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Abstract

Path-dependence in coordination games may lead to lock-in on inefficient outcomes,
such as adoption of inferior technologies (Arthur, 1989) or inefficient economic institutions
(North, 1990). We aim to find conditions under which lock-in is overcome by developing
a solution concept that makes ex-ante predictions about the adaptation process following
lock-in. We assume that some players are myopic, forming beliefs according to fictitious
play, while others are sophisticated, anticipating the learning process of the myopic play-
ers. We propose a solution concept based on a Nash equilibrium of the strategies chosen
by sophisticated players. Our model predicts that no players would switch from the ef-
ficient to the inefficient action, but deviations in the other direction are possible. Three
types of equilibria may exist: in the first type lock-in is sustained, while in the other
two types lock-in is overcome. We determine the existence conditions for each of these
equilibria and show that the equilibria in which lock-in is overcome are more likely and
the transition is faster when sophisticated players have a longer planning horizon, or when

the history of inefficient coordination is shorter.
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1 Introduction

One of the central problems of game theory is equilibrium selection in games with multiple
Nash equilibrium. The problem is even more difficult in repeated games, where usual solution
concepts permit a diverse set of sequences to be played on the equilibrium path. Any repetition
of a stage game Nash equilibria could be supported by some subgame perfect Nash equilibrium,
but even miscoordination can occur at the start of the game if the players are using strategies
that implement efficient coordination only following such miscoordination. One reason for
the multiplicity of equilibria is the lack of history dependence. As an example, consider
figure 1 that represents two stages of a repeated game between players 1 and 2. Subgames
starting at nodes 1b and 1c for player 1 are identical®, therefore if there is an equilibrium that
supports an action for player A in node 1b, there will also be an equilibrium that supports
this action in node lc. Nash equilibrium requires mutually consistent beliefs and actions
but places no restrictions on how beliefs should depend on observed history. However, even
though expecting the same action to be played is just as rational as expecting a different
action (Goodman, 1983), there is robust experimental evidence that choices and beliefs do
depend on past play, especially in games with multiple stable states (Van Huyck et al., 1990;
Romero, 2015). We use this evidence to place additional restrictions on the belief formation
process and develop a solution concept that depends on past play and refines the predictions

of a subgame perfect Nash equilibrium.

Figure 1: Two stages of a repeated two player game, where the first number indicates the

player to whom the node belongs. End nodes display payoffs from the second stage.

'Except for the accumulated earnings that play no role under the standard assumptions of risk neutrality

and selfishness.



Instead of using solution concepts, such as a subgame perfect Nash equilibrium, we could
use learning models, which make predictions about the path of play based on outcomes in
previous rounds. However, in learning models (see Fudenberg and Levine, 1998, Camerer,
2003) choices are determined only by observed history, ignoring the structure of upcoming
rounds. In this paper the belief formation assumed in learning models is combined with an
equilibrium concept to define a solution concept that takes into account both the observed

history and the structure of future rounds.

Players in our model are assumed to be either “myopic” or “sophisticated”. Myopic players
behave as predicted by adaptive learning models: they form beliefs about the actions of
other players, update beliefs based on observed history and choose a myopic best response.
Sophisticated players have a certain planning horizon and compare payoffs of action plans that
prescribe an action for each point in time within this planning horizon. We also assume that
sophisticated players anticipate the learning process of myopic players and know about other
sophisticated players, therefore our solution concept requires action plans of sophisticated

players to be mutual best responses to each other.

One advantage of our solution concept is the ability to make predictions following a particular
history of choices. Specifically, we are interested in convergence to an efficient state following
previous coordination on an inefficient state. Standard solution concepts abstract from ex-
perience that players have prior to the game, although there is robust experimental evidence
that behavioral spillovers occur if players experience the same game with different parameters
(Romero, 2015, Kamijo et al., 2015) or if two different games are played consecutively (Deve-
tag, 2005, Dolan and Galizzi, 2015). Likewise, in many real life situations decisions are made
repeatedly and choices are sensitive to conventions that have been established in the past. It
is important to have a theory that could explain how transitions to an efficient state depend
on the history of play, but existing models are not able to do that. An adaptive learning
model with a deterministic choice rule predicts that no player deviates from an inefficient
state once it has been reached. In a subgame perfect Nash equilibrium the history of previous
interactions plays no role. A model presented in this paper combines the two approaches
and predicts that a transition from an inefficient to the efficient state can occur if certain

conditions are satisfied, while transitions in the opposite direction never occur.

Our model also predicts that some players may deviate from an inefficient state, but none
will deviate from the efficient one, therefore the efficient state is absorbing and there is a
unique point in time when play transitions from the inefficient to the efficient state. For
sophisticated players action paths that prescribe a switch from an efficient to an inefficient
action are dominated, therefore sophisticated players will switch to the efficient action at most
once. We calculate how such action plans of sophisticated players affect the switching period

of myopic players, and how the latter affects sophisticated player payoffs. This mapping from



sophisticated player action plans to payoffs is then used to determine the combinations of

action plans that are mutual best responses to each other.

It is important to know whether inefficient lock-in (Arthur, 1989) can be overcome, and how
the conditions can be changed to improve the chances of an efficiency-enhancing transition.
We show that three types of equilibria may exist in the repeated game: in a “teaching
equilibrium” sophisticated players switch to the efficient action at the start of the game, and
myopic players switch later. In an “interior equilibrium” sophisticated players initially play
the inefficient action, but switch to the efficient one and are subsequently followed by myopic
players. In a “delay” equilibrium all sophisticated players choose the inefficient action for the
entire duration of the game, and myopic players never switch. Inefficient lock-in is therefore
overcome in the first two types of equilibria, but not in the third one. Point predictions cannot
be made because of the multiplicy of equilibria, therefore instead we show how the speed of
transition and the types of equilibria that exist respond to changes in game parameters.
We find that as the planning horizon of sophisticated players increases, the teaching and
the interior equilibria are more likely to exist, while the delay equilibrium is less likely. A
longer history of inefficient coordination makes teaching equilibrium less likely and delays
transitions. The effect of player composition is ambiguous: on one hand, a larger number of
sophisticated players leads to a faster transition and higher profits in the teaching and interior
equilibria, reducing incentives to completely stop teaching. On the other hand, as the number
of sophisticated players grows, one player’s actions have a smaller effect on myopic players,
increasing incentives to delay teaching and leading to a potential breakdown of a teaching

equilibrium.

Several other studies have extended the adaptive learning model with sophistication in dif-
ferent ways. Camerer et al. (2002a) and Camerer et al. (2002b) propose a sophisticated
experience-weighted attraction (EWA) model in which some players are adaptive and learn
using adaptive EWA, while others are sophisticated, anticipate how adaptive players learn and
use strategic teaching. While conceptually this paper is similar to the model of sophisticated
EWA, we develop a solution concept that can be used to make ex-ante predictions about the
path of play in the game, while the parameters of sophisticated EWA can be estimated only
ex-post. Ellison (1997) models a population of adaptive players, learning according to ficti-
tious play, repeatedly matched in pairs to play a binary choice coordination game. Adding one
rational player to the population of adaptive players can change the outcome from coordina-
tion on the inefficient equilibrium to coordination on the efficient one, as long as the number
of players is fixed and the rational player is patient enough. Acemoglu and Jackson (2011)
develop an overlapping generations model that shows how a social norm of low cooperation
can be overturned by a single forward-looking player. Schipper (2011) uses an optimal control
model with two players and shows how a strategic player can control an adaptive player in

repeated games with strategic substitutes or strategic complements. Mengel (2014) studies



adaptive players who are also forward-looking and finds that in two-player coordination games
the efficient equilibrium may be stochastically stable, in contrast to the the case with only

adaptive players.

2 Sophisticated Player Equilibrium

Consider n players, indexed by i € N = {1,2,...,n}, who play a repeated game in continuous
time by choosing an action from a stage game action space {A, B}. We denote the time at
which the game starts by 0, the duration of the remaining game by T and the duration
of observed history by 77, with T,T" € (0,00). We implement the history of inefficient

coordination by assuming that prior to time 0 only action B has been chosen.

We assume two types of players: m players are myopic and n — m players are sophisticated.
Throughout the paper we will index sophisticated players by s € S and myopic players by
i € N\ S. The two types of players follow different choice rules, respectively denoted by a;
and ag, which prescribe an action for each moment in time. We will refer to a; as a choice
function and to as as an action plan. Denote the action of player ¢ at time ¢ by a;(¢) and
the action of player s by as(t), where action A is coded as 1 and action B is coded as 0.
Denote the combination of actions of all players except i by a_;(t) = Xjen\(i3a;(t), with
a_;(t) € A_;, and denote the combination of actions of all sophisticated players except s
by a_s(t) = Xjes\(syai(t), with a_s(t) € A_s. The payoff flow for player i at time ¢ is
mi(ai(t), X jen\(iya;j(t)). Similarly, denote the combination of choice functions of all myopic
players except i by a—; = X e(n\s3\{i}@; and the combination of action plans for all sophis-

ticated players except s by a_—s = X jcq\ (5105

The difference between a choice function for myopic players and an action plan for sophis-
ticated players lies in how these functions are determined: choices of myopic players are
determined by the history of play while the choices of sophisticated players must be optimal
given the choices of all other players. Before specifying these two function we first have to

define the beliefs and expected payoffs of myopic players.

Belief of a myopic player is a probability assigned to the event that a randomly chosen
other group member chooses action A. Denote the belief of player i at time ¢t by z;(t). Belief
formation is assumed to follow a one parameter weighted fictitious play model,? proposed
by Cheung and Friedman (1997). The original weighted fictitious play model is specified for

two player games and we extend it to N-person games by assuming that a joint distribution

2Fictitious play corresponds to Bayesian updating of the probability that any group member will choose
A, using a Dirichlet prior and assuming that the choice of each group member was independently drawn from

the distribution about which players are learning.



of choices is used to form beliefs about the actions of group members, but players do not
distinguish between the identities of others.? Beliefs are therefore homogeneous (Rapoport,
1985; Rapoport and Eshed-Levy, 1989): a single belief is formed about the probability that
any other player will choose A. The fictitious play rule used to calculate myopic player beliefs

is as follows:

t a;(t—k
o Jomo V" ey ulh qk
xz( ) B t+T" k dk

k=0 "V

(1)

The integral in the numerator measures the weighted length of time in which action A has
been observed, determined by the action plans of other group members. Observations prior to
time 0 play no role because we assume that prior to time 0 only action B has been observed.
The ~ parameter measures the rate at which old observations are forgotten. We assume that
~v € (0,1), where values close to 1 indicate that all past observations are given similar weights,

while values close to 0 indicate that only the most recent experience is taken into account.

