appendix.

2 The model

We consider a standard two-sector infinite-horizon model with productive externalities and JR-
type preferences (see Jaimovich [13] and Jaimovich and Rebelo [14]). Households are infinitely-
lived, accumulate capital, and derive utility from consumption and leisure. Firms produce differ-
entiated consumption and investment goods using capital and labor, and sell them to consumers.
All markets are perfectly competitive.

2.1 The production structure

Firms in the consumption sector produce output Yc(t) according to a Cobb-Douglas production
function:

Yc(t) = Kc(t)
αLc(t)

1−α (1)
where Kc(t) and Lc(t) are capital and labor allocated to the consumption sector.

In the investment sector, output YI(t) is also produced according to a Cobb-Douglas produc-
tion function but which is affected by a productive externality

YI(t) = A(t)KI(t)
αLI(t)

1−α (2)
where KI(t) and LI(t) are the numbers of capital and labor units used in the production of the
investment good, and A(t) is the externality parameter. Following Benhabib and Farmer [3], we
assume that the externality is sector-specific and depends on the average levels K̄I(t) and L̄I(t)
of capital and labor used in the investment sector, such that:

A(t) = K̄I(t)
αΘL̄I(t)

(1−α)Θ (3)
with Θ ≥ 0.2 These economy-wide averages are taken as given by individual firms. Assuming that
factor markets are perfectly competitive and that capital and labor inputs are perfectly mobile
across the two sectors, the first order conditions for profit maximization of the representative
firm in each sector are:

r(t) =
αYc(t)

Kc(t)
= p(t)

αYI(t)

KI(t)
, (4)

w(t) =
(1− α)Yc(t)

Lc(t)
= p(t)

(1− α)YI(t)

LI(t)
(5)

where r, p and w are respectively the rental rate of capital, the price of the investment good and
the real wage rate at time t, all in terms of the price of the consumption good.

2We do not consider externalities in the consumption good sector as they do not play any crucial role in the
existence of multiple equilibria.
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2.2 Households’ behavior

We consider an economy populated by a continuum of unit mass of identical infinitely-lived
agents. The representative agent enters each period t with a capital stock k(t) inherited from
the past. He then supplies elastically an amount l(t) ∈ [0, l̄) of labor (with l̄ > 0 his exogenous
time endowment), rents its capital stock k(t) to the representative firms in the consumption
and investment sectors, consumes c(t), and invests i(t) in order to accumulate capital.

Denoting by y(t) the GDP, the budget constraint faced by the representative household is

c(t) + p(t)i(t) = r(t)k(t) + w(t)l(t) ≡ y(t) (6)

Assuming that capital depreciates at rate δ ∈ (0, 1) in each period, the law of motion of the
capital stock is:

k̇(t) = i(t)− δk(t) (7)

The intertemporal optimization problem of the representative household is then given by:

max
{c(t),i(t),l(t)}

∫ +∞

0
U(c(t), (l̄ − l(t)))e−ρtdt

s.t. c(t) + p(t)i(t) ≡ y(t) = r(t)k(t) + w(t)l(t)

k̇(t) = i(t)− δk(t)

k(0) given

(8)

where ρ ≥ 0 is the discount rate.
The Hamiltonian in current value is given by:

H = U(c(t), (l̄ − l(t))) + λ(t) [r(t)k(t) + w(t)l(t)− c(t)− p(t)i(t)] + q(t) [i(t)− δk(t)]

with q(t) the co-state variable which corresponds to the utility price of the capital good in current
value and λ(t) the Lagrange multiplier associated with the budget constraint. The first order
conditions of problem (8) are given by the following equations:

U1(c(t), (l̄ − l(t))) = λ(t) (9)

U2(c(t), (l̄ − l(t))) = w(t)λ(t) (10)

q(t) = p(t)λ(t) (11)

q̇(t) = (δ + ρ)q(t)− r(t)λ(t) (12)

An equilibrium path also satisfies the transversality condition

lim
t→+∞

e−ρtU1(c(t), (l̄ − l(t)))p(t)k(t) = 0. (13)

Following Jaimovich [13] and Jaimovich and Rebelo [14], we assume a JR-type utility function
which is flexible enough to encompass varying degrees of income effect. Denoting leisure as
L = l̄ − l, let

U(c,L) =

[
c− (l̄−L)1+χ

1+χ
cγ
]1−σ

−1

1−σ
(14)

with σ ≥ 0, χ ≥ 0 and γ ∈ [0, 1]. This utility function satisfies the standard normality condition
between consumption and leisure. In the following, we will also introduce some parameter
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restrictions ensuring that concavity holds at the steady-state.3 This specification nests as par-
ticular cases the Greenwood-Hercovitz-Huffman [9] (GHH) formulation (obtained when γ = 0),
characterized by the lack of any income effect on labor supply, and the King-Plosser-Rebelo [16]
(KPR) formulation (obtained when γ = 1), characterized by a large income effect compatible
with endogenous growth. We are then able to control the magnitude of the income effect by
varying the calibration for γ between these two extremes.

Remark 1 : Jaimovich [13] and Jaimovich and Rebelo [14] actually consider discrete-time
models with a slightly different specification such that

U(ct,Lt, Xt) =

[
ct− (l̄−Lt)

1+χ

1+χ
Xt

]1−σ
−1

1−σ
(15)

with Xt = cγtX
1−γ
t−1 . When γ ∈ (0, 1), the income effect depends on the dynamics of this

additional state variable Xt. Such a formulation allows to get more persistence of income effects
during the transition, but focusing on such a property is out of the scope of this paper.

Remark 2 : Using this specification for the utility function, from equations (9)-(10) we can
write the first order condition that drives the trade-off between consumption and leisure as follows

(1+χ)lχcγ

1+χ−γl1+χcγ−1 = w (16)

Denoting I the total income of the representative agent and normalizing the price of consumption
to 1, we consider the static budget constraint

c+ wL = I (17)

Considering that L = l̄− l, solving equations (16)-(17) gives demand functions for consumption
and leisure, namely c = c(w, I) and L = L(w, I). Assuming a constant wage, considering that
dL = −dl and deriving the ratio wl/c from (16), we then get the following derivatives that
describe the income effect for any γ ∈ [0, 1]:

εcI ≡
dc

dI
=

[
1 + γ (1+χ)l1+χcγ−1

1+χ−γl1+χcγ−1
1+χ−l1+χcγ−1

(1+χ)χ+γl1+χcγ−1

]−1

εlI ≡
dl

dI
= −dL

dI
= −γ 1+χ−l1+χcγ−1

(1+χ)χ+γl1+χcγ−1

[
1 + γ (1+χ)l1+χcγ−1

1+χ−γl1+χcγ−1
1+χ−l1+χcγ−1

(1+χ)χ+γl1+χcγ−1

]−1
(18)

These expressions clearly show that in the GHH case with γ = 0 there is no income effect
as εlI = 0 and εcI = 1 while in the KPR case with γ = 1 we get some income effect with
εlI ∈ (−1, 0) and εcI ∈ (0, 1). In the intermediary case with γ ∈ (0, 1), the income effect lies in
between these two extremes.

