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Abstract

We review the most recent advances in distributed optimal control applied to

environmental economics, covering in particular problems where the state dynamics

are governed by partial differential equations (PDEs). This is a quite fresh appli-

cation area of distributed optimal control, which has already suggested several new

mathematical research lines due to the specificities of the environmental economics

problems involved. We enhance the latter through a survey of the variety of themes

and associated mathematical structures beared by this literature. We also provide

a quick tour of the existing tools in the theory of distributed optimal control that

have been applied so far in environmental economics.
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1 Introduction

1.1 Aim of the review

The complexity and the fine structures encountered in environmental economics increas-

ingly involve distributed systems, usually in the form of partial differential equations

(PDEs).

An excellent review on applications of PDE optimal control to problems of management

of environmental resources is presented in the paper [32] by Brock et al. (2014). This

review focuses primarily on models described by diffusion-reaction equations. The aim of

the present paper is to complement [32] in several aspects. First, we include contributions

published after [32], taking into account the large amount of recent work in the field.

Second, we extend the scope of the review by including a variety of distributed control

models: reaction-diffusion-advection problems, general first order equations with non-local

dynamics, age-structured and size-structured models. Third, in contrast to [32], where

the exposition is mainly based on the maximum principle, we attribute more attention to

the dynamic programing approach and the associated Hamilton-Jacobi-Bellman equation.

This approach can be advantageous, especially in the cases where an explicit solution can

be obtained.

Shortly speaking, in this paper we try to present the diversity of the problems considered in

environmental economics, indicating first the application areas (Section 2), then reviewing

several kinds of mathematical structures and problems arising in environmental economics

(Section 3) and solution approaches and instruments (Section 4). Along with this review,

we shall briefly present the contributions of the papers included in the present special

issue.
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1.2 Specific features of the distributed optimal control problems

in economics

1.2.1 Infinite horizon

One specific feature of economic models, especially in environmental economics, is that

the optimal control problems that arise are on an infinite horizon. For such problems, the

usual transversality conditions for the adjoint (co-state) function associated with finite-

horizon problems have to take the form of asymptotic (transversality) conditions. As

known from the famous example by Halkin [49] and numerous later papers, the transition

from a finite to an infinite horizon is a delicate matter (the Pontryagin maximum princi-

ple may even fail to hold in a normal form—with a non-zero Lagrange multiplier to the

objective functional—even without any state constraints). Despite of the numerous con-

tributions addressing the issue of asymptotic conditions (e.g. Michel [58]) or other ways

to identify the “right” solution of the adjoint equation (e.g. Aseev and Kryazhimskii [11],

Aseev and Veliov [12], Trauchnitz [64]), the theory of infinite horizon problems is still

incomplete even for problems with ordinary differential equations (ODEs). An additional

complication arises in environmental considerations from the fact that the objective func-

tional may take infinite values, especially if the future is not (heavily) discounted due to

sustainability arguments. Then one can use the notion of overtaking optimality or an-

other of the numerous notions of optimality which are meaningful in the case of improper

objective integral (see e.g. Carlson et al. [36]).

The issue of asymptotic/transversality conditions in distributed optimal control problems

becomes substantially more complicated than in the ODE case, being in the same time

important in environmental economics. We return to this issue in the next section.

1.2.2 Nonlinearities

Nonlinearities, encountered in the environmental systems due to complex interactions, can

lead to various types of complex behavior of the optimal trajectories, such as periodicity,

indeterminacy and thresholds (see e.g. Grass et al. [50]). There is a huge amount

of literature on these phenomena for ODE-problems, based on bifurcation analysis and

analysis of the stable invariant manifold of the associated state-adjoint system.
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This is not the case for distributed optimal control problems, where only a few papers

report results about global indeterminacy and thresholds: Feichtinger et al. [43] in an

distributed epidemiological model, Grass and Uetcker [51] for a distributed pollution

model of shallow lakes.

2 Control of distributed systems in economics

In this section, we present various fields of application of distributed optimal control

problems in environmental economics.

2.1 Pollution

The optimal management of pollution has been studied in the context of spatial models for

a long time. The nature of the distributed system considered ultimately depends on the

nature of the physical characteristics of pollution. In the case of atmospheric pollution,

or even in the case of pollution of shallow lakes (Grass and Uecker [51]), the major

phenomenon involved is diffusion. Camacho and Perez Barahona [34] studied the problem

of atmospheric transboundary pollution in the context of an optimal land use problem,

with a finite optimization time horizon. In this issue, Boucekkine et al. [28] abstract away

from the latter optimal land use problem and focus on a production-induced pollution

social planner problem with trans-boundary diffusive pollution, negative environmental

externalities and space-dependent environmental awareness across population. They also

consider a framework with an infinite time horizon, which in principle opens the door

for a deep analysis of the asymptotic properties, and in particular space dependence

of the possible stationary solutions. Indeed, the linear-quadratic setting used allows to

extract closed-form solutions either for the optimal dynamics or for the asymptotic spatial

distributions.