Expected payoffs of myopic players associated with each pure action are determined by
beliefs x;(t), which are used to assign a probability to each action profile of other group

members:

Em(a,xi(t)) = Z [Pr(a_i(t) = a_i]a:i(t)) X m(a, CL_Z')] =
a_;€EA_;
= Y w1 = () =) xomi(a,a)], Va e {1,08 (2)

a_;€EA_;

Choice function a;(t, Xse¢s as) prescribes an action for a myopic player i at any point in time
t € [0, T], conditional on the profile of action plans chosen by sophisticated players, X scg as.
We assume that myopic players choose the action that maximizes immediate expected utility

and ties are broken in favour of action A:

1 if Eﬂl(l,ﬂfl(t)) Z E?TZ(O,QSZ(t))

0 otherwise

ai(tv XSESCLS> = { (3)

3There are several other ways how weighted fictitious play could be extended to N-person games. One
way could be to assume that players form beliefs about the joint distribution of the actions of all others and
update it using observed aggregate feedback: for example, Crawford (1995) assumes that players form beliefs
and observe feedback about an order statistic of all the choices. Another way is to assume that separate beliefs
are formed about every other player j based on the empirical distribution of j’s choices (e.g. Monderer and
Shapley, 1996). We combine the two approaches by assuming that players use the joint distribution of choices
to form beliefs about the action of any opponent, but do not distinguish between their identities.



Action plans chosen by sophisticated players, Xscg as, are explicitly included in the choice
function to make it transparent that myopic player actions can be affected by sophisticated
players. Note that the choice function depends only on the current round payoffs and beliefs,
which are determined by observed history, therefore it is possible to anticipate myopic player

choices at any history.

Sophisticated players anticipate the learning process of myopic players and are also far-
sighted, thus at time 0 they choose an action plan for the interval [0, 7], where T is the length

of the planning horizon of sophisticated players.

Action plan a, prescribes an action for a sophisticated player s at any point in time ¢ € [0, 7.
Denote the set of all action plans by As. The action plan is assumed to be an open-loop
strategy, which depends only on time and not on observed history. Sophisticated players face
no strategic uncertainty about the actions of myopic players, but they do face uncertainty
about the actions of other sophisticated players. Payoffs associated with an action plan as
depend on the vector of action plans of other sophisticated players, a_s, and on the choices
of myopic players, whose choice function a;(t,as X a_s) also depends on the action plans of
all sophisticated players. The total payoff that a sophisticated player expects to earn over the

period of length T is calculated as follows:

T
M(as,a—s,a;(-,as X a_g)) = /0 mlas(t), a—s(t) x a;(t,as x a_g)|dt (4)

Since sophisticated players choose action plans and face no strategic uncertainty about the
actions of myopic players, the game can be reduced to a static game between sophisticated
players. Theoretical predictions in static games are typically made using a Nash equilibrium,
so we follow the convention and require that sophisticated players choose action plans that

are mutual best responses to each other.

Definition 1. A combination of action plans Xsecs a: is a symmetric sophisticated player

equilibrium if for each player s € S, a} satisfies

I(ak,a*,,a;(-,as,a,)) > (as,a” 5, ai(-, as,a™)), Vas € A (5)

s —8)

and ag = aj, Vs,j€S

and a;(-,as,a_s) is defined in (3).

If there were no myopic players, equation (5) would reduce to the standard Nash equilibrium.

If all players were myopic, equation (5) would not apply, and the choices of all players would



be calculated using the belief learning model. We will look at an intermediate case where

both myopic and sophisticated players are present.

In the remainder of the paper we will characterize the symmetric sophisticated player equi-

libria for a repeated N-person critical mass coordination game.

3 Sophisticated Player Equilibrium in a Critical Mass Game

We are interested in determining conditions under which an inefficient convention could be
replaced by an efficient one. One way how such a transition could take place is by strategic
choice: sophisticated players could attempt to teach other players to play according to the
efficient convention. To determine conditions under which such strategic teaching is possible
we will characterize symmetric sophisticated player equilibria following lock-in to an inefficient

state.

3.1 Critical Mass Game

Recall that we defined a sophisticated player equilibrium for a class of games with n players
and an action space {A, B}. A special class of such games is a critical mass game, in which
payoffs of each player depend on their action, a;(t) and on the total number of other group
members who chose action A at time ¢, denoted by r(a—i, t) = >_;cn (3 @5(t), with r(a—;, t) €
{0,1,...,n — 1}. The payoff flow for player i at time ¢ is defined as follows:

H
wala®) =4 0
L

To have a coordination game, we assume that H > M and L > 0. The coordination require-
ment is determined by an exogenous threshold 6: action A generates a larger payoff than B
if and only if at least # other group members choose A. There are two stable states* in pure
strategies if one point in time is considered in isolation: in the first stable state all players
choose A and in the second one all players choose B. We assume that states are Pareto-ranked
and define coordination on A as an efficient state by assuming that H > L. Finally, we assume
that M > L, so that players who choose B also prefer a situation in which the threshold has

been exceeded.

4We will use the term “state” rather than “equilibrium” when referring to a Nash equilibrium in a stage

game to avoid confusion with the sophisticated player equilibrium.



Assumption 1: H>M > L > 0.

We assume that there are at least 2 sophisticated players so that an equilibrium could be
defined using equation 5. We also assume that the number of myopic players is sufficiently
large to implement the efficient state, and the number of sophisticated players is small enough
so that sophisticated players on their own could not implement the efficient state. If the latter
condition was not satisfied, a sophisticated player equilibrium would reduce to the standard
Nash equilibrium because sophisticated players would not need to take into account the

learning process of myopic players.

Assumption 2: 2<n—-—m <60 <m.

3.2 Choice Function of Myopic Players

Myopic players form beliefs about the actions of other players and choose an action that
maximizes immediate payoffs. In this subsection we specify the choice function a;(t, as) that
prescribes an action for player ¢ at time ¢ when sophisticated players are choosing action plans

X sesas (for brevity, we will omit the subscript under the product sign).

Proposition 1. Suppose that in a game with payoffs defined by (6) at time t myopic player
i holds beliefs x;(t). Then the choice function from (3) simplifies to:

1 aifa(t) >171 0,n—0
ai(t, xas) = 0 ) (7)
0 otherwise

where I™1 is the inverse of an incomplete reqularized beta function.

Proof.

From (3), action A is chosen if the expected payoff of A at time ¢ exceeds the expected payoff
of B:
a;(t) =1< En(1,z;(t)) > En(0,2;(t)) (8)

In a critical mass game payoff depends only on the chosen action and on whether the number
of other group members who chose A exceeds 6. Denote the subjective probability assigned
to the latter event by Pr[r(a—_;,t) > 0|x;(t)]. Then expected payoffs in equation (2) can be
defined as:

En(1,z;(t)) =0 x (1 — Pr[r(a—;,t) > 0lz;(t)]) + H x Pr[r(a—;,t) > 0|z;(t)]
En(0,2z;(t)) = L x (1 — Pr[r(a—;,t) > 0|x;(t)]) + M x Prlr(a_;,t) > 0|x;(t)] 9)



The subjective probability that the threshold will be exceeded is calculated by adding the
probabilities assigned to all action profiles of other players in which more than 6 players

choose A:

n—1 n—1
Prir(a-it) 2 0la(t)] = Y (a0t - oy (") (10)

k=0

Use equations (9) and (10) to rewrite (8) the following way:

n—1
i) =1 SO0 = M) 2 ey an
k=0

Notation in (11) is simplified using the definition of an incomplete regularized beta function:®

L

a;(t) =1« Ix(t)(ean —0) > LrH_M

(12)
Taking the inverse of (12) and substituting into (3) leads to the desired expression:

1 ifz(t)>17', (0,n—0)
ai(t, xas) = L+H-M
0 otherwise

Proposition 1 states that a myopic player chooses A instead of B if his probabilistic belief

exceeds 71, (0,m — ), a threshold value that depends only on the game parameters. For
L+H—-M

brevity, we will refer to this threshold value by I~!'. We should note that the properties of

inverse regularized beta functions imply that I~! is increasing in L, M and #, but decreasing

in H and n.

Proposition 1 shows that myopic player actions can be determined by comparing their beliefs
to a threshold value that is fixed in a given game. Once myopic player actions are know,
Assumption 2 ensures that the efficient state is implemented if and only if all myopic players
choose A. The next section will simplify the payoff calculation even further by showing that
to know the payoff flow it is sufficient to know the first time when myopic player beliefs exceed
the threshold value.

5An incomplete regularized beta function is defined as I.(a,b) = 3¢ " ¥ (1 — ¢)*To=1=F (“T01) The

function is well defined because € (0,1), from Assumption 1.

L
L+H—-M

10



3.3 Undominated Action Plans of Sophisticated Players

This section shows that although sophisticated players could use action plans that prescribe
many switches from one action to the other, undominated action plans must prescribe at
most one switch from action B to action A and no switches from action A to action B. The
sophisticated player action space can therefore be restricted to a set of real numbers that

denote a switching time from A to B.

Definition 2. Denote by Us (for “undominated”) the set of action plan profiles in which no

sophisticated player is choosing strictly dominated action plans:

Us = {xsesas € Ag|Pal, : M, a_s,a;(-,a, x a_s)] > Mas,a_s, a;(-, a5 X a_s)]}

An action profile will be called dominated if it is not in set Uy, that is if in this action profile

at least one sophisticated player is choosing a dominated action plan.

We will show that the set of undominated action plans cannot contain any strategies that

prescribe a switch from A to B. The proof requires two additional lemmas.

Lemma 1. If two action plans of the sophisticated player prescribe the same action, the payoff

flow is higher for the action plan with which myopic player beliefs are higher:

mlal(t), a—s(t) x a;(t,al x a_s)] > wlas(t),a—s(t) X a;i(t,as X a_s)]
if xt) >xt) and d(t) = as(t)

S

where z(t) is the belief held by myopic players if the sophisticated player uses action plan a',

and x(t) is the belief if the sophisticated player uses action plan as.

Proof: see Appendix A.2.

Lemma 1 shows that sophisticated players can only benefit from myopic players assigning
a higher probability to others choosing A. The proof is based on an observation that the
tendency for myopic players to choose A is increasing in their beliefs and sophisticated player

payoffs are increasing in the number of players who choose action A.