3It is important to note that when γ 6= 0, this utility function may not be concave. This characteristic is
well-known for the KPR specification with γ = 1 for which additional restrictions on σ and χ are required to
guarantee concavity (see for instance Hintermaier [12]). However, in order to avoid technical and cumbersome
assumptions, we will only focus with Lemma 1 below on the conditions for local concavity properties around the
steady state. Precise general conditions for global concavity can be provided upon request.
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2.3 Intertemporal equilibrium

We consider symmetric equilibria which consist of prices {r(t), p(t), w(t)}t≥0 and quantities
{c(t), l(t), i(t), k(t), Yc(t), YI(t),Kc(t),KI(t), Lc(t), LI(t)}t≥0 that satisfy the household’s and the
firms’ first-order conditions as given by (4)–(5) and (9)-(12), the technological and budget con-
straints (1)-(3) and (6)-(7), the good market equilibrium conditions

c = Yc, i = YI ,

the market clearing conditions for capital and labor

Kc +KI = k, Lc + LI = l

and the transversality condition (13).4

All firms in the investment sector being identical, we have K̄I = KI and L̄I = LI . At the
equilibrium, the production function in the investment good sector is then given by

YI = K
α(1+Θ)
I L

(1−α)(1+Θ)
I (19)

We thus have increasing social returns which size is measured by Θ.

3 Steady state and characteristic polynomial

After a few manipulations, the intertemporal equilibrium described above can be reduced to a
dynamic system of two equations in two variables, k and p. From the firms’ first-order conditions
(4)-(5), we derive that the equilibrium capital-labor ratios in the consumption and investment
sectors are identical and equal to a ≡ k/l = Kc/Lc = KI/LI = αw/ ((1− α)r) , with w =

(1 − α)aα and r = αaα−1. Combining these results with (1)-(2), we get pA = 1 with A =

KI(k/l)
−(1−α)Θ and thus

KI = (k/l)1−αp−1/Θ (20)
Moreover, substituting these expressions into the production functions (1)-(2), we also derive:

i = YI = p−
1+Θ

Θ ≡ YI(p) (21)

c = Yc =

(
k

l

)α−1
[
k −

(
k

l

)1−α
p−1/Θ

]
(22)

Combining equations (9)-(10), describing the labor-leisure trade-off at the equilibrium, with
(22) allows to write consumption and labor as functions of the capital stock k and the price of
the investment good p, namely c = c(k, p), and l = l(k, p). It follows therefore that

a = k/l(k, p) ≡ a(k, p)

w = (1− α)(a(k, p))α ≡ w(k, p)

r = α(a(k, p))α−1 ≡ r(k, p)

(23)

Let us introduce the following elasticities:

εcc = − U1(c,L)
U11(c,L)c , εlc = − U2(c,L)

U21(c,L)c , εcl = − U1(c,L)
U12(c,L)l , εll = − U2(c,L)

U22(c,L)l
(24)

4When there is no possible confusion, the time index (t) is not mentioned.
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Note that εcc corresponds to the elasticity of intertemporal substitution in consumption while
the Frisch elasticity of the labor supply is given by

εlw =
[

1
εll
− 1

εcl

]−1
(25)

Combining (9)-(12) with (20)-(23), the equations of motion are finally derived as

k̇ = YI(p)− δk

ṗ =
(δ+ρ)p−r(k,p)+

[
1
εcc

∂c
∂k

p
c(k,p)

− 1
εcl

∂l
∂k

p
l(k,p)

]
(YI(p)−δk)

E(k,p)

(26)

with
E(k, p) = 1−

[
1
εcc

∂c
∂p

p
c(k,p) −

1
εcl

∂l
∂p

p
l(k,p)

]
(27)

Any solution {k(t), p(t)}t≥0, with k(0) given, that also satisfies the transversality condition
(13) is called an equilibrium path.

A steady state of the dynamical system (26) is defined by a pair (k∗, p∗) solution of

YI(p) = δk, r(k, p) = (δ + ρ)p (28)
We then derive:

Proposition 1. Assume that χ[1− α(1 + Θ)] + γ(1− α)− αΘ 6= 0. Then there exists a unique
steady state (k∗, p∗) such that YI(p∗) = δk∗ and r(k∗, p∗) = (δ + ρ)p∗.

Proof : See Appendix 8.1.

Remark 3 : Using a continuity argument we derive from Proposition 1 that there exists an
intertemporal equilibrium for any initial capital stock k(0) in the neighborhood of k∗. Moreover,
any solution of (26) that converges to the steady state satisfies the transversality condition (13)
and is an equilibrium. Therefore, given k(0), if there is more than one initial price p(0) in the
stable manifold of the steady state, the equilibrium path from k(0) is not unique and we have
local indeterminacy.

Remind also from footnote 3 that the JR-type utility function as given by (14) may not be
concave. Since we focus on the local stability properties of equilibria around the steady state,
we provide a local condition for concavity.

Lemma 1. The JR-type utility function as given by (14) is concave in a neighborhood of the
steady state if and only if

σ ≥ σc(γ) ≡ γC(γ+χ)[1+χ−(1−γ)C]
(1+χ)2

[
χ+γC

(
2−C(1−γ)

1+χ

)] (29)

with C = [(1− α)(δ + ρ)]/[ρ+ δ(1− α)](< 1).

Remark 4 : When evaluated at the steady state, the income effect (18), the elasticity of
intertemporal substitution in consumption as defined in (24) and the Frisch elasticity of labor
(25) become:5

5See Appendix 8.2.
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εcI = χ+γC
χ+γC[2−C(1−γ)] , εlI = − γ[1−C(1−γ)]

χ+γC[2−C(1−γ)] (30)

εcc =
[
σ 1+χ

1+χ−C(1−γ) − γ(1− γ) C1+χ

]−1
, εlw = 1

χ+γC (31)

Considering (21) and linearizing the dynamical system (26) around the steady state leads to
the characteristic polynomial

P(λ) = λ2 − T λ+D (32)
with

D =
−δ
(
δ+ρ− ∂r

∂p

)
− δ(1+Θ)

Θ
∂r
∂k

k∗
p∗

E(k∗,p∗)

T =
ρ+δ

(
1
εcc

∂c
∂p

p∗
c∗−

1
εcl

∂l
∂p

p∗
l∗

)
− ∂r
∂p
− δ(1+Θ)

Θ

(
1
εcc

∂c
∂k

k∗
c∗ −

1
εcl

∂l
∂k

k∗
l∗

)
E(k∗,p∗)

(33)

Most of these partial derivatives are functions of εcc, εcl, εlc and εll. The role of εlc and εll occurs
through the presence of endogenous labor but remains implicit at this stage.

System (26) has one state variable and one control variable. As is well known, if (32) has two
roots with negative real parts, there is a continuum of converging paths and thus a continuum of
equilibria: the steady state is locally indeterminate and there exist expectation-driven endoge-
nous fluctuations. Local indeterminacy therefore requires that D > 0 and T < 0. Obviously
saddle-point stability is obtained when D < 0, while total instability holds (with both eigenval-
ues having positive real parts) if D > 0 and T > 0.6 In the following, we will focus on locally
indeterminate equilibria and we will also look for the existence of a Hopf bifurcation, occurring
when T = 0 while D > 0, which leads to periodic cycles.

4 Local indeterminacy with variable income effects

Deriving the local stability properties of system (26) in the most general case (without additional
parameter restrictions) is very cumbersome, as a lot of different configurations may arise. In
order to reduce the number of possible configurations, we now introduce the following parameter
restrictions:

Assumption 1. α < 1/2, δ = 0.025, ρ > 0.005, χ ≤ 3 and Θ ∈ (0, Θ̄) with Θ̄ = (1− α)/α.