The case of groundwater, and more generally of diffusive pollution subject to a particular

directional transport (current, prevailing wind) requires the consideration of a diffusion-

convection type of spatial dynamics. De Frutos and Mart́ın Herrán [45] study the problem

of transporting a pollutant subject to a river current as part of a game between different

cross-border entities. The game is then studied in a discrete space framework, considering
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each cross border entity as a single patch. Augeraud et al. [13] consider a problem

of nitrate pollution in groundwater including a detailed modeling of the transport of

the pollutant using the hydro-geological properties of the environment. In particular, a

nonlinearity is considered at the diffusion level, in order to take into account the fact that

the dispersion coefficient depends nonlinearly on the speed of pollution particles. The

existence of a solution of the inherent optimal control problem is proved. Within the

same framework, it is shown in Choquet et al. [37] that the uniqueness of the solution is

ensured in the case of low pollution concentration, as it is the case for nitrate pollution.

2.2 Harvesting

Distributed models for optimal harvesting appear mainly due to two reasons:

(i) The bio-resources are often situated in large areas and their distribution is not homo-

geneous. The resource can move in the space due to diffusion or migration, as in fishery

in open basins, or have a permanent residence, as in forestry, where the heterogeneity

appears due to differences in the time of planting or in the growth rate.

(ii) The age- or the size-distribution of bio-resource plays an important role both in fishery

and in forestry.

In distributed optimal harvesting problems, the control (the harvesting effort is always

a control variable, but possibly also fertilizing and watering efforts in agriculture can be

regarded as controls, among others) can be either distributed or only time-dependent.

From the literature on optimal harvesting in age-structured populations (see Tahvonen’s

review paper [62]) we mention Aniţa et al. [10, 6] and Luo et al. [56], where the model

parameters may be periodic in time due to exogenous (seasonal) changes. A general

size-structured population model with periodic parameters is investigated in He and Liu

[48]. In these papers the optimal controls are also (asymptotically) periodic, which is a

result of periodicity of the data. In Belyakov and Veliov [19, 20], however, it is shown

that periodic optimal harvesting may appear if the age-structure is taken into account in

a single-species model with natural off-spring production and constant parameters, both

in the case of maximization of the total discounted net revenue, and of the averaged

net revenue. Complementary results in the same spirit are given in the recent paper by
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Golubtsov and Steinshamn [47]. We mention that periodic optimal control policies are

well-known in the forestry and timber production, and also for Lotka-Volterra type ODE-

models with multiple species (pray-predator). The selective industrial fishing is known to

create huge detrimental genetic and phenotypic effects (e.g. Landi et al. [54]). A policy

consisting of periods of intensive harvesting followed by recovery periods might be more

productive in both ecological and economic sense, compared with the usual persistent

harvesting at a modest rate. However, to the authors’ knowledge, optimal control models

involving the genetic parameters have not been investigated.

A review of the literature on harvesting of spatially distributed resource is given in Brock

et al. [32]; we extend it, mentioning the research in two additional directions. The first di-

rection addresses the problem of optimal allocation of harvesting in a “small” sub-domain

of the domain occupied by the resource. I. Kann et al. [53], for example, investigate a

spatial model of coastal fishing. Aniţa et al. [4] consider a profit maximization problem on

a finite interval, where the fishing effort is a control and the growth dynamics follows the

logistic low. Although the resource can move in a relatively large open area, the fishing

areas are on the contrary, confined to small sub-areas. Existence of an optimal control

is proved in this case, and the optimal spatio-temporal distribution of the fishing effort

is obtained numerically by employing the Pontryagin maximum principle. Structuring in

space also makes it possible to consider fisheries that only operate along the boundary of

a basin, as it is the case for coastal fisheries. In this context, Grass et al. [52] consider a

problem of maximizing profit over an infinite horizon. The problem of optimal choice of

this “small” sub-domain was recently investigated in Aniţa et al. [9].

The second direction is about problems of finding the optimal mode of motion of the

harvester in the space. The harvesting rate at any place in the space depends on (among

other factors) the mode of motion (velocity at that place, frequency of harvesting at

the same place, etc.). There are various particular formulations, but the mathematical

problems that arise are usually non-standard; see e.g. [24, 18].