Definition 3. Denote by AB)s the set of action plan profiles for sophisticated players with
which myopic players switch from A to B:

ABM = {XSESCLS S As|3t17t2 S [O,T] Dot < to
ai(tlv XSGSas) =1

ai(t% XSESas) - O}

11



Lemma 2. All action plan profiles for sophisticated players with which myopic players switch

from A to B are strictly dominated:

ABMﬂUSZQ)

Proof: see Appendix A.2.

The intuition of Lemma 2 is straightforward: if myopic players ever switch to an efficient
action A, the participation threshold will be exceeded as long as sophisticated players continue
choosing action A. Consequently, sophisticated players who would choose B would lower
their earnings. However, note that the proof rests on Assumption 2, which says that the
number of myopic players exceeds the participation threshold. If this assumption did not
hold, an argument about dominance could not be made because other sophisticated players
may prevent efficient coordination by switching to B, which would make switching to B

optimal.

Definition 4. Denote by ABg the set of action plan profiles for sophisticated players with

which at least one sophisticated player switches from A to B:

ABg = {XseSas S Asfatl,tz S [O,T],S €eS: t1 <ty
as(tl) =1
as(ta) =0}

Proposition 2. Action plan profiles for sophisticated players that prescribe a switch from A

to B for at least one sophisticated player are dominated:

ABsNUs =10

Proof.

Take an action plan profile xcgas € ABg. We will show that in this action profile at least

one sophisticated player must be choosing an action plan that is dominated.

If xsesas € ABjys, at least one sophisticated player must be choosing a dominated action
plan, from Lemma 2, and the proof would be completed. Alternatively, assume that X cgas €
{ABg \ AB)s}. By the definition of ABg, there must be a sophisticated player whose action
plan prescribes a switch from A to B; denote the action plan of this player by as and denote the
switching time prescribed by as by ¢’. Then there must be some small € such that a(t) = 1 if
tet'—et')and as(t) =0if t € [t',t' +€]. Since xsegas € AByr, myopic players switch from
B to A at most once, thus their choices can be described by a number £(a;) that identifies this

switching time: B is chosen in the interval [0,#(d;)) and A is chosen in the interval [f(as), T].

12



First, suppose that ¢’ > f(as), then myopic players would be choosing A at any time t > t'.
Assumption 2 implies that the threshold will be exceeded at any such point in time, therefore
an action plan as is dominated by an action plan that prescribes A at each point in time
t > t(as). Next, suppose that t' < #(as) and #(as) > T. Then myopic players will choose B
for the entire period that is taken into account by the sophisticated player, thus action plan

as will be dominated by an action plan that prescribes B at all times.

Alternatively, suppose that #(as) >t and #(as) < T (see an illustration in figure 2). Choose
¢ to be sufficiently small to satisfy #(as) > ¢’ +¢. Then for any @s construct an action plan a,

the following way:

as(t) iftel0,t —e)U(t +eT]
a.t)=4 0 ift et/ —et
1 ift e (t,t +¢

In other words, o is constructed by taking as and swapping choices prescribed in the interval
(t' —¢€,t’) with choices prescribed in the interval (#',¢' +¢). We will show that as is dominated

by al,.

The comparison of payoff flows generated by these two action plans is shown in figure 2. In
the interval [0,¢ + €) the sum of payoff flows is the same for both action plans (71 + 7o + 73).
Payoffs are equal because with both action plans myopic players choose B in this entire interval
(both #(a’) and #(as) exceed t' + ), therefore the participation threshold is never exceeded.
Action plan a, prescribes A for the same duration of time as o/, therefore the sum of payoffs

in the interval [0,t" + €) would be the same for both action plans.

m(as) = 1 2 3 T4 5 T

ﬂ-(a ): T 3 T2 > Ty > s > Tg
\ \ \ \ \ \ \
t
0 t'—e t t'+e i(al) (@) T

Figure 2: Payoff flows generated by action plans a5 and a’, for the case (a,) > ¢’ and t(as) < T.

In the interval [t' + ¢, T] the sum of payoffs generated by a’, is strictly higher than that of as.
Since as(t) = al(t), Vt € (t' +¢€,T], any payoff difference between the two action plans in this
interval must be due to the choices of myopic players. From equation 1, z;(¢) would be the
same under as(t) as under as(t)" if v was equal to 1. But as v € (0,1), older observations
receive less weight and therefore myopic player beliefs would be strictly higher following a,
than following as at any time t € (¢’ + ¢, T]. Then Lemma 1 implies that the payoff flow is
always weakly higher for a/, at any time in the interval [t +¢€, T]. To get strict dominance, note
that £(a’,) < £(as), for the following reasons. Since (a) € (¢ +¢,T] and x(t) is continuous, the

13



switching period #(a%) must satisfy 2/(f(a’)) = I~!. But since z;(t) < x(t), Vt € (¢ +¢,T],
it must also hold that 7;(£(a})) < z}(f(a})) = I"!. Consequently, the intersection of beliefs
Z;(t) and belief threshold I~! must occur strictly later, so that £(a’) < #(d@,). In the interval
(t(al),t(as)) action plan @, provides a flow of payoffs of at most L, while a/, provides a payoff

of H because more than 6 players are choosing A.

The comparison of payoff flows associated with action plans ay and a is shown in figure 2.
The sum of payoff flows generated by a’, will be strictly higher than the sum of payoff flows
generated by ag, therefore action plan as that prescribes switching from A to B is strictly

dominated by another action plan a.
|

The intuition of the proof is as follows: suppose that a sophisticated player switches from
A to B. If myopic players switch from B to A at the same time or earlier, a sophisticated
player would do better by always playing A instead. If myopic players never switch to A,
there would be no incentive to play A in the first place. If myopic players switch at some time
after the sophisticated player, the sophisticated player can strictly increase the earnings by
teaching less at the start of the game and teaching more later.> Doing so would not reduce
the payoffs prior to the switch, but would strictly decrease the switching time of the myopic
players, because weighted fictitious play puts more weight on recent experience. Consequently,
whenever sophisticated players are considering teaching for some period of time, they would
be better off concentrating all the teaching just before the predicted switch of myopic players,

thus a switch from A to B would never occur.

This section has shown that if sophisticated players do not choose dominated action plans,
both myopic and sophisticated players will switch from B to A at most once, thus in the
equilibrium the path of choices for either type can be described by a scalar indicating the

switching time.

Each action path of myopic players that can be induced by undominated action paths of

sophisticated players has the following structure:

ailt, xay) = 0 ifte[0,(xas)) oo e U
CUTTV 1 ift e [i(xas), T) A

Define ¢ € (0,00) as the switching period of myopic players. Note that t > 0 because

equation 1 implies that z;(0) = 0, thus B is chosen at time 0.

5By “teaching” we mean choosing action A to induce myopic players to choose A in the future.
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Each undominated action plan for sophisticated players has the following structure:

0 ifte0ys
as(t) = frelly)  y ep,
1 ift e ys,T]

Define ys € [0,T] as a strategy for player s.

In the next section we will specify how the switching period of myopic players depends on

the strategies of sophisticated players.

3.4 Optimal Switching Period for Myopic Players

The characterization of symmetric sophisticated player equilibria requires information about
payoffs in an equilibrium and payoffs from potential deviations: in the first case all (n —m)
sophisticated players choose the same strategy, in the second case (n —m — 1) sophisticated
players choose one strategy and one player chooses a different one. Denote the strategy of
one sophisticated player by ys = y and the strategy of other n — m — 1 sophisticated players
by y; =y, for all j € {S\ s}. Sophisticated player payoffs are determined by the switching
period of myopic players, thus we first specify function #(y, ) that shows how the myopic
player switching period depends on y and .

There are three cases to consider. In the first case, (y, ) > max{y, 7}, so that myopic players
observe no other players choosing A from time 0 to time min{y, y} a fraction of 2= others

choosing A from time max{y, §} to ¢(y,¥) and either a fraction of — 1 others choosmg A from

n—m-—1
n—1

y > y). Feedback observed by myopic players in this case is illustrated in figure 3.

time g to time y (if y > y) or a fraction of others choosmg A from time y to g (if

In the second case, y < #(y,%) < §. This will be true only if 1 > I71, that is if myopic
players would switch to A after observing only one player choosmg A.In thls case each myopic
player will observe no others choosing A from time 0 to y and a fraction of 1 others choosing

A from time y to £(y, 7).

In the third case, ¥ < £(y,%) < y. Then each myopic player will observe no others choosing

fnml

A from time 0 to g and a fraction o others choosing A from time 7 to t(y, 7).

It is never possible that ¢(y, ) < min{y, §} because at time ¢ € [0, min{y,7}) myopic players

observe no others choosing A and therefore always choose B.

Proposition 3. The switching period of myopic players is:

tay)  ify<b(y) <y and o> 17!
. t3(y if § < ts3(g) < d nomels -l
i) = BV TvsBW sy e at (13)
ti(y,y) if max{y,y} <ti(y,y) and L >1T
00 otherwise
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such that

. log(2=m — -1y _ 1o —gn—m—1 + —y_1 T’I—l
B, 9) = g(=T ) g(vlog(:;;l YV ) (14)
. log(— — I=1) —log(y¥-L. —~AT'[-1
boly) = g ) —log(v Vg — ) (15)
log(7)
. log(2=m=L _ -1y _ 1o —ygn—m—1 _ T’I—l
() = g("5T ) —log(y VR — ) (16)
log(v)

where y is the strategy of one sophisticated player and y is the strategy of other (n —m — 1)

sophisticated players.

It is never possible that more than one condition of 13 is satisfied because #;(y,7) < ta(y)

and #1(y, §) < t3(y) (see Lemma 10 in Appendix A).
Proof.

Case 1: (y,7) > max{y, 7}

(m — 1) myopic players

1 sophisticated player

(n—m-—1)
sophisticated players

Figure 3: Ilustration of the feedback observed by a single myopic player in the first case,
where #(y,7) > max{y,y}. In this example § > y. Vertical axis shows the fraction of other
players choosing A or B, horizontal axis shows the passage of time. The first sophisticated
player switches from B to A at time y, other (n —m — 1) sophisticated players switch at time

y and myopic players switch at time #(y, 7)

Recall that beliefs of myopic players are calculated using weighted fictitious play from equation
1. If sophisticated players are using strategies y and 7, myopic player beliefs at any time
t € (max{y, 7}, (y,y)] will be calculated using the following rule:
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ik (= I )k
xl(t> = t—l—T’ & =
oo Y dk
(T () + (7Y - D)
- ,yt—i-T’ —1

Expressions in the numerator correspond to the history observed by a myopic player at time
t € (max{y, 7}, t(y,7)]: (n—m—1) sophisticated players are observed choosing A for a period
of t —g and one sophisticated player is observed choosing A for a period of t—y. This feedback
is illustrated in figure 3. The denominator measures the length of the entire history, including

the T’ rounds of inefficient coordination.