The calibration for δ is common to many studies in the DSGE literature and corresponds to
an annual capital depreciation rate of 10%. The restriction on α is innocuous as capital shares
are typically less than 50% of GDP in industrialized economies. Likewise, the assumption on the
rate of time preference ρ is not very restrictive as the standard calibration for this parameter is
ρ = 0.01. The restriction on χ allows to consider realistic values for the Frisch elasticity of labor
εlw as given in (31) (see Section 5). Finally, using a benchmark calibration for the US economy
at quarterly frequency, namely (α, ρ, δ) = (0.3, 0.01, 0.025), Assumption 1 implies Θ̄ ≈ 2.33.
This bound defines an interval for Θ which largely covers the range of available estimates for
the degree of IRS in the investment sector, since empirical studies typically conclude for values
around 0.3.7 We obtain:

6We will show in this case that there exists a Hopf bifurcation leading to the existence of periodic cycles.
7For example, Basu and Fernald [3] obtain a point estimate for the degree of IRS in the durable manufacturing

sector in the US economy of 0.33, with standard deviation 0.11.
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Proposition 2. Under Assumption 1, consider the following critical values of σ, Θ and χ:

σsup(γ) ≡
[1+χ−C(1−γ)]

{[
α+χ+γC

(
2−C(1−γ)

1+χ

)]
Θ[ρ+δ(1−α)]+ γCαδ

1+χ
[α+χ+γ(1−α)]

}
(1+χ)αδ

[
α+χ+γC

(
2−C(1−γ)

1+χ

)]

σH(γ) ≡
[1+χ−C(1−γ)]

{[
α+χ+γC

(
2−C(1−γ)

1+χ

)]
ρΘ[ρ+δ(1−α)]+γCαδ

[
ρ[α+χ+γ(1−α)]

1+χ
+αδΘ

]}
(1+χ)αδ[ρ+Θ(δ+ρ)]

[
α+χ+γC

(
2−C(1−γ)

1+χ

)]

Θ̃(γ) ≡
γ2Cα2δ

[
1−(1−γ)C

(
2−C(1−γ)

1+χ

)]
[
χ+γC

(
2−C(1−γ)

1+χ

)][
α+χ+γC

(
2−C(1−γ)

1+χ

)]
[ρ+δ(1−α)]

∈ (0, Θ̄)

χ(γ) ≡ αΘ−γ(1−α)
1−α−αΘ ∈ (0, 3)

(34)

with σsup(γ) > σH(γ). Let σinf (γ) = max{σH(γ), σc(γ)}. Then the steady state (k∗, p∗) is
locally indeterminate if and only if χ > χ(γ), Θ ∈ (Θ̃(γ), Θ̄) and σ ∈ (σinf (γ), σsup(γ)), while
saddle-point stability holds if Θ ∈ (Θ̃(γ), Θ̄) and σ > σsup(γ) or Θ < Θ̃(γ).

Proof : See Appendix 8.3.

Remark 5 : Some comments on the occurrence of saddle-point stability are in order here. As
shown in Appendix 8.3, under Assumption 1, D is positive and local indeterminacy may arise if
and only if σ < σsup(γ). But Lemma 1 shows that the JR utility function is locally concave if and
only if σ ≥ σc(γ). The compatibility of these two conditions is ensured if and only if Θ > Θ̃(γ).
Therefore, D is positive and saddle-point stability holds in two cases: i) when Θ ∈ (Θ̃(γ), Θ̄)

and σ > σsup(γ), or ii) when Θ < Θ̃(γ) which implies σ > σsup(γ) under the concavity condition.

Proposition 2 shows that for any intensity γ ∈ [0, 1] of income effects, there is a non-empty
range of values for the parameter σ such that indeterminacy occurs. This conclusion is in sharp
contrast with the results obtained in one-sector models. For example, Nishimura et al. [19]
show that indeterminacy is ruled out in such models under both GHH (γ = 0) and KPR (γ = 1)

preferences, as long as realistic parameter values are considered. Likewise, Jaimovich [13] shows
in a calibrated version of the aggregate infinite-horizon model with increasing returns that local
indeterminacy arises for intermediary values of γ, while it is ruled out when the income effect is
too low (γ close to 0) or too large (γ close to 1).

Proposition 2 also implies that a Hopf bifurcation exists in the parameter space, provided
that σH(γ) > σc(γ). One can complete the proposition by deriving conditions under which this
inequality is satisfied:

Corollary 1. Under Assumption 1, let χ > χ(γ) and consider the critical values as given by
(34) together with the following one:

Θ̂(γ) ≡
γ2Cα2δρ

[
1− (1−γ)C

1+χ

(
2−C(1−γ)

1+χ

)]
[
α+χ+γC

(
2−C(1−γ)

1+χ

)][
ρ[ρ+δ(1−α)]

[
χ+γC

(
2−C(1−γ)

1+χ

)]
− γCαδ(γ+χ)(δ+ρ)

1+χ

]
+γC(αδ)2

[
χ+γC

(
2−C(1−γ)

1+χ

)] ∈ (0, Θ̄)

Denote Θ(γ) = max{Θ̂(γ), Θ̃(γ)}. If Θ ∈ (Θ(γ), Θ̄), the steady state (k∗, p∗) is saddle-point
stable when σ > σsup(γ), locally indeterminate when σ ∈ (σH(γ), σsup(γ)) and totally unstable
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when σ ∈ (σc(γ), σH(γ)). When σ crosses σH(γ) from above a Hopf bifurcation generically occurs
and gives rise to the existence of locally indeterminate (totally unstable) periodic cycles in a left
(right) neighborhood of σH(γ).

Proof : See Appendix 8.4.

Remark 6 : Corollary 1 shows that local indeterminacy arises when σ ∈ (σH(γ), σsup(γ))

with the occurrence of a pair of purely imaginary complex eigenvalues when σ = σH(γ). The
Hopf bifurcation Theorem (see Grandmont [8]) then implies that there exist periodic cycles
for σ in a left or right neighborhood of σH(γ) depending on whether the bifurcation is super
or sub-critical. In the super-critical case, the periodic cycles occur when the steady-state is
totally unstable which implies that the periodic cycles are stable, i.e. locally indeterminate. On
the contrary, in the sub-critical case, the periodic cycles occur when the steady-state is locally
indeterminate. This means that the periodic cycles are totally unstable and define a corridor
of stability for the steady-state and thus for the existence of an equilibrium. Indeed, any path
starting from the outside of the area defined by a periodic cycle is a divergent one that will
violate the transversality condition and cannot be an equilibrium.

Remind that σ and χ are the crucial parameters influencing the degree of intertemporal
substitution in consumption and the Frisch elasticity of labor supply. Proposition 2 and Corollary
1 then provide clear-cut conclusions about the conditions required for local indeterminacy and
the existence of sunspot-driven fluctuations in canonical two-sector models. Local indeterminacy
occurs, for any given degree γ ∈ [0, 1] of income effects, provided that the degree of IRS is not
too small, the wage elasticity of labor supply is not too large, and the EIS in consumption is
in an intermediary range. Note that the interval of values for the amount of externalities Θ

compatible with local indeterminacy is quite large under the benchmark calibration (α, ρ, δ) =

(0.3, 0.01, 0.025) as Θ(γ) ∈ [0, 0.0323) for γ ∈ [0, 1] and χ ≥ 0 while Θ̄ ≈ 2.33.
As an illustration to Proposition 2 , Figure 1 plots the relevant bifurcation loci and the local

indeterminacy areas in the three-dimensional space with axes given by (χ, γ,σ) in panel (a), and
by (χ, γ, εcc) in panel (b). The critical values obtained for the EIS in consumption εcc in panel (b)
are derived from the analytical expression relating σ to εcc at the steady-state as given by (31).
Moreover, panels (c) and (d) in Figure 2 display, for each pair (χ, γ), the corresponding values
for the Frisch elasticity of labor supply (panel (c)), and the income effect on labor supply (panel
(d)), both evaluated at the steady state (see (30) and (31)). All these graphs are computed using
the benchmark calibration (α, ρ, δ) = (0.3, 0.01, 0.025) and a degree of IRS in the investment
sector of Θ = 0.33, the point estimate obtained by Basu and Fernald [3].

