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Abstract7

How much do weather shocks matter? The literature addresses this question in two8

isolated ways: either by looking at long-term effects through the prism of theoretical models,9

or by focusing on short-term effects using empirical analysis. We propose a framework to10

bring together both the short and long-term effects through the lens of an estimated DSGE11

model with a weather-dependent agricultural sector. The model is estimated using Bayesian12

methods and quarterly data for New Zealand using the weather as an observable variable.13

In the short-run, our analysis underlines the key role of weather as a driver of business14

cycles over the sample period. An adverse weather shock generates a recession, boosts the15

non-agricultural sector and entails a domestic currency depreciation. Taking a long-term16

perspective, a welfare analysis reveals that weather shocks are not a free lunch: the welfare17

cost of weather is currently estimated at 0.19% of permanent consumption. Climate change18

critically increases the variability of key macroeconomic variables (such as GDP, agricultural19

output or the real exchange rate) resulting in a higher welfare cost peaking to 0.29% in the20

worst case scenario.21
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1 Introduction24

Among the many shocks and disturbances driving the business cycles, the weather has received25

little attention as a serious source of business cycles in modern macroeconomic models. Yet over26

the last 40 years, heat waves and droughts have been causing significant damages at global level27

peaking to a total value of US$25 billion in 2014, as documented in Figure 1. Both the frequency28

and the intensity of these adverse events tend to follow an upward trend, suggesting that the29

weather is likely to become a more frequent source of business cycles in the coming years. This30

growing source of macroeconomic fluctuations, also referred to as weather shocks, is emerging31

as one of the most important facets of global warming, in particular for agricultural-based32

countries. In such economies, the weather generates detrimental fluctuations in the agricultural33

sector that can spread to the rest of the economy.34
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Note: Data are taken from EM-DAT; IMF, World Economic Outlook database and set in
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Figure 1: Global frequency and impact of weather shocks (droughts and heat waves) between
1970 and 2016.

If long-run effects of the weather, i.e., climate effects are already well documented in the35

literature,1 many uncertainties remain regarding the short-run aspects in terms of propagation,36

supply-side transmission channels and the potential welfare costs. More importantly, most of37

this literature considers the change in climate statistics as a trend phenomenon (e.g., Nordhaus38

and Yang, 1996; Nordhaus, 2018b, 1991), leaving the role of weather fluctuations and their39

underlying welfare costs as second order issues. In this article, we argue that weather driven40

business cycles are not a benign facet of climate change.41

1See Acevedo et al. (2017) for a survey on weather shocks, Nordhaus (2018a) for a summary of the evolution
of the DICE model over the three decades, and Deschenes and Greenstone (2007) for an assessment of long term
effects of climate change on agricultural output.
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Contributions. The aim of this article is therefore to fill the gap by making three main42

contributions to address this question. The first contribution concerns the engineering of an43

aggregate measure of the weather. Unlike TFP shocks which are not observable, the time-44

varying productivity of agricultural lands is measurable from soil moisture observations.2 In45

this paper, we build a weather index at a macro level from soil moisture deficits observations46

that captures unsatisfactory levels of agriculture productivity for New Zealand.3 A second47

contribution lies in the documentation of the transmission mechanisms of the weather. Through48

the lens of a Vector Auto-Regressive (VAR) model, we gauge the quantitative interaction of the49

weather with seven macroeconomic time series of New Zealand. Following a shock to the weather50

equation in the VAR, we document the transmission mechanism of the weather in a small-open51

economy environment. A third contribution concerns the building of a macroeconomic model52

with a time-varying weather. We enrich a Dynamic Stochastic General Equilibrium (DSGE)53

model with a tractable weather-dependent agricultural sector. Entrepreneurs involved in the54

agricultural sector (i.e., farmers) are endowed with a land. The productivity of that land is55

endogenously determined by both economic and weather conditions. Farmers face unanticipated56

weather shocks affecting the efficiency of their land over the business cycles. The model is57

estimated through Bayesian techniques with the same sample as the VAR model to provide an58

alternative theoretical representation of the data. In addition to its empirical relevance, the59

estimated DSGE model is amenable for counterfactual experiments to assess the quantitative60

implications of climate change on the business cycles of an economy.61

We get three main results from the aforementioned methodology. First, both the VAR and62

the DSGE models document the transmission of a weather shock – more specifically a drought –63

through a large and persistent contraction of agricultural production, accompanied by a decline64

in consumption, investment and a rise in hours worked. At an international level, a weather65

shock causes current account deficits and a depreciation of the domestic currency. The weather66

shock thus shares similar dynamic patterns with a sectoral TFP shock. Second, we find that67

weather shocks play a non-trivial role in driving the business cycles of New Zealand. On the68

one hand, the inclusion of weather-driven business cycles strikingly improves the statistical69

2Therefore in the rest of the article, we refer to these exogenous changes in land productivity as weather
shocks.

3We use New Zealand data for two reasons. First, New Zealand has faced many weather shocks, in particular
droughts, which have caused severe damages to its agricultural sector. Second, the size of the country is relatively
small compared to other countries such as the United States. So when a drought strikes New Zealand, most of
the regions are affected at the same time. The choice to rely on such data leads to a specific modeling strategy
for the VAR and DSGE models.
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performance of the model. On the other hand, the weather drives an important fraction of70

the unconditional variance, in particular for GDP, consumption and agricultural output. The71

resulting consequence is a high welfare cost of business cycles induced by weather shocks. In72

particular, we find that households would be willing to give up 0.19% of their unconditional73

consumption to rule out weather shocks, which is remarkably high with respect to other sources74

of disturbances in our model. A third result concerns an original counterfactual analysis on75

climate change. We increase the volatility of weather shocks in accordance with IPCC (2014)’s76

climate change projections for 2100, and evaluate how these structural changes in the distribu-77

tion of weather shocks affect macroeconomic volatility. We find that climate change critically78

increases the variability of key macroeconomic variables, such as GDP, agricultural output or79

the real exchange rate. The corollary of this structural change is an increase of the welfare80

cost of weather driven business cycles peaking up to 0.29% in the worst-case climate change81

scenario. To the best of our knowledge, this article is the first to use full-information methods82

to estimate a theoretical model with the weather as an observable variable to gauge the current83

and future cost of the weather at a business cycle frequency.84

Related literature. Our work contributes to the literature that connects the macroe-85

conomy with the weather through the lens of theoretical models. This literature is mainly86

dominated by integrated assessment models (IAMs) pioneered by Nordhaus (1991). In a nut-87

shell, this literature links climate and economic activity through a damage function that lies88

in the firms’ production technology. Thus, an increase in temperatures due to greenhouse gas89

emissions causes higher damages to aggregate production. However, this literature focuses on90

very long run effects of climate change through deterministic simulations.4 We build on this ap-91

proach by using a damage function that connects the weather to the farmers’ land productivity.92

We complement the IAMs literature by tackling the short-term dimension of the weather, and93

evaluate their social costs in a context of climate change.94

Another strand of the literature employs empirical models to examine the short-run effects95

of the weather on economic activity. In particular, some authors focus on the relationship be-96

tween temperatures and productivity. Dell et al. (2012) show that high temperatures have a97

detrimental effect on economic growth, but only in poor countries. These results are contrasted98

by the empirical study of Burke et al. (2015) which shows that the relationship between high99

4A notable exception, from Cai and Lontzek (2019), expands the scope of IAMs by adding uncertainties and
risks to the workhorse DICE model through ingredients of the asset price theory (e.g. recursive utility, long run
risk, etc).
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temperatures and productivity is non-linear, for both poor and rich countries. The studies of100

Acevedo et al. (2017) and Mejia et al. (2018), conducted on larger samples, confirm these results.101

In addition, Fomby et al. (2013) show that in the case of developed countries, droughts have a102

negative effect on growth, in particular for the agricultural sector. Our analytical framework103

builds on these studies to model how climate can affect the economic activity. We focus on104

the agricultural sector, making productivity in this sector dependent on weather shocks. We105

also rely on the results of empirical studies that focus more on the weather and the economy at106

business cycle frequency. For example, Buckle et al. (2007) and Kamber et al. (2013) underline107

the importance of weather variations as a source of aggregate fluctuations, along with interna-108

tional trade price shocks, using a structural VAR model for New Zealand. Bloor and Matheson109

(2010) find evidence of the importance of the weather, more particularly the occurrence of El110