From Proposition 1, myopic players will choose A at time ¢ if 2;(¢) > I~':

O -DEEE) + (0 - D)

_ —1
a(t) =1 & ST >1 &
7y ——1 7 1 )< (17)

If =t -1 —1 <0, equation (17) is never satisfied because of the following relationship that
contradicts (17):

R O R B Nl S I L € &

n— n—1

—Ih) >t Tt
(18)

The first inequality holds because ’y_g_T/ > 1 and ’y_y_T/ > 1 and the second inequality holds
because 7'+’ < 1 and 2=2 — =1 < 0. But (18) contradicts (17), therefore if 2=2 — J~1 <0,

equation (17) is never satlsﬁed and myopic players would choose B at any tlme t.

Alternatively, if 7= — I7!' >0, condition (17) can be expressed the following way:

7y — _{_,}/ ynl _,}/T’I—l
= n—m _ -1
n—1

(19)

The left-hand side of (19) is strictly increasing in ¢ and unbounded for any v € (0,1), so (19)
will be satisfied for some ¢, although not necessarily with t < T'. Equation (19) is not satisfied
for t = 0 because the RHS of (19) is always strictly larger than 1 (RHS is increasing in both
y and g, but RHS > 1l even if y =y = e ATl s nem I™Yand vt < 1.

n—1

Consequently, (19) must be satisfied with equality at a unique value of ¢, which we denote by

t1(y,9), with £1(y,7) € (0,00). This value is the first moment in time at which myopic players
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are indifferent between choosing A and B, thus it is exactly the switching period which we
were looking for. To get an expression for #1(y, %), require (19) to be satisfied with equality

and rearrange the following way:

o log(BEE — 1) —log(y R 47V =TT
)= log(7)

(20)

n—m

—1 — I=' > 0, otherwise myopic

Of course, t(y, ) can be calculated using (20) only if

players would always play B. The precise characterization of the switching period if case 1 is

applicable is as follows:

U fl(y,g) if%—[‘1>0
t(y,y) = n 21
(v.9) { otherwise (21)

Note that it is not required that #;(y, ) < T, therefore it is possible that the planning horizon

of a sophisticated player is too short to take re-coordination into account.
Case 2: y<t<y

Case 3: y<t<y

Proofs for Case 2 and Case 3 are in Appendix A.1l.

Lemma 3. %?(Jy) > 1.

Proof: see Appendix A.2.

Lemma 3 implies that if £5(0) < T, it would be optimal for all sophisticated players to choose
y = 0: increasing y by an amount of € would increase the payoffs by €L, because of a longer
delay, but would simultaneously decrease the payoffs by more than e H because of the longer

switching period of myopic players.

3.5 Payoffs of Sophisticated Players

Proposition 3 shows how (y, %), the switching period of myopic players, depends on sophis-
ticated player strategies, if one player is using strategy y and all other players are using
strategies y. Proposition 4 will show how this specification can be used to calculate the sum

of payoffs received by sophisticated players over the period that is taken into consideration.

Proposition 4. If a sophisticated player s uses strategy ys = y and other sophisticated players
use strategies y_s =y, total payoff received by player s over period [0,T)] is II(y,y) such that:
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I =yL+(T—t(y,g)H  ifta(y,9) <T, ba(y) > 7, t3(5) > y (22a)
(y.g) = Iy = yL+ (T — ta(y)) H if liz(y) <y (22b)
Iy =yL+ (T -y)H ifts(y) <y (22¢)
I, = yL if ti(y,5) > T (22d)

where t1(y,7), ta(y) and t3(3) are specified in Proposition 3.

Proof.

The payoff function depends on the switching period of myopic players, which is determined
by one of the four equations in condition (13). Each possibility is shown in figure 4. Consider
panel (a), which illustrates a situation where all sophisticated players switch to A first?,
and myopic players follow later, therefore their switching time is calculated as #1(y,%). The
participation threshold is not exceeded at any time prior to #1(y, %) and is exceeded afterwards,
therefore the payoff flow of a sophisticated player is L prior to time y, 0 between time y and
t1(y,7) and H afterwards. The sum of payoffs in this case would be equal to II;(y,7) =
yL + (T — t1(y,7))H. Panel (a), however, applies only if myopic players switch after all
sophisticated ones, that is if £5(y) > 7 and #3(%) > ¥, and if switching occurs prior to time T.

Panel (a): {(y.7) = t1(y,9) Panel (c): t(y,7) = t3(y)
L 0 H L H
= e e N — S Ly
y y t1(y,7) T y t3(7) y T
Panel (b): i(y,9) = ta(y) Panel (d): i(y,5) > T
L 0 H L 0
" " N
T . T T_ T t T_ T T R T t
y ta(y) y T y y T t3(y, )

Figure 4: Stage game payoffs for every possible case. Panel numbering corresponds to equa-
tions in (22).

Another possibility is that myopic players switch after observing only one sophisticated player
switching to A, a case illustrated in panel (b). Then the sophisticated player will receive a
payoff flow equal to L at any time prior to y, a flow of 0 between time y and 3(y) and a
flow of H between #5(y) and T. The sum of payoffs in this case would be equal to Iy (y, 7) =
yL + (T — ta(y))H. Panel (b) applies only if t2(y) < 7.

In a similar way, (n—m— 1) sophisticated players may switch first, followed by myopic players

"Panel (a) illustrates the situation with y < 7, but the payoff calculation for y > ¢ would be equivalent.
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and then by a single sophisticated player, illustrated in panel (c). Sophisticated player would
receive L until time y, and would receive H afterwards. The sum of payoffs would therefore
be equal to I3(y, %) = yL + (T — y)H. Panel (c) applies only if #3(7) < y.

Finally, myopic players may never switch to A, as illustrated in panel (d). In this case the
sophisticated player would receive L until time y, and 0 afterwards, thus the total payoff
would be T4(y, y) = yL.

3.6 Characterisation of Symmetric Sophisticated Player Equilibria

Payoffs for each strategy of player s and the strategies of other sophisticated players are
specified in (22). This specification transforms a repeated game into a static game played by
sophisticated players, who are able to perfectly anticipate the choice path of myopic players.
To make theoretical predictions, we can use the standard solution concept for static games —

a Nash equilibrium — which requires mutual best responses for each player.

Proposition 2 shows that undominated action plans for sophisticated players can be identified
by a strategy that identifies a switching time. We will therefore use the definition from (5)
to call a combination of strategies (y*,y*) a symmetric sophisticated player equilibrium if it

satisfies:

(y*, ") > U(y,5"), Vye[0,T] (23)
and y* = g*

We will look at the existence of three types of equilibria: interior solutions with y = g € (0,7),
a corner solution with y = § = 0 and a corner solution with y = § = T'. For each type we
will determine the conditions under which an equilibrium exists, and the speed of transition

to an efficient state.

3.6.1 Interior Sophisticated Player Equilibria

In this section we will derive the existence conditions for an interior equilibrium and show

how the speed of transition to the efficient equilibrium depends on the game parameters.

Proposition 5. A combination of strategies (y*,y*) with y* € (0,T) is a sophisticated player

equilibrium (“interior equilibrium”) if and only if conditions I1, I2, 18 and 14 are satisfied:
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fl(y*,y*) <T, (I1)

log ("= F)

log(7)
b(y*,y") —y"L/H <1(0), (I8)
bh(y,y")—y*'L/H<T(1—L/H), (I4)

where equilibrium strategies are calculated by

. log("EAE)

YT T og(y)

-T' >0, (I2)

. o

Proof.

The structure of the proof is shown in figure 5. First we need to specify the equilibrium
payoffs. If condition I1 holds, condition (22a) will hold as well, from Lemma 10, therefore
I(y*, y*) = My (y*,y*). If I1 does not hold, I(y*,y*) = 4(y*,v*) = y*L, and an interior
equilibrium will not exist because there is a profitable deviation to a strategy y = T that
provides a payoff of T'L. Condition I1 is therefore the first necessary condition for the existence
of an interior equilibrium, and we will show that it is also jointly sufficient, together with
conditions I2, I3 and I4. These proofs are given in additional lemmas. Lemma 4 shows
that equilibrium payoffs exceed deviation payoffs if and only if equilibrium payoffs exceed
the payoffs of two endpoints, 0 and 7', and the payoffs of ‘neighboring’ strategies, calculated
by II;(y,y*). Lemma 5, 6 and 7 derive the conditions under which there are no profitable

deviations for each case.

T(y*, y*) > T(y,y*),Vy € [0,T] L2 11, (y* y*) > Ty(y, y*), Yy € [0, T]

ﬁLemma4
Hl(y*,y*) > Hl(y,y*),Vy S (y//7y’) Lemma 5 12
IL (y*, y*) > 112(0, y*) o Lemma6 . g
*  * % Lemma 7
I (y*, y*) > Hy(T, y*) = 14

Lemma 4.
I (y*, y*) > T12(0, 9"
M(y*,y*) > (y,y*),Vy € [0,T] <« My (y*, y*) > h(y, v*), Yy € [v", V]
My (y*, y*) > Ta(T, y*)
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Ifts(y*) < T, ' = t3(y*), otherwise 3y solves t1(y',y*) = T. If t2(0) > y*, y" = 0, otherwise
)

*

y" solves ta(y") = y*.

Proof: see Appendix A.2.

Lemma 5. 111 (y*, y*) > 1 (y,v*), Yy € (¥",y), if and only if condition I2 is satisfied:

log("Fregy)

-7 >0, 12
log(7) )
Proof: see Appendix A.2.

Lemma 5 specifies conditions under which there are no profitable deviations to strategies in
the interval [y”,¢]. In addition, equilibrium payoffs must be higher than the payoffs from
choosing y = 0 and y = T'. Conditions under which there are no incentives to deviate to such

strategies are specified in Lemma 6 and Lemma 7.
Lemma 6. II;(y*,y*) > [12(0,y*) if and only if condition I3 is satisfied:

by y") —y'L/H <1:(0),  (13)

Proof: see Appendix A.2.
Lemma 7. II;(y*,y*) > I4(T,y*) if and only if condition 14 is satisfied:

by y") —y'L/H<T(1-L/H),  (I4)

Proof: see Appendix A.2.

