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1 Introduction

Policy makers since a long time, when conducting the monetary policy, follow active Taylor rules consist-

ing in changing nominal interest rates more than one-for-one when inflation deviates from a given target.

This policy aims at keeping inflation anchored to its long run target and thus to stabilize the monetary

and financial sector of the economy. The traditional approach is based upon the analysis of the linearized

versions of the truly non-linear models and focuses on a local analysis of the Leeper (1991) equilibrium:

under active Taylor rules, such an equilibrium is locally unstable and thus unique. This approach, actu-

ally, may be misleading since it rules out the study of all the trajectories, as the Liquidity Trap, other than

those consistent with the targets. Benhabib et al. (2001), indeed, show that the combination of active

Taylor rules and a zero bound on the nominal interest rate creates a new steady state for the economy, a

steady state that the authors call "unintended". Moreover, this steady state is stable and thus the economy

converges toward it giving raise to a deflationary path with very low levels for the nominal interest rate.

As Bullard and Russell (1999) argue, such a feature is consistent with the deflation and nominal inter-

est rate regime observed in Japan in the recent years (see Krugman (1998); Bernanke (1999); Meltzer

(1999)). Moreover, the issue of Liquidity Trap during the 1929 crisis has been a source of intense debate

in the cliometric literature (see among others, Damette and Parent (2016a), Damette and Parent (2017b);

Basile et al. (2010); Romer (1992); Romer (2009); Friedman and Schwartz (1963); James (2001);

Hanes (2006) and Gandolfi (1974)). However, Benhabib et al. (2001) theoretical findings have not

received great attention in the policy debate which appears to be deaft to the perils underlying the conduct

of standard and celebrated Taylor rules.

Besides early contributions as that of Brunner and Meltzer (1968), other recent theoretical devel-

opments suggest new avenues for research. Orphanides and Wieland (1998) are among the first to have

re-addressed the issue in the last twenty years. Schmitt-Grohé and Uribe (2009) call into question the zero

interest rate policy as an appropriate strategy to escape the Liquidity Trap occurrence. They demonstrate

that pursuing a zero interest rate policy is not a way to escape Liquidity Trap but, on the contrary, leads to

maintain the economy in a stable Liquidity Trap equilibrium. Airaudo and Zanna (2012) show that Taylor

rules generate, besides liquidity traps, also aggregate instability, endogenous cycles and chaotic dynam-

ics in open economies. Svensson (2000) too studies the liquidity trap in an open economy. Kudoh and

Nguyen (2010) analyze the effects of fiscal policy in an economy in which the Central Bank pursue Taylor

rules. They find that they depend dramatically upon the conduct of monetary policy. Schmitt-Grohé and

Uribe (2013) observe that the great contraction of 2008 pushed the US economy into a lasting Liquidity
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Trap characterized by zero nominal interest rates and inflation expectations below the target. At the same

time, they find that output growth is recovered but nevertheless unemployment is increased. They refer to

such a configuration as to "jobless recovery".

In our paper, following Benhabib et al. (2001), we confirm the utility of carrying out a global analysis

rather than a pure local one, in order to unveil the existence of equilibrium outcomes other than the

Leeper (1991) one, as Liquidity Traps, expectations-driven fluctuations and deterministic cycles. In our

study, government issues bonds and levies taxes to finance public expenditures, while the Central Bank

follows a feedback Taylor rules by pegging the nominal interest rate. The model is in infinite-horizon

with endogenous labor supply and fractional cash-in-advance constraint on consumption expenditures as

in Bosi et al. (2005). Within such a framework, we characterize the existence of stationary solutions and

establish the conditions under which the different equilibria are or are not stable. All these things taken

together lead to threshold phenomena in terms of the degree of liquidity of the economy such that, once

one passes through them, some relevant change of instability does occur.

We consider both the case of passive and active Taylor rules following the definition of Benhabib et

al. (2001) and of Schmitt-Grohé and Uribe (2000). In our framework we refer to active interest rate

feedback rules in the case of rules that respond to increases in inflation with a more than one-for-one

increase in the nominal interest rate. As a consequence, a passive interest rate feedback rule is such that

the nominal interest rate reacts in a less than one-for-one increase in inflation. Since we refer to active

or passive interest rate feedback rules in this spirit, the elasticity of the nominal interest rate with respect

to the inflation rate falls within the above definition according to its magnitude which can be larger than

one (active Taylor rules) or lower than one (passive Taylor rules). We find that under "passive" Taylor

rules there is always an unique steady state, which can correspond either to the Leeper equilibrium or to

the Liquidity Trap one. As is the case in Benhabib et al. (2001), under active Taylor rules, there may

appear two stationary solutions simultaneously, one corresponding to the long-run Taylor target, the other

sticking to a zero nominal interest rate.

We first Pareto-rank all the stationary equilibrium candidates and determine the GDP associated to

each of them. Actually, we find that the Liquidity Trap equilibrium Pareto-dominates the Taylor target,

since the former entails a zero cost of money holding. However, in correspondence to the Liquidity Trap

equilibrium, the Central Bank is not more able to further revive economic activity by an additional cut

in the interest rate, since the latter is already sticked to its minimum level. We simultaneously show that

as soon as the share of consumption to be paid cash decreases, the welfare associated to both the Taylor

equilibrium and the liquidity one increases. This result is easily interpretable, once one keeps in mind
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that such a share represents the degree of financial market imperfection. By relaxing it, agents can thus

buy more and more avoid the transaction cost represented by the nominal interest rate. Of course, when

the latter is zero, such a cost vanishes and Pareto optimality is restored, as it is case at the Liquidity Trap

equilibrium.

The stability of each steady state arising in our economy depends dramatically upon the amplitude

of the liquidity constraint and changes as the latter is made to vary continuously. When the share of the

consumption good which must be bought cash is included between zero and one-half, the Liquidity Trap

equilibrium is stable and thus it is reached for infinitely many initial conditions for the control variables:

it follows that the equilibrium is entirely driven by agents’ "state" of expectations. On the other hand,

when the degree of financial imperfection is above one-half, the Liquidity Trap equilibrium becomes

unstable and thus the conclusions of Benhabib et al. (2001) are reversed: it is now the Taylor target to

be indeterminate and thus compatible with infinitely many agents’ self-fulfilling beliefs. We also prove

the existence of deterministic cycles around the Taylor target, meanwhile the dynamics characterizing the

Liquidity Trap equilibrium is shown to be always oscillatory.

Our results confirm the perils of analyzing uniquely the linearized versions of the truly non-linear

models, since this rules out the study of all the trajectories, as the Liquidity Trap, other than those con-

sistent with the targets. In addition, since the Liquidity Trap equilibrium is unstable for realistic low

degrees of financial market imperfection, policy and Taylor rules are within our economy theoretically

rehabilitated, not just as a tool for economic recovery but also as coordination devices as soon as the Liq-

uidity Trap equilibrium represents a "pathological" and a difficult to reach phenomenon, as claimed by

the original Keynesian tradition (see Keynes (1936) and Orphanides and Wieland (1998)). As our paper

shows, accounting for a partial cash-in-advance constraint allows to better appreciate the dynamic feature

of the model and suggests that the Benhabib et al. (2001) results are non completely robust to some not

negligible perturbation of the money demand.