Niño events, on agricultural production and total output in New Zealand. Cashin et al. (2017)111

also investigate the effects of El Niño on the world economy, using a country-by-country analy-112

sis. More specifically, they find evidence of negative effects of an El Niño shock on real output113

growth in New Zealand. Finally, in a recent study, Donadelli et al. (2017) propose a framework114

related to ours. In a real business cycle model, they introduce temperature levels as an explana-115

tory factor of productivity for the US economy. In their model, productivity is affected by the116

unpredictable component of temperatures. Their results show that a one-standard deviation117

temperature shock causes a 1.4 percentage point decrease in productivity growth. The authors118

emphasize the importance of temperature shocks regarding welfare costs. Our article comple-119

ments this study by taking a theoretical model to the data, instead of limiting the analysis120

to a calibration exercise. In addition, our measure of the weather is not limited to tempera-121

tures, as our weather index also includes the role of rainfalls and its possible interaction with122

temperatures through evapotranspiration.123

The remainder of this article is organized as follows: Section 2 provides some empirical124

evidences through the lens of a VAR model regarding the impact of weather shocks on macroe-125

conomic variables. Section 3 sketches the Dynamic Stochastic General Equilibrium model.126

Section 4 presents the estimation of the DSGE model. Section 5 provides evidence on the127

importance of introducing weather shocks in the model. Section 6 discusses the propagation128

of a weather shock, assesses the consequences of a drought and its implication in terms of129

business cycles statistics, and presents the historical variance decomposition of supply of the130

economy. Section 7 conducts a sensitivity analysis to illustrate how the parameters of the131
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weather-dependent agricultural sector affect our results. Section 8 provides a quantitative as-132

sessment of the implications of weather shocks under different climate projection scenarios for133

aggregate fluctuations, and estimates the welfare cost of weather shocks. Section 9 concludes.134

2 Business Cycle Evidence135

How do we measure the weather? In most of the models in environmental economics, weather136

and climate measurements are solely based on temperature records. In agricultural economics137

these measures are often supplemented by rainfall observations in order to characterize agricul-138

tural returns patterns. In this paper, the weather is measured through soil moisture deficits.139

Soil moisture deficits depict the balance ratio between rainfalls and temperatures. Rainfalls140

typically boost the productivity of the land by favoring crop growth, and conversely the evap-141

otranspiration process induced by higher temperatures reduces land productivity.5 Based on142

observations of soil moisture deficits, we build a macroeconomic index6 that aims at providing143

an accurate measure of land productivity in New Zealand. A graphical representation of this144

index is provided in Figure 2. By construction, the index values range from -4 to +4, where145

positive values indicate a soil moisture deficit, while negative ones indicate an excess of moisture.146
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Figure 2: Weather index measuring soil moisture deficits in New Zealand.

As shown in Figure 2, New Zealand has experienced cyclical changes in its soil water deficits147

index over the last two decades, oscillating between periods of high volumetric water content in148

soils and periods of droughts. Assuming a normal distribution of the weather, the 10th percent149

of the most severe episodes can be inferred directly from the time series when the soil moisture150

5See Doorenbos and Kassam (1979) and Narasimhan and Srinivasan (2005) for a analysis of soil moisture on
crop yields.

6More details on the construction of the index can be found in the online appendix.
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deficits index peaks above 1. In the same way as for NBER recessions, the index allows to easily151

date and monitor severe weather events which are very likely to be costly for the agricultural152

sector as shown by Kamber et al. (2013) and Mejia et al. (2018). In recent years, New Zealand153

has undergone numerous episodes of severe droughts of various intensities that have disrupted154

its economy to a greater or lesser extent, most notably in 2007, 2010, 2013 and 2015.155
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Notes: The lines show the evolution before and after a drought for each sector’s share in total production, after
normalizing the sector’s share to 100 at the time of the drought.

Figure 3: Sectoral re-allocations following severe weather shocks.

What is the supply-side adjustment of New Zealand following a severe drought? A pre-156

liminary assessment of these extreme events on the sectoral reallocation is performed through157

the examinations of changes in the relative share of each sector in the total production of New158

Zealand. Figure 3 reports these changes in the shares of agriculture, primary, secondary, and159

tertiary sectors in total activity, two quarters before and four quarters after the four most severe160

droughts. For convenience, each sector’s share of the total activity is normalized to 100 at the161

time of the drought. Each line corresponds to a drought episode reported by the index at hand.162

After a drought shock, the share of the agricultural sector in total output declines substantially163

although temporarily. A similar pattern is observed for the primary sector, although the magni-164

tude of the reaction is naturally not as important as for agriculture because the primary sector165

includes mining and fishing which are less sensitive to the weather. Regarding the secondary166

sector, the result is unclear suggesting that there is no salient effects. As for the tertiary sector,167

it tends to experience a relative expansion, in accordance with Mejia et al. (2018), suggesting168

that weather shocks possibly generate positive spillover effects.169
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Correlation T-Stat P-value 95% Confidence interval
Agriculture Only -0.31 -2.99 0.00 [−0.48,−0.10]
Primary Sector -0.25 -2.41 0.02 [−0.44,−0.04]
Secondary Sector -0.10 -0.91 0.37 [−0.30, 0.11]
Tertiary Sector 0.39 3.90 0.00 [0.19, 0.55]

Notes: The significance of correlations is tested using the Pearson test.

Table 1: Correlations of Sectoral GDP with the weather index.

To complete the assessment, we compute correlations between the time series of the weather170

and the relative share of different sectors used in the previous figure. Table 1 also corroborates171

the presence of possible sectoral adjustments. In particular, the share of the agricultural sector is172

negatively correlated with the weather index, as is, to a lesser extent, the GDP of the primary173

and secondary sectors. On the other hand, the activity of the tertiary sector is positively174

correlated with the drought measure.175

To investigate further the interactions between the weather and other standard macroeco-176

nomic time series, a vector autoregressive model is employed. A few constraints on the VAR’s177

equations are necessary to portray New Zealand’s specific situation: (i) we impose an exogenous178

weather (i.e., the weather is not Granger caused by any other variable),7 (ii) we force domestic179

variables to have no effect on foreign variables as Cushman and Zha (1997).8 The VAR includes180

8 observable variables. Six of them represent the domestic block: GDP, agricultural produc-181

tion, consumption, investments, hours worked, and variations of the real effective exchange rate.182

The foreign block contains a measure of GDP for the rest of the world.9 All these variables are183

taken in real terms and expressed in percentage deviations from a log-linear trend. In addition,184

the restricted VAR model is estimated with one lag, as suggested by both Hannan-Quinn and185

Schwarz criteria.186

To investigate the effects of an adverse weather shock, we examine the impulse responses to187

7As the historical data only cover a restricted period of time, we assume that human activities do not signifi-
cantly affect the occurrence of droughts.

8In particular, a first constraint concerns the small open economy nature of New Zealand with respect to its
trading partners. Letting New Zealand be the domestic country and NZ trading partners be the foreign country,
we prevent both domestic shocks and variables to cause fluctuations on foreign variables. We follow Cushman
and Zha (1997) and create an exogenous block for the variables from the rest of the world. We impose a second
constraint on the VAR’s equations concerning the weather itself. In particular, exogeneity is also imposed for
the weather variable, so that it can affect the domestic macroeconomic variables, and so that neither domestic
nor foreign macroeconomic variables can affect the weather variable. More details are given in the paper’s online
appendix.

9We use a weighted average of GDP for New Zealand’s top trading partners, namely Australia, Germany,
Japan, the United Kingdom and the United States, where the weights are set according to the relative share of
each partner’s GDP in the total value.
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Figure 4: VAR impulse response to a 1% weather shock (drought) in New Zealand.

a one-standard-deviation of the drought variable. A lower triangular Choleski decomposition188

of the error variance-covariance matrix is used to derive the orthogonal impulse responses. The189

results are depicted in Figure 4, where each panel represents the response of one of the variables190

to a weather shock. Overall, a shock to the weather shock equation generates a contraction191

of New Zealand’s economy in the similar magnitude as Buckle et al. (2007): a rise in soil192

moisture deficits implies a 1.5% contraction of agricultural production, as already suggested by193

the two previous assessments. This depression in agriculture is simultaneously followed by a194

0.3% decline in consumption and a 0.6% decline in investment. The adjustment of the labor195

market is naturally slower and materialize through a late rise in hours worked occurring 7196

quarters after the realization of the weather shock, thus suggesting that the weather mimics the197

dynamic patterns of a TFP shock. The weather shock vanishes five periods after its realization,198

although its effects on the economy are strikingly very persistent, in particular for the labor199

market. This suggests the presence of an unusual propagation mechanism inherent to the weather200

which is to be taken into account in the modeling of the DSGE presented in the remainder of201

the article. More specifically, the presence of a slow adjustment effect will require a specific202

friction for the farmer problem.203
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3 The Model204

Our model is a two-sector, two-good economy in a small open economy setup with a flexible205

exchange rate regime.10 The home economy, i.e., New Zealand, is populated by households206

and firms. The latter operate in the agricultural and the non-agricultural sectors. Workers from207

the agricultural sector face unexpected weather conditions that affect the productivity of their208

land. Households consume both home and foreign varieties of goods, thus creating a trading209

channel adjusted by the real exchange rate. The general structure of the model is summarized210

in Figure 5. The remainder of this section presents the main components of the model.