Taken together, Lemmas 5, 6 and 7 prove Proposition 5. Conditions I1, 12, I3 and I4 are
jointly sufficient because if all of them are satisfied there are no incentives to deviate to any
strategy in [0, T']. If one of these conditions is violated, there will be a strategy in some region

that exceeds the equilibrium payoff.

3.6.2 Corner Solution y* =0

In a second type of a symmetric sophisticated player equilibrium all sophisticated players

switch to A at the start of the game, so that equilibrium strategies are y* = y* = 0.
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Proposition 6. A combination of strategies (0,0) is a sophisticated player equilibrium (“teach-

ing equilibrium”) if and only if conditions T1 and T2 are satisfied:

n—m-—H/L
n—1
£1(0,0) < T(1 - L/H), (T2)

<"1, (T1)

Proof.

1(0,0) > T1(y,0), ¥y € [0,7] <2222

ﬂif 11(0,0)0<T
Hl (07 0) Z H(yv O),Vy € [07 T]

!

1(y,0), vy € [0, Lemma 8 o
4(T, 0) Lemma 9 T2

14(0,y*) > I(y,y*), Yy € [0, 7]

11
II

I1,(0,0) >

{ Hl(ov 0) Z

Figure 6: Structure of the proof for Proposition 6.

Structure of the proof is shown in figure 6 and is similar to the proof of the interior equilibrium.

The teaching equilibrium exists if (23) is satisfied for y* = 0:

11(0,0) > II(y,0), Vy€0,T]

If£,(0,0) > T, condition (22d) is satisfied and equilibrium payoffs are determined by I1(0, 0) =
I14(0,0) = 0, while deviation payoffs are determined by II(y,0) = yL. Then a teaching
equilibrium would not exist because there is a profitable deviation to strategy y = T that
provides a payoff of TL. If £1(0,0) < T, equilibrium payoffs are calculated by II;(0,0).
Condition £1(0,0) < T is therefore necessary for the existence of an interior equilibrium. We

do not list this condition separately because it is implied by T2.

Deviation payoffs are determined in a similar way to the deviation payoffs for an interior
equilibrium. Payoffs for a small y € [0,#'] are calculated by IT; (y, 0), where ¢’ solves #1(y/,0) =
T. If the deviation is larger, that is y € [, T], myopic player would never switch to A and
deviation profits would be calculated by I14(y,0) = yL. All strategies in this interval would be
dominated by strategy y = T that provides a payoff of T'L. Overall, there are two requirements
that need to be satisfied for a teaching equilibrium to exist. First, equilibrium payoffs should

be higher than the payoffs from any other y € [0,%), calculated by II;(y,0). We will derive
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the conditions under which this requirement is satisfied in Lemma 8. Second, equilibrium
payoffs should be higher than the payoff of strategy y = T'; we will derive the conditions for

this requirement in Lemma 9.

Lemma 8. 11(0,0) > II;(y,0), Vy € [0,9") if and only if condition T1 is satisfied:

n—m—H/L

<~AT' 171 (11
p— <7 (T1)

where y' solves t1(y',0) =T.

Proof: see Appendix A.2.
Lemma 9. I1;(0,0) > I14(7,0) if and only if condition T2 is satisfied:

£1(0,0) <T(1—-L/H) (T2)

Proof.

Deviation payoffs are calculated from (22d): I14(7,0) = T'L. There are no incentives to
deviate if
|

If both T1 and T2 hold, equilibrium payoffs are calculated by II;(0,0) and there are no
incentives to deviate neither to neighbouring strategies nor to strategy y = 7T'. If one of these
conditions is violated, there would be profitable deviation and a teaching equilibrium would

not exist.

3.6.3 Corner Solution y* =T

In the third type of a symmetric sophisticated player equilibrium all sophisticated players

choose B for the entire duration of the game, that is y* = y* =T.

Proposition 7. A combination of strategies (T, T) is a sophisticated player equilibrium (“de-

lay equilibrium”) if and only if condition D1 is satisfied:

i2(0) > T(1— L/H) (D1
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T, T) >1(y, T),Yy € [0, T

( —— D1
4(y, T),Vy € [y, T] < Always satisfied

Figure 7: Structure of the proof for Proposition 7.

Proof.

If there is a symmetric equilibrium with y* = T, it must hold that:

INT,T) > (y,T), Vyel0,T]

The structure of the proof is shown in figure 7. Condition (22d) is satisfied, therefore equilib-
rium payoffs are II(T,T) = II4(T,T) = TL. Deviation payoffs II(y,T) are calculated either
as Iy(y, T) if y € [/, T] or as Hy(y, T) if y € [0,y'), where 3 solves 5(y') = T. In the former
case Il (y,T') = yL, which is less that the payoff of T'L provided by strategy y = T', therefore

the delay equilibrium would exist. In the latter case deviation payoffs are equal to:

O(y,T) =a(y,T) = yL + (T — i2(y))H

Lemma 3 implies that argmax,(Ils(y,T")) = 0, that is the most profitable deviation is to
strategy y = 0. There will be no incentives to deviate to this strategy if the following holds:
H4(T, T) > Hz(y, T) <~
TL> (T —-140)H <

t2(0) > T(1 — L/H)
If this condition is satisfied, there will be no incentives to deviate to y = 0 and there would

be no other profitable deviations, therefore a delay equilibrium would exist. If this condition

is not satisfied, payoffs could be increased by choosing strategy y = 0.
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Table 1: Summary of the types of symmetric Nash equilibria that may exist, speed of transition to the efficient state and the conditions

that need to be satisfied for the particular type of equilibrium to exist.

Equilibrium Teaching Interior Delay
Equilibrium strategy ¥y =0 Yt = w T y* =T
Speed of transition t(y*,y*) = £1(0,0) ty*,v*) = t(y*, ) ty*,y*) > T
Equilibrium payoffs 11(0,0) = (T — £1(0,0))H Iy*,y*) = oL + (T — |I(T,T)=TL
t(y*,y*)H
Existence conditions
No deviation to neigh- | T1: % <AT'11 12: y* >0 —
bouring strategies
No deviation toy =0 | — 13: {1 (y*, y*)—y*L/H < 15(0) | D1: T(1 — L/H) <
£2(0)

No deviation to y =T | T2: £1(0,0) < T(1 — L/H) I1: & (y*,y*) < T -
14: ii(y*,y*) — y*L/H <
T(1-L/H)




4 Summary and Comparative Statics

Overall, three types of symmetric Nash equilibria can exist: in a “teaching” equilibrium all
sophisticated players play A for the entire duration of the game and myopic players switch
to A at some time £1(0,0); in a “delay” equilibrium all sophisticated players choose B for the
entire duration of the game, and myopic players never switch to A; in an interior equilibrium
sophisticated players start by playing B and switch to A at time y* while myopic players
switch to A at time #;(y*, y*). Table 1 summarizes all the conditions that need to be satisfied
for each type of equilibrium to exist. Depending on the combination of parameters, it is
possible that multiple equilibria will exist at the same time or that no symmetric equilibrium

will exist.

We would like to make theoretical predictions about how the path of play depends on the
game parameters, but precise predictions cannot be made due to the multiplicity of equilibria.
Therefore we separately investigate how the factors of interest affect the existence conditions
of each type of equilibria and the speed of transition to an efficient state. The factors that
we consider are the length of planning horizon of sophisticated players (7'), the number of

myopic players (m) and the strength of initial lock-in (7).

4.1 Planning Horizon of the Sophisticated Players

The first parameter of interest is 7', the length of the planning horizon for sophisticated

players.

Proposition 8. If sophisticated players have a longer planning horizon, then:

1. The speed of transition in any equilibrium is not affected.
2. Teaching equilibrium exists for a larger set of values of other parameters.
3. Interior equilibrium exists for a larger set of values of other parameters.

4. Delay equilibrium exists for a smaller set of values of other parameters.

Proof.

Part 1 follows from the definition of the switching period, which depends only on myopic
players who do not take future payoffs into account. For part 2, note that only condition T2
depends on the planing horizon, and T2 is satisfied for a larger set of parameters when T

is higher. For part 3, note that conditions I2 and I4 depend on the length of the planning
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horizon, and both are satisfied for a larger set of parameters when T is larger. Part 4 holds

because condition D1 is satisfied for a smaller set of parameters when T is larger.

4.2 Player Composition

The second variable of interest is m, the number of myopic players, which reflects a different
aspect of sophistication than the length of the planning horizon. Instead of making sophisti-
cated players more sophisticated, we look at the effect of replacing some myopic players with

sophisticated ones, while keeping the total number of players constant.

Proposition 9. If there are more sophisticated players, then:

1. Transition is faster in the interior and in the teaching equilibria.

2. The effect on the existence of a teaching equilibrium or an interior equilibrium is am-

biguous:

(a) there are more incentives to deviate to neighboring action plans

(b) there are less incentives to never choose A.

3. There is no change in the existence of the delay equilibrium.

Proof.

This proof as well as other proofs on comparative statics rely on additional lemmas presented
in Appendix A.3. For part 1, see Lemmas 11 and 12. To see part 2 for the teaching equilibrium,
note that both condition T1 and condition T3 depend on player composition. A smaller
number of myopic players leads to T1 being satisfied for a smaller set of values of other
parameters. On the other hand, a smaller number of myopic players makes condition T2
satisfied for a larger set of parameters because 1 (0, 0) is increasing in m (see Lemma 11). For
the interior equilibrium, all four conditions depend on the number of sophisticated players.
Incentives to deviate to neighbouring strategies are determined by condition I2, which is
satisfied for a smaller set of parameters when there are more sophisticated players. To see
it, notice that % > 0 (Lemma 12), therefore as m decreases so does y*, therefore 12 is less
likely to be satisfied. Incentives to deviate to corner solutions are determined by conditions
I1, I3 and I4, all of which are satisfied for a larger set of parameters when there are more
sophisticated players. Conditions I3 and I4 are satisfied for a larger set of parameters because
% > % > %L/H (see Lemma 14). Condition I1 is also satisfied for a larger set of
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> 0, from Lemma 12. Part 3 holds because outcomes in the

851 (y* 7y*)
parameters because —5 =

delay equilibrium are not affected by the number of myopic players.

The finding that an increase in the number of sophisticated players can reduce the incentives to
use strategic teaching may sound counterintuitive, but it is a result of decreased delay costs as
the number of teaching players grows. When the number of sophisticated players is large and
all of them are choosing A in the teaching equilibrium, the decision of a single sophisticated
player to delay teaching has only a small negative effect on the transition period, making free-
riding an attractive alternative that could lead to a break-down of a teaching equilibrium.
But if a teaching equilibrium does exist, a larger number of sophisticated players would make

transition faster.

