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Abstract

We study absolute qualified majority rules in a setting with more
than two alternatives. We show that given two qualified majority
rules, if transitivity is desired for the societal outcome and if the
thresholds of one of these rules are at least as high as the other’s
for any pair of alternatives, then at each preference profile the rule
with higher thresholds results in a coarser social ranking. Hence all
absolute qualified majority rules can be expressed as specific coarsen-
ings of the simple majority rule.
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1 Introduction

Studies of majoritarianism date back to the seminal characterization of the

simple majority rule for two alternatives by May (1952), where a majority

winner is defined as an alternative that receives higher support with respect

to its rival.1 This pertains to so-called relative majoritarianism. When there

is a threshold of excess support for an alternative to win, we have relative

qualified majority rules considered by Fishburn (1973) and Saari (1990) and

characterized by Llamazares (2006) and Houy (2007).

On the other hand, under absolute (qualified) majority rules, the winner

is an alternative that receives the support of a given (qualified) majority. Ab-

solute and relative majoritarianism diverge when indifferences in individual

preferences are allowed. Fishburn (1973) delivers an early characterization

of absolute majority rules while Austen-Smith and Banks (1999), Yi (2005),

and Aşan and Sanver (2006) provide alternative characterizations. Sanver

(2009) provides a unified assessment of characterizations for relative and ab-

solute qualified majority rules, centered on the axioms of anonymity (equal

treatment of individuals) and neutrality (equal treatment of alternatives).

Non-neutral versions of qualified majority rules are employed in legislative

decision-making processes across the world. A major issue related to the

application of these rules concerns the choice of the threshold and different

thresholds are observed in use. For instance, in the United Nations Security

Council, at least 9 members, i.e., 60 percent, of 15 members must vote in

favor to pass a draft resolution while in the Council of the European Union

(CEU) a threshold of 55% is used.2 Leech and Machover (2003) study the

effect of the threshold on the voting power of each member, the blocking

power of each member, the sensitivity of the rule, the ability of the collectivity

to act, and the mean majority deficit, in the context of CEU.

This paper is about the effects of the thresholds when neutral absolute

1Aşan and Sanver (2002), Woeginger (2003), Miroiu (2004), and Woeginger (2005)
provide alternative characterizations in societies with variable population.

2More precisely, as agreed in the Treaty of Lisbon on 13 December 2007 to be ef-
fective definitively from 1 November 2014, a qualified majority is reached when at least
55% of all member states, who comprise at least 65% of EU citizens, vote in favor of a
proposal. Previously, some sort of a weighted majority voting system was in use. See
http://www.consilium.europa.eu/en/council-eu/voting-system/qualified-majority.
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qualified majority rules are used as social welfare functions in a setting with

more than two alternatives. For the sake of better exposition of our major

result, consider first the case of two alternatives and two absolute qualified

majority rules. When the rule with smaller threshold regards the alterna-

tives indifferent, the rule with higher threshold complies. When one of the

alternatives wins under the rule with higher threshold, the rule with smaller

threshold complies. For some of those profiles where one of the alternatives

wins under the rule with smaller threshold, we will have indifference under

the rule with higher threshold, as the excess support may not be sufficient.

So the rule with a higher threshold leads to coarser comparisons in the sense

that it produces indifferences more frequently. With more than two alterna-

tives, on the other hand, it is well known that (qualified) majority rules can

lead to cycles. Theorem 1 demonstrates that, with more than two alterna-

tives, the coarsening property is inherited by the transitive closures of the

absolute qualified majority rules, i.e., the rule with at least as high thresholds

will result in a coarser social ranking at each preference profile. It follows

from this result that all absolute qualified majority rules can be expressed as

specific coarsenings of the simple majority rule.

Section 2 is devoted to basic notation, definitions, and preliminary obser-

vations. Section 3 presents our main result.

2 Preliminaries

Let N = {2, . . . , n} be the set of individuals, or the society, where n ∈ N
and A is the set of alternatives the society confronts, with #A = m ≥ 3.

Each individual i ∈ N is endowed with a preference Pi ∈ W(A) whereW(A)

denotes the set of all weak orders, i.e., complete and transitive binary re-

lations over A. The set of all complete binary relations over A is denoted

by Θ(A), hence we have W(A) ⊂ Θ(A). Furthermore, let T ∗ stand for the

strict counterpart for any T ∈ Θ(A), whereas T̃ stand for the indifference

counterpart.3 The preferences of all individuals in N , or the preference pro-

file, is denoted by PN ∈ W(A)N . Given any T ∈ Θ(A) and any B ⊆ A,

the restriction of T to B is denoted by T |B ∈ Θ(B). So for any x, y ∈ B,

3So we have xT ∗y if and only if xTy holds but yTx does not. Also, xT̃ y if and only if
we have both xTy and yTx.
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we have xTy ⇐⇒ xT |By. We call a mapping f : W(A)N → Θ(A) an

aggregation rule. An aggregation rule whose range is transitive is called a

social welfare function (SWF). Hence, a social welfare function is a mapping

f : W(A)N → W(A) that assigns each preference profile a social ranking.