Households

Foreign
Households

Non-agricultural
Sector

Agricultural
sector

Weather
(droughts)

cons. ct

cons. c∗t

hours ht

land
costs xt

invest-
ment iAt

bonds
b∗t

Figure 5: The theoretical model.

211

3.1 Agricultural Sector212

The economy is populated by a unit mass i ∈ [0, 1] of infinite living and atomistic entrepreneurs.213

A fraction nt of these entrepreneurs are operating in the agricultural sector while the remaining214

fraction 1 − nt operates in the non-agricultural sector. We allow any of the entrepreneurs to215

switch from one sector to another assuming that the fixed portion of agricultural firms is subject216

to an exogenous shock: nt = n × εNt where εNt is a stochastic AR(1) process.11 The fraction217

i ∈ [0, nt] of entrepreneurs operating in the agricultural sector is referred to as farmers.218

10Our small open economy setup includes two countries. The home country (here, New Zealand) participates
in international trade but is too small compared to its trading partners to cause aggregate fluctuations in world
output, price and interest rates. The foreign country, representing most of the trading partners of the home
country, is thus not affected by macroeconomic shocks from the home country, but its own macroeconomic
developments affect the home country through the trade balance and the exchange rate.

11More specifically, the AR(1) shock is given by: log(εNt ) = ρN log(εNt−1) + σNη
N
t , with ηNt ∼ N (0, 1) and

0 ≤ ρN ≤ 1.
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To investigate the implications of variations of the weather as a source of aggregate fluctua-219

tions, a weather variable denoted εWt is introduced in the model. More specifically, this variable220

captures variations in soil moisture that affect the production process of agricultural goods.221

To be consistent with the VAR model, we assume that the aggregate drought index follows an222

autoregressive process with only one lag:223

log(εWt ) = ρW log(εWt−1) + σW η
W
t , ηWt ∼ N (0, 1) , (1)

where ρW ∈ [0, 1) is the persistence of the weather shock and σW ≥ 0 its standard deviation.224

In the model, shock processes are all normalized to one in the steady state so that a positive225

realization of ηWt – thus setting εWt above one – depicts a possibly prolonged episode of dryness226

that damages agricultural output. The stochastic nature of the model imposes that farmers are227

surprised by contemporaneous and future weather shocks. We do not consider the perspective of228

news shocks about the weather, as the usual forecast horizon for farmers about weather shocks229

lies between 1 and 15 days.12
230

The outcome of farmers’ activity in the agricultural sector encompasses a large variety of231

goods such as livestock, vegetables, plants, or trees. All of these agricultural goods typically232

require land, labor and physical capital as input be produced. The general practice in agricul-233

tural economics is to explicitly feature the input-output relationship by imposing a functional234

form on the technology of the agricultural sector.13 Among many possible functional forms,235

the Cobb-Douglas production function has become popular in this economic field following the236

contribution of Mundlak (1961).14 We accordingly assume that agricultural output is Cobb-237

Douglas in land, physical capital inputs, and labor inputs:238

yAit =
[
Ω
(
εWt
)
`it−1

]ω [
εZt
(
kAit−1

)α (
κAh

A
it

)1−α]1−ω
, (2)

where yAit is the production function of the intermediate agricultural good that combines an239

amount of land `it−1 (subject to the weather Ω
(
εWt
)

through a function described later on),240

12For example, in New Zealand the NIWA provides forecast services to farmers about weather shocks at a high
frequency level (1 or 2 days ahead), medium frequency level (6 days ahead) and probabilistic forecast out of
fifteen days.

13See Chavas et al. (2010) for a survey about the building of theoretical models in agricultural economics over
the last century.

14We refer to Mundlak (2001) for discussions of related conceptual issues and empirical applications regarding
the functional forms of agricultural production. In an alternative version of our model based on a CES agricultural
production function, the fit of the DSGE model is not improved, and the identification of the CES parameter is
weak.
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physical capital kAit−1, and labor demand hAit. Production is subject to an economy-wide tech-241

nology shock εZt following an AR(1) shock process affecting the two sectors. The parameter242

ω ∈ [0, 1] is the elasticity of output to land, α ∈ [0, 1] denotes the share of physical capital in the243

production process of agricultural goods, and κA > 0 is a technology parameter endogenously244

determined in the steady state. We include physical capital in the production technology, as,245

in developed countries the agricultural sector heavily relies on mechanization. Because of the246

delays in the settlement of physical capital and land, these two variables naturally embody247

“time to build” features à la Kydland and Prescott (1982).248

Each farmer owns a land `it that is subject to changes depending both on economic and249

meteorological conditions. During the production process of agricultural goods between t−1 and250

t, land `it−1 is subject to the unexpected realization of the weather εWt . Agricultural production251

is tied up with exogenous weather conditions through a damage function Ω(·) in the same spirit252

as the Integrated Assessment Models literature pioneered by Nordhaus (1991). We opt for a253

simple functional form for this damage function:15
254

Ω
(
εWt
)

=
(
εWt
)−θ

, (3)

where θ determines elasticity of land productivity with respect to the weather. Imposing θ = 0255

shuts down the propagation of weather-driven business cycles. The effective units of land in the256

production function are denoted Ω
(
εWt
)
`it−1.257

In addition to being contemporaneously impacted by weather fluctuations, agricultural pro-258

duction is also subject to effects that spread over time, which we call weather hysteresis effects.259

These hysteresis effects that imply atypical supply dynamics have been well established in the260

economic literature. For the case of cattle breeding for example, Rosen et al. (1994) document261

the persistence of livestock induced by the biological process of gestation and maturation of262

dairy cattle. In the presence of weather shocks, prolonged severe droughts entail early liqui-263

dation of stocks combined with a drop in the fertility rate. These changes in the population264

size and characteristics have permanent effects in the future production of agricultural goods.265

15The literature on IAMs traditionally connects temperatures to output through a simple quadratic damage
function in order to provide an estimation of future costs of carbon emissions on output. However, Pindyck
(2017) raised important concerns about IAM-based outcome as modelers have so much freedom in choosing a
functional form as well as the values of the parameters so that the model can be used to provide any result one
desires. To avoid the legitimate criticisms inherent to IAMs, our model is solved up to a first approximation to
the policy function. This does not allow us to exploit the non-linearities of the damage function which critically
drives the results of IAM literature through a quadratic term in the damage function.
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Kamber et al. (2013) have shown that beyond the immediate rise in slaughter, there tends to be266

slightly less slaughter for several following years, as stock levels are rebuilt. Hysteresis effects267

are not limited to the production of animal stocks. Crops are also subject to specific cycles. For268

example, Narasimhan and Srinivasan (2005) have shown that soil moisture deficits exhibit per-269

sistence that is directly connected to the interaction between rainfalls and evapotranspiration,270

as lands require several months to recover their average productivity levels. In addition, the271

crop growth process spans over multiple periods. A drought occurring at a specific stage of the272

process (e.g., during pollination16) may entail a critical loss on the final crop yield at harvest273

time. This temporal gap between the drought and the harvest period needs a specific device274

that captures this well documented persistence mechanism. To do so, we relax the standard275

assumption in agricultural economics of fixed land and assume that the productivity of land is276

possibly time-varying. In particular, each farmer owns land with a productivity (or efficiency)277

following an endogenous law of motion given by:278

`it =

[
(1− δ`) + v (xit)

]
`it−1Ω

(
εWt
)
, (4)

where δ` ∈ (0, 1) is the rate of decay of land productivity that features the desired persistence279

effect. We assume that the marginal product of land is increasing in the accumulation of land280

productivity. This is captured by assuming that land expenditures xit yield a gross output281

of new productive land v (xit) `it−1 with v′ (·) > 0, v′′ (·) ≥ 0. More specifically, xit can be282

viewed as agricultural spending on pesticides, herbicides, seeds, fertilizers and water used to283

maintain the farmland productivity.17 In a presence of a drought shock, the farmer can optimally284

offset the soil dryness by increasing field irrigation or the feeding budget, as the feed rationing285

of cattle is based on the use of local forage produced by country pastures. There is yet no286

micro-evidence about the functional form of land costs v (xit), so we adopt here a conservative287

approach by imposing the functional form: v (xit) = τ
φx

φ
it where τ ≥ 0 and φ ≥ 0. For φ → 0,288

land productivity exhibits constant return, while for φ > 0 land costs exhibits increasing returns.289

The parameter τ allows here to pin down the amount of per capita land in the deterministic290

steady state.291

16See Hane et al. (1984) for an evaluation of the relationship between water used by crops at various growth
stages.