4.3 Length of the History of Inefficient Coordination
The third factor that we look at is the strength of the initial lock-in to an inefficient state,
measured by the length of history of inefficient coordination, T".

Proposition 10. If the history of inefficient coordination is longer, then:

1. Transition is slower in the teaching equilibrium but faster in an interior equilibrium.
2. Teaching equilibrium exists for a smaller set of parameter values
3. The effect on the existence of an interior equilibrium is ambiguous

4. Delay equilibrium exists for a smaller set of parameter values.

Proof.

Part 1 holds because the derivative of #; (0,0) with respect to T" is positive while the derivative
of £1(y*,y*) is negative, as shown in Lemma 11 and Lemma 12. For part 2, parameter T"
affects conditions T1 and T2. An increase in T leads to T1 being satisfied for a smaller set
of parameter values, because ’yT/ goes down. Condition T2 is also less likely to be satisfied
because of an increase in #; (0,0). For part 3, notice that an increase in T” satisfies conditions
I1, I3 and I4 for a larger set of parameter values, but satisfies condition I2 for a smaller set

of parameter values. Condition I1 is satisfied for a larger set of parameter values because
Ot (y*,y*)

o7 — < 0. Conditions I3 and I4 are also satisfied for a larger set of parameter values
because % = g%*, < g%*, L/H and tg(TO,) > 0, from Lemma 11, 12 and 13. Condition I2

is satisfied for a smaller set of parameters because % < 0, from Lemma 14.
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Part 1 of Proposition 10 states that the history of inefficient coordination affects the transition
speed in opposite ways in the teaching and in the interior equilibrium. The opposite sign of
this effect is a result of changes of the equilibrium strategy in the interior equilibrium. If the
equilibrium strategy in an interior equilibrium was held constant, a longer history of inefficient
coordination would lead to a slower transition. However, to offset an increased history of
inefficient coordination, in an equilibrium sophisticated players have to start teaching earlier.

Lemma 12 shows that the latter effect is even stronger than the former.

5 Conclusion

In this paper we present a model that combines the notion of strategic and farsighted players,
favored by game-theoretic solution concepts, with a notion of adaptive players, favored by
learning models. We assume two types of players: myopic players make choices based on
observed history of play while sophisticated players have correct beliefs about the actions of
all other players, plan ahead and choose actions that maximize the sum of payoff flows. To
make predictions in this modified game we propose a new solution concept based on a Nash
equilibrium between sophisticated players who take the learning process of the myopic players

into account.

This solution concept is applied to a critical mass coordination game in which play has
converged to an inefficient state. The construction of a sophisticated player equilibrium
involves several steps. Proposition 1 shows that myopic players will choose the efficient action
if their beliefs exceed a certain threshold. Furthermore, in the sophisticated player equilibrium
myopic players will switch from an ineflicient to the efficient action at most once. The single
switch and the assumption that there are sufficiently many myopic players means that the
efficient state is absorbing, therefore the switching time is the only information needed for
sophisticated players to calculate their payoffs. Proposition 3 shows exactly how the switching
time of myopic players can be calculated if beliefs were formed using weighted fictitious play.
The switching time depends on the strategies taken by sophisticated players, which could
prescribe many switches from one action to the other. The task of finding the switching time
of the myopic players is therefore greatly simplified by Proposition 2, which shows that only
the sophisticated player strategies prescribing at most one switch from the inefficient to the
efficient action survive the elimination of strictly dominated strategies, allowing a strategy to

be identified by the switching time.

The ability to anticipate the speed of a transition allows sophisticated players to calculate

how their payoffs depend on their own strategies and on the strategies chosen by other sophis-
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ticated players. The mapping from strategies to payoffs specified in Proposition 4 is used to
identify strategy profiles in which all sophisticated players are best responding to each other.
Three types of symmetric equilibria are possible: sophisticated players may play the efficient
action right away, they may switch to the efficient action later or they may never switch. In
the first two cases myopic players eventually start playing the efficient action, while in the
third case all players choose the inefficient action. Which types of equilibria exist and how
long the transition to an efficient state takes depends on the game parameters, as specified
in Propositions 5, 6 and 7. Finally, Propositions 8, 9 and 10 show how these existence con-
ditions depend on the history of inefficient coordination, length of the planning horizon of
sophisticated players and the player composition. As the planing horizon of sophisticated
players increases, teaching and interior equilibria exist for a larger set of parameters, while
the delay equilibrium exists for a smaller set of parameters. A larger number of sophisticated
players leads to faster transition to the efficient state in an interior or in a delay equilibrium,
but the effect on the existence conditions is ambiguous: there are more incentives to deviate
to neighboring strategies, but less incentives to deviate to corner solutions. Finally, we show
that a longer history of observed inefficient coordination leads to a slower transition in a
teaching equilibrium and to a smaller set of parameters under which a teaching equilibrium
exists, while the set of parameters under which the delay equilibrium exists is larger. On the
other hand, the transition to an efficient state in an interior equilibrium is faster, because a

longer history of inefficient coordination forces sophisticated players to start teaching earlier.

The problem that motivated this paper was the lack of a suitable theoretical model that
could be used to make predictions in a game in which inefficient conventions have already
been established. A small change in the assumptions — instead of assuming all players to be
farsighted we assume that some players are learning from history — leads to large differences in
theoretical predictions. Not only can the new model be used to model inefficient conventions
through the beliefs of myopic players, but it also reduces the set of predictions to only three
types of equilibria, in contrast to almost limitless predictions made by standard solution

concepts.

31



References

Acemoglu, D. and Jackson, M. O. (2011). History, expectations, and leadership in the evolu-

tion of social norms. Technical report, National Bureau of Economic Research.

Arthur, W. B. (1989). Competing technologies, increasing returns, and lock-in by historical

events. The economic journal, pages 116-131.

Camerer, C. (2003). Behavioral game theory: Ezperiments in strategic interaction. Princeton

University Press.

Camerer, C. F., Ho, T.-H., and Chong, J.-K. (2002a). Sophisticated experience-weighted
attraction learning and strategic teaching in repeated games. Journal of Economic Theory,
104(1):137-188.

Camerer, C. F., Ho, T. H., Chong, J.-K., and Weigelt, K. (2002b). Strategic teaching and

equilibrium models of repeated trust and entry games.

Cheung, Y.-W. and Friedman, D. (1997). Individual learning in normal form games: Some

laboratory results. Games and Economic Behavior, 19(1):46-76.

Crawford, V. P. (1995). Adaptive dynamics in coordination games. Econometrica: Journal

of the Econometric Society, pages 103—143.

Devetag, G. (2005). Precedent transfer in coordination games: An experiment. Economics
Letters, 89(2):227-232.

Dolan, P. and Galizzi, M. M. (2015). Like ripples on a pond: behavioral spillovers and their

implications for research and policy. Journal of Economic Psychology, 47:1-16.

Ellison, G. (1997). Learning from personal experience: One rational guy and the justification

of myopia. Games and Economic Behavior, 19(2):180-210.

Fudenberg, D. and Levine, D. K. (1998). The theory of learning in games, volume 2. MIT

press.
Goodman, N. (1983). Fact, fiction, and forecast. Harvard University Press.

Kamijo, Y., Ozono, H., and Shimizu, K. (2015). Overcoming coordination failure using a

mechanism based on gradualism and endogeneity. Fxperimental Economics, pages 1-16.

Mengel, F. (2014). Learning by (limited) forward looking players. Journal of Economic
Behavior & Organization, 108:59-77.

Monderer, D. and Shapley, L. S. (1996). Fictitious play property for games with identical
interests. journal of economic theory, 68(1):258-265.

32



North, D. C. (1990). Institutions, institutional change and economic performance. Cambridge

university press.

Rapoport, A. (1985). Provision of public goods and the MCS experimental paradigm. Amer-
ican Political Science Review, 79(01):148-155.

Rapoport, A. and Eshed-Levy, D. (1989). Provision of step-level public goods: Effects of
greed and fear of being gypped. Organizational Behavior and Human Decision Processes,
44(3):325-344.

Romero, J. (2015). The effect of hysteresis on equilibrium selection in coordination games.

Journal of Economic Behavior & Organization, 111:88-105.

Schipper, B. C. (2011). Strategic control of myopic best reply in repeated games. Awvailable
at SSRN 1804667.

Van Huyck, J. B., Battalio, R. C., and Beil, R. O. (1990). Tacit coordination games, strategic

uncertainty, and coordination failure. The American Economic Review, 80(1):234-248.

33



A Appendix

A.1 Proof of Case 2 and Case 3 of Proposition 3

Case 2: y <t <7y

(m — 1) myopic players

1 sophisticated player

(n—m-—1)
sophisticated players

— 1
- 0 vy o o iyy) v T

Figure 8: Tllustration of the second case, where y < t(y, §) < . The height of the figure shows
the fraction of players choosing action A or action B, the width shows the passage of time.
The first sophisticated player switches from B to A in period y, other (n-m-1) sophisticated
players switch in period 7 and the myopic players switch in period .

The second possibility is that #(y,7) < ¥, that is myopic players switch to A earlier than
(n —m — 1) sophisticated players. In this case the actual value of y will have no influence
on the switching period of myopic players, as they will never observe any of the (n —m — 1)
sophisticated players choosing A. Therefore the switching period will be a function only of
the strategy chosen by a single sophisticated player. At time t € (y,ﬂ beliefs of a myopic
player i are x;(t):

ft Yy k 1 dk)
fl)z(t) =
ft+T kdk
(- ()
7t+T -1

Player ¢ will choose A in t if:

7 | 1
t+T" —y—T o I—l < . I—l 24
e Ly o L 1)

If 5 n— 1
that contradicts (24):

—I71 <0, equation (24) is never satisfied. To see this, notice the following relationship
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— r,o 1
_I 1)>,}/t+T(m_

1

! ! 1
t+T" (. —y—T
(v — —

n—1

gl

The latter equation holds because v ¥~7" > 1, 47" < 1 and ﬁ —-I7'<o.