The remainder of the paper is organized as follows. In Section 2 we present the economy; we describe

the fiscal policy carried out by the government, the monetary policy pursued by the Central Bank, the

households behavior and we derive the intertemporal equilibrium. Section 3 is devoted to the analysis of

the stationary solutions and deals also with their welfare properties. The stability analysis represents the

content of Section 4 meanwhile Section 5 concludes.
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2 The Economy

We consider an infinite horizon discrete time economy populated by the government, the Central Bank,

a large number of infinitely lived households and a representative firm. In the sequel, we will describe

the government and the Central Bank goals, the household behavior, the technology of the firm and the

intertemporal equilibrium of the economy.

2.1 The Government and the Fiscal Policy

Let gt denote the government public spending in real terms in period t and τt the tax revenue still in real

terms relative to the same period. Let in addition It ≡ (1 + it) be the nominal interest factor in period

t, it being the nominal interest rate relative to the same period, and Bg
t+1 the nominal amount of safe

government bonds issued in period t. Setting pt the price of the (unique) consumption good produced in

the economy in period t, the government budget constraint relative to period t is therefore given by

Bg
t+1 = ptgt − ptτt + ItB

g
t . (1)

Let us assume in addition that the initial amount of nominal government bonds issued in period zero

is Bg
0 > 0. Let us observe that the real interest factor Rt satisfies

Rt = It
pt

pt+1
.

The government budget constraint (1) expressed in real terms gives

pt+1

pt
bg

t+1 = gt − τt + Itb
g
t (2)

where bg
t ≡ Bg

t /pt denotes the real amount of government bonds issued in period t − 1.

In the remainder of the paper we will focus on a fiscal policy ensuring a balanced government budget

constraint, i.e. ptgt = τwwtlt for every t ≥ 1, where τw ∈ [0, 1] is a flat tax on labor income and wt

is the nominal wage. Our specification consists in a government balanced-budget rule according to the

specification used in Schmitt-Grohé and Uribe (2000); in their terminology, the fiscal policy is said to be

active when the primary government surplus is exogenous, meanwhile if the primary surplus is increasing

in and sensitive enough to the public debt, the fiscal policy is said to be passive. In our framework, the

fiscal policy falls rather within the category of an active one, since we assume a zero primary surplus in
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each period. Such a zero surplus is actually guaranteed by the fact that government spending is financed

exactly out of labor income. Finally, we assume a Ricardian framework, so that the government budget

constraint (1) must be respected for all possible sequence of prices {pt}
+∞
t=0 . In order to complete the

description of the government behavior we must introduce the transversality condition ensuring that the

present value of national debt, for t going to infinite, is finite:

limT→∞
ΠT

t=1RtbG
0

ΠT
t=1Rt

= bG
0 < +∞,

where bG
0 is the real debt of the government at period 0. The transversality condition is thus always

satisfied.

2.2 The Central Bank and the Monetary Policy

The Central Bank issues money against the purchase of government bonds through open market opera-

tions. Denoting BCB
t+1 the amount of nominal government bonds purchased by the Central Bank in period

t and Mt+1 the stock of nominal balances available in the economy at the outset of period t, the budget

constraint of the Central Bank is

BCB
t+1 = ItBCB

t + Mt+1 − Mt (3)

which, setting mt ≡ Mt/pt the real balances available at the beginning of period t and bBC
t = BBC

t /pt the

real amount of the bonds held by the Central Bank issued in period t − 1, in real terms can be written as

pt+1

pt
bBC

t+1 = ItbBC
t + mt+1

pt+1

pt
− mt. (4)

Following Leeper (1991) and Kudoh and Nguyen (2010), we assume that the Central Bank follows a

Taylor (1993) feedback rule

It = I (πt) = max
{
1, I∗

(
πt

π∗

)γ}
, (5)

where πt ≡
pt

pt−1
is the inflation factor between periods t − 1 and t, I∗ and π∗ are the implicit targets

for, respectively, the nominal interest factor and for the inflation factor and γ > 0 is the elasticity of the

nominal interest rate with respect to inflation satisfying

dI
dπ

π

I
= γ. (6)

Following Benhabib et al. (2001) and Schmitt-Grohé and Uribe (2000) in our framework we refer

to active interest rate feedback rules in the case of rules that respond to increases in inflation with a more
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than one-for-one increase in the nominal interest rate. As a consequence, a passive interest rate feedback

rules is such that the nominal interest rate reacts in a less than one-for-one increase in inflation. Since we

refer to active or passive interest rate feedback rules in this spirit, the elasticity of the nominal interest rate

with respect to the inflation rate falls within one of the above definitions according to its magnitude which

can be larger than one (active Taylor rules) or lower than one (passive Taylor rules).

However, the distinction between active monetary policy and passive monetary one is sometime dif-

ferent. For instance, Schmitt-Grohé and Uribe (2009) when the zero lower bound for the nominal interest

rate is reached (with low inflation), they call it a passive monetary policy, a case in our paper obtained in

the Liquidity Trap equilibrium (independetely of whether γ < 1 or γ > 1). In our paper, in any case, we

refer to active or passive monetary rules according to the magnitude of the elasticity of the nominal inter-

est with respect to the inflation rate. Conversely, when the economy is at the Liquidity Trap equilibrium,

the interest rate does no more react to increases in inflation but sticks to zero.

Notice that in the Taylor rules we do not include the output gap since in our model is by construction

zero (see, e.g., Woodford (1993)) and, in addition, according to several empirical estimates (see, e.g.,

Clarida et al. (1998)), its coefficient falls within a range including very small values for many Central

Banks. Since the Central Bank pegs the nominal interest rate, it must supply as much money as the

household do demand in correspondence to the chosen interest rate.

2.3 Households

We consider an infinite horizon discrete time economy populated by a constant mass of agents whose

size is normalized to one. The preferences of the representative agent are described by the following

intertemporal utility function:
+∞∑
t=0
βt [u (ct) − v (lt)] (7)

where ct is the unique consumption good, lt the labor supply, pt the price of consumption good and

β ∈ (0, 1) the discount factor. The instantaneous utility function u (c)−v (l) satisfies the following standard

Assumption.

Assumption 1. u (c) is C2 over R+, increasing and concave over R+. Moreover, v (l) is C2 over R+, strictly

increasing and weakly convex.