The paper by Aniţa et al. [7] included in this issue builds on Belyakov et al. [18] and

Behringer and Upmann [24] by introducing in the model endogenous market demand,

which may lead (in contrast to [24]) to only partial extraction of the harvested resource.
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2.3 Migration

The fundamental work by A.C. McKendrick (1926) introduces the age-structured models

with non-local boundary conditions in the context of demography. Optimal migration

patterns can also be investigated using that kind of models and their numerous exten-

sions. Simon et al. [60], for example, focus on the optimal age-structure of migrants

in a population with constant size, regarding economic objectives. In the present issue,

Camacho and Perez [35] consider spatial issues. The pure economic literature on mi-

gration has been mostly concerned with static models (we abstract here from 2-country

models which do not really attempt to uncover specific geographic patterns). Perhaps the

most impressive piece of work in this stream, both in terms of technical value and eco-

nomic micro-foundation, is due to Mossay [59], who tried to go beyond the typical wage

gradient to motivate migrations, so common in the 2-country modeling, by considering

idiosyncratic local migrations in the continuous space. In the subsequent New Economic

Geography literature, attempts to devise dynamic models of migration with spatial in-

gredients are rather scarce, especially in continuous space (see an overview in Fujita and

Thisse [46]).

In this sense, Camacho and Perez [35], selected in this special issue, is a valuable con-

tribution. Indeed, the idea to model migration as a diffusion process of human capital

is far from inaccurate. It is widely admitted that skilled individuals are more likely to

migrate (again see Fujita and Thisse, for example Chapter 11 and references therein). Of

course, such a modeling cannot capture all the heterogeneity embodied in the migration

phenomenon but still, as demonstrated in the numerical simulations provided by Camacho

and Perez, it is enough to generate a rich set of migration spatial patterns. In particular,

the role of barriers to migration is underlined and the realism of the generated migration

patterns discussed.

Also in this issue, La Torre et al. [63] consider a problem of population dynamics in a

spatial context. The authors endogenize both mortality and fertility at any location, and

allow for migrations through locations via a diffusion process as in Camacho and Perez

[35]. A key control variable is the fraction of time devoted to productive activities vs rising

children at any location, which founds endogenous fertility in the setting. The endogeneity

of mortality derives instead from the following standard mechanism (see for example

Mariani et al. [57]): the higher the density of population on a given location, the larger
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pollution, and subsequently the lower the local survival conditions. The authors compare

numerically the solutions under central planning and those obtained in a decentralized

framework, ultimately showing the fundamental role of spatial externalities.

2.4 Land use

Utilization of land is a broad thematic that concerns many kind of problems, including

ecology, geography and economics. Uecker [66] considers a spatial semi-arid land use

problem to optimize livestock farming. Livestock eats the vegetation, which regenerates

slowly under the effect of rare rain falls. In particular, it is shown that taking spatially

distributed control into account delivers much more accurate and therefore more useful

results than if the control depends only on time. The numerical simulation of the op-

timality conditions obtained via the application of the Pontryagin maximum principle

shows the existence of optimal harvesting patterns, and highlights incidentally the strong

dependency of the asymptotic optimal control on space.

Camacho and Perez [34] is one of the very first papers in the economic literature taking

the challenge of studying optimal land use in spatio-temporal model with environmental

degradation and trans-boundary pollution. This is a major topic in agricultural research,

for example, but the related studies are largely empirical (see for example Adams et al.

[1]). In Camacho and Perez, each location is endowed with a fixed amount of land, which

is allocated among production, pollution abatement, and housing. Although the unique

production input (land) is spatially immobile by nature, this is a model of spatial growth

where locations actions affect the entire space through pollution, which is governed by

a diffusion equation. The authors compute the optimality conditions corresponding to a

social planner problem with a finite time horizon and land (and population) distributed

along the real line. Numerical simulations of discretized versions of the Pontryagin con-

ditions deliver various interesting results. A particularly important result has to do with

the role of global versus local pollution on the optimal spatial pattern. One might think

that global pollution is homogenizing. However, Camacho and Perez show that spatial

heterogeneity can emerge even when pollution only has global effects, due to pollution

diffusion and the spatial specificity of abatement activities.
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2.5 Spatial growth models

While this review essay is concerned with environmental modeling, it’s worth mention-

ing the strong nexus with the contemporaneous economic literature on spatial economic

growth models. Typically, the latter involves the optimal control of production factors’

spatio-temporal dynamics governed by a diffusion equation (see Brito [30], for the first

attempt, and Boucekkine et al. [29] for the ultimate one). Therefore, the two classes of

models involve similar distributed control problems. For example, Boucekkine et al. [25]

consider in particular an AK growth model with capital diffusion for which they explicitly

calculate the optimal control using the Hamilton-Jacobi-Bellman method. They show in

particular that the optimal control is independent of space. This same problem is studied

using the Pontryagin maximum principle by Ballestra [15] (see also Boucekkine et al.