Alternatively, if 1= — =1 > 0, (24) will be satisfied with equality at time #5(y) € (0, 00) that

satisfies:

_ log(hy — 1) —log(y vty =917 (25)
log(~y)

2(y)

t(y,7) can be calculated using (25) only if ﬁ — I~' > 0, otherwise myopic players would

never switch from A to B. The switching period if case 2 applies can be expressed as follows:

t(y, ) =

A Bh(y) if L1
{ Q(y) 1 n—1 ' > 0 (26)
00 otherwise

Case 3: j<t<y

(m — 1) myopic players

1 sophisticated player

(n—m-—1)

>

[V J S

sophisticated players

T 0 v iy,79) T

Figure 9: Tllustration of the third case, where § < t(y, ) < y. Height of the figure shows a
fraction of players choosing action A or action B, the width shows the passage of time. The
first sophisticated player switches from B to A in period y, other (n — m — 1) sophisticated
players switch in period § and myopic players switch at time #(y, 7).

The third possibility is that 7 < #(y, ) < v, that is at first (n —m — 1) sophisticated players

switch to A, then m myopic players switch and the last sophisticated player may switch some

time after the myopic ones. In this case the switching time is a function only of §. At time
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€ (9,t(y,9)] beliefs of a myopic player i are x;(t):

Jizt A () dk
Li (t) t+T17 kdk‘ -
k=0 T

(07— (st
- AT ]

Player ¢ will choose A in ¢ if:
() =

T 7@7T/n—m—1_171 <n—m—1_171 97
P Ty g B (1)

If 2=m-l _ =1 < 0, condition (27) is never satisfied. To see this, notice the following
relationship that contradicts (27):

T _g_T,n—m—l_I_1 t+T/n—m—1_I_1 n—m—l_I_l
Y (y 1 ) > )2 ——1—

The latter conditions holds because v~ 7~ > 1, 41" < 1 and 2=m—1 e L _ 7= < 0. Therefore
if ”niilll — I7! <0, equation (27) is never satisfied and myopic players would choose B at

any time t.

Alternatively, if 2= — [=1 > 0, (27) will be satisfied with equality at time #3(y) € (0, c0)
that satisfies:

@) = nm___ o (28)

log(7) . (29)

t(y,7) can be calculated using (29) only if 2=m—1 T L _ 7=1 > 0. Therefore, the switching period

if case 3 applies can be expressed as follows.

00 otherwise

A.2 Proof of Lemmas

Lemma 1: If two action plans of the sophisticated player prescribe the same action, the

payoff flow is higher for the action plan with which myopic player beliefs are higher:
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mlal(t), a—s(t) x a;(t,a, x a_s)] > wlas(t),a—s(t) X a;(t,as x a_g)]
if z(t) >x() and al(t) = as(t)

S

where x(t)" is the belief held by myopic players if sophisticated player uses action plan a', and

x(t) is the belief if sophisticated player uses action plan as.
Proof:

Consider two action plans as and o) that prescribe the same action at time ¢, but prescribe
different actions prior to time ¢ so that myopic players would hold higher beliefs following the

history generated by a,.
From equation (7), a;(¢,as X a_s) is weakly increasing in beliefs x;(¢), therefore:

ai(ta als X a—s) > ai(tv as X a—s)

Since we hold the action plans of other strategic players constant, a higher tendency to
choose A by myopic players increases the total number of other players who choose A at time
t. Because H > 0 and M > 0, equation (6) implies that payoffs are weakly increasing in the
number of other players choosing A, therefore the payoff generated by o), must be at least as

high as the payoff generated by as:

mlal(t), a_s(t) x a;(t,al x a_s)] > wlas(t),a_s(t) x a;i(t,as X a_s)]

S

Lemma 2: All action plan profiles for sophisticated players with which myopic players switch

from A to B are strictly dominated:

ABMﬂUs:(Z)

Proof.

Suppose that xscgas € ABjs, then there are two points in time ¢; and fo with ¢; < to such
that myopic players choose A at time ¢; and B at time to . Find the first switching period
ts € (t1,t2] such that A is chosen in the interval [t1,ts), but B is chosen at time ts. Since
all myopic players share the same history, the value of ¢5; will be the same for each myopic
player so no myopic player will choose A in the interval [t1,t,). If a myopic player observed
all other sophisticated players choosing A in the interval [t1,s), the fictitious play rule would
imply that z;(ts) > z;(¢1) therefore if A was optimal at time ¢; it will also be optimal at time
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ts, contradicting the definition of t5. Therefore if a myopic player chooses B at time tg, at
least one sophisticated player must be choosing B in the interval [t1,ts), that is as(t) = 0 for
some s € S and t € [t],ts). Denote the action plan of this sophisticated player by as;. We
will show that a@s is dominated by an action plan a/, that prescribes A in the entire interval
[t1,ts) and is otherwise the same as ag. First, the sum of payoff flows generated by a in
the interval [t1,ts) is strictly higher than that generated by as because all myopic players are
choosing A in this interval, and therefore Assumption 2 implies that the threshold will be
exceeded. Second, payoffs generated in the interval (¢s, 7] will be equal or higher than those
of as because myopic players will hold higher beliefs if a/, is chosen (due to more A choices
being observed) and consequently Lemma 1 implies that higher beliefs will lead to weakly

higher payoffs for the sophisticated player at any time ¢ > ;.

Lemma 3: a%l(/y) > 1.

Proof.

Use the definition of Z5(y) from equation (25):

. log(-1; — I™1) —log(y ¥ — 47171
ta(y) =

log(y
The partial derivative is calculated as follows:
dta(y) 1 1 —y
x < log(y) =
dy  —log(y) = 4yt — 4T 1
_ e .
Ty 1 Tl >
Y =T
|
Lemma 4:
I (y*, y*) > 2(0,y")
IL(y* y") 2 I(y,y"), vy € [0,T] <« I (y*y") > iy, ), Yy € [y, ]
I (y*,y*) > (T, y*

t3(y*), otherwise y' solves t1(y',y*) = T. If t2(0) > y*, y" = 0, otherwise

Ifts(y*) < T,y =13
) =y*.

y" solves ta(y"

Proof. To specify the deviation payoff, II(y,y*), we will first look at deviations upwards

(y > y*) and then at deviations downwards (y < y*). First, consider a deviation upwards
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to a strategy y = yp > y*. The calculation of payoff II(yp,y*) depends on the size of the
deviation: if yp is sufficiently small, the payoff is determined by Il(yp,y*) = 1 (yp,y*),
but if y is large, myopic players may switch to A prior to y (see an illustration in figure 10,
panel a), or myopic players may never switch to A (figure 10, panel b). The first option is
possible only if the myopic players switch to A without ever observing player s choose A,
that is if £3(y*) < T. Then the deviation payoffs for an action plan yp € (t3(y*),T] are
calculated by II3(yp,y*). But II3(y, y*) is decreasing in y, thus any strategy in this interval
would be strictly dominated by strategy y = £3(y*). In figure 10 we indicate dominance with
an arrow pointing towards the dominant strategy. Checking for profitable deviations upwards
therefore only requires checking for potential deviations in the interval (y*,#3(y*)]. Also
note that yp < t3(f) together with condition I1 imply that deviation payoffs for strategies
yp € (0,13(y)) are equal to ITi (yp,y*).

The second possibility is that #3(y*) > T, so that myopic players do not switch prior to T
if they observe only n — m — 1 sophisticated players switching at y* (see figure 10, panel
b). Then because t1(T,y*) = t3(y*) > T, t1(y*,y*) < T (from condition I1) and #;(-,y*) is
continuous, there must be a number ' € (y*,T) such that {1(y,y*) = T. If yp € (v*,v/],
(22a) is satisfied and H(yp,y*) = H1(yp,y*), because t1(y,y*) < T, t2(yp) > yp > y* and
t3(y*) > T > y*. The payoff from any yp > %/ is determined by II4(y,y*) = yL, and thus
all strategies yp € (y/,T] are dominated by yp = T. Overall, to check for the existence

of an interior equilibrium it is sufficient to compare equilibrium payoffs to the payoffs from
yp € (y*,y)UT.

Panel (a): {3(y*) < T Panel (b): {3(y*) > T
(yp,y*) =l2(yp,y*) Mi(yp,y*) 1s(yp,y*) H2(yp,y*) hi(yp,y*) Halyp,y*)
é&?b/—/% /NT%_}
" * > v 7 * / v
0 vy Y ts(y) T 0 y y Y T

Figure 10: Calculation of deviation payoffs, II(yp,y*) for every possible value of yp. Green
dashed line and green ticks mark undominated strategies. Red arrows mark dominated strate-

gies and the arrow points to the dominant strategy.

Now consider a possible deviation downwards to yp < y*. If yp is only slightly below y*,
the switching period is #1(yp,y*) and the deviation payoffs are II; (yp, y*). But if yp is low
enough, myopic players may switch to A prior to y*, at time fg(yp). If this does not happen,
that is if £5(0) > y*, payoffs from all deviations downwards are calculated by II;(yp,y*).
Otherwise, if £3(0) < y*, there will be some value y” that satisfies #o(y") = y*. For any y
below this value, payoffs will be determined by Il (y, y*). From Lemma 3, any y € (0,y") is
dominated by y = 0, therefore to check if there are any profitable deviations downwards it is

necessary to compare equilibrium payoffs to payoffs from strategies yp € (y”,y*) UO.
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Lemma 5: 111 (v*,v*) > 1 (y,y*), Vy € (v",y'), if and only if condition 12 is satisfied:

n—-m—H/L
IOg(Wn—{))

Tog() -1 >0, (12)

Proof.