Given any aggregation rule f , we write f ∗(·) for the strict counterpart of f(·)
and f̃(·) for its indifference counterpart.

Definition 1 Given any Q, T ∈ Θ(A), we say that Q is a coarsening of T

iff for any x, y ∈ A we have

(i) xT ∗y =⇒ xQy and

(ii) xT̃ y =⇒ xQ̃y.

We denote the set of all coarsenings of T by γ(T ). Note that γ(T ) 6= ∅ as

T ∈ γ(T ) for any T ∈ Θ(A). Furthermore, for the full indifference Ro over

A with xRoy for all x, y ∈ A, we have Ro ∈ γ(T ) for any T .

A set C ∈ 2A\{∅} is called a cycle with respect to T ∈ Θ(A) if and

only if it can be written as C = {x1, . . . , x#C} such that xiTxi+1for all

i ∈ {1, . . . ,#C − 1} and x#CTx1. Note that the definition allows two de-

generacies, namely full indifference over C and C being a singleton. Every

T ∈ Θ(A) induces a unique ordered partition of cycles π(T ) = {C1, . . . , Ck}
for some k ∈ {1, . . . ,m} such that xT ∗y for all x ∈ Ci and for all y ∈ Cj

whenever 1 ≤ i < j ≤ k.4 When T is a weak order, for any i ∈ {1, . . . , k},
Ci is degenerate, i.e., Ci is either a singleton or a full indifference.

Given any T ∈ Θ(A), the transitive closure of T is denoted by τ(T ) ∈
W(A). The strict counterpart of τ(T ) is denoted by τ ∗(T ) and the indif-

ference counterpart by τ̃(T ). The transitive closure of an intransitive bi-

nary relation transforms the relation into a weak order by replacing non-

degenerate cycles with full indifferences. Formally, given T ∈ Θ(A) and

π(T ) = {C1, . . . , Ck}, the transitive closure τ(T ) is such that

(i) xτ(T )y for all x, y ∈ Ci with i ∈ {1, . . . , k} and

(ii) xτ ∗(T )y whenever x ∈ Ci and y ∈ Cj with 1 ≤ i < j ≤ k.

4See Proposition 1.3.3. in Laslier (1997) where this statement is proven for T ∈ Θ(A)
with xT ∗y or yT ∗x for all x, y ∈ A.
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Note that, ∀T ∈ Θ(A), we have τ(T ) ∈ γ(T ) and if T ∈ W(A), then τ(T ) =

T .

Given any two ordered partitions Ā = {Ai}i∈{1,...,k} and Ā′ = {A′i}i∈{1,...,k′}
of A with 1 ≤ k′ ≤ k ≤ m, we say that Ā′ is an order-preserving coarsening

of Ā if and only if there exists a function f : {1, . . . , k} → {1, . . . , k′} such

that for all i, j ∈ {1, . . . , k} we have Ai ⊆ A′f(i) and i < j =⇒ f(i) ≤ f(j).

So given any ordered partition Ā, we can construct another partition that

is an order-preserving coarsening, by joining any two elements Ai and Aj of

Ā provided that their union includes all elements of Ā which lie between

Ai and Aj. The following lemma shows that any coarsening R′ of a weak

order R induces a partition π(R′) that is an order-preserving coarsening of

the partition π(R).

Lemma 1 γ(R) = {Q ∈ W(A) : π(Q) is an order-preserving coarsening of π(R)},
∀R ∈ W(A).

Proof. Fix some R ∈ W(A) and denote

{Q ∈ W(A) : π(Q) is an order-preserving coarsening of π(R)}

by ∆(R). To show γ(R) = ∆(R) we establish γ(R) ⊆ ∆(R) and ∆(R) ⊆
γ(R). For the former, take any R′ ∈ γ(R). Let π(R) = {A1, . . . , Ak} and

π(R′) = {A′1, . . . , A′k′} for some k, k′ ∈ {1, . . . ,m}. First note that R′ is a

weak order. Now, take any Ai ∈ π(R). In case Ai = {x} for some x ∈ A, as

π(R′) partitions A, we have x ∈ A′i′ hence Ai ⊆ A′i′ , for some i′ = {1, . . . , k′}.
Now consider the case #A ≥ 2 and take any distinct x, y ∈ Ai. We have xR̃y,

hence xR̃′y as R′ ∈ γ(R), which implies x, y ∈ A′i′ for some i′ ∈ {1, . . . , k′}.
Thus Ai ⊆ A′i′ for some i′ ∈ {1, . . . , k′}. Now, construct f : {1, . . . , k} →
{1, . . . , k′}, which, for each i ∈ {1, . . . , k}, f(i) = i′ such that Ai ⊆ A′i′ .