[26]). Last but not least, Fabbri [39] has specifically studied the impact of the shape of

the domain on the optimal solution in this class of spatial growth models. In this issue,

Augeraud-Véron and Ducrot [14] assess the impact of inter-regional disparities when the

engine of growth is a learning by doing externality, modeled through non-local interac-

tions. It is in particular shown that, depending on the type of interaction considered, local

indeterminacy may occur. Also in this issue, Boucekkine et al. [28] consider a special

case of the geographic AK growth model referred to above, with full capital depreciation

in order to focus on a single diffusion equation (transboundary pollution).

3 Mathematical structures and problems in environ-

mental economics

3.1 Non-local equations

Non-local interactions are typical in distributed models in environmental economics in

which agents (in broad sense) may influence the other agents behavior even if they are

not necessarily close to each other in the “spatial” domain. For many kinds of agents these

interactions are usually expressed by aggregated quantities, often appearing as external-

ities, in economic terms. For example, the total output of an industry branch consisting

of non-monopolistic firms is an aggregated quantity that influences the individual firms’
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behavior through the market prices. In models involving populations, the total (possibly

weighted) size of the population or the total biomass influence the amount of newborns,

and for wild animal populations also the mortality rates.

Another type of interactions, different from the aggregated ones, appears if the agent’s

behavior is influenced by the state and control of another agent depending on a certain

“distance” (in a non-strict sense) between them. For example, the contact rate of an

individual of a certain age with other individuals in a population depends on the difference

between the ages; the growth rate of a tree depends on the sizes of the trees around it

more than on the sizes of distant trees, etc.

The state equation of a control model involving distant interactions can often be written

in the form of a coupled system of ODEs, parameterized by a parameter σ belonging to

a measurable set Σ:

ẏ(t, σ) = f(y(t, σ), z(t, σ), u(t, σ), v(t)), (1)

where y(t, σ) is the distributed state at time t. The parameter σ can be regarded as repre-

senting specific individual features, therefore it is often called parameter of heterogeneity,

and the set Σ is the domain of heterogeneity. The function u (t, σ) is a distributed control

variable and v(t) is a non-distributed control variable. Then both types of interactions

mentioned in the last paragraph can be represented by the term z in (1) having the form

z(t, σ) =

∫
Σ

g (t, σ′, σ) y(t, σ′)dσ′, (2)

If the kernel g is independent of σ, then z = z(t) is also independent of σ, thus it is

just a weighted aggregated variable. Often g has the form g(σ′, σ) = g(σ′ − σ) (as in

the examples mentioned at the end of the last paragraph). In this case we encounter

convolution type of non-local variable z(t, σ):

z(t, σ) =

∫
Σ

g (t, σ′ − σ) y(t, σ′)dσ′,

Necessary optimality conditions of Pontryagin’s type for a general optimal control prob-

lems of the kind of (1), (2) are obtained in Veliov [67].

We mention that non-local dynamics also appears in models with diffusion, where the

spatial domain represents a physical region. This is the case in Aniţa et al. [8], where the

non-local term like in (2) appears in the logistic low in the dynamics of a space-distributed

population.
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3.2 Age/size-structured models

A typical representative of the age-structured optimal control problems (with the dy-

namics described by the original McHendrick equation) is the one of maximization of the

functional ∫ T

0

∫ A

0

L (t, y (a, t) , u (a, t) , a) dadt

subject to the equation(
∂

∂t
+

∂

∂a

)
y (a, t) = −µ (a, t) y (a, t) + u(a, t)f(a, t) (3)

with initial and boundary conditions

y(a, 0) = y0(a), y(0, t) = z(t),

and control constraints u(t, a) ∈ [a, b], where z(t) is an aggregated non-local variable

representing the newborn population:

z(t) =

∫ A

0

β(a, t)y(a, t)da.

Clearly, here µ represents the mortality rate, β is the fertility rate, both depending on the

age a ∈ [0, A]. We use the traditional notation
(
∂
∂t

+ ∂
∂a

)
y for the directional derivative

of y in the direction (1, 1), although the both partial derivatives may fail to exist.

Numerous extensions arising in population and economic modeling are known: nonlinear

right-hand side of the differential equation, possibly dependent on non-local variables,

nonlinear dependence of the non-local variables on the state function, non-distributed

control v(t) that may also enter in the boundary conditions, etc. Another extension

concerns the differential operator in the left-hand-side of the differential equation, which

can take the form ∂y
∂t

+ ∂(p(t,a,z(t))y)
∂a

, in which case a is interpreted as size rather than age,

and p(t, a, z(t)) is the growth rate at size a, which may depend on the time and on some

aggregated non-local variables.

All the models of the dynamics in this subsection are particular cases of the heterogeneous

model (1), (2) furnished with appropriate initial and boundary conditions, and with an

appropriate domain of heterogeneity (see Veliov [67]).

General necessary optimality conditions of Pontryagin’s type for optimal control problems

for age-structured systems are first obtained in Brokate [33] in the case of aggregated
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variables z(t) (that is, g is independent of σ in Equation (2)). Pontryagin’s type maximum

principle is obtained for more general age-structured problems in Feichtinger et al. [42].