When maximizing (7) agents must respect the dynamic budget constraint

ptct + Mt+1 + Bt+1 = Mt + (1 + it) Bt + (1 − τw) wtlt (8)
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where Bt denotes the safe nominal bonds issued by the government and held by the representative house-

hold. Following analogous lines as in Hahn and Solow (1995), we assume in addition that agents must

pay cash at least a share q ∈ (0, 1] of their consumption purchases

qptct ≤ Mt. (9)

Denoting bt = Bt/pt the real governments bonds held by the representative consumer at the outset of

period t − 1 and ωt = wt/pt the real wage earned in period t, we get the intertemporal maximization

problem of the representative agent:

max
(ct ,mt+1,lt ,bt+1)∞t=0

+∞∑
t=0

βt [u (ct) − v (lt)] (10)

subject to the dynamic budget constraint

ct +
pt+1

pt
mt+1 +

pt+1

pt
bt+1 = mt + (1 + it) bt + (1 − τw)ωtlt (11)

and to the cash-in-advance constraint

qct ≤ mt. (12)

From now on, we will focus on the case where the cash-in-advance constraint is binding. This requires

the nominal interest rate to be positive. We will show in the sequel that the intertemporal equilibrium

evaluated at the steady states is consistent with such an assumption. As a consequence, the cash-in-

advance constraint will be binding also in a neighborhood of each stationary solution. Notice that when

i = 0, agents are indifferent between investing in money or in bonds. However, we can easily assume that

in such a circumstance money is only used to purchase the consumption good meanwhile agents transfer

wealth across time by exclusively investing in bonds. Equivalently, we can suppose that the lower bound

for the nominal interest rate is not exactly zero but it is set arbitrarily close to zero from above. In such

a case, of course, the cash-in-advance constraint will be binding. Actually, the bindness of the liquidity

constraint is ensured by the same definition of the Liquidity Trap equilibrium here studied, that prevents

the nominal interest rate from being negative.

Let denote λ and µ the Lagrangian multiplier associated to the dynamic budget constraint and the

cash-in-advance constraint. Under a binding liquidity constraint, the first-order conditions are1

1u′ and v′ denote respectively ∂u(c)/∂c and ∂v(l)/∂l.
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βtu′ (ct) = λt + qµt, βtv′ (lt) = (1 − τw)ωtλt, λt −
pt

pt−1
λt−1 + µt = 0, (13)

and the Fisher equation is

λt (1 + it) −
pt

pt−1
λt−1 = 0. (14)

2.4 Intertemporal Equilibrium

We assume a linear technology such that one unit of labor can be used to produce one unit of output y

according to the linear production function

yt = lt. (15)

Equilibrium in the good market requires therefore yt = lt in each period t meanwhile, in the labor market,

firms, in view of the constant returns to scale technology, employ as much labor as it is supplied by the

households. Since the technology is linear in labor, one has that the real wage is constant and equal to

one, i.e. ωt = 1, for every t. In the good market, total government expenditures gt and total households

consumption ct must, in each period, equalize total production yt, i.e.

gt + ct = yt = lt for each t ≥ 1. (16)

Notice that (16) is satisfied by the Walras’ Law, once one takes into account the bonds market and the

money market. As a consequence one has ct = (1 − τw)yt. By manipulating appropriately (13)-(14), we

obtain the following equations describing intertemporal equilibrium in terms of (yt, yt+1,πt, πt+1):

u′((1 − τw)yt) =
βu′((1 − τw)yt+1)

πt+1

[
qI (πt) + 1 − q

q + (1 − q) [I (πt+1)]−1

]
, (17)

(1 − τw)βu′((1 − τw)yt+1) = (1 − q)βv′(yt+1) + qv′(yt)πt+1, (18)

where I(π) is the Taylor rule defined in (5). Notice that y and π are variables which are not predetermined

and therefore equilibrium is locally unique if and only if both roots of the Jacobian evaluated at the

steady state under study lay outside the unit circle. In the opposite case where the steady state is a

sink (both stable roots) or a saddle (one stable root), the system will be locally indeterminate and there

will be infinitely many choices for the initial conditions ensuring the convergence toward the stationary

solution. Once a particular trajectory {yt, πt}
∞
t=0 has been selected, the price level is nevertheless still
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indeterminate: however, from the cash-in-advance constraint and the Taylor rule, all the nominal variables

are immediately derived. Of course (17)-(18) describe the intertemporal equilibrium under the hypothesis

of a binding cash-in-advance constraint. In the next Section, we will prove that this is actually true in

correspondence for each stationary solution and thus in a small neighborhood of them.

3 Steady State Analysis

In this Section, we provide conditions for the existence, the uniqueness and the multiplicity of the station-

ary solutions of the dynamic system defined by equations (17)-(18).

3.1 Existence and Multiplicity of Stationary Solutions

Our first task consists in studying the existence and the number of stationary solutions of the dynamic

system defined by equations (17) and (18). For sake of precision, a steady state is a pair (π, y) > (0, 0)

satisfying the following planar system of equations:

π
[
q + (1 − q)I [(π)]−1

]
= β

[
qI (π) + 1 − q

]
(19)

and

(1 − τw)βu′((1 − τw)y) = (1 − q)βv′(y) + qv′(y)π (20)

where the function I(π) is defined in (5). Since I(π) = π/β (as it is immediate to verify from (19))

can not be lower than one, the Taylor rule actually puts a lower bound on π, which we will refer as to

πmin. From (5), one has immediately that πmin ≡ π
∗/(I∗)

1
γ . Since, according to the Taylor rule, the gross

nominal interest rate is increasing in the inflation rate, one has for π > πmin that the gross nominal interest

is positive and thus the cash-in-advance constraint is binding. Our task consists thus in finding (π, y)

solution of (19)-(20) for π larger or equal than πmin. As a matter of fact, for π > πmin, the gross nominal

interest rate is positive and thus it is fixed on the basis of the Taylor rule. On the other hand, for π ≤ πmin,

the economy boils down to the Liquidity Trap regime and the gross nominal interest rate sticks to one.

Since (19) includes uniquely the inflation rate, we can derive the existence of a stationary π compatible

with the inequality I(π) ≥ 1 under the case, respectively, of a passive Taylor rule, i.e. γ < 1, and under

the case of an active Taylor rule, i.e. γ > 1. Once a stationary value for π has been found, from (20)

one immediately derives the corresponding (and unique) stationary value for the output y, provided the
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following boundary conditions are satisfied:

lim
y→0

u′((1 − τw)y)
v′(y)

>
(1 − q)β + qπ
β(1 − τw)

> lim
y→+∞

u′((1 − τw)y)
v′(y)

.

In order to find the stationary values for the inflation rate π, let us define the two functions G0 ≡

π
[
q + (1 − q) [I (π)]−1

]
and G1 ≡ β

[
qI (π) + 1 − q

]
. Each π solving equation G = G0/G1 = 1 corre-

sponds thus to a steady states we are looking for. Notice that, when π < πmin, one has I(π) = 1 and thus

G(π) = π/β, meanwhile for π > πmin the function G can be written as

G(π) =
qπ + (1 − q) (I∗)−1 (π∗)γ (π)1−γ

qβI∗ (π∗)−γ πγ + β(1 − q)
. (21)

π

G(π)

1

πmin

πmin
β

G(π)

(a) γ < 1 and πmin < β.

π

G(π)

1

πmin

πmin
β

G(π)

(b) γ < 1 and πmin > β.

π

G(π)

1

πmin

πmin
β

G(π)

(c) γ > 1 and πmin < β.

π

G(π)

1

πmin

πmin
β

G(π)

(d) γ > 1 and πmin > β.

Figure 1: Steady states.

One immediately verifies that for γ < 1, the function G(π) is increasing in π. First, for π < πmin,

it describes a line with slope β−1 and then, for π > πmin, it describes a convex curve strictly increasing

and converging to infinite. It follows that there will exist exactly one stationary solution: if πmin < β, the

unique stationary equilibrium will correspond to the Leeper case, meanwhile, for πmin > β, the unique
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equilibrium will be the Liquidity Trap one. The case γ < 1 is depicted in Figure 1a and Figure 1b which

refer, respectively, to the cases πmin < β and πmin > β.