Figure 1: (a) bifurcations in the (χ, γ, σ) plane; (b) bifurcations in the (χ, γ, εcc) plane.
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Figure 2: (c) wage elasticity of labor supply εlw; (d) income effect on labor supply εlI .

As can be seen, local indeterminacy occurs for a wide range of values for the EIS in con-
sumption εcc, typically ranging between 0.61 and 1.95 using our benchmark calibration. This is
in line with the empirical literature, which provides estimates typically ranging between 0 and
2. Moreover, combining the results displayed in panel (b) with panels (c) and (d), it can be
observed that when γ is small (close to 0), indeterminacy emerges for a wide range of values
for the Frisch labor supply elasticity (ranging between 0.5 and more than 5), a wide range of
values for the EIS in consumption (ranging between 0.7 and 1.7), but a moderate intensity of
income effects on labor supply (ranging between 0 and -0.15). Conversely, when γ tends to 1,
indeterminacy can emerge under much more significant income effects (up to a value of -0.55,
obtained when χ is close to its minimum value χ(1) consistent with indeterminacy). Yet, the
maximal value for the wage-elasticity of labor is now relatively small (with a maximum value
given by εlw = 1.2).

However, it is worth pointing out that the interval of values for the structural parameter σ
given in Proposition 2 and Corollary 1 varies with the size of the income effect γ. But usually
we consider a constant value for σ, e.g. σ = σ for any γ ≤ 1. In such a case, one may
wonder whether local indeterminacy may arise for any size of the income effect γ ∈ [0, 1]. The
answer to this question depends on the values of σsup(0) and σH(1). Clearly, a positive answer
requires σsup(0) > σH(1). We need also to satisfy the necessary condition for local indeterminacy
exhibited in Proposition 2 and Corollary 1, namely χ > χ(γ) and Θ > Θ(γ), for any γ ∈ [0, 1].
Noting that the maximal values of χ(γ) and Θ(γ) are respectively χ(0) = αΘ/(1−α−αΘ) and
Θ(1),8 this property is satisfied if χ > χ(0) and Θ > Θ(1). We then get the following Lemma:

Lemma 2. Under Assumption 1, let χ > χ(0). Then there exist ¯̄Θ ∈ (0, Θ̄) and χ̄ > χ(0) such
that when Θ ∈ (0, ¯̄Θ), σsup(0)− σH(1) ≶ 0 if and only if χ ≶ χ̄.

Proof : See Appendix 8.5.

Let us introduce an additional technical assumption:

Assumption 2. ¯̄Θ > Θ(1) and χ̄ < 3.

Considering again (α, ρ, δ) = (0.3, 0.01, 0.025), this Assumption easily holds as ¯̄Θ ≈ 0.67,
Θ(1) < 0.0323 and χ̄ ≈ 1.39. We can then finally derive the following Corollary:

8It can be shown indeed that Θ(γ) is an increasing function of γ while χ(γ) is a decreasing function.
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Corollary 2. Under Assumptions 1-2, let Θ ∈ (Θ(1), ¯̄Θ). Then the following cases occur:
a) If χ ∈ (χ(0), χ̄), there exist 0 < γ < γ̄ such that the steady state is locally indeterminate

in the following cases:
i) when σ ∈ (σH(0), σsup(0)) and γ ∈ [0, γ);
ii) when σ ∈ (σsup(0), σH(1)) and γ ∈ (γ, γ̄);
iii) when σ ∈ (σH(1), σsup(1)) and γ ∈ (γ̄, 1].

b) If χ > χ̄, the steady state is locally indeterminate for any γ ∈ [0, 1] when σ ∈
(σH(1), σsup(0)). Moreover, there exist 0 < γ < γ̄ such that local indeterminacy also holds
in the following cases:

i) when σ ∈ (σH(0), σH(1)) and γ ∈ [0, γ);
ii) when σ ∈ (σsup(0), σsup(1)) and γ ∈ (γ̄, 1].

Corollary 2 shows that there is a trade-off between the values of χ, σ and γ for the existence
of local indeterminacy. When χ is low, i.e. the Frisch elasticity of labor is large, the lower
(higher) the values of σ, the lower (higher) the values of γ must be for local indeterminacy
to arise. The same type of results partially arises when χ is large enough, i.e. the Frisch
elasticity of labor is low enough, as low (high) values of σ still require low (high) values of γ.
However, local indeterminacy may also arise for any γ ∈ [0, 1] as long as σ admits intermediary
values. As σ is inversely related to the EIS in consumption, we conclude that the size of the
income effect necessary for the existence of self-fulfilling expectations strongly depends on the
way the representative agent adjusts his intertemporal consumption profile. Such a conclusion
is important as there is no clear evidence of the empirically realistic values of the size γ. Khan
and Tsoukalas [15] provide some estimates in favor of a large income effect with γ > 0.5, while
Schmitt-Grohé and Uribe [23] conclude for evidences in favor of a low income effect with values
of γ close to zero. It is therefore necessary to explore our main results on a numerical basis
in order to evaluate the magnitude of each structural parameter that affects the occurrence of
expectations-driven fluctuations.

5 Numerical illustrations

We have shown in Proposition 2 and Corollary 1 that local indeterminacy arises under different
scenarios for the values of the Frisch elasticity of labor εlw, the EIS in consumption εcc and the
size of income effect. There is no consensus in the literature about εlw and εcc. Concerning
εlw, Rogerson and Wallenius [22] and Prescott and Wallenius [21] recommend values around 3

to calibrate business cycle models, based on both theoretical considerations and cross-country
tax analysis.9 More recently, Chetty et al. [5] recommend on the contrary an aggregate Frisch
elasticity of 0.5 on the intensive margin for labor supply. Concerning εcc, while early studies
suggest quite low values, e.g. Campbell [4] and Kocherlakota [17], more recent estimates provide
a much more contrasted view. Indeed, Mulligan [18] and Vissing-Jorgensen and Attanasio [24]
repeatedly obtained estimates above unity, typically in the range 1.1− 2.1.

9See Prescott and Wallenius [21] for a discussion of the factors that make the wage elasticity of aggregate labor
supply significantly differ from the corresponding elasticity at the micro level.
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Let us now provide some numerical illustrations in order to check whether macroeconomic
fluctuations based on self-fulfilling expectations may arise under realistic calibrations for these
parameters. When (α, ρ, δ) = (0.3, 0.01, 0.025), we get (Θ(1), χ(0), χ̄) ≈ (0.0263, 0.1475, 1.39).
Let us then assume χ = 0.15 and Θ = 0.3 so that for any given γ ∈ [0, 1], Θ ∈ (Θ(γ), Θ̄) and
χ ∈ (χ(γ), χ̄). In this configuration, we are in case a) of Corollary 2 with σsup(0) < σH(1). We
then get the following Figure covering different possible values of σ:

σ εcc εlw

Figure 3: (a) indeterminacy areas for χ = 0.15; (b) and (c) variations of εcc and εlw when σ = 0.4

It follows that local indeterminacy occurs:
i) when σ = 0.2 if γ ∈ [0, 0.136),
ii) when σ = 0.4 if γ ∈ (0.14, 0.449),
iii) when σ = 0.9 if γ ∈ (0.549, 1].