In both papers the time horizon is finite. The case of infinite horizon is investigated in

Skritek and Veliov [61].

3.3 Space-structured models

A majority of spatially structured models are of the reaction-diffusion form, where the

reaction process allows to describe the biological, chemical, etc. phenomena to which

the state variables are subjected and where the diffusion reflects the often iso-spatial

dispersion of the state variable. These phenomena are described using parabolic partial

differential equations

∂

∂t
y (x, t)−D∆y (x, t) ,= f(y(x, t), u(x, t), x) (4)

where boundary conditions (x, t) ∈ ∂Ω × (0, T ) may be given (if the spatial domain of

interest, Ω, is not all the space R) and an initial condition y(x, 0) = y0(x) is given. In

equation (4), D is a differential operator (with respect to the spatial variable x) capturing

diffusion, and f is the reaction function, which depends on the state y of the system

and on the control variable u. The time horizon [0, T ] can be finite or infinite. For

some models, such as hydro geological models, the transport of a pollutant may require

a diffusion that depends on the state of the system, so that the diffusion term may take

the form div(η(y(x, t))5 y(x, t)). An additional term of the form ∇(σ(x, t)y(x, t)) may

be present in (4), representing advection with velocity field σ.

Optimal control problems for parabolic systems can be written as

max
u(x,t)∈U

∫ T

0

e−ρt
∫
ω

g (u (x, t) , yu (x, t) , x) dxdt, (5)

subject to point-wise control constraints, u(x, t) ∈ U , where U is a given set and yu (a, t)

is the solution of (4) corresponding to u, with given boundary conditions (if needed) and

an initial condition. Usually the spatial domain Ω is a bounded open set in a finite-

dimensional space, and ω is a nonempty subset of Ω.

This type of problems has been studied, in particular, by Aniţa et al. [4], where the time

horizon is finite and the growth law of the state y (interpreted as a resource stock) is given
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by a logistic function. The instantaneous yield is proportional to u (x, t) y (x, t). Existence

and uniqueness of optimal solution is proved and a Pontryagin-type maximum principle is

obtained. Grass and Uecker [51] consider a pollution problem where the reaction function

is a combination of a linear function and a function of the form y2

1+y2
(a particular case of

the so called Sips functions, see e.g. Belhachemi and Adoun [22]). Numerical simulations

are done to study bifurcations and existence of patterned steady states. Boucekkine et

al. [28] consider a linear reaction function with a quadratic linear objective, in order to

obtain closed form solutions.

Aniţa et al. [8] consider parabolic models involving an additional “spatial” variable (in-

terpreted as age), thus incorporating the age-structure (of a harvested/utilized resource,

for example) into the spatial dynamics. Models of this kind are important in the case of

biological resources, but also for resource in the form of physical capital stocks, because

such resources have its own life-cycle dynamics which may have substantial impact on the

overall dynamics involved in the modeling.

If the spatial domain Ω is the whole space, then the model (4) does not require boundary

conditions. This is also the case when Ω is a compact, connected, oriented Riemannian

manifold without boundary (see Fabbri [39]).

In the case of models involving a bounded spatial domain Ω, the boundary conditions are

usually of three kinds:

(i) Dirichlet-type conditions, y (x, t) = y1 (x, t) a.e. (x, t) ∈ ∂Ω × (0, T ), with a given

y1 (x, t) ∈ L∞, relevant if the state at the boundary is exogenously prescribed and known;

(ii) Neumann type conditions ∇νy(x, t) = y1(x, t) a.e. (x, t) ∈ ∂Ω×(0, T ), (here ∇νy(x, t)

is the directional derivative in the direction of the outward unit normal vector ν(x) to Ω

at x), where the flux y1(x, t) at the boundary of the domain is known;

(iii) Robin type conditions, ∇νy(x, t) + δy(x, t) = 0 if, in particular, the inflow is propor-

tional to a jump between two media.

The control can appear not only in the equation of the dynamics (i.e. in (4), but also in the

boundary conditions. This is often the case of PDE-constraint optimization, in general,

but also appears in problems related to the environment, say in case of coastal fishery. In

Grass et al. [52], boundary control appears when modeling a problem of pollution control
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on the shore of a lake, where the pollutant is diffusing into the environment.

4 Investigation tools

4.1 Existence

Only a few works on distributed optimal control problems related to environmental eco-

nomics address the issue of existence of optimal solutions. As for every minimization

problem, the existence issue consists of three components:

(i) existence of feasible control-trajectory pairs;

(ii) boundedness (from below) of the objective functional on the feasible set;

(iii) existence of a minimizer.

The first component includes choosing appropriate spaces for the control and the state

functions, which to ensure existence of a solution of the underlying differential equations.