17Cropping costs consist of charges for fertilizers, seeds and chemicals; for pasture these costs concern fence
and watering equipment; while for animal production costs, these include purchased feed and bedding as well as
medical costs.
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The law of motion of physical capital in the agricultural sector is given by:292

iAit = kAit − (1− δK) kAit−1, (5)

where δK ∈ [0, 1] is the depreciation rate of physical capital and iAit is investment of the repre-293

sentative farmer.294

Real profits dAit of the farmer are given by:295

dAit = pAt y
A
it − pNt

(
iAit + S

(
εit
iAit
iAit

)
iAit−1

)
− wAt hAit − pNt xit, (6)

where pAt = PAt /Pt is the relative production price of agricultural goods, the function S (x) =296

0.5κ (x− 1)2 is the convex cost function as in Christiano et al. (2005) which features a hump-297

shaped response of investment consistently with VAR models, and εit is an investment cost shock298

making investment growth more expensive. It follows an AR(1) shock process:299

log(εIt ) = ρI log(εIt−1) + σIη
I
t , (7)

where ρI ∈ [0, 1) denotes the root of the AR(1), and σI ≥ 0 the standard deviation of the300

innovation.301

We assume that a representative farmer is a price taker. The profit maximization he or she302

faces can be cast as choosing the input levels under land efficiency and capital law of motions303

as well as technology constraint:304

max
{hAit,iAit,kAit ,`it,xit}

Et

{ ∞∑
τ=0

Λt,t+τd
A
it+τ

}
, (8)

where Et denotes the expectation operator and Λt,t+τ is the household stochastic discount factor305

between t and t+ τ .306

The original equation that is worth commenting is the optimal demand for intermediate307

expenditures:308

pNt
v′ (xit) `it−1Ω

(
εWt
) = Et

{
Λt,t+1

(
ω
yAit+1

`it
+

pNt+1

v′ (xit+1) `it

[
(1− δ`) + v (xit+1)

])}
. (9)

The left-hand side of the equation captures the current marginal cost of land maintenance,309
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while the right-hand side corresponds to the sum of the marginal product of land productivity310

with the value of land in the next period. A weather shock deteriorates the expected marginal311

benefit of lands and rise the current cost of land maintenace. The shape of the cost function312

v (xit) critically determines the response of agricultural production following a drought shock. A313

concave cost function, i.e., v′ (xit) < 0, would generate a negative response of land expenditures314

and a decline in the relative price of agricultural goods, which would be inconsistent with the315

VAR model. Therefore, a linear or convex cost function with φ ≥ 0 is preferred to feature an316

increase in spending xit following an adverse weather shock.317

3.2 Households318

There is a continuum j ∈ [0, 1] of identical households that consume, save and work in the two319

production sectors. The representative household maximizes the welfare index expressed as the320

expected sum of utilities discounted by β ∈ [0, 1):321

Et

∞∑
τ=0

βτ
[

1

1− σ (Cjt+τ − bCt−1+τ )1−σ − χεHt+τ
1 + σH

h1+σH
jt+τ

]
, (10)

where the variable Cjt is the consumption index, b ∈ [0, 1) is a parameter that accounts for322

external consumption habits, hjt is a labor effort index for the agricultural and non-agricultural323

sectors, and σ > 0 and σH > 0 represent consumption aversion and labor disutility coefficients,324

respectively. Labor supply is affected by a shift parameter χ > 0 pinning down the steady state325

of hours worked and a labor supply AR(1) shock εHt that makes hours worked more costly in326

terms of welfare.327

Following Horvath (2000), we introduce imperfect substitutability of labor supply between328

the agricultural and non-agricultural sectors to explain co-movements at the sector level by329

defining a CES labor disutility index:330

hjt =
[(
hNjt
)1+ι

+
(
hAjt
)1+ι

]1/(1+ι)
. (11)

The labor disutility index consists of hours worked in the non-agricultural sector hNjt and331

agriculture sector hAjt. Reallocating labor across sectors is costly and is governed by the sub-332

stitutability parameter ι ≥ 0. If ι equals zero, hours worked across the two sectors are perfect333

substitutes, leading to a negative correlation between the sectors that is not consistent with the334
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data. Positive values of ι capture some degree of sector specificity and imply that relative hours335

respond less to sectoral wage differentials.336

Expressed in real terms and dividing by the consumption price index Pt, the budget con-337

straint for the representative household can be represented as:338

∑
s=N,A

wsth
s
jt + rt−1bjt−1 + rer∗t r

∗
t−1b

∗
jt−1 − Tt ≥ Cjt + bjt + rer∗t b

∗
jt + pNt rertΦ(b∗jt). (12)

The income of the representative household is made up of labor income with a real wage wst in339

each sector s (s = N for the non-agricultural sector, and s = A for the agricultural one), real340

risk-free domestic bonds bjt, and foreign bonds b∗jt. Domestic and foreign bonds are remunerated341

at a domestic rate rt−1 and a foreign rate r∗t−1, respectively. Household’s foreign bond purchases342

are affected by the foreign real exchange rate rer∗t (an increase in rer∗t can be interpreted as343

an appreciation of the foreign currency). The real exchange rate is computed from the nominal344

exchange rate e∗t adjusted by the ratio between foreign and home price, rer∗t = e∗tP
∗
t /Pt. In ad-345

dition, the government charges lump sum taxes, denoted Tt. The household’s expenditure side346

includes its consumption basket Cjt, bonds and risk-premium cost Φ(b∗jt)=0.5χB(b∗jt)
2 paid in347

terms of domestic non-agricultural goods at a relative market price pNt = PNt /Pt.
18 The param-348

eter χB > 0 denotes the magnitude of the cost paid by domestic households when purchasing349

foreign bonds.350

We now discuss the allocation of consumption between non-agricultural/agricultural goods351

and home/foreign goods. First, the representative household allocates total consumption Cjt352

between two types of consumption goods produced by the non-agricultural and agricultural353

sectors denoted CNjt and CAjt, respectively. The CES consumption bundle is determined by:354

Cjt =
[
(1− ϕ)

1
µ (CNjt )

µ−1
µ + (ϕ)

1
µ (CAjt)

µ−1
µ

] µ
µ−1

, (13)

where µ ≥ 0 denotes the substitution elasticity between the two types of consumption goods,355

and ϕ ∈ [0, 1] is the fraction of agricultural goods in the household’s total consumption basket.356

The corresponding consumption price index Pt reads as follows: Pt = [(1− ϕ) (PNC,t)
1−µ +357

ϕ(PAC,t)
1−µ]

1
1−µ , where PNC,t and PAC,t are consumption price indexes of non-agricultural and358

18This cost function aims at removing a unit root component that emerges in open economy models without
affecting the steady state of the model. We refer to Schmitt-Grohé and Uribe (2003) for a discussion of closing
open economy models.
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agricultural goods, respectively.359

Second, each index CNjt and CAjt is also a composite consumption subindex composed of360

domestically and foreign produced goods:361

Csjt =

[
(1− αs)

1
µS (csjt)

(µs−1)
µs + (αs)

1
µs (cs∗jt )

(µs−1)
µs

] µs
(µs−1)

for s = N,A (14)

where 1−αs ≥ 0.5 denotes the home bias, i.e., the fraction of home-produced goods, while µS > 0362

is the elasticity of substitution between home and foreign goods. In this context, the consumption363

price indexes P sC,t in each sector s are given by: P sC,t =
[
(1− αs) (P st )1−µs + αs(e

∗
tP

s∗
t )1−µs] 1

(1−µs) ,364

for s = N,A. In this expression, P st is the production price index of domestically produced goods365

in sector s, while P s∗t is the price of foreign goods in sector s.366

Finally, demand for each type of good is a fraction of the total consumption index adjusted

by its relative price:

CNjt = (1− ϕ)

(
PNC,t
Pt

)−µ
Cjt and CAjt = ϕ

(
PAC,t
Pt

)−µ
Cjt, (15)

csjt = (1− αs)
(
P st
P sC,t

)−µs
Csjt and cs∗jt = αs

(
e∗t
P s∗t
P sC,t

)−µs
Csjt for s = N,A. (16)

3.3 Non-agricultural Sector367

There exists a continuum of perfectly competitive non-agricultural firms indexed by i ∈ [1, nt],368

with 1-nt denoting the relative size of the non-agricultural sector in the total production of369

the economy. These firms are similar to agricultural firms except in their technology as they370

do not require land inputs to produce goods and are not directly affected by weather. Each371

representative non-agricultural firm has the following Cobb-Douglas technology:372

yNit = εZt
(
kNit−1

)α (
hNit
)1−α

, (17)

where yNit is the production of the ith intermediate goods firms that combines physical capital373

kNit−1, labor demand hNit and technology εZt . The parameters α and α− 1 represent the output374

elasticity of capital and labor, respectively. Technology is characterized as an AR(1) shock375

process:376

log(εZt ) = ρZ log(εZt−1) + σZη
Z
t , (18)
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where ρZ ∈ [0, 1) denotes the AR(1) term in the technological shock process and σZ ≥ 0 the377

standard deviation of the shock. Technology is assumed to be economy-wide (i.e., the same378

across sectors) by affecting both agricultural and non-agricultural sectors. This shock captures379

fluctuations associated with declining hours worked coupled with increasing output.19
380