The case γ > 1 is also easy to study. Actually, the function G(π) defined in (21), when π > πmin, is

now monotonically decreasing and converges to zero when π tends to infinite. As it is depicted in Figure

1c, one thus has that, for πmin < β, there are no stationary solutions for the dynamic system defined by

equations (17) and (18), meanwhile, for πmin > β, the function G(π) intersects the horizontal line 1 twice,

once in correspondence to some π = β lower than πmin, giving thus raise to a Liquidity Trap equilibrium,

and once for some π larger than πmin to which it is associated a gross nominal interest rate larger than one.

This case is depicted in Figure 1d.

The following Proposition is thus immediately proved.

Proposition 1. Under Assumption 1, let q ∈ [0, 1]. Then the following results hold:

ic Let γ < 1 and πmin < β. Then the unique (Leeper) steady state is such that I(π) > 1;

iic Let γ < 1 and πmin > β. Then the unique (Liquidity Trap) steady state is such that I(π) = 1;

iiic Let γ > 1 and πmin < β. Then there is no steady state;

ivc Let γ > 1 and πmin > β. Then there exists a (Liquidity Trap) steady state such that I(π) = 1 and a

(Leeper) steady state such that I(π) > 1.

3.2 Welfare Analysis

Once established the existence of at most two stationary solutions of the dynamic system described by

equations (17)-(18), one may wonder at this point whether one of them Pareto-dominates the other one.

To this end, let us totally differentiate (20) with respect to y and π in order to obtain

dy
dπ

=
(1 − τw)βu′′ ((1 − τw)y) −

[
(1 − q) β + qπ

]
v′′ (y)

qv′ (y)
< 0. (22)

The other piece of information needed is provided by the differentiation of the stationary utility of the

representative household, (7) which gives u′((1 − τw)y) − v′(y) and by the stationary relationship

u′((1 − τw)y)
v′(y)

=
qπ + (1 − q)β

(1 − τw)β
> 1. (23)

Taking into account simultaneously (22) and (23) and by recalling to mind that the inflation rate corre-

sponding to the liquidity trap equilibrium is lower than the one corresponding to the Leeper stationary

solution, one has that households are better off in the former one, as stated in the following Proposition.
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Proposition 2. Under Assumption 1, the utility of the representative household, evaluated at the liquidity

trap equilibrium, is larger than that corresponding to the Leeper equilibrium.

Proposition 2 opens the door for some important considerations. The fact the Liquidity Trap dominates

the Leeper equilibrium is indeed easily interpretable in the light of the fact that a lower inflation reduces the

burden of the inflationary tax. This seems to suggest that a further decline in inflation below the Liquidity

Trap equilibrium could entail a Pareto-improvement. However, the same definition of the liquidity trap

puts a lower bound on the nominal interest rate (which cannot be negative) and thus, in view of the Taylor

rules (5), on the inflation rate, which cannot be lower than πmin. Were it not be the case, money would

dominate government bonds in terms of returns and the liquidity constraint would not more be binding,

the households investing wealth exclusively in money balances. This confirms the policy implications of

the Liquidity Trap: in correspondence to the latter, it is not more possible to stimulate economic activity

by a further cut in the interest rate. It follows that monetary policy in this configuration is completely

impotent.

Another interesting question is concerned with the effect of an increase of q on the welfare, evaluated

at the steady state under study, of the representative agent. Since the amplitude q of the liquidity constraint

can be viewed as a measure of the degree of the capital market imperfection, one is tempted to guess that

an increase in the latter is Pareto-worsening. This is actually true, in respect to the Leeper equilibrium. To

prove this, let us first look at equation (19): as we have already seen, it is independent upon the output y

and therefore it allows to find the stationary solutions in terms uniquely of π. At this point, we can totally

differentiate (19) with respect to π and q in order to obtain

dπ
dq

= −
(I(π) − 1) (π − βI(π))

I(π)q (1 − βI′(π)) + (1 − q) (1 − γ)
. (24)

By a direct inspection of (19), one immediately verifies that at the Leeper equilibrium it is π = βI(π) and

at the stationary solution corresponding to the Liquidity Trap it is by definition I(π) = 1. It follows that

under both cases under consideration, dπ/dq = 0 and therefore the stationary inflation rate is independent

upon the amplitude q of the liquidity constraint. On the other hand, by differentiating (20) with respect to

y and q, one easily derives:

dy
dq

= −
v′ (y) (β − π)

β(1 − τw)u′′ ((1 − τw)y) −
[
(1 − q) β + qπ

]
v′′ (y)

. (25)

Notice now that at the Leeper equilibrium one has π > β and therefore (25) is strictly negative. On
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the other hand, at the Liquidity Trap equilibrium it is π = β and therefore (25) is equal to zero. These

informations, gathered together with (23), establish that

d
dq

(u ((1 − τw)y (q)) − v (y (q))) (26)

is lower than zero at the Leeper equilibrium and zero at the Liquidity trap equilibrium and therefore

proves that an increase in the amplitude q of the liquidity constraint is Pareto-worsening at the Leeper

equilibrium, meanwhile does not entail any effect on household welfare at the Liquidity Trap equilibrium.

This result is immediately interpretable once one recalls to mind at the Liquidity Trap equilibrium the cost

of money, i.e. the nominal interest, is zero. These results are gathered in the following Proposition which

can be immediately proved.

Proposition 3. Under Assumption 1, the utility of the representative household, evaluated at the Leeper

equilibrium, is decreasing in q ∈ (0, 1], meanwhile it is not affected by q at the Liquidity Trap equilibrium.

4 Stability Analysis

In the Section, we analyze the stability of the Liquidity Trap steady state and of the Leeper one. We

will show that it depends dramatically upon the amplitude of liquidity constraint q. We will first analyze

the case of a complete cash-in-advance constraint, i.e. q = 1, and then the case of fractional liquidity

constraint, i.e. q < 1. This will allow us to appreciate how the local dynamic features do change as soon

as q is relaxed from one to zero. As a matter of fact, we will show that the stability properties do change

dramatically as soon as q is progressively relaxed.

4.1 The benchmark case: q = 1

When q = 1, the steady state analysis of Section 3 does not undergoes any modification as it is possible to

verify by directly inspecting equations (19)-(20). Therefore, we can refer again to Figure 1a to Figure 1d

and to Proposition 1. In order to study the dynamics of the economy under the hypothesis q = 1 we must

inspect the the following two equations:

πt+1u′((1 − τw)yt) = βu′((1 − τw)yt+1)I(πt), (27)

(1 − τw)βu′((1 − τw)yt+1) = πt+1v′(yt). (28)

13



We first study the stability of the Liquidity Trap steady state. Such an analysis turns out to be straight-

forward. In fact, by replacing πt+1, obtained in (28), into (27), and by exploiting the fact that I(πt) = 1,

one has

(1 − τw)u′((1 − τw)yt) = v′(yt). (29)

In view of Assumption 1, there will be a unique solution yt for (29) which is time invariant. It follows

that the Liquidity Trap equilibrium does not generate any dynamics.