The choice of spaces very much depends on the problem at hand and the (expected)

regularity of the solutions. The issue is comprehensively elaborated in the PDE literature,

see e.g. Fattorini [41] or Li and Yong [55] in the optimal control context. Different in

nature and more demanding is to prove existence of control-trajectory pairs satisfying

additional constraints for the state function, such as non-negativity (as it often appears

in economics) or terminal constraints. Such proofs usually relay on specific features of

the problem at hand.

The common approach to component (iii), given that feasible control-trajectory pairs

exist, is the one introduced by Tonelli in calculus of variations: to ensure existence of a

minimizing sequence that is precompact in a topology in which one can take the limit

in the constraints, and in which the objective functional is lower semi-continuous. The

choice of the Hilbert space L2 for the controls allows for using the weak topology (and

the Banach-Alaoglu weak compactness theorem), provided that a bounded minimizing

sequence exists. Then convexity in the control of the objective functional and linearity in

the control of the equations make it possible to pass to a limit. Here the Mazur-Banach

theorem plays a substantial role in the proofs, since it allows to produce another control
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sequence (consisting of convex combinations of the elements of the minimizing control

sequence), which is strongly convergent to the same limit.

If the equations are non-linear in the control (and the set of admissible “velocities” is

non-convex), one can use the convexification technique for passing to a relaxed problem

to which the Tonelli approach can be applied, see e.g. Fattorini [41, Part III].

Sometimes the space L1 is used for the controls, in which case the Dunford-Pettis criterion

for weak compactness can be used. Alternatively, one can first prove existence in the

space L2 ⊂ L1, then use the uniqueness of the weak limit and the dominated convergence

theorem in L1 to prove the existence of the solution in L1 (see e.g. Aniţa [4]).

For problems with non-local dynamics, especially for age-structured problems, one may

need to first apply the Dunford-Pettis theorem or the Banach-Alaoglu theorem to the state

functions in a minimizing sequence, then to pass to a new sequence of state functions using

the Mazur-Banach theorem, and after that to construct a sequence of controls producing

these state functions via the differential equation. This approach originates from [10]

and although it is only applicable to problems with a rather special structure, it was

successfully modified and extended in Feichtinger and Veliov [44] and Simon et al. [60].

The situation where the objective functional is not semi-continuous can sometimes be

circumvented by applying the Ekelend variational principle, see e.g. Barbu and Iannelli

[16], for a population control problem.

One way of proving boundedness from below of the objective functional (issue (ii) men-

tioned above) is to apply comparison theorems, which is possible in many parabolic prob-

lems, see Li and Yong [55, Chapter 3]. However, for complicated problems involving

non-linearities (in the reaction function, the diffusion coefficients, etc.) the comparison

theorems are difficult to apply. Moreover, these nonlinearities make it impossible to use

convex combinations of controls for proving existence making use of the Mazur-Banach

theorem. In that case, Schauder’s fixed point theorem can be applied to prove existence

of an optimal solution in finite horizon problems, Augeraud et al. [13]. The extension

to optimal problem with infinite planning horizon can be done using Amann’s theorem

[2, 3].
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4.2 Maximum principle

A main tool for qualitative analysis and for developing numerical methods for distributed

optimal control problems is provided by various extensions of the classical Pontryagin

maximum principle. We refer to the books [55, 41, 65] for formulations and derivations

of maximum principles, as first order necessary optimality conditions, for various optimal

control problems with PDE-constraints. Complemented with appropriate assumptions

or additional conditions, the maximum principle may also become a sufficient optimal-

ity condition. In particular, the maximum principle is widely used in the literature on

environmental economics involving distributed optimal control models (we refer again to

Brock et al. [32] and the bibliography therein).

The maximum principle for problem (5)–(4) in a bounded domain Ω, a finite horizon [0, T ],

initial conditions y(x, 0) = y0(x), and the boundary condition ∇νy(x, t) + δy(x, t) = 0 for

x ∈ ∂Ω× (0, T ) reads as

H(x, ŷ(x, t), û(x, t), λ̂(x, t)) = max
u∈U

H(x, ŷ(x, t), u, λ̂(x, t)), (x, t) ∈ ω × (0, T ),

where H(x, y, u, λ) := g(u, y, x) + λf(u, y, x) (called often Hamiltonian), û is a feasible

control, ŷ is the solution of (4) (with the specified initial and boundary conditions) for û,

and λ̂ is the solution of the following adjoint system:

∂

∂t
λ(x, t) +D∆λ(x, t) = rλ(x, t)−∇yf(ŷ(x, t), û(x, t), x)λ(x, t)−∇yg(ŷ(x, t), û(x, t), x),

∇νλ(x, t) + δλ(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

λ(x, T ) = 0, x ∈ Ω.