The law of motion of physical capital in the non-agricultural sector is given by:381

iNit = kNit − (1− δK) kNit−1, (19)

where δK ∈ [0, 1] is the depreciation rate of physical capital and iNit is investment from non-382

agricultural firms.383

Real profits are given by:384

dNit = pNt y
N
it − pNt

(
iNit + S

(
εit

iNit
iNit−1

)
iNit−1

)
− wNt hNit , (20)

Firms maximize the discounted sum of profits:385

max
{hNit ,iNit ,kNit}

Et

{ ∞∑
τ=0

Λt,t+sd
N
it+τ

}
. (21)

under technology and capital accumulation constraints.386

3.4 Authority387

The public authority consumes some non-agricultural output Gt, issues debt bt at a real interest388

rate rt and charges lump sum taxes Tt. Public spending is assumed to be exogenous, Gt =389

Y N
t gεGt , where g ∈ [0, 1) is a fixed fraction of non-agricultural goods g affected by a standard390

AR(1) stochastic shock:391

log(εGt ) = ρG log(εGt−1) + σGη
G
t , ηGt ∼ N (0, 1) , (22)

where 1 > ρG ≥ 0 and σG ≥ 0. This shock captures variations in absorption which are not392

taken into account in our setup such as political cycles and international demand in intermediate393

markets.394

19The lack of sectoral data for hours worked does not allow to directly measure sector-specific TFP shocks.
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The government budget constraint equates spending plus interest payment on existing debt395

to new debt issuance and taxes:396

Gt + rt−1bt−1 = bt + Tt. (23)

3.5 Foreign Economy397

Following the literature on estimated small open economy models exemplified by Adolfson et al.398

(2007), Adolfson et al. (2008) and Justiniano and Preston (2010b), our foreign economy bowls399

down to a small set of key equations that determine New Zealand exports and real exchange400

rate dynamics. The foreign country is determined by an endowment economy characterized by401

an exogenous foreign consumption:20
402

log
(
c∗jt
)

= (1− ρC) log
(
c̄∗j
)

+ ρC log
(
c∗jt−1

)
+ σCη

C
t , ηCt ∼ N (0, 1) , (24)

where the 0 ≤ ρC < 1 is the root of the process, c̄∗j > 0 is the steady state foreign consumption403

and σC ≥ 0 is the standard deviation of the shock. The parameters σC and ρC are estimated404

in the fit exercise to capture variations of the foreign demand. A rise in the demand triggers405

a boost in the exportation of New Zealand goods, followed by an appreciation of the foreign406

exchange rate.407

Each period, foreign households solve the following optimization scheme:

max
{c∗jt,b∗jt}

Et

{ ∞∑
τ=0

βτεEt+τ log
(
c∗jt+τ

)}
, (25)

s.t. r∗t−1b
∗
jt−1 = c∗jt + b∗jt. (26)

where variable εEt is a time-preference shock defined as follows:408

log(εEt ) = ρE log(εEt−1) + σEη
E
t , (27)

with ηEt ∼ N (0, 1). This shock temporary raises the household’s discount factor and drives down409

20For simplicity, our foreign economy boils down to an endowment economy à la Lucas (1978) in an open
economy setup where consumption is exogenous. Most of the parameters and the steady states are symmetric
between domestic and the foreign economy. Consistently with the restricted VAR model featuring a small open
economy, the foreign economy is only affected by its own consumption shocks but not by shocks of the home
economy.
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the foreign real interest rate and naturally leads capital to flow to New Zealand. Regarding410

the budget constraint, it comprises consumption and domestic bonds purchase, the latter are411

remunerated at a predetermined real rate r∗t−1. In absence of specific sectoral shocks, all sectoral412

prices of the foreign economy are perfectly synchronized, i.e., P ∗t = PA∗t = PN∗t . In addition,413

the small size of the domestic economy implies that the import/exports flows from the home to414

the foreign country are negligible, thus implying that P ∗t = PA∗C,t = PN∗C,t .415

3.6 Aggregation and Equilibrium Conditions416

After aggregating all agents and varieties in the economy and imposing market clearing on all417

markets, the standard general equilibrium conditions of the model can be deducted.418

First, the market clearing condition for non-agricultural goods is determined when the ag-

gregate supply is equal to aggregate demand:

(1− nt)Y N
t = (1− ϕ)

[
(1− αN )

(
PNt
PNC,t

)−µN (
PNC,t
Pt

)−µ
Ct + αN

(
1

e∗t

PNt
PN∗C,t

)−µN (
PN∗C,t

P ∗t

)−µ
C∗t

]

+Gt + It + ntxt + Φ(b∗t ), (28)

where the total supply of home non-agricultural goods is given by
∫ 1
nt
yNit di = (1− nt)Y N

t ,

and total demands from both the home and the foreign economy read as
∫ 1

0 cjt dj = Ct and∫ 1
0 c
∗
jt dj = C∗t , respectively, with 1−αN and αN the fraction of home and foreign home-produced

non-agricultural goods, respectively. Aggregate investment, with
∫ 1
nt
iNit di = (1− nt) INt and∫ nt

0 iAit di = ntI
A
t , is given by: It = (1− nt) INt +ntI

A
t . Turning to the labor market, the market

clearing condition between household labor supply and demand from firms in each sector is∫ 1
0 h

N
jtdj =

∫ 1
nt
hNit di and

∫ 1
0 h

A
jtdj =

∫ nt
0 hAitdi. This allows us to write the total number of hours

worked: Ht = (1− nt)HN
t + ntH

A
t . Aggregate real production is given by:

Yt = (1− nt) pNt Y N
t + ntp

A
t Y

A
t .

In addition, the equilibrium of the agricultural goods market is given by:419

ntY
A
t = ϕ

[
(1− αA)

(
PAt
PAC,t

)−µA (
PAC,t
Pt

)−µ
Ct + αA

(
1

e∗t

PAt
PA∗C,t

)−µA (
PA∗C,t
P ∗t

)−µ
C∗t

]
, (29)
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where
∫ nt

0 yAit di = ntY
A
t . In this equation, the left side denotes the aggregate production, while420

the right side denotes respectively demands from home and foreign (i.e., imports) households.421

Given the presence of intermediate inputs, the GDP is given by:422

gdpt = Yt − pNt ntxt. (30)

The law of motion for the total amount of real foreign debt is:423

b∗t = r∗t−1

rer∗t
rer∗t−1

b∗t−1 + tbt, (31)

where tbt is the real trade balance that can be expressed as follows:424

tbt = pNt
[
(1− nt)Y N

t −Gt − It − ntxt − Φ(b∗t )
]

+ pAt ntY
A
t − Ct. (32)

The general equilibrium condition is defined as a sequence of quantities {Qt}∞t=0 and prices425

{Pt}∞t=0 such that for a given sequence of quantities {Qt}∞t=0 and the realization of shocks426

{St}∞t=0, the sequence {Pt}∞t=0 guarantees simultaneous equilibrium in all markets previously427

defined.428

4 Estimation429

The model is estimated using Bayesian methods and quarterly data for New Zealand. We esti-430

mate the structural parameters and the sequence of shocks following the seminal contributions431

of Smets and Wouters (2007) and An and Schorfheide (2007). In a nutshell, a Bayesian ap-432

proach can be followed by combining the likelihood function with prior distributions for the433

parameters of the model to form the posterior density function. The posterior distributions are434

drawn through the Metropolis-Hastings sampling method. We solve the model using a linear435

approximation to the model’s policy function, and employ the Kalman filter to form the like-436

lihood function and compute the sequence of errors. For a detailed description, we refer the437

reader to the original papers.438
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4.1 Data439

The Bayesian estimation relies on the same sample as the one used by the VAR model over440

the sample period 1994Q2 to 2016Q4.21 Therefore, each observable variable is composed of441

91 observations. The dataset includes 8 times series: output, consumption, investment, hours442

worked, agricultural production, foreign production, variations of the real effective exchange443

rate and the drought index.444

Concerning the transformation of the series, the point is to map non-stationary data to a445

stationary model. Observable variables that are known to have a trend (namely here, output,446

investment and foreign output) are made stationary in three steps. First, they are divided by447

the working age population. Second, they are taken in logs. And third, they are detrended448

using a quadratic trend. We thus choose to neglect the low frequency component (i.e., the449

trend) in all empirical variables for two main reasons: (i) the sample employed here is too short450

to observe any trend effects on the weather making the use of trend on the weather irrelevant;22
451

(ii) dealing with trends in open economy models is challenging when economies are not growing452

at the same rate, the solution adopted in estimated open economy models is simply to neglect453

trends as in Justiniano and Preston (2010b). For hours worked, the correction method of Smets454

and Wouters (2007) is applied: it consists of multiplying the number of paid hours by the455

employment rate. Finally, turning to the weather index, daily data from weather stations are456

collected and then spatially and temporally aggregated to compute an index of soil moisture for457

each local state composing New Zealand.23 The local values of the index are then aggregated at458

the national level by means of a weighted mean, where the weights are chosen according to the459

relative size of the agricultural output in each state. The resulting index is, by construction,460

zero mean.461

The vector of observable is given by:462

Yobst = 100

[
ŷt, ĉt ı̂t, ĥt, ŷAt , ŷ∗t , ∆r̂ert ω̂t

]′
, (33)

where ŷt is the output gap, ĉt is the consumption gap, ı̂t is the investment gap, ĥt is an index463

21Series for world output and hours worked for the period 1989-Q2 and 1993-Q4 are not available. This
incomplete sub-sample is, however, used to initialize the Kalman filter. Only time periods after the presample
enter the actual likelihood computations.