By construction, Ai ⊆ A′f(i), for all i ∈ {1, . . . , k}. We need to show that

i < j =⇒ f(i) ≤ f(j). Suppose for a contradiction that there exists

i, j ∈ {1, . . . , k} with i < j such that f(j) > f(i). Hence for all x ∈ Af(i) and

y ∈ Af(j), we have yR′∗x. However, xR∗y as x ∈ Ai and y ∈ Aj with i < j,

which is a contradiction because R′ ∈ γ(R) implies xR′y. Thus we conclude

that γ(R) ⊆ ∆(R).

To show ∆(R) ⊆ γ(R), take any R′ ∈ ∆(R) and let f : {1, . . . , k} →
{1, . . . , k′} be the function that ensures that π(R′) is an order-preserving
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coarsening of π(R). Take any x, y ∈ A such that xR̃y. Hence x, y ∈ Ai for

some i ∈ {1, . . . , k}. As x, y ∈ Af(i) for some f(i) ∈ {1, . . . , k′}, we have

xR̃′y as well. Next, take any x, y ∈ A such that xR∗y. Then there exist

i, j ∈ {1, . . . , k} with i < j such that x ∈ Ai and y ∈ Aj. If f(i) = f(j), we

have xR̃′y. If f(i) 6= f(j), we must have f(i) < f(j) and hence xR′∗y. So

we have xR′y as well, which means R′ ∈ γ(R). Hence we established that

∆(R) ⊆ γ(R), which completes the proof.

3 Result

Let Â denote the set of all subsets ofA with cardinality 2 and let n(x, y;PN) =

#{i ∈ N : xP ∗i y} be the number of individuals who prefer x to y at PN . The

smallest integer greater than n/2 is denoted by n∗ = bn
2

+ 1c. For any

collection q = {q{x,y}}{x,y}∈Â of pairwise thresholds q{x,y} ∈ {n∗, . . . , n}, we

define the aggregation rule fq : W(A)N → Θ(A) such that ∀x, y ∈ A and

∀PN ∈ W(A)N , we have

xf ∗q(PN)y ⇐⇒ n(x, y;PN) ≥ q{x,y}.

The absolute q−majority rule is a social welfare function that is con-

structed by the transitive closures of the social rankings under fq at each

PN ∈ W(A)N , and is denoted by τ(fq(·)).
For any q = {q{x,y}}{x,y}∈Â and r = {r{x,y}}{x,y}∈Â, we write q ≥ r if and

only if for all {x, y} ∈ Â we have q{x,y} ≥ r{x,y}.

Theorem 1 If q ≥ r, then τ(fq(PN)) is a coarsening of τ(fr(PN)) for all

PN ∈ W(A).

Proof. Let q ≥ r. Take any PN ∈ W(A)N and x, y ∈ A. We prove the

theorem by establishing

(?) xτ̃(fr(PN))y =⇒ xτ̃(fq(PN))y and

(??) xτ ∗(fr(PN))y =⇒ xτ(fq(PN))y.

To see (?), let xτ̃(fr(PN))y. We have either (i) xf̃r(PN)y or (ii) x, y ∈ C ∈
π(fr(PN)) while C is non-degenerate and xf ∗r (PN)y without loss of generality.

6



In case (i) we have n(x, y;PN) < r{x,y}, hence n(x, y;PN) < q{x,y} as well.

Thus, xf̃q(PN)y, which implies xτ̃(fq(PN))y. In case (ii), we have either (†)
n(x, y;PN) < q{x,y}, in which case we have xf̃q(PN)y hence xτ̃(fq(PN))y, or

(‡) n(x, y;PN) ≥ q{x,y}. Recall that there is a cycle and hence a subset of

alternatives {z1, . . . , zt} such that yfr(PN)z1 · · · ztfr(PN)x. As r{a,b} > n/2

for all a, b ∈ A, we also have yfq(PN)z1 · · · ztfq(PN)x. Hence in case (‡) too,

transitive closure of fq regards x and y indifferent, i.e., xτ̃(fq(PN))y.

For (??), let xτ ∗(fr(PN))y. We have n(x, y;PN) ≥ r{x,y} > n/2, hence

n(y, x;PN) < q{x,y}, which implies that xfq(PN)y. So we have xτ(fq(PN))y,

which completes the proof.

Let τ(fµ(·)) be the simple majority rule with µ{x,y} = n∗ for all x, y ∈ A.

Theorem 1 has the following immediate corollary.

Corollary 1 For any preference profile PN ∈ W(A)N , the social ranking

τ(fq(PN)) under any absolute q−majority rule is a coarsening of the social

ranking τ(fµ(PN)) under the simple majority rule.

Thus, setting the quota at simple majority ensures the most refined social

ranking and switching to a qualified majority can only coarsen the social

preference without reversing the order of any pair.5
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