Special attention has to be attributed to the choice of the functional spaces in which the

control functions u, the state functions y, and the corresponding adjoint functions λ do

belong. Each of the spaces L∞(Ω×[0, T )) and L2(Ω×[0, T )), used for u in the literature has

advantages: the first when differentiation with respect to u is involved in the analysis, the

second, if existence of a solution is investigated or second order optimality conditions are

involved. If the constraining set U for u is compact, then both spaces can be conveniently

used. The choice of an appropriate space for the state function y is more sophisticated.

The diffusion in (4) has a smoothing effect on the solution y, so that y and λ can be

considered as elements of spaces like L2((0, T );H2(Ω)) with yt, λt ∈ L2((0, T );L2(Ω)).
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The situation is different for first order PDEs like the age-structured equation (3). There,

the solution y may be even discontinuous with respect to each of the arguments t and a,

but is absolutely continuous along every (characteristic) line t− a = const. This requires

a special choice of the functional space for y (see e.g. Feichtinger et al. [42] and Webb

[68]).

Notice that for parabolic problems the adjoint equation contains an anti-diffusive term

(with a positive sign in front of the diffusion term). On the other hand, the initial

condition is replaced with an end-point condition for λ, so that the adjoint system is

parabolic again.

For infinite horizon problems similarly difficulties as in the case of ODEs, mentioned

in Section 1.2.1, appear in the distributed case: one needs asymptotic conditions to

complement the adjoint equation with an “end-point” condition. Although terminal

constraints on the state are not present, the normal form of the maximum principle

may fail. That is, one should consider the possibly abnormal form of the Hamiltonian,

H(x, y, u, λ, λ0) := λ0g(u, y, x)+λf(u, y, x), where λ0 may have to be taken equal to zero.

Another trouble is the need to consider possibly unbounded objective integrals (infinite

optimal value) which arises in economic models and in sustainability issues. In practice,

standard asymptotic conditions, such as limt→∞ < λ, x∗ >L2= 0 (see e.g. Brock and

Xeppapadeas [31]), work in most of the considerations. An alternative approach is to

build on the papers Aseev et al. [11, 12], where the ”right” adjoint function is explicitly

specified in the ODE case. A step in this direction is the result in Skriteck and Veliov

[61] for age-structured problems on infinite horizon.

4.3 Hamilton-Jacobi-Bellman equation

Another analytical tool, also used in this issue (see Boucekkine et al.[28]), is the dynamic

programming approach as advocated by Barucci and Gozzi [17] and Fabbri and Gozzi [38]

in different infinite dimensional optimal control problems (with state equations governed

by first-oder PDEs and delay differential equations respectively). See also a more recent

application to the optimal population size problem by Boucekkine et al. [27]. In all these

cases, one has first to rewrite the original infinite dimensional problem as an optimal

control problem driven by an ordinary differential equation (ODE) in a suitable functional
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(Hilbert) space, following Bensoussan et al. [23]. This is far from trivial, the main

difficulty at this stage is to define the new state variable (usually called structural state) in

order to write down the new (ODE) state equation that it satisfies in the functional space.

Once this done, the dynamic programming tool is applied, which requires in particular

writing and solving the corresponding Hamilton-Jacobi-Bellman (HJB) equation in the

functional space. Here comes the second difficulty, a much more widely known difficulty:

solving the HJB equation in the Hilbert space. However, as shown for example in Fabbri

and Gozzi [38] in a delay differential state equation context or in Boucekkine et al. in this

issue for the optimal control of diffusion equations, a number of problems can be solved

by obtaining closed form solutions to the HJB. Not surpringly, these favorable cases cover

the typical linear quadratic problems, or economic optimal growth problems which are

linear in the state variables and have power instantaneous utility. In such a case, one can

identify closed-form solutions for the value functions, which in turn delivers the optimal

feedbacks. Last, one has eventually to translate back the solution to the original infinite

dimensional setting and write down the corresponding optimal controls, among others.

To give a quick hint into the functioning of this method, at least for the first critical step,

consider the optimal control of a diffusion equation. In such a case, a linear operator

associated with the diffusion is considered

A : D (A) ⊂ L2 (Ω)→ L2 (Ω)

Aϕ = ∆ϕ

Domain D (A) is a part of Sobolev space H2 (Ω). For problems written on compact space

without boundaries (Fabbri [39]) or problem written on all Rn (Boucekkine et al. [28]),

D (A) = H2 (Ω). Usual inner product is defined, and, the use of double integration by

part enables to compute the adjoint A∗ of A. It can be seen that in problems with no

boundary, the operator is self-adjoint.

The use of the infinitesimal generator enables to describe the dynamics of the state as an

ordinary differential equation on Hilbert space L2 (Ω), and to reformulate the objective in

abstract form on this space.