As an illustration of configuration ii), and according to Figure 1, we find values for the EIS
in consumption in line with the more recent estimates provided by Mulligan [18] and Vissing-
Jorgensen and Attanasio [24]. Moreover, the values for the Frisch elasticity of labor match the
recommendations of Rogerson and Wallenius [22] and Prescott and Wallenius [21].

Considering now χ = 1.7, we are in case b) of Corollary 2 and we get σH(1) ≈ 0.6774 and
σsup(0) ≈ 0.737. It follows therefore that if σ = 0.7, local indeterminacy arises for any γ ∈ [0, 1].
We have indeed the following Figure:

σ εcc εlw

Figure 4: (a) indeterminacy for any γ ∈ [0, 1]; (b) and (c) variations of εcc and εlw when σ = 0.7
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Moreover, the EIS again belongs to an empirically realistic interval compatible with the
estimates of Mulligan [18] and Vissing-Jorgensen and Attanasio [24] and the Frisch elasticity of
labor is now in line with the recommendation of Chetty et al. [5].

Our results then prove that the existence of sunspot fluctuations can be obtained for any size
of income effect as long as the values of the Frisch elasticity of labor and the EIS in consumption
are adequately chosen. Moreover, in any cases, these values can be in line with the estimates
provided by the recent literature.

6 Economic interpretations

The general intuition for the existence of indeterminacy in a one-sector model is quite simple.10

Starting from the steady state, let us assume that agents expect a faster rate of accumulation.
To be an equilibrium this new path would require a higher return on investment. If higher
anticipated stocks of future capital raise the marginal product of capital by drawing labor out
of leisure, the expected higher rate of return may be self-fulfilling. When there is a sufficient
amount of increasing returns based on externalities and the Frisch elasticity of the labor supply
is large enough, the movement of labor into production may be strong enough to boost the rate
of return leading to self-fulfilling expectations and multiple equilibria. However, depending on
the utility function, if we consider as suggested by the empirical evidence that the labor demand
function is decreasing with respect to wage, there is an upper bound for the size of externalities
and such a mechanism may not be admissible. As shown by Hintermaier [11, 12], with a KPR
utility function (γ = 1), the concavity restrictions prevent the occurrence of this mechanism.
Similarly, Nishimura et al. [19] prove the same impossibility result with a GHH utility function
(γ = 0). In this case, the argument is not based on concavity but on the absence of income
effect. As externalities are not strong enough and labor is not affected by the increased income
(εlI = 0), the expected increase of the marginal product of capital does not generate a sufficient
adjustment of labor and the expectations cannot be self-fulfilling. This explains why Jaimovich
[13] obtains the existence of local indeterminacy for intermediary values of γ.11

In two-sector models, the story is different. As shown by Benhabib and Farmer [3], when
external effects in each sector depend on the aggregate output of their own sector, factor re-
allocations across sectors can have strong effects on marginal products. It follows that local
indeterminacy can occur with much smaller externalities than those required in the one sector
case, a standard positive slope for the labor demand function and under a lower variability of
labor. Our main conclusions are of course compatible with a decreasing labor demand function
which is obtained as soon as Θ < α/(1− α)(< Θ̄).

We prove that the existence of sunspot fluctuations depends on a trade-off between the
values of the Frisch elasticity of labor, the EIS in consumption and the size of income effect. To
understand such a trade-off, let us start with Corollary 2-a). It is shown that for a given low value
of χ, i.e. a large value of εlw, the larger the income effect, the lower the EIS in consumption for

10See Benhabib and Farmer [2].
11Recall however that his utility formulation contains an additional state variableXt which may play a significant

role for these result.
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indeterminacy to arise. In order to get an intuition for such conclusions, consider the expressions
of εcI and εlI evaluated at the steady state as given in (30). It is easy to check that εcI and εlI
are decreasing in γ while increasing in χ.

Starting from the steady state, let us assume as previously that agents expect an increase in
the future marginal return on capital leading then to a decrease in current consumption in order
to invest more today and at the same time an increase in future income. As εcI is decreasing in
γ, the lower the income effect, the larger the increase in future consumption following the larger
expected income. This effect therefore generates a large fluctuation of consumption and the
expectation can be self-fulfilling provided the EIS is large enough. Since the two-sector structure
requires lower external effects, the adjustment of labor is sufficient to get multiple equilibria
even under a low income effect. Similarly, when the income effect is larger, the increase of future
consumption following a larger expected income is weaker, and the expectations can now be
self-fulfilling under a lower EIS in consumption.

Let us now consider Corollary 2-b). We show here that if the value of χ is large enough, i.e.
the value of εlw is low enough, local indeterminacy may arise for any size of income effect when the
EIS in consumption has intermediary values. Following the same intuition, as εcI is increasing
in χ, the larger expected future income implies a significant increase in future consumption that
can be compatible with the decrease of present consumption if the EIS is sufficiently high. But
now, as the income effect is increased by the large value of χ, this impact can be large enough
no matter what is the value of γ ∈ [0, 1].

7 Concluding comments

Although one-sector infinite horizon models are known to require very specific positive amount
of income effect for the existence of local indeterminacy,12 two-sector models have been shown
to generate sunspot-driven business cycles under no-income effect preferences. Dufourt et al. [6]
indeed show that when properly calibrated, the model solves several empirical puzzles tradition-
ally associated with two-sector RBC models.13 However, there is not yet a complete analysis of
the impact of various income effects on the occurrence of local indeterminacy.

This paper provides such an analysis. We have shown that for any given size of income
effect, there is a non-empty range of values for the Frisch elasticity of labor and the EIS in
consumption such that indeterminacy occurs. This is in contrast to the results obtained for
aggregate models both in Hintermaier [11, 12] and Nishimura et al. [19], in which it is shown
that indeterminacy cannot occur under GHH and KPR preferences, and in Jaimovich [13], in
which local indeterminacy only arises for intermediary income effects.

More precisely, we have proved that for a large enough Frisch elasticity of labor, the larger
the income effect, the lower the EIS in consumption for indeterminacy to arise. On the contrary,
when the Frisch elasticity of labor is low enough, local indeterminacy may arise for any size of
income effect when the EIS in consumption has intermediary values. We then exhibit a clear
trade-off between all these structural parameters that characterize preferences and that affect

12See Jaimovich [13], Nishimura et al. [19].
13See also Guo and Harrison [10], Nishimura and Venditti [20].
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the occurrence of expectations-driven fluctuations. Such a conclusion appears as important as
there is yet no clear empirical estimates of the size of income effect.14

8 Appendix

8.1 Proof of Proposition 1

Consider the steady state with YI = δk and r = (δ + ρ)p. Since r = pαYI/KI , we get

KI = αδ
δ+ρk (35)

Using the production function (19) for the investment good we derive

YI =
(
k
l

)(α−1)(1+Θ)
(
αδ
δ+ρk

)1+Θ
= δk

Solving this equation yields

k∗ = l
(1−α)(1+Θ)
1−α(1+Θ)

(
α
δ+ρ

) 1+Θ
1−α(1+Θ)