22In the IAM literature, the time horizon considered is usually higher than 100 years, which allows to measure
long-terms effects from trends.

23The index is computed following Kamber et al. (2013). More details are provided in the online appendix.
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of hours worked, ŷAt is the agricultural production gap, ŷ∗t is the foreign production gap and464

finally ω̂t is the drought index.465

The corresponding measurement equations are given by:466

Yt =

[
g̃dpt, C̃t, p̃Nt + Ĩt, H̃t, ñt + p̃At + Ỹ A

t , C̃∗t , −∆r̃er∗t , ε̃Wt

]′
, (34)

where all these variables are expressed in percentage deviations from their steady state: x̃t =467

log(xt/x̄).468

4.2 Calibration and Prior Distributions469

Table 4 summarizes the calibration of the model. We fix a small number of parameters that470

are commonly used in the literature of real business cycle models , including β=0.9883, the471

discount factor; H̄N=H̄A=1/3, the steady state share of hours worked per day; δK=0.025, the472

depreciation rate of physical capital; α=0.33, the capital share in the technology of firms; and473

g=0.22, the share of spending in GDP.474

The portfolio adjustment cost of foreign debt is taken from Schmitt-Grohé and Uribe (2003),475

with χB = 0.0007.24 The current account is balanced in steady state assuming b̄∗ = ca = 0.476

Regarding the openness of the goods market, our calibration is strongly inspired by Lubik (2006),477

with a share αN of exported non-agricultural goods set to 25% and to 45% for agricultural goods478

αA in order to match the observed trade-to-GDP ratio of New Zealand. Turning to agricultural479

sector, the share of agricultural goods in the consumption basket of households is set to ϕ = 15%,480

as observed over the sample period. In addition, the land-to-employment ratio ¯̀=0.4 is based481

on the hectares of arable land per person in New Zealand (FAO data).482

The rest of the parameters are estimated using Bayesian methods. Table 5 and Figure 6483

report the prior (and posterior) distributions of the parameters for New Zealand. Overall, our484

prior distributions are either relatively diffuse or consistent with earlier contributions to Bayesian485

estimations such as Smets and Wouters (2007). In particular, priors for the persistence of the486

AR(1) processes, the labor disutility curvature σH , the consumption habits b and the investment487

adjustment cost κ are directly taken from Smets and Wouters (2007). The standard errors of488

the innovations are assumed to follow a Weibull distribution with a mean of 1 and a standard489

24The value of this parameter marginally affects the dynamic of the model, but it allows us to remove a unit
root component induced by the open economy setup.
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deviation of 2. The Weibull distribution is more diffuse than the Inverse Gamma distribution490

(both type 1 and 2), has a positive support and provides a better fit in terms of data density.491

Substitution parameters µ, µN , and µA are each assumed to follow a Gamma distribution with492

a mean of 2 and a standard deviation of 1 in order to have a support that lies between 0 and493

5. The risk aversion parameter σC is assumed to follow a Normal distribution with a mean of494

2 and a standard deviation of 0.35 in the same vein as Smets and Wouters (2007). The labor495

sectoral cost ι follows a diffuse Gaussian distribution with a mean of 1 and a standard deviation496

of 0.75, as the literature of two-sector models suggests that this parameter is above zero to get497

a positive correlation link across sectors. The land cost parameter φ is also assumed to follow498

a diffuse Gaussian distribution with prior mean and standard deviation both set to 1, so that499

the response of output is consistent with that of the VAR model.500

Regarding priors for the agricultural sector, the land efficiency decay rate parameter δ` is501

assumed to follow a Beta distribution with prior mean and standard deviation of 0.2 and 0.1,502

respectively. This prior is rather uninformative as it allows this decay rate to be either close to 0503

or close to 0.50, the latter would imply an annual decay rate of 200%. Regarding the land share504

in the production function ω, first, under decreasing return this parameter must be below 1,505

second, the economic literature suggests that this parameter is close to 20%.25 We thus impose506

a beta distribution with mean 0.2 and standard deviation 0.1. One of the key parameter507

in the paper is the damage function parameter θ and possibly subject to controversy. The508

literature on IAMs traditionally connects temperatures to output through a simple quadratic509

damage function in order to provide an estimation of future costs of carbon emissions on output.510

However, Pindyck (2017) raised important concerns about IAM-based outcome as modelers have511

so much freedom in choosing a functional form as well as the values of the parameters so that512

the model can be used to provide any result one desires. To avoid the legitimate criticisms513

inherent to IAMs, we adopt here a conservative approach on the value of this key parameter of514

the damage function and set a very diffuse prior with a uniform distribution with zero mean515

and standard deviation 500.516

25The share of land ω in the production function is estimated at 15% for the Canadian economy by Echevarŕıa
(1998), while Restuccia et al. (2008) calibrates this parameter 18% for the US economy.

24



4.3 Posterior Distribution517

In addition to the prior distributions, Table 5 reports the estimation results that summarize the518

means and the 5th and 95th percentiles of the posterior distributions, while the latter are illus-519

trated in Figure 6.26 According to Figure 6, the data were fairly informative, as their posterior520

distributions did not stay very close to their priors. However, we assess the identification of our521

parameters using methods developed by Iskrev (2010), these identification methods show that522

sufficient and necessary conditions for local identification are fulfilled by our estimated model.
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Figure 6: Prior and posterior distributions of structural parameters for New Zealand (excluding
shocks).

523

While our estimates of the standard parameters are in line with the business cycle liter-524

ature (see, for instance, Smets and Wouters (2007) for the US economy or Lubik (2006) for525

New Zealand), several observations are worth making regarding the means of the posterior dis-526

tributions of structural parameters. Strikingly, the land-weather elasticity parameter θ has a527

high posterior value that is clearly different from 0. This implies that even with loose priors,528

the model suggests that variable weather conditions matter for generating business cycles con-529

sistently with empirical evidence of Kamber et al. (2013) and Mejia et al. (2018). The land530

expenditure cost φ suggests that the returns to scale for land expenditures are quadratic. Sub-531

26The posterior distribution combines the likelihood function with prior information. To calculate the posterior
distribution to evaluate the marginal likelihood of the model, the Metropolis-Hastings algorithm is employed. We
compute the posterior moments of the parameters using a total generated sample of 800, 000, discarding the first
80, 000, and based on eight parallel chains. The scale factor was set in order to deliver acceptance rates close
to 24%. Convergence was assessed by means of the multivariate convergence statistics taken from Brooks and
Gelman (1998). We estimate the model using the dynare package Adjemian et al. (2011).
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stitution seems to be an important pattern of consumption decisions of households, especially532

at a sectoral level. However, the substitution between home and foreign non-agricultural goods533

appears to be rather low, contrary to the substitution degree between agricultural and non534

agricultural goods that is remarkably high. Regarding the labor reallocation parameter ι in the535

utility function of households, the data favor a costly labor reallocation across sectors, which is536

in line with the findings of Iacoviello and Neri (2010) for the housing market.537

To assess how well the estimated model captures the main features of the data, we report in538

Table 6 and Table 7 both the moments simulated by the model and their empirical counterpart.539

First, the model does a reasonably job through its steady state ratios in replicating the observed540

mean. The model performs quite well in terms of volatility for most of observable variables,541

except for total output and consumption as both are clearly overstated by the model while the542

theoretical volatility of foreign output is understated. The model performs very well at repli-543

cating the persistence of all observable variables. Finally regarding the correlation with GDP,544

the model replicates the sign of all the correlations, but not their full magnitude. In particular,545

the correlation with the foreign GDP is not captured by the model, this is a well known puzzle546

in international economic that can be easily solved by imposing a positive correlation across547

shocks in the model’s covariance matrix.548

5 Do Weather Shocks Matter?549

A natural question to ask is whether weather shocks significantly explain part of the business550

cycle. To provide an answer to this question, two versions of the model are estimated – using551

the same data and priors. In an alternative version of the model, which we consider as a552

benchmark, the damage function given in Equation 3 is neutralized by imposing θ = 0. Under553

this assumption, any fluctuation in the weather has no implication for agriculture and thus554

does not generate any business cycles. In contrast, we compare the benchmark model with the555

version presented previously in the model section, characterized by the presence of weather-556

driven business cycles with θ 6= 0.557

Table 2 reports for the two models the corresponding data density (Laplace approximation),558

posterior odds ratio and posteriors model probabilities, which allow us to determine the model559

that best fits the data from a statistical standpoint. Using a uninformative prior distribution560

over models (i.e., 50% prior probability for each model), we compute both posterior odds ratios561
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Model type M (θ = 0) M (θ 6= 0)
Model description No Weather Damage Model Weather-Driven Business Cycles