Let us now consider the Leeper Equilibrium, i.e. the stability of the steady state where I(π) > 1. From

(28) it is possible to express πt+1 in terms of yt and yt+1. By plugging such an expression into (27), we

obtain the following expression:

I(πt) =
(1 − τw)u′((1 − τw)yt)

v′(yt)
. (30)

By taking into account the Taylor rule (5), it is possible to obtain the smooth function

πt =

[
(π∗)γ (1 − τw)u′((1 − τw)yt)

I∗v′(yt)

] 1
γ

≡ π(yt). (31)

The derivative dπt/dyt is easily derived as

dπt

dyt
=
πt

γ

[
(1 − τw)u′′((1 − τw)yt)

u′((1 − τw)yt)
−

v′′(yt

v′(yt)

]
< 0. (32)

Therefore intertemporal equilibrium is defined by a sequence {yt}
∞
t=0 satisfying the following first-order

difference equation

π(yt+1)u′((1 − τw)yt) = βu′((1 − τw)yt+1)I(π(yt)). (33)

Let us define, at this stage, εll = v′′(l)l/v′(l) ∈ (0,+∞) and εcc = −u′′(c)c/u′(c) ∈ (0,+∞), re-

spectively, the inverse of the elasticity of the labor supply and the elasticity of the marginal utility of

consumption. In order to simplify our analysis, it is useful to introduce here the elasticity εcl that we will

refer to as the elasticity of the offer curve which includes both the previous elasticities:

εcl =
εll

εcc
. (34)

Notice that εcl too belongs to (0,+∞). By taking into account (32) evaluated at the steady state and

(34), we obtain the following Jacobian:
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dyt+1

dyt
=

γ

1 + (1 − γ)εcl
. (35)

By inspecting (35), one immediately verifies than when γ < 1 the Jacobian is positive and lower than

one, and thus the steady state is stable (locally indeterminate). On the other hand, under the hypothesis

γ > 1, one easily sees that the Jacobian is larger than one for εcl < 1/(γ − 1) ≡ ε̂cl, and thus the steady

state is unstable (locally determinate). In addition, when εcl goes throught ε̂cl from below the Jacobian

tends to +∞; conversely, when εcl goes throught ε̂cl from above, the Jacobian tends to −∞. In addition,

when εcl goes through εFcl = (1 + γ)/(γ − 1), then the Jacobian is −1. Eventually, when εcl tends to +∞,

the Jacobian converges monotonically to zero. Then, the following Proposition is immediately verified

Proposition 4. Under Assumption 1, the following results hold:

ic Let γ < 1. Then dyt+1/dyt ∈ (0, 1) and the steady state is stable (locally indeterminate);

iic Let γ > 1. If εcl < ε
F
cl, then dyt+1/dyt ∈ (1,+∞)∪ (−∞,−1) and the steady state is unstable (locally

determinate). If εcl > ε
F
cl, then dyt+1/dyt ∈ (−1, 0) and the steady state is stable (locally indeterminate).

In addition, when εcl goes through εFcl , the steady state undergoes a flip bifurcation.

The Leeper steady state equilibrium, provided it exists, is thus stable for γ < 1 and can be stable or

unstable for γ > 1 according to the magnitude of the elasticity εcl of the offer curve. These results seem to

contradict the findings of Benhabib et al. (2001) within a money-in-the-utility framework. In fact, under

active Taylor rules, they always find a locally determinate Leeper equilibrium and a stable Liquidity Trap

one. But according to our results, this is not always true, since the stability of the Leeper equilibrium

depends crucially upon the elasticity εcl of the offer curve. At a same time, we find that the Liquidity

Trap steady state equilibrium is always determinate since it does not involve any dynamics. These results

suggest the idea that modeling a cash-in-advance constraint implies a discontinuity with respect to money-

in-the-utility function approach: it is not straightforward, in fact, to view the cash-in-advance constraint

framework as a limit case of the money-in-the-utility function approach where consumption and real

balances are perfect complements.

As a matter of fact, when γ < 1, the Leeper steady state equilibrium (provided it exists) is stable

and thus there will be infinitely many initial conditions compatible with the transversality condition. On

the other hand, when γ > 1 and for high enough values for the elasticity εcl of the offer curve, in corre-

spondence to some initial condition located close to the Leeper steady state equilibrium, the system will

converge toward the latter which therefore turns out to be indeterminate. At the same time, the unique

way to attain the Liquidity Trap equilibrium will require agents to coordinate since the beginning on it.
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The case q = 1 has been studied by Schmitt-Grohé and Uribe (2000). They find that the price level is

indeterminate for both low and high values of the inflation elasticity of the feedback rule and determinate

for intermediate values. More in details, they show that if the steady state leisure-consumption ratio is

greater than one and the elasticity of the feedback rule is lower than one or larger than a given thresh-

old, then there exists a continuum of perfect foresight equilibria in each of which the sequence of real

balances is different. In correspondence to each equilibria, in view of the quantitative theory of money,

corresponding to a binding liquidity constraint, the initial price level too is indeterminate. On the other

hand, Schmitt-Grohé and Uribe (2000) show that for intermediate values of the inflation elasticity of the

feedback rule the only perfect foresight equilibrium is the steady state equilibrium, and thus equilibrium

price level is unique. If the steady state leisure-consumption ratio is less than one, they show that when

the inflation elasticity of the feedback rule is lower than one, then there exist multiple perfect foresight

equilibria in terms of the dynamics of real balances. As a consequence, there will correspond the indeter-

minacy of the price level. At a same time, if the inflation elasticity of the feedback rule is larger than one,

the unique equilibrium will correspond to the steady state and thus the equilibrium price level is unique.

In our model, the households’ objective function is defined over consumption utility and labor disu-

tility. It follows that a direct comparison with the findings of Schmitt-Grohé and Uribe (2000) is hard to

be carried out. In addition, they focus on a log utility function, meanwhile we consider a general specifi-

cation for the utility function, although separable in consumption and labor. Were we focusing on a log

specification, our elasticity of the offer curve would be equal to one and the Jacobian would boil down to

γ/(2 − γ). As it is immediate to verify, in such a case, the Jacobian would lie the unite circle if and only

if γ < 1. Our conditions for indeterminacy seem thus to be similar to those provided by Schmitt-Grohé

and Uribe (2000) in Propositions 3 and 4, at least for the part concerned with an inflation elasticity of the

feedback rule lower than one.

To understand the mechanism leading to indeterminacy in our model under the hypothesis q = 1,

let us suppose that the system is initially at the Leeper steady state equilibrium and assume that agents

anticipate, say, a lower inflation rate. In such a case, next period consumption will be cheaper and so agent

will invest more money balances by increasing present labor supply. It follows that, in view of (33), the

present inflation rate will decreases. However, in order this expectation to be fulfilled, one needs that the

output moves back to the steady state equilibrium and thus agents to react by increasing current output

more than the next period expected one. This is of course true if the next period nominal interest rate will

not decrease too much, i.e. if γ is set low enough below one. In the opposite case, the system will undergo

an explosive dynamics.
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Notice, on the other hand, that the Liquidity Trap equilibrium boils down to a static relationship.