We will calculate the first derivative of the profit function and determine under what con-
ditions the derivative at the equilibrium point is equal to 0 and the second derivative is is
non-positive, which ensures that the equilibrium is a maximum point and there are no incen-
tives to deviate to strategies in the nearest neighbourhood. Instead of taking the derivative
of the profit function, we will first transform it by applying a strictly increasing function
—~(/H) \which preserves the sign of the derivative when ~ € (0,1). The transformed payoff

function is calculated as follows:

H(y,y*)/H _ _,ny/HJrT,y—tl(y,y*) _
- ;(Vy(L/H—lHTL + ,ny/H—i-T—y*L”n_l _ ,ny/H+T+T/I—1) _

Sl nem n—1 n—1

L/H+T
~Y ., 1 _pn—m—1

n—1

-

3

FIT (31)

n—1 n—1

where *ytAl (¥¥-i) has been substituted from (19). Differentiate the transformed profit function

in (31) with respect to y to get

& — MM/ H log(7) yL/H+T—y_ L

n—1

YL/ HAT =y Lm_lL/H  AUL/HATHT 1y

n—1
log(y)yE/HAT (1 _pmn—m—1 S
=" L/H—-1 Y —— L/H — I—"L/H

(32)

The first derivative is non-negative if:
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0 — ~wy")/H

dy
L/H -1 sn—m—1 '
e L S kY A S0 ) SN
n—1 n—1

>0 <

—y*(n—m—1\ _ T 7-1
I (ZE) -
= H/L—1
n—1

The first derivative at point y = y* is non-negative if:

9 — Ayv)/H
Jy
_y*H/L—l SV_y*(n—m—l
n—1
T4y n—m—H/L
T ST o
log(“=r Ly
* (n—1) /
yr>— L 34
log(7) (34

>0 <
y=y*

— )f’yT/I_1 &

The derivative is equal to 0 only if y* satisfies (34) with equality:

log(“=1=E4)

Y= e T (35)

log(7)

There will be at most one y* that satisfies (35) for any given set of parameters, therefore
there can be at most one interior equilibrium in a given game, and the equilibrium strategy is
determined by equation (35). A necessary condition for the existence of an interior equilibrium
is 0 < y* < T. But note that condition I1 from Proposition 5 implies that y* < T because
y* < t1(y*,y*), therefore the only additional condition is that y* > 0.
Condition I2:

log(n—m—H/L)

I-1(n-1)

—T'>0
log()

The second derivative is obtained by differentiating (32) with respect to y:

62 _ ,)/H(y,y*)/H log ,Y)Q,ny/H-i-T
= -y _ 2
_axan—m—1 ro_
+y Y ———(L/H)* =" T Y(L/H)?) (36)

n—1
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The second order derivative is negative if:
92 — Alyy)/H
Dy?
(L/H)? =" 7N (L/H)? > 0 (37)

<0 <&

1
YV (L/H = 1) 47

«nm—m—1

n—1
If condition I2 is satisfied, the expression of y* in (35) can be used to rewrite (37) as follows:

L
L—-H

WY > (38)

Because L < H and ~ € (0,1), condition (38) is satisfied for all y. The first order condition
is therefore both necessary and sufficient for y = y* to be a local maximum point. Moreover,
equation (38) states that the second derivative is negative not only at y = y*, but also for any
other value of y. Since the first derivative is equal to 0 at point y = y*, and it is decreasing
at all y, the payoff function must be increasing at any point y < y* and decreasing at any
point y > y*. Continuity of the profit function therefore implies that y = y* is not only a

local, but also a global maximum in the interval (y”,y) as long as condition I2 is satisfied.
|

Lemma 6: II; (y*,y*) > II2(0,y*) if and only if condition I3 is satisfied:

by y") —y*L/H <i3(0),  (I3)

Proof.

Use the profit specification in (13) to get the following expressions for the two profit functions:
L (y*y") = yL + (T — t1(y", y")H

M2(0,y") = (T — £2(0)) H

There are no incentives to deviate to y = T if the former expression exceeds the latter:

L (y*,y") > M2(0,y%) <  h(y*y") -y L/H <i3(0)

|
Lemma 7: II; (y*,y*) > I4(T,y*) if and only if condition I4 is satisfied:
by y") —y'L/H<T(1-L/H), (14)
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Proof.
From (13), deviation payoffs are as follows:

(T, y*) = TL

There are no incentives to deviate to y = T' if

IL(y*,y") > (T,y") < h(y',y")—y'L/H<T(1-L/H)

Lemma 8: II;(0,0) > II;(y,0), Vy € [0,v’) if and only if condition T1 is satisfied:

—m—H/L '
nom=H/L _ 71y

n—1
where 3’ solves t1(y',0) = T.
Proof.

Payoffs for any y € [0,y') are calculated the following way, from equation (22a):

I (y,0) = yL + (T — t1(y.0))H

(39)

A necessary condition for the payoff to be maximized at y = 0 is the non-positive sign of the

first derivative of (39) with respect to y at y = 0. We first apply a strictly increasing function

—~(/H) t6 the payoff function an then differentiate the transformed function with respect to

y to obtain the following condition:

8 — fynl (y,O)/H

<0 &
oy -
log(y)y" 1 n—m-—1 -1
NP L/H-1)+—"""1/H-+"I7'L/H) <0 &
= (— T/ )+ ——7L/H -~ JH) <

1
n—1

—m—1 ,
NV (LJH —1) + %L/H — AT 'LJH <0
n_

Inequality (40) must hold for y = 0:
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<0 <
y=0

1
n—1

—m—1 ,
(L/H —1) + %L/H —ATIILJH <0 &
n_

n—m

L/H

<A1 'L/H &=
n—1 n—l_ry /

n—m—H/L T 1
—_— < 1 41

n—1 =7 (41)
To obtain the second derivative, differentiate the the left-hand side of (40) with respect to y
and simplify to get:

9% — AT (y,0)/H 1

s = i (L/H ~ D(-1)logy

Note that the second derivative is always negative because v < 1 and H > L. If condition
T1 is satisfied, the first derivative will be non-positive at point y = 0, and it will non-positive
for any y € (0,t'). Payoffs would therefore be maximized by choosing y = 0. If T1 does not
hold, the first derivative is positive at point ¥ = 0 and profits could be increased by choosing
y > 0.

Lemma 10. #1(y, ) < t2(y) and t1(y,5) < t3(7)

Proof.

Note that #;(y, 7) is increasing both in y and in 7, from equation (20). If y is held constant,
at any given time ¢ the maximum value of #(y, ) will be reached at 4 = t. Substituting 7 =t
into equation (17) reduces it to equation (24), thus maxy#;(y,y) = 2(y). Likewise, setting
y = t in equation (17) reduces it to equation (27), thus max, t1(y,7) = t3(7). Therefore
t1(y,7) can never exceed t3(y) or t3(7).

|
A.3 Comparative Statics
A.3.1 Speed of Transition in the Teaching Equilibrium

We will prove the effect of the parameter changes on the general function #;(y,y), and all

results will of course hold for the special case y = 0.
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Lemma 11. Speed of transition to the efficient state in a teaching equilibrium depends on

the parameter values the following way:

1. %) 5 g
2, 2luw)

0t (y,y)
3. Sl >0

Proof.

Assume that a teaching equilibrium exists, so that #;(0,0) < T and = > 1 1. We will

show how the speed of transition in this type of equilibrium respond to changes in parameter

values. The switching period #1(y, ) is calculated using equation (20):

R 1 n—m ’ n—m
t =—— |log(y¥ —yTr T —1 -1t 42
1(¥,9) “og(7) og(v ! — =7 ) —log(—— ) (42)
1. Derivative with respect to y:
=T o
%z’y) > 0 because =% > I~! and v € (0, 1).
2. Derivative with respect to m:
di(yy) 1 1 ( 1 B 1 -
om log(y)n —1"2=2 — -1 =l _ ATyl
I~ i Ukl (44)
log() n — 1 (38 — 1-1) (228 — 5T+ I1)
aig%’y) > 0 because =% > I~! and v € (0, 1).
3. Derivative with respect to T’:
Ot (y,y) 1 1 1T
=_ — - x =17 ~" log(vy 45
o1 log(v) yv4=F — 771! ) )
a%(Ty;y) > 0 because =% > I~! and v € (0, 1).
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A.3.2 Speed of Transition in the Interior Equilibrium

Lemma 12. Speed of transition to the efficient state in an interior equilibrium depends on

the parameter values the following way:

afl(y*7y*)
om

81?1@*79*) _

o~

1. >0

Proof.

Assume that an interior equilibrium exists, so that ¢; (v, v*) < T and 71 > I 1 In an
interior equilibrium changes in parameter values affect both the equilibrium strategies of
sophisticated players and the switching period of myopic players, holding the strategies of
sophisticated players constant. To measure the total effect we substitute the expression of y*

from equation (35) into (42) to obtain the following result:

“n—1y"n-m / n—m
Ay yT) = Tg(v) log (fb—(m—lf)ff;lz n—1 - Il) _10g<n— 1 _I1>] -
1 ! — n—m _
= Tlog(r) [log(H/L)—Flog(’YT)—i—lOg(I ") —log(n —m — H/L) —log<n_1 — T 1>]

1. Derivative with respect to m:

ot (y*, y* 1 1 n—1
1(5/ v 1 H/L mmm g (46)
m og(y) \n—m—H/ i
% > 0 because 2=2 > [~' ~ € (0,1) and n —m — H/L > 0 (if an interior

equilibrium exists).
2. Derivative with respect to T":
atl (y*u y*)
oT’

=-1 (47)
A.3.3 Speed of Transition if One Player is Teaching

Here we will calculate how the parameters of interest affect #5(0), which measures the tran-

sition speed if a single sophisticated player always plays A while all others play B. This
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derivative is necessary for Proposition 9 and Proposition 10 because the existence of a delay

equilibrium depends on #5(0)

Lemma 13. Speed of transition to the efficient state if only one sophisticated player is choos-

ing A depends on the parameter values the following way:

Ot(0)

1. =
om 0
Ot(0)

2. T >0

Proof.

Suppose that £5(0) < T, which holds only if ﬁ > I~'. Then #3(0) is calculated the following

way, from expression 25:

o log(Ghy =T —log(y =4I

t2(0 48
20) log(7) (48)
1. Derivative with respect to m:
dit2(0)
. 0 (49)
2. Derivative with respect to T":
d5(0) Tt 0
o1’ #1 —~T' -1 (50)
pon

dt2(0 _
82%) > (0 because ﬁ > 11

A.3.4 Equilibrium Strategies in the Interior Equilibrium

Another variable if interest is the strategy used by sophisticated players in an interior equi-

librium, y*, which has an effect on the existence conditions of the interior equilibrium.

Lemma 14. The strategies used by sophisticated players in an interior equilibrium depend

on parameter values the following way:
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oy*
om
oy*
o1’
In addition:
oy* _ Oh(y",y")
om om

=1

Proof.

Equilibrium strategy is determined by equation (35):

—m—H/L
* IOg(%) /
yr=— i
log(7)
1. Derivative with respect to m.:
oy* 1 1
o= (————77) (51)
om log(y) 'n—m—H/L
g% > 0 because n —m — H/L > 0 (because an interior equilibrium exists).
2. Derivative with respect to T":
ay*
=1 2
5T (52)

3. Comparison to the derivative of t1(y*,y*):

Recall the derivative of 1 (y*,y*) from equation (46):

ot (y*, y*) 1 1 n—1

om __log(’y)(n—m—H/L—i_%—I—l)

The derivative of y* calculated in (51) is strictly lower than the derivative of 1 (y*,y*)

n—1
because =y i 0.

n—1
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