δ
Θ

1−α(1+Θ) ≡ l
(1−α)(1+Θ)
1−α(1+Θ) κ∗ (36)

Substituting this expression into (22) we get

c∗ = l
1−α

1−α(1+Θ) δ(1−α)+ρ
δ+ρ κ∗α ≡ l

1−α
1−α(1+Θ)ψ∗ (37)

Recall that the trade-off between consumption and leisure is described by
(1+χ)lχcγ

1+χ−γl1+χcγ−1 = w (38)

Using (23) with (36)-(37) we get

(1 + χ)l
χ+

γ(1−α)
1−α(1+Θ)ψ∗γ = (1− α)l

αΘ
1−α(1+Θ)κ∗α

[
1 + χ− γl1+χ− (1−γ)(1−α)

1−α(1+Θ) ψ∗γ−1

]
If χ[1− α(1 + Θ)] + γ(1− α)− αΘ 6= 0, solving this equation yields

l∗ =

{
(1−α)κ∗

ψ∗γ

[
1 + (1−α)κ∗γ

(1+χ)ψ∗

]−1
} 1−α(1+Θ)
χ[1−α(1+Θ)]+γ(1−α)−αΘ

We finally derive from (23)
p∗ = α(k∗/l∗)α−1

8.2 Proof of Lemma 1

Using (24) and the first order conditions (9)-(10), we get εcl = εlc(c/wl). Using the expression
of w given in (23) together with the values of k∗ and l∗ provided in Section 8.1 we find wl/c =

(1− α)(δ + ρ)/[δ(1− α) + ρ]. Then at the steady state we get

εcl = δ(1−α)+ρ
(1−α)(δ+ρ)εlc (39)

Using (24), we compute for the utility function as given by (14) the following elasticities:

1
εcc

= σ
c−γ l

1+χ

1+χ
cγ

c− l1+χ

1+χ
cγ
− γ(1− γ)

l1+χ

1+χ
cγ

c−γ l1+χ

1+χ
cγ
, 1

εlc
= σ

c−γ l
1+χ

1+χ
cγ

c− l1+χ

1+χ
cγ
− γ

1
εcl

= l1+χcγ

c−γ l1+χ

1+χ
cγ

[
σ
c−γ l

1+χ

1+χ
cγ

c− l1+χ

1+χ
cγ
− γ

]
, 1

εll
= σ l1+χcγ

c− l1+χ

1+χ
cγ

+ χ

(40)

14See Khan and Tsoukalas [15], Schmitt-Grohé and Uribe [23].
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Obviously, normality holds as we derive from these expressions that
1
εcc
− 1

εlc
≥ 0 and 1

εcl
− 1

εll
≥ 0 (41)

Consider now equation (39) together with the expressions given by (40). We then derive that

l1+χcγ−1

1−γ l1+χ

1+χ
cγ−1

= (1−α)(δ+ρ)
δ(1−α)+ρ (42)

Denoting C = [(1− α)(δ + ρ)]/[δ(1− α) + ρ] < 1, solving this equation yields

l1+χcγ−1 = C(1+χ)
1+χ+γC (43)

and thus
c−γ l

1+χ

1+χ
cγ

c− l1+χ

1+χ
cγ

= 1+χ
1+χ−C(1−γ) ,

l1+χcγ

c− l1+χ

1+χ
cγ

= C(1+χ)
1+χ−C(1−γ)

(44)

Using these expressions we then derive from (40):
1
εcc

= σ 1+χ
1+χ−C(1−γ) − γ(1− γ) C1+χ ,

1
εlc

= σ 1+χ
1+χ−C(1−γ) − γ

1
εcl

= C
εlc
, 1

εll
= σ (1+χ)C

1+χ−C(1−γ) + χ
(45)

Concavity of the utility function requires
1

εccεll
− 1

εlcεcl
≥ 0 and 1

εcc
≥ 0

Straightforward computations show that these two inequalities are satisfied if and only if

σ ≥ σc(γ) ≡ γC(γ+χ)[1+χ−(1−γ)C]
(1+χ)2

[
χ+γC

(
2−C(1−γ)

1+χ

)]

8.3 Proof of Proposition 2

We start by the computation of D and T using a general formulation for U(c,L). Consider the
consumption-labor trade-off as described by (9)-(10) together with the expressions of wage and
consumption as given by (22) and (23). We get the following two equations

U2(c, `− l)lα = (1− α)kαU1(c, `− l) (46)

clα−1 = kα−1
[
k −

(
k
l

)1−α
p−1/Θ

]
(47)

Total differentiation of (46) gives
dc
c

(
1
εcc
− 1

εlc

)
+ dl

l

(
1
εll
− 1

εcl
+ α

)
= αdkk (48)

Total differentiation of (47) gives
dc
c − (1− α)dll = −(1− α)dkk + k∗

k∗−K∗I
dk
k −

K∗I
k∗−K∗I

[
(1− α)

(
dk
k −

dl
l

)
− 1

Θ
dp
p

]
(49)

At the steady state we know that (δ + ρ)p = r with r = pαYI/KI = pαδk/KI . We then derive
K∗I = αδk∗/(δ + ρ) and thus

k∗

k∗−K∗I
= δ+ρ

ρ+δ(1−α) ,
K∗I

k∗−K∗I
= αδ

ρ+δ(1−α)

Equation (48) then becomes:

[ρ+ δ(1− α)] dcc − (1− α)(δ + ρ)dll = α(δ + ρ)dkk + αδ
Θ
dp
p (50)
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From (48) we derive
dl
l = −dc

c

1
εcc
− 1
εlc

1
εll
− 1
εcl

+α
+ dk

k
α

1
εll
− 1
εcl

+α
(51)

Substituting this expression into (50) gives

dc
c =

α(δ+ρ)
(

1
εll
− 1
εcl

+1
)

[ρ+δ(1−α)]
(

1
εll
− 1
εcl

+α
)

+(1−α)(δ+ρ)
(

1
εcc
− 1
εlc

) dk
k

+
αδ
(

1
εll
− 1
εcl

+α
)

Θ
[
[ρ+δ(1−α)]

(
1
εll
− 1
εcl

+α
)

+(1−α)(δ+ρ)
(

1
εcc
− 1
εlc

)] dp
p

(52)

Substituting (52) into (51) finally gives

dl
l = −

α
[
(δ+ρ)

(
1
εcc
− 1
εlc

)
−[ρ+δ(1−α)]

]
[ρ+δ(1−α)]

(
1
εll
− 1
εcl

+α
)

+(1−α)(δ+ρ)
(

1
εcc
− 1
εlc

) dk
k

−
αδ
(

1
εcc
− 1
εlc

)
Θ
[
[ρ+δ(1−α)]

(
1
εll
− 1
εcl

+α
)

+(1−α)(δ+ρ)
(

1
εcc
− 1
εlc

)] dp
p

(53)

We then conclude from this

∂c
∂k

k∗

c∗ =
α(δ+ρ)

(
1
εll
− 1
εcl

+1
)

[ρ+δ(1−α)]
(

1
εll
− 1
εcl

+α
)

+(1−α)(δ+ρ)
(

1
εcc
− 1
εlc

)
∂c
∂p

p∗

c∗ =
αδ
(

1
εll
− 1
εcl

+α
)

Θ
[
[ρ+δ(1−α)]

(
1
εll
− 1
εcl

+α
)