Indeed, in this case, the nominal interest and thus the inflation rate are constant. It follows that the

arbitrage equation (33) is satisfied for a unique, and time invariant, value for the output.

In the following Subsection, we show that the features under the case of a complete cash-in-advance

constraint are not necessarily preserved when the amplitude of the same liquidity constraint is relaxed.

Actually, the two steady states corresponding to the Leeper equilibrium and to the Liquidity Trap may

easily change their stability.

4.2 The Liquidity Trap for q < 1

Let consider now the case q < 1. When the economy is at the Liquidity Trap equilibrium and thus the

gross nominal interest rate sticks to one, equation (17) boils down to

u′(yt − g) =
βu′((1 − τw)yt+1)

πt+1

and thus the inflation rate relative to period t does not appear anymore. It is thus possible to express the

inflation rate relative to period t + 1 in terms of yt and yt+1 as πt+1 = βu′((1 − τw)yt+1)/u′((1 − τw)yt). By

plugging such an expression into (18), the dynamic system loses one dimension and boils down to a simple

one-dimensional difference equation in terms of the input lagged once. It follows that an intertemporal

equilibrium corresponding to a Liquidity Trap configuration is a sequence {yt}
∞
t=0 satisfying for each t the

following first-order difference equation

(1 − τw)u′((1 − τw)yt+1) = (1 − q)v′(yt+1) + qv′(yt)
u′((1 − τw)yt+1)
u′((1 − τw)yt)

. (36)

Using the fact that (36) evaluated at the steady state is (1 − τw)u′((1 − τw)y) = v′(y), it follows that the

Jacobian, evaluated at the steady state, is

dyt+1

dyt
= −

q
1 − q

. (37)

By inspecting (37), one immediately sees that the stability of the system depends dramatically of

the amplitude of the liquidity constraint q. As a matter of fact the following Proposition is immediately

proved.

Proposition 5. Under Assumption 1, let πmin > β. Then the following results hold:

ic if q ∈ (0, 1/2), then dyt+1/dyt ∈ (−1, 0). The steady state is thus stable (locally indeterminate);
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iic if q ∈ (1/2, 1], then dyt+1/dyt < −1. The steady state is thus unstable (locally determinate).

In addition when q = 1/2, the steady state undergoes a flip bifurcation.

As stated in Proposition 5, for q sufficiently high the Liquidity Trap steady state becomes unstable.

This suggests that the findings of Benhabib et al. (2001) are not robust: the Liquidity Trap steady state

is indeed stable only for low enough amplitude q of the liquidity constraint. When the latter is increased,

conversely, the steady state from stable becomes unstable, and thus locally determinate.

In order to understand the mechanism leading to multiple self-fulfilling equilibria, let consider the

following example. Let suppose that system (36) is at its steady state at the current period. Let us assume

that agents anticipate, say, an increase in the next period output level. By looking at (36), one immediately

verifies that its left-hand side decreases meanwhile its right-hand side increases. It follows that in order to

reestablish the equality in (36), one needs a decrease in current output level. The required decreases will

be the larger, the lower the corresponding value of q. If the latter is low enough, then the decrease of the

output level in the current period will be in absolute value larger than the increase of the anticipated output

level. It follows that the system will move back toward its steady state following an oscillatory path.

4.3 The Leeper Equilibrium for q < 1

When we are in the region in which the nominal interest rate is strictly positive, the intertemporal equi-

librium of the economy is described, as we have already seen, by equations (17)-(18). Our goal now is to

linearize such equation around the unique Leeper stationary equilibrium. By proceeding in this way, we

obtain the following Proposition which defines the characteristic polynomial of the Jacobian evaluated at

the steady state.

Proposition 6. Under Assumption 1, the characteristic polynomial is defined by P(λ) = λ2 − λT + D

where

T (εcl) = −
q
{
(1 − γ)

(
qπβ + 1 − q

)
+ εcl

[
qπβ + (1 − q)(1 − 2γ)

]}
(1 − q)

{
(1 − γ)

(
qπβ + 1 − q

)
+ εcl

[
qπβ + (1 − q)(1 − γ)

]} (38)

D (εcl) = −
q2γ

(
π
β

)2
εcl

(1 − q)
{
(1 − γ)

(
qπβ + 1 − q

)
+ εcl

[
qπβ + (1 − q)(1 − γ)

]} (39)

Proof : See Appendix 6.1.

In view of the complicated form of the above expressions, it may seem that the study of the local

dynamics of system (17)-(18) requires long and tedious computations. However, by applying the geomet-

rical method adopted in Grandmont et al. (1998) and Cazzavillan et al. (1998), it is possible to analyze
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qualitatively the (in)stability of the characteristic roots of the Jacobian evaluated at the steady state of

system defined by (17)-(18) and their bifurcations (changes in stability) by locating the point (T ,D) in

the plane and studying how (T ,D) varies when the value of some parameter changes continuously. If T

and D lie in the interior of the triangle A BC depicted in Figure 2, the stationary solution is a sink. In

the opposite case, it is either a saddle, when | T |>| 1 + D |, or a source. If we fix all the parameters

of the model with exception of εcl (which we let vary from zero to +∞) we obtain a parametrized curve

{T (εcl),D(εcl)} that describes a half-line ∆ (T ) starting from the point (T0,D0) when εcl is close to zero.

The linearity of such locus can be verified by direct inspection of the expressions for T and D and from

the fact they share the same denominator. This geometrical method makes it possible also to characterize

the different bifurcations that may arise when εcl moves from zero to +∞. In particular, as shown in Figure

5, when the half-line ∆ (T ) intersects the line D = T −1 (at εcl = εTcl ), one eigenvalue goes through unity

and a saddle-node bifurcation generically occurs; accordingly, we should expect a change in the number

and in the stability of the steady states. When ∆ (T ) goes through the line D = −T − 1 (at εcl = εFcl ),

one eigenvalue is equal to −1 and we expect a flip bifurcation: it follows that there will arise nearby two-

period cycles, stable or unstable, according to the direction of the bifurcation. Eventually, when ∆ (T )

intersects the interior of the segment BC (at εcl = εHcl ), the modulus of the complex conjugate eigenval-

ues is one and the system undergoes, generically, a Hopf bifurcation. Therefore, around the stationary

solution, there will emerge a family of closed orbits, stable or unstable, depending on the nature of the

bifurcation (supercritical or subcritical).

Following Grandmont et al. (1998) and Cazzavillan et al. (1998), this analysis is also powerful

enough to characterize the occurrence of sunspot equilibria around an indeterminate stationary solution of

system (17)-(18) as well as along flip and Hopf bifurcations2. Actually, system defined by (17)-(18) has at

each period t two non-predetermined variables, the output and the inflation factor. In such a configuration,

the existence of local indeterminacy requires that at least one of the two characteristic roots associated to

the linearization of the dynamic system (17)-(18) around the steady state has modulus less than one.

The bifurcation parameter we will adopt through our analysis is the elasticity of the offer curve εcl.