Damage function Ω
(
εWt

)
1

(
εWt

)−θ
Prior probability 1/2 1/2
Laplace approximation -1473.704 -1467.206
Posterior odds ratio 1.000000 663.6605
Posterior model probability 0.001505 0.998495

Table 2: Prior and posterior model probabilities

and model probabilities taking the model M (θ = 0), i.e., the one with no weather damage as562

the benchmark.27 We conduct a formal comparison between models and refer to Geweke (1999)563

for a presentation of the method to perform the standard Bayesian model comparison employed564

in Table 2 for our two models. Briefly, one should favor a model whose data density, posterior565

odds ratios and model probability are the highest compared to other models.566

We examine the hypothesis H0: θ = 0 against the hypothesis H1: θ 6= 0. To do this,567

we evaluate the posterior odds ratio of M (θ 6= 0) on M (θ = 0) using Laplace-approximated568

marginal data densities. The posterior odds of the null hypothesis of no significance of weather-569

driven fluctuations is 663.66:1 which leads us to strongly reject the null, i.e., weather shocks do570

matter in explaining the business cycles of New Zealand. This result is confirmed in terms of571

log marginal likelihood and posterior odds ratio. This is an important result from the model572

that highlights the non-trivial role of the weather in driving the business cycles of New Zealand.573

6 Weather Shocks as Drivers of Aggregate Fluctuations574

This section discusses the propagation of a weather shock and its implications in terms of575

business cycle statistics.576

6.1 Propagation of a Weather Shock577

We first report the simulated Bayesian system’s responses of the main macroeconomic variables578

following a standard weather shock in Figure 7.28 We also report the responses from the VAR579

estimation for observable variables which are common between the VAR and the DSGE model.580

27As underlined by Rabanal (2007), it is important to stress that the marginal likelihood already takes into
account that the size of the parameter space for different models can be different. Hence, more complicated
models will not necessarily rank better than simpler models, andM (θ 6= 0) will not inevitably be favored to the
benchmark model.

28The impulse response functions (IRFs) and their 90% highest posterior density intervals are obtained in a
standard way when parameters are drawn from the mean posterior distribution, as reported in Figure 6.
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Unlike the VAR model, the DSGE model provides the underlying micro-founded mechanisms581

that drives the propagation of a weather shock.
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Figure 7: System response to an estimated weather shock ηWt for the estimated
DSGE and VAR model (when available).

Notes: Blue lines are the Impulse Response Functions (IRFs) generated when parameters are drawn from
the mean posterior distribution, as reported in Figure 6. IRFs are reported in percentage deviations
from the deterministic steady state. Dotted green lines are the means of the distributions of the Impulse
Response Functions (IRFs) of the VAR model and gray areas are their 90 confidence intervals.

582

From a business cycle perspective, this shock acts as a standard (sectoral) negative supply583

shock through a combination of rising hours worked and falling output. Consistently with584

the VAR model, a drought event strongly affects business cycles through a large decline in585

agricultural output (1.5%), as the weather influences land input in the production process of586

agricultural goods. Land productivity is strongly negatively affected by the drought. This result587

is in line with Kamber et al. (2013), as New Zealand’s farmers rely extensively on rainfall and588
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pastures to support the agricultural sector. A drought shock decreases land productivity by589

22% in the model. To compensate for this loss, farmers can use more non-agricultural goods as590

inputs to reestablish their land productivity. For instance, dairy or crop producers may require591

more water to irrigate their grasslands or cultures to offset the dryness. Farmers may also use592

more pesticides, as droughts are often followed by pest outbreaks (Gerard et al., 2013). The593

demand effect for these non-agriculture goods is captured in the model by a rise in inputs xit in594

Equation 4, which results in an increase in land costs. The surge in non-agriculture goods has595

a positive side effect on non-agriculture output. Both the drop in the agricultural production596

and the rise in non-agriculture output alter the sectoral price structure. As the drought causes597

a reduction in the agricultural production and a rise in land costs, the relative price in the598

agricultural sector rises through a market cleaning effect. Since relative prices are negatively599

correlated, the price of non-agricultural goods declines in response, thus fueling the demand for600

non-agricultural goods. With respect to the VAR model, the DSGE model predicts a higher601

contraction of economic activity combined with a weaker response of the real exchange rate.602

From an international standpoint, the decline in domestic agricultural production generates603

trade balance deficits. Two factors might explain this. First, around fifty percents of New604

Zealand’s merchandise exports are accounted for by agricultural commodities over the sample605

period. As both output and price competitiveness of the agricultural sector are deteriorated,606

New Zealand exports decline. However, the decline price in relative price of non-agricultural607

fuels the external demand for non-agricultural, thus explaining why this sector experiences a608

boom. Taken together, the effect of the agricultural sector outweighs the other sector, through a609

fall in the trade balance and the current account. In the meantime, the domestic real exchange610

rate depreciates driven by the depressed competitiveness of farmers, which helps in restoring611

their competitiveness. This reaction of the exchange rate is consistent with the prediction of612

the VAR model in Figure 4.613

6.2 The Contribution of Weather Shocks on Aggregate Fluctuations614

Figure 8 reports the forecast error variance decomposition for four observable variablest, i.e.,615

aggregate real production (gdpt), real agricultural production (Y A
t ), real consumption (Ct) and616

hours worked (Ht). Five different time horizons are considered, ranging from two quarters617

(Q2), to ten (Q10) and fifty quarters (Q50) along with the unconditional forecast error variance618

29



decomposition (Q∞). In each case, the variance is decomposed into four main components619

related to supply shocks (technology, labor supply and sectoral reallocation shock), demand620

shocks (government spending, household preferences and investment shocks), foreign shocks621

(consumption and foreign preferences), and obviously the weather shocks.622
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Figure 8: Forecast error variance decomposition at the posterior mean for different time horizons
(one, ten, forty and unconditional) for four observable variables.

For GDP (gdpt), supply shocks are the main drivers of the variance in both the short and623

the long term, followed by demand and foreign shocks. Interestingly, we find that foreign shocks624

are a sizable driving force of output in the short run by contributing up to 18% of the volatility625

of GDP. Unlike Justiniano and Preston (2010a) who find a trivial contribution of foreign shock626

in small open economy models, our model is able to capture the key role of foreign shock as627

a driver of economic fluctuations. Foreign shocks play a non-negligible role. They account for628

27.6% of New Zealand’s production in the short run, and 11.8% in the long run. By increasing629

the time horizon, the contribution of supply, demand and foreign shocks tends to reduce and630

are gradually replaced by weather shocks, starting from 2% at two-quarter horizon to 30% for631

the unconditional variance.632

Turning to agricultural production, supply shocks account for most fluctuations in the short633

run. They are responsible for 85% of the variance of agricultural production at one-quarter634

horizon. Domestic and foreign demand shocks play a trivial role in the volatility of agricultural635

production. The importance of supply shocks declines in the long run, although remaining non-636

negligible, explaining 58% of agricultural production for the unconditional variance. Weather637

shocks remarkably drive the variance of agricultural production after a time lag of two quarters.638
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In addition, increasing the time horizon magnifies this result. Thus the weather is a key deter-639

mining factor of agricultural fluctuations according to the theoretical representation of the data640

by our model. Concerning the variance of consumption, it is mainly affected, in the short term,641

by foreign shocks. Weather shocks play a significant role in the same way as for agricultural642

production, starting from a more distant time horizon. Finally for working hours, they are only643

slightly affected by weather shocks. Supply shocks are the main drivers of the variance of hours644

worked as they drive most of the variance of hours.645

Overall, we find that weather shocks cause important macroeconomic fluctuations. The646

increasing contribution of the weather in the time horizon highlights an interesting persistence647

mechanism which can be associated to the weather hysteresis effects discussed in the business648

cycle evidence section.649

6.3 Historical Decomposition of Business Cycles650

An important question one can ask of the estimated model is how important were weather651

shocks in shaping the recent New Zealand macroeconomic experience. Figure 9 displays the652

year-over-year growth rate in per capital of real agricultural production, GDP, consumption653

and hours worked. The blue dotted line is the result of simulating our model’s response to all654

of the estimated shocks and to the initial conditions. The dotted line shows the result of this655

same simulation when we feed our model only the weather shock.656

A notable feature of agricultural production is the important contribution of the weather to657

its fluctuations. More specifically, this weather contribution oscillates between +4% and -6%658

over the sample period. During periods of good soil moisture, land productivity is enhanced,659

which fuels the higher supply of agricultural goods. In contrast, drought periods are associated660

with lower levels of agricultural output. Severe droughts coincide with a sharp drop in agricul-661

tural production driven by the weather shock. One fourth of agricultural slowdown following662

the most severe drought in 2008 is accounted by the weather shock. In 2016, a prolonged episode663

of drought also contributed by 5% to the contraction of the agricultural supply.664

The weather contribution is not limited to the supply of agricultural goods, the remaining665

panels in Figure 9 show that real output, consumption and hours growth rates are also affected666

by the weather, but the absolute contribution is on average lower than for agricultural produc-667

tion. For GDP and consumption, the weather’s contribution to the growth rate of these variables668
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Figure 9: The role of weather shocks on selected variables.