+(1−α)(δ+ρ)
(

1
εcc
− 1
εlc

)]
∂l
∂k

k∗

l∗ = −
α
[
(δ+ρ)

(
1
εcc
− 1
εlc

)
−[ρ+δ(1−α)]

]
[ρ+δ(1−α)]

(
1
εll
− 1
εcl

+α
)

+(1−α)(δ+ρ)
(

1
εcc
− 1
εlc

)
∂l
∂p

p∗

l∗ = −
αδ
(

1
εcc
− 1
εlc

)
Θ
[
[ρ+δ(1−α)]

(
1
εll
− 1
εcl

+α
)

+(1−α)(δ+ρ)
(

1
εcc
− 1
εlc

)]

(54)

Recall now that r = α(k/l)α−1 and YI = p−(1+Θ)/Θ. Using again the steady state relationships
YI = δk and (δ + ρ)p = r, we derive

dYI
dp

p∗

Y ∗I
= −1+Θ

Θ , dr
dk

Y ∗I
p∗ = −δ(1− α)(δ + ρ)

(
1− dl

dk
k∗

l∗

)
, dr

dp = (1− α)(δ + ρ) dldp
p∗

l∗ (55)

Linearizing the dynamical system (26) around the steady state leads to the following Jacobian
matrix

J =

 −δ −1+Θ
Θ

Y ∗I
p∗

−
∂r
∂k

+δ
[

1
εcc

∂c
∂k

p∗
c∗−

1
εlc

∂l
∂k

p∗
l∗

]
E(k∗,p∗)

δ+ρ− ∂r
∂p
− 1+Θ

Θ

Y ∗I
p∗

[
1
εcc

∂c
∂k

p∗
c∗−

1
εlc

∂l
∂k

p∗
l∗

]
E(k∗,p∗)


with E(k, p) as given by (27). The associated characteristic polynomial is then given by (32)
with the Determinant and Trace of the Jacobian matrix as defined by (33). Using (31), (54) and
(55) we finally derive after straightforward simplifications

D(γ) =
δ(δ+ρ)(1+χ+γC)[ρ+δ(1−α)]

[
(1−α)(γ+χ)

1+χ
−αΘ

]
[
α+χ+γC

(
2−C(1−γ)

1+χ

)][
Θ[ρ+δ(1−α)]− σ(1+χ)αδ

1+χ−C(1−γ)

]
+ γCαδ

1+χ
[α+χ+γ(1−α)]

T (γ) =

[
α+χ+γC

(
2−C(1−γ)

1+χ

)][
ρΘ[ρ+δ(1−α)]− σ(1+χ)αδ

1+χ−C(1−γ)
[ρ+Θ(δ+ρ)]

]
+γCαδ

[
ρ[α+χ+γ(1−α)]

1+χ
+αδΘ

]
[
α+χ+γC

(
2−C(1−γ)

1+χ

)][
Θ[ρ+δ(1−α)]− σ(1+χ)αδ

1+χ−C(1−γ)

]
+ γCαδ

1+χ
[α+χ+γ(1−α)]

(56)
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Note that if Θ = 0 we conclude under the concavity condition σ ≥ σc(γ) that D < 0, and the
steady state is always saddle-point stable, i.e. locally determinate.

Assume first that
(1−α)(γ+χ)

1+χ − αΘ > 0 or equivalently χ > αΘ−γ(1−α)
1−α−αΘ ≡ χ(γ) (57)

To keep reasonable values for the external effect we assume from here that Θ < Θ̄ ≡ (1− α)/α

and thus χ(γ) > 0. Then D > 0 if and only if its denominator is positive, namely if and only if

σ < σsup(γ) ≡
[1+χ−C(1−γ)]

{[
α+χ+γC

(
2−C(1−γ)

1+χ

)]
Θ[ρ+δ(1−α)]+ γCαδ

1+χ
[α+χ+γ(1−α)]

}
(1+χ)αδ

[
α+χ+γC

(
2−C(1−γ)

1+χ

)] (58)

But then local indeterminacy arises if and only if T (γ) < 0, namely if and only if its numerator
is negative, i.e.

σ > σH(γ) ≡
[1+χ−C(1−γ)]

{[
α+χ+γC

(
2−C(1−γ)

1+χ

)]
ρΘ[ρ+δ(1−α)]+γCαδ

[
ρ[α+χ+γ(1−α)]

1+χ
+αδΘ

]}
(1+χ)αδ[ρ+Θ(δ+ρ)]

[
α+χ+γC

(
2−C(1−γ)

1+χ

)] (59)

Obvious computations show that σsup(γ) > σH(γ) for any γ ∈ [0, 1]. We need however to check
that σsup(γ) > σc(γ) in order to be able to have a compatibility between the concavity property
of the utility function at the steady state σ ≥ σc(γ) and the condition for local indeterminacy
σ < σsup(γ). Tedious but straightforward computations yield σsup(γ) > σc(γ) if and only if

Θ > Θ̃(γ) ≡
γ2Cα2δ

[
1− (1−γ)C

1+χ

(
2−C(1−γ)

1+χ

)]
[
χ+γC

(
2−C(1−γ)

1+χ

)][
α+χ+γC

(
2−C(1−γ)

1+χ

)]
[ρ+δ(1−α)]

(60)

Under Assumption 1 we have Θ̃′(γ) > 0 and Θ̃(γ) < Θ̄ for any γ ∈ [0, 1].
Denoting σinf (γ) = max{σH(γ), σc(γ)}, we have proved that under condition (57), for

any given γ ∈ [0, 1], local indeterminacy occurs if and only if Θ ∈ (Θ̃(γ), Θ̄) and σ ∈
(σinf (γ), σsup(γ)). Obviously, recalling that Lemma 1 shows that the JR utility function is
locally concave if and only if σ ≥ σc(γ), we derive from (58) and (60) that D is negative and the
steady state (k∗, p∗) is saddle-point stable in two cases: i) when Θ ∈ (Θ̃(γ), Θ̄) and σ > σsup(γ),
or ii) when Θ < Θ̃(γ) which implies σ(≥ σc(γ)) > σsup(γ).

Let us consider now the case in which
(1−α)(γ+χ)

1+χ − αΘ < 0 or equivalently χ < αΘ−γ(1−α)
1−α−αΘ ≡ χ(γ) (61)

We need to assume here that Θ > γ(1 − α)/α and thus that γ < 1 to get a compatibility with
the assumption Θ < Θ̄. Following the same argument as previously, we conclude now that local
indeterminacy arises if σ > σsup(γ) and σ < σH(γ). But such a configuration is not possible as
σsup(γ) > σH(γ) for any γ ∈ [0, 1]. It follows that under condition (61), the steady state (k∗, p∗)

is saddle-point stable when σ < σsup(γ), totally unstable when σ > σsup(γ) and is ruled out.
We conclude therefore that for any given γ ∈ [0, 1], local indeterminacy arises if and only if

χ > χ(γ), Θ ∈ (Θ̃(γ), Θ̄) and σ ∈ (σinf (γ), σsup(γ)).