Then the variation of the Trace T and of the Determinant D in the (T ,D) plane will be studied as εcl is

made to vary continuously within the (0,+∞) interval. The relationship between T and D is given by a

2In the case of supercritical flip bifurcation and of supercritical Hopf bifurcation, sunspot remain in a compact set containing
in its interior, respectively, the stable two-period cycle and the stable closed orbit. Unstable cycles and closed orbits emerge in
the opposite case of subcritical bifurcations.
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Figure 2: Stability triangle and ∆ (T ) segment.

half-line ∆ (T ). ∆ (T ) is obtained from (38)-(39) and yields to the following linear relationship

D = ∆(T ) = S T + Z (40)

where Z is a constant term, whose expression is

Z = −
q2

(
π
β

)2

(1 − q)2 (41)

The slope of ∆(T ) is given by

S = −
qπ

β(1 − q)
. (42)

When εcl is made to vary in the interval (0,+∞), T (εcl) and D(εcl) move linearly along the line ∆(T ).

As εcl ∈ (0,+∞), the properties of the line ∆(T ) are derived from the consideration of its extremities.

Actually, the starting point is the couple (limεcl→+∞T ≡ T∞, limεcl→+∞D ≡ D∞). The corresponding

expressions are given by

T∞ = −
qπβ

[
qπβ + (1 − q)(1 − 2γ)

]
(1 − q)

[
qπβ + (1 − q)(1 − γ)

] ,D∞ = −
q2γ

(
π
β

)2

(1 − q)
[
qπβ + (1 − q)(1 − γ)

] . (43)
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The coordinates of the origin are easily obtained and write

T0 = −
qπ

β(1 − q)
,D0 = 0. (44)

The half-line ∆(T ) is pointing upward or downward according to the sign of D ′(εcl):

D ′ (εcl) = −
(1 − γ)q2γ

(
π
β

)2 (
qπβ + 1 − q

)
(1 − q)

{
(1 − γ)

(
qπβ + 1 − q

)
+ εcl

[
qπβ + (1 − q)(1 − γ)

]}2 . (45)

Finally, we consider the location of the end point (T∞,D∞). In order to proceed in this way, we

analyze the sign of 1 −T∞ + D∞ and of 1 + T∞ + D∞. It follows from (43) that

1−T∞+D∞ =
(1 − γ)

[
π
βq + 1 − q

]2

(1 − q)
[
qπβ + (1 − q)(1 − γ)

] , 1 +T∞+D∞ =
(1 − q)2 − π

βq2 − γ
[
1 − q

(
1 + π

β

)]2

(1 − q)
[
qπβ + (1 − q)(1 − γ)

] . (46)

We now study the general case corresponding to q belonging to (0, 1). We will consider first the case

γ < 1 and then the case of γ > 1.

4.3.1 γ < 1

Under the hypothesis γ < 1, we have seen in the steady state analysis that it must be πmin < β in order the

Leeper steady state equilibrium to exist. When πmin > β, conversely, no stationary solution does exist.

By inspecting (42), we have in such case that the slope S of the half-line ∆(T ) is always negative. As

a matter of fact, it is zero when q = 0, then decreases monotonically with q: it is −1 when q = β/(β+ π) ≡

q̃ (which corresponds also to T0 = −1) and when q tends to 1 it converges to −∞. These pieces of

information, gathered together with the fact that, in view of (45), the Determinant D is decreasing in εcl,

is sufficient to rule out the flip bifurcation. In addition, one has from (46) that 1−T∞ + D∞ > 0: it follows

that the half-line ∆(T ) does not cross the line D = T − 1, and thus there is no room for the saddle-node

bifurcation. This should not be surprising, since we have seen that in our model each one of the steady

state is locally unique. All these observations taken together show that the Trace T and the Determinant

D lie in the interior the triangle A BC for q < q̃ and, for q > q̃, in the saddle region delimitated by the

negative axis of the abscissas, the line D = T − 1 and the line D = −T − 1. These cases are depicted in

Figure 3a and Figure 3b.

The above results are summarized in the following Proposition which is immediately proved.

21



Proposition 7. Under Assumption 1, let πmin < β and γ < 1. Then there exist q̃ = β/(β + π) such that the

following results hold:

ic if q ∈ (0, q̃), then the steady state is a sink, i.e. locally indeterminate;

iic if q ∈ (q̃, 1), then the steady state is a saddle, i.e. locally indeterminate.

T

D

C

A

B

(a) γ < 1 and q ∈ (0, q̃).

T

D

C

A

B

(b) γ < 1 and q ∈ (q̃, 1].

Figure 3: Case γ < 1

4.3.2 γ > 1

When γ > 1, we need πmin > β in order to ensure that both the Leeper steady state equilibrium and the

Liquidity Trap one do exist. In the opposite case, there will not be any steady state. The case γ > 1,

actually, presents some more complications with respect to the configuration γ < 1 previously analyzed.

Indeed, by looking at the expressions (43) of the end points (T∞, D∞), one immediately sees that their

common denominator can be either positive or negative according to the value of γ (obviously higher than

one). Notice, indeed, that when γ > γ̃ = 1 + qπ/[β(1 − q)], the common denominator of the end points

(T∞, D∞) is negative. Moreover, in view of expression (45), D
′

is always positive. Therefore, by relaxing

εcl from zero to +∞, one describes a half-line ∆(T ) negatively sloped, starting from (T0,D0) and with

a determinant D increasing in εcl. The slope S of the half-line ∆(T ), as one can immediately verify

from (42), is larger than −1 when q < q̃, it is −1 when q = q̃ and it is lower than −1 when q > q̃. These

informations are sufficient to rule out the occurrence of a saddle-node bifurcation and, on the other hand,

to prove the existence of a flip bifurcation at εFcl whose expression is given by

εFcl =
(1 − γ)

[
qπβ + 1 − q

]
(1 − 2q)

qγ
[
q
((
π
β

)2
+ 1

)
− 1

]
−

[
qπβ + 1 − q

]
(1 − 2q)

(47)

At a same time, one can immediately show that when D = 1 we have
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εD=1
cl = −

(1 − q)(1 − γ)
(
qπβ + 1 − q

)
(1 − τw)

[
qπβ

(
qγ πβ + 1

)
+ (1 − q)(1 − γ)

]
By replacing εD=1

cl in T we obtain

T D=1 = −
q2

(
π
β

)2
+ (1 − q)2

(1 − q)q
(
π
β

)2 .

One can immediately verify that T D=1 is always lower than −2. Such findings ensure that the steady

state never undergoes a Hopf bifurcation. Gathering together all the previous considerations, one can

reach the conclusion that, for q < q̃, the steady state is first a sink for low values of εcl, it undergoes a flip

bifurcation at εcl = εF
cl and for εcl > εF

cl it becomes a saddle. On the other hand, for q > q̃, the steady is

first a saddle for low values of εcl, and it undergoes a flip bifurcation at εcl = εF
cl. Finally, for εcl > εF

cl it

becomes a source. In Figure 4a and Figure 4b we have depicted the case γ > γ̃.

In the following Proposition we summarize the above results.

Proposition 8. Under Assumption 1, let πmin > β and γ > 1. Then there exist q̃ = β/(β + π) and

γ̃ = 1 + qπ/[β(1 − q)] such that when γ > γ̃ the following results hold:

ic Let q ∈ (0, q̃). If εcl ∈ (0, εF
cl), the steady state is a sink, i.e. locally indeterminate, and, if εcl ∈

(εF
cl,+∞), the steady state is a saddle, i.e. locally indeterminate.

iic Let q ∈ (q̃, 1). If εcl ∈ (0, εF
cl), the steady state is a saddle, i.e. locally indeterminate, and, if

εcl ∈ (εF
cl,+∞), the steady state is a source, i.e. locally determinate.