The Hamilton-Jacobi-Bellman equation then applies to the value function, defined for
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any initial condition y0 ∈ L2 (Ω). Taking into account the adjoint operator A∗ enables to

rewrite the HJB equation in a suitable way.

Two final comments are worth doing here. First of all, it is important to note here that

all the papers cited above taking the dynamic programming approach do consider infinite

time horizon problems, typically because they are concerned with long term economic

growth or sustainable growth themes. Incidentally, infinite dimensional optimal control

problem using Hamilton-Jacobi-Bellman have been early used (a survey of the methods

can be find in (Li and Yong [55, Chapter 6] ) for optimal control on finite-horizon. One of

the main ingredients that enables to transfer these methods to infinite horizon problem

([39] or [28] for example) is the finiteness of the objective. Second, not surprisngly, these

methods can be extended to stochastic frameworks. See the recent book by Fabbri et al.

[40] which includes plenty of related abstract problems and applications.
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[14] E. Augeraud-Véron, A. Ducrot, Spatial externality and intederminacy. Mathematical

Modelling of Natural Phenomena, this issue.

[15] L.V. Ballestra (2016). The spatial AK model and the Pontryagin maximum principle.

Journal of Mathematical Economics, 67, 87-94.

[16] V. Barbu, M. Iannelli (1999). Optimal control of population dynamics. Journal of

Optimization Theory and Applications, 102(1), 1-14.

[17] E. Barucci, Gozzi, F. (2001). Technology adoption and accumulation in a vintage-

capital model. Journal of Economics, 74 (1), 1-38.

20



[18] A.O. Belyakov, A.A. Davydov, V.M. Veliov (2015) Optimal Cyclic Exploitation of

Renewable Resources. Journal of Dynamical and Control Systems, 21(3):475-494.

[19] A. Belyakov, V.M. Veliov (2014) Constant versus periodic fishing: age structured

optimal control approach. Mathematical Modelling of Natural Phenomena, 9(4):20-

38.

[20] A.O. Belyakov, V.M. Veliov, On Optimal Harvesting in Age-Structured Populations.

In Dynamic perspectives on managerial decision making – essays in honor of Richard

Hartl, pp. 149–166. H. Dawid et al., Eds., Springer, 2016.

[21] C. Benosman, B. Aı̈nseba and A. Ducrot (2014). Optimization of Cytostatic

Leukemia Therapy in an Advection-Reaction-Diffusion Model, Journal of Optimiza-

tion Theory and Applications, 167(1), 296-325.

[22] M. Belhachemi, F. Addoun (2011). Comparative adsorption isotherms and modeling

of methylene blue onto activated carbons. Applied Water Science, 1(3-4), 111-117.

[23] A. Bensoussan, G. Da Prato, M.C. Delfour, S.K. Mitter. Representation and control

of infinite dimensional systems. Springer Science and Business Media, 2007.

[24] S. Behringer, T. Upmann (2014). Optimal harvesting of a spatial renewable resource.

Journal of Economic Dynamics and Control, 42, 105-120.

[25] R. Boucekkine, C. Camacho, G. Fabbri (2013). Spatial dynamics and convergence:

The spatial AK model. Journal of Economic Theory, 148(6), 2719-2736.

[26] R. Boucekkine, C. Camacho, G. Fabbri (2013). On the Optimal Control of some

Parabolic Partial Differential Equations Arising in Economics. Serdica Mathematical

Journal, Special issue in honor of Vladimir Veliov, 39, 1001-1024.

[27] R. Boucekkine, G. Fabbri, F. Gozzi (2014). Egalitarianism under population change:

Age structure does matter. Journal Mathematical Economics, 55, 86-100.

[28] R. Boucekkine, G. Fabbri, S. Federico, F. Gozzi, Geographic environmental Kuznets

curves: The optimal growth linear-quadratic case. Mathematical Modelling of Natu-

ral Phenomena, this issue.

21



[29] R. Boucekkine, G. Fabbri, S. Federico, F. Gozzi (2019). Growth and agglomeration

in the heterogeneous space: a generalized AK approach. Journal of Economic Geog-

raphy, forthcoming in 2019.

[30] P. Brito (2004). The dynamics of growth and distribution in a spatially heteroge-

neous world. Working Papers Department of Economics 2004-14. ISEG, University

of Lisbon.

[31] W. Brock, A. Xepapadeas (2008). Diffusion-induced instability and pattern formation

in infinite horizon recursive optimal control. Journal of Economic Dynamics and

Control, 32(9), 2745-2787.

[32] W. Brock, A. Xepapadeas, A.N. Yannacopoulos (2014). Optimal control in space and

time and the management of environmental resources. Annu. Rev. Resour. Econ.,

6(1), 33-68.

[33] M. Brokate (1985). Pontryagin’s principle for control problems in age-dependent pop-

ulation dynamics. J. Math. Biology, 23, 75-101.
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