8.4 Proof of Corollary 1

Taking into account the concavity condition as given in Lemma 1, the existence of a Hopf
bifurcation requires the bound σH(γ) as given in (34) to be larger than σc(γ). We then get
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σH(γ) > σc(γ) if and only if

Θg(ρ, γ, χ) > γ2Cα2δρ
[
1− (1−γ)C

1+χ

(
2− C(1−γ)

1+χ

)]
with

g(ρ, γ, χ) =
[
α+ χ+ γC

(
2− C(1−γ)

1+χ

)] [
ρ[ρ+ δ(1− α)]

[
χ+ γC

(
2− C(1−γ)

1+χ

)]
− γCαδ(γ+χ)(δ+ρ)

1+χ

]
+ γC(αδ)2

[
χ+ γC

(
2− C(1−γ)

1+χ

)]
Under Assumption 1 we have g(ρ, γ, χ) > 0 for any γ ∈ [0, 1]. It follows that σH(γ) > σc(γ) if
and only if

Θ > Θ̂(γ) ≡
γ2Cα2δρ

[
1− (1−γ)C

1+χ

(
2−C(1−γ)

1+χ

)]
g(ρ,γ,χ)

Assumption 1 also implies Θ̂′(γ) > 0 and Θ̂(γ) < Θ̄ for any γ ∈ [0, 1]. The result follows from
Proposition 2 considering Θ(γ) = max{Θ̂(γ), Θ̃(γ)}.

8.5 Proof of Lemma 2

The maximal value of χ(γ) is χ(0) = αΘ/(1 − α − αΘ). We then assume χ > χ(0) in order to
ensure χ > χ(γ) for any γ ∈ [0, 1]. Let us consider the following two critical values

σsup(0) ≡ Θ{αρ+χ[ρ+δ(1−α)]}
(1+χ)αδ

σH(1) ≡ (α+χ+2C)ρΘ[ρ+δ(1−α)]+Cαδ(ρ+αδΘ)
αδ[ρ+Θ(δ+ρ)](α+χ+2C)

(62)

We easily get

lim
χ→+∞

σsup(0) = Θ[ρ+δ(1−α)]
αδ > lim

χ→+∞
σH(1) = ρΘ[ρ+δ(1−α)]

αδ[ρ+Θ(δ+ρ)] (63)

Similarly, we have

σsup(0)|χ=χ(0) = Θ[ρ+Θ(δ+ρ)]
δ

σH(1)|χ=χ(0) ≡
ρΘ[ρ+δ(1−α)]
αδ[ρ+Θ(δ+ρ)] + C(1−α−αΘ)(ρ+αδΘ)

[ρ+Θ(δ+ρ)][α(1−α)(1+Θ)+2C(1−α−αΘ)]

It follows obviously that

lim
Θ→0

σsup(0)|χ=χ(0) = 0 < lim
Θ→0

σH(1)|χ=χ(0) ≡ C
α+2C

while

lim
Θ→Θ̄

σsup(0)|χ=χ(0) = (1−α)[ρ+δ(1−α)]
α2δ

> lim
Θ→Θ̄

σH(1)|χ=χ(0) ≡
(1−α)ρ
αδ

Therefore, there exists ¯̄Θ ∈ (0, Θ̄) such that if Θ ∈ (0, ¯̄Θ), then σsup(0)|χ=χ(0) < σH(1)|χ=χ(0).
Based on this result and using (63), we conclude that there also exists χ̄ ∈ (χ(0),+∞) such that
when Θ ∈ (0, ¯̄Θ), σsup(0)− σH(1) ≶ 0 if and only if χ ≶ χ̄.

19



References

[1] Basu, S., and J. Fernald (1997): “Returns to Scale in US Production: Estimates and Impli-
cations,” Journal of Political Economy 105, 249-283.

[2] Benhabib, J., and R. Farmer (1994): “Indeterminacy and Increasing Returns,” Journal of
Economic Theory 63, 19-41.

[3] Benhabib, J., and R. Farmer (1996): “Indeterminacy and Sector Specific Externalities,”
Journal of Monetary Economics 37, 397-419.

[4] Campbell, J. (1999): “Asset Prices, Consumption and the Business Cycle,” in Taylor J.B.
and Woodford M. (eds.), Handbook of Macroeconomics, North-Holland, Amsterdam, 1231-
1303.

[5] Chetty, R., A. Guren, D. Manoli and A. Weber (2012): “Does Indivisible Labor Explain the
Difference Between Micro and Macro Elasticities? A Meta-Analysis of Extensive Margin
Elasticities,” NBER Working Paper No. 16729.

[6] Dufourt, F., K. Nishimura, and A. Venditti (2015): “Indeterminacy and Sunspots in Two-
Sector RBC Models with Generalized No-Income-Effect Preferences,” Journal of Economic
Theory 157, 1056-1080.

[7] Farmer, R. and J.T. Guo (1994): “Real Business Cycles and the Animal Spirits Hypothesis,”
Journal of Economic Theory 63, 42-72.

[8] Grandmont, J.-M. (2008): “Nonlinear Difference Equations, Bifurcations and Chaos : An
Introduction,” Research in Economics 62, 122-177.

[9] Greenwood, J., Z. Hercovitz, and G. Huffman (1988): “Investment, Capacity Utilization and
the Real Business Cycle,” American Economic Review 78, 402-417.

[10] Guo, J.T., and S. Harrison (2010): “Indeterminacy with No-Income Effect Preferences and
Sector-Specific Externalities,” Journal of Economic Theory 145, 287-300.

[11] Hintermaier, T. (2001): “Lower Bounds on Externalities in Sunspot Models,"Working Paper
EUI.

[12] Hintermaier, T. (2003): “On the Minimum Degree of Returns to Scale in Sunspot Models
of Business Cycles," Journal of Economic Theory 110, 400-409.

[13] Jaimovich, N. (2008): “Income Effects and Indeterminacy in a Calibrated One-Sector
Growth Model,” Journal of Economic Theory 143, 610-623.

[14] Jaimovich, N., and S. Rebelo (2009): “Can News About the Future Drive the Business
Cycles?," American Economic Review 99, 1097-1118.

[15] Khan, H., and J. Tsoukalas (2011): “Investment Shocks and the Comovement Problem,”
Journal of Economic Dynamics and Control 35, 115-130.

20



[16] King, R., C. Plosser, and S. Rebelo (1988): “Production, Growth and Business Cycles,"
Journal of Monetary Economics 21 191-232.

[17] Kocherlakota, N. (1996): “The Equity Premium: It’s still a Puzzle,” Journal of Economic
Literature 36, 42-71.

[18] Mulligan, C. (2002): “Capital Interest and Aggregate Intertemporal Substitution,” NBER
Working Paper 9373.

[19] Nishimura, K., C. Nourry and A. Venditti (2009): “Indeterminacy in Aggregate Models
with Small Externalities: an Interplay Between Preferences and Technology," Journal of
Nonlinear and Convex Analysis 10(2), 279-298.

[20] Nishimura, K. and A. Venditti (2010): “Indeterminacy and Expectation-Driven Fluctuations
with Non-Separable Preferences,” Mathematical Social Sciences 60, 46-56.

[21] Prescott, E. and J. Wallenius (2011): “Aggregate Labor Supply”, Federal Reserve Bank of
Minneapolis, Research Department Staff Report 457.

[22] Rogerson, R. and J. Wallenius (2009): “Micro and Macro Elasticities in a Life Cycle Model
with Taxes”, Journal of Economic Theory 144, 2277-2292.

[23] Schmitt-Grohé, S. and M. Uribe (2012): “What’s News in Business Cycles,” Econometrica
80, 2733–2764.

[24] Vissing-Jorgensen, A. and O. Attanasio (2003): “Stock-Market Participation, Intertemporal
Substitution and Risk Aversion,” American Economic Review Papers and Proceedings 93,
383-391.

21


	WP_AMSE-2016_07
	DNNV-Book-Fred02_wp1607