In addition, when εcl goes through εFcl , the steady state undergoes a flip bifurcation.

Let us now consider the case γ ∈ (1, γ̃). By a direct inspection of (38)-(39), one now can immediately

verify that there exists a ε0
cl such that the common denominator of the trace T and the determinant D is

equal to zero. Since the above mentioned results in terms of the non existence of the Hopf bifurcation and

of the saddle-node one still hold, and taking into account that the determinant D is increasing in εcl, one

has that for q < q̃, the trace T and the determinant D will lie in the stability region A BC for ε < εF
cl,

and in the saddle region for ε ∈ (εF
cl, ε

0
cl). When εcl converges from below to ε0

cl, the trace T is −∞ and

the determinant D is +∞, meanwhile, when εcl converges to ε0
cl from above, the trace T is +∞ and the

determinant D is −∞. Eventually, for εcl > ε
0
cl, the trace T and the determinant D lie in the saddle region

located below the line D = T −1: this is the consequence of the fact that, in view of (46), 1−T∞+D∞ < 0.

Figure 4c corresponds to the case q < q̃.
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(d) γ ∈ (1, γ̃) and q ∈ (q̃, 1).

Figure 4: Case γ > 1

For q > q̃, the picture is different since the starting point (T0,D0) now lies outside the A BC triangle.

As a matter of fact, when εcl < εF
cl, the steady state is a saddle; then it undergoes a flip bifurcation at

εcl = εF
cl, and, for εcl ∈ (εF

cl, ε
0
cl), it becomes a source. The source configuration prevails also for εcl > ε0

cl

since now trace T and the determinant D lie in the region delimitated from above by the line D = T − 1

and the line D = −T − 1. Such a case is depicted in Figure 4d.

The next Proposition is thus immediately proved.

Proposition 9. Under Assumption 1, let πmin > β and γ > 1. Then there exist q̃ = β/(β + π) and

γ̃ = 1 + qπ/[β(1 − q)] such that, when γ ∈ (1, γ̃), the following results hold:

ic Let q ∈ (0, q̃). If εcl ∈ (0, εF
cl), the steady state is a sink, i.e. locally indeterminate, and, if εcl ∈

(εF
cl,+∞), the steady state is a saddle, i.e. locally indeterminate.

iic Let q ∈ (q̃, 1). If εcl ∈ (0, εF
cl), the steady state is a saddle, i.e. locally indeterminate, and, if

εcl ∈ (εF
cl,+∞), the steady state is a source, i.e. locally determinate.

In addition, when εcl goes through εFcl , the steady state undergoes a flip bifurcation.

As we seen in the above Propositions, the stability of the Leeper equilibrium under the hypothesis

q < 1 is quite different with respect to the case of a full cash-in-advance constraint (q = 1) studied in

Schmitt-Grohé and Uribe (2000). As a matter of fact, we have shown that when q is set very close
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to zero, the Leeper equilibrium is locally stable whatever the monetary policy is (active or passive). It

follows that the Leeper steady state will be locally indeterminate and the degree of indeterminacy will be

two. Indeed, there are two degrees of freedom in terms of the initial level of output and inflation rate that

turn out to be compatible with the convergence toward the steady state. In order to provide an intuition

of the mechanism leading to indeterminacy for q small enough, we will assume for sake of simplicity the

case of an active Taylor rules, i.e. γ > 1. Furthermore, this case has more direct implications since usually

Central Banks pursue active monetary rules.

Suppose that the system is at the steady state equilibrium and suppose that agents anticipate, say, a

lower inflation rate and a higher output in the next period. Since under the assumption of a q very close to

zero, the return on investment is very close to the real interest rate, and the latter is given by the nominal

interest/inflation rate ratio, in view of the Euler equation (17) one has that the output in the current period

must increase less than that of the next one. At a same time, in view of the arbitrage equation (18) relative

to the current period, one has that the inflation rate must be lower than its steady state value although its

gap from the latter, in absolute value, is lower than the corresponding increase in the subsequent period.

Therefore, the expected decrease in the inflation rate is self-fulfilling and the system will move back toward

the steady state following a monotonically decreasing sequence of inflation rates and an oscillatory but

shrinking sequence of output levels.

5 Conclusion

In this paper we have provided a theoretical contribution to the debate running around the plausibility

of the emergence of the Liquidity Trap equilibrium as well as its stability features. In order to motivate

a positive money demand, we have assumed that agents must pay cash a given share of the value of

consumption expenditures. We have shown that the Liquidity Trap is not bound to be a stable equilibrium

but that, instead, its stability depends dramatically upon the degree of liquidity of the economy. By

showing that the Liquidity Trap is not necessarily the unique stable stationary solution of the economy,

the original intuition of Keynes is henceforth consolidated on a theoretical point of view: in contrast with

Benhabib et al. (2001), the Liquidity Trap represents again a limit case that can be avoided by means

of an appropriate public policy aiming at coordinating agents toward the Taylor target. In contrast to a

money-in-the utility approach, as in Benhabib et al. (2001), and to a full cash-in-advance specification,

as in Schmitt-Grohé and Uribe (2000), we are able, in fact, to capture the degree of market imperfection

by simply letting the amplitude of the liquidity constraint on consumption expenditures to vary. However,
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we have proved that there is not always a rationale for escaping from the Liquidity Trap equilibrium, since

it Pareto-dominates the Taylor target, in view of the zero interest rate associated to it and the consequent

zero cost of money holding. In addition, the dynamics around the Liquidity Trap equilibrium is always

oscillatory; similarly, also the behavior characterizing the neighborhood of the Taylor equilibrium can be

easily cyclical.

A natural extension of the economy here treated, is to account for physical capital accumulation: such

an asset will be indeed held by agents in order to carry over wealth from one period to another, beside

government bonds and money. Also accounting for international trade would be an interesting issue to

explore, in view of the close ties that would arise between the monetary policies implemented in each

country involved.

6 Appendix

6.1 Proof of Proposition 6

Letting u′ = u′((1−τw)y), u′′ = u′′((1−τw)y), v′ = v′(y) and v′′ = v′′(y), using (6), and taking into account

that at steady state one has (1 − τw)u′ = v′(qI + 1 − q) and I = π/β, we obtain from the linearization of

(17)-(18):

−β(1 − τw)u′′
(
qπβ + 1 − q

)
u′ βπ

[
qπβ + (1 − q)(1 − γ)

]
β
[
(1 − τw)2u′′ − (1 − q)v′′

]
−qv′

︸                                                                      ︷︷                                                                      ︸
A

dyt+1

dπt+1

 =

−β(1 − τw)u′′
(
qπβ + 1 − q

)
u′qγ

qπv′′ 0

︸                                         ︷︷                                         ︸
B

dyt

dπt


(48)

The Jacobian matrix J is given by J = A−1B and its characteristic polynomial is defined by P(λ) =

λ2 − λT + D where T and D are given by, respectively, (38) and (39).
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