Notes: All data are demeaned. Blue line and red lines are annual growth rates of selected observable
variables. The blue line results of feeding the model with all shocks (i.e., the actual data), while the red
line results of feeding the model only with the weather shock. The red line depicts the contribution of
the weather shock to the corresponding deviation. Shaded area indicates the 10th percent of the most
severe drought episodes, as inferred from the time series of the weather index.

oscillates between +1% to -1%. There is a clear spillover mechanism from the agricultural sec-669

tor to the rest of the economy, which allows the weather to propagate and generate business670

cycles. Weather-driven fluctuations in agriculture are translated to other selected variables and671

contribute to their fluctuations. Severe droughts also have important implications for these672

variables, as the 2008 and 2016 droughts entailed a joint 1% drop in GDP and consumption673

while labor supplied declined by 2%.674

7 Inspecting the Propagation Mechanism675

The originality of the model lies in the introduction of a weather-dependent agricultural sector676

that relies on a set of structural parameters driving the response of the economy following a677

weather shock. In this section, we investigate how critical these parameters are by contrasting678

the responses of the model under different calibrations for three key parameters: the land679

expenditure cost φ, the labor sectoral cost ι, and the land efficiency decay rate δ`. Each680

parameter is likely to affect both the propagation and the steady state of the model. To681
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disentangle the short run from the long run, we draw the steady state of the model prior to the682

realization of the shock in t = 1. All the IRFs are expressed in percentage deviations from the683

steady state of the estimated model.
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Figure 10: Impulse response functions (in percentage deviations from steady state of the esti-
mated model) for different values of the land expenditure cost φ following a weather shock in
t=1.

684

We first consider the parameter φ shaping the land cost function (see Equation 6). This cost685

function critically determines the marginal cost of rising the land production. IRFs under alter-686

native calibration are reported in Figure 10, by contrasting the estimated parameter (φ = 2.57)687

with quasi-constant returns (φ = 1.10) and high-increasing returns (φ = 3.57). The value of688

this parameter clearly affects the propagation mechanism of a weather shock. Under increasing689

returns, the marginal cost of land costs (e.g., fertilizers and water) rises after a drought, while690

it tends to decrease under quasi-constant returns. The main implication of decreasing/constant691

returns lies in the response of the agricultural sector, through a positive spike of its relative692

price generating a strong recession in this sector, before quickly adjusting back to steady state.693

This relative price distortion across sectors clearly reshapes the response of the non-agricultural694

sector and total production by creating a quick recession that is not consistent with empirical695

evidence of the VAR model. The steady state of the model is also affected. A rise in φ increases696

land expenditures, since the latter are accounted as intermediate consumption, a increase in697

land expenditures mechanically reduces the GDP (through Equation 30).698
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Figure 11: Impulse response functions (in percentage deviations from steady state) for various
degrees of labor substitution across sectors ι = 0, 2.32 and 5.

We next turn to the labor substitutability parameter ι from the labor disutility index (Equa-699

tion 11). This parameter determines the household labor supply substitution across sector. We700

thus report in Figure 11 the IRFs under a linear substitution index (ι = 0) versus the estimated701

value (ι = 2.9) and a high substitution costs (ι = 5). When ι = 0, households face no cost of702

adjusting their labor supply to sectoral wages differentials so that during a weather event, the703

households increase their labor supply in the non-agricultural sector as the equilibrium wage is704

higher in this sector. Labor supply is thus flowing to the sector with the highest wage, thus705

boosting the non-agricultural one. At a macro level, the perfect reallocation generates a strong706

negative correlation link between sector, and translates into an expansion of the economy. This707

propagation mechanism is clearly at odd with the VAR model. In contrast, the increase in the708

cost of labor reallocation reduces this substitution mechanism and amplifies the recession. The709

steady state, however, is not affected by this parameter.710

Finally, we investigate how the rate of decay of land productivity, denoted δ` (see Equa-711

tion 4), shapes the responses of the model by contrasting 3 different calibration from low to712

high decay rates. Figure 12 reports the corresponding IRFs. This parameter determines the713

hysteresis effect of the weather by ruling how quickly the land (and thus the economy) returns714

to its steady state following a drought shock. For a low value of the decay rate, macroeco-715

nomic fluctuations are amplified and more persistent, as land productivity requires more time716
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Figure 12: Impulse response functions (in percentage deviations from steady state) for various
decay rates of land efficiency δ` = 0.025, 0.10 and 0.20.

to recover from a drought. Conversely, a higher value reduces the persistence, but mechanically717

increases the steady state intermediate expenditures in land productivity.718

8 Climate Change Implications719

We now turn to the implications of climate change for aggregate fluctuations and welfare. The720

IPCC defines climate change as “a change in the state of the climate that can be identified (e.g.,721

by using statistical tests) by changes in the mean and/or the variability of its properties, and that722

persists for an extended period, typically decades or longer” (IPCC, 2014). In our framework,723

climate is supposed to be stationary, which makes our setup irrelevant for analyzing changes724

in mean weather values. However, it allows for changes in the variance of weather shocks. As725

a first step, we assess the change in the variance of the weather shock by estimating it under726

different climate scenarios. Then, in a second step, we use the estimates of these variances for727

each scenario and investigate the effects on aggregate fluctuations. The results presented in728

this section are rather illustrative as our setup does not allow crop adaptation or any possible729

mechanism that would offset the structural change of weather.730
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8.1 Climate Change and Macroeconomic Volatility731

We use the estimated DSGE model to assess the effects of a shift in the variability of the weather732

shock process. We do so in a two-step procedure. First, the simulations are estimated with733

the value of the variance of the weather shock that is estimated during the fit exercise, which734

corresponds to historical variability. Second, new simulations are made after altering the vari-735

ability of the weather shock so it corresponds to the one associated with climate change, using736

the values obtained from the previous section. Hence, we proceed to four different alterations737

of the variance of the weather process.738

To measure the implications of climate change on aggregate fluctuations of a representa-739

tive open economy, we compare the volatility of some macroeconomic variables under historical740

weather conditions (for the 1989–2014 period) to their counterpart under future climate scenar-741

ios (for the 2015–2100 period), normalizing the values of the historical period of each variable742

to 100. Table 3 report these variations for some key variables.743

The first scenario, with regard to the volatility of the weather shock for New Zealand is744

clearly optimistic, as the variance of drought events is declining by 8.24%. As a result, macroe-745

conomic fluctuations in the country naturally decrease. Agriculture output is particularly af-746

fected by this structural change, with a 3.45% decrease of its variance. In contrast, the other747

scenario for which the rise in variance of the weather shock ranges between 14.11% for the less748

pessimistic scenario to 51.91% for the most pessimistic one, exhibit a strong increase in the749

volatility of macroeconomic variables. As a matter of facts, the variance of total output rises750

by 4.32% under the RCP 4.5 scenario, and by 15.89% under the RCP 8.5 scenario. Agricultural751

production volatility experiences an important shift of 22.30% under the worst-case scenario.752

We also observe a dramatic increase in the variance of consumption of 26.61%, relative price of753

agricultural goods of 18.44%, net foreign asset of 31.86%. The variance of the current account754

rises by 13.81% while the variance of the real exchange rate rises by 8.15%. For the remaining755

macroeconomic variables, the changes are relatively smaller.756

We therefore find some important changes in the volatility of key macroeconomic variables757

induced by climate change, which could be very critical, especially for developing economies.758

Wheeler and Von Braun (2013) find similar effects of climate change on crop productivity759

which could have strong consequences for food availability for low-income countries. Adapting760

our setup to a developing economy by increasing the relative share of the agricultural sector,761
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1994-2016 2100 (projections)
Historical RCP 2.5 RCP 4.5 RCP 6.0 RCP 8.5

Var(ηWt ) Weather shock 100 91.97 114.11 119.44 151.91
Var(gdpt) GDP 100 97.54 104.32 105.95 115.89
Var(Ct) Consumption 100 95.88 107.23 109.97 126.61
Var(pNt It) Investment 100 99.22 101.37 101.89 105.04
Var(pAt Y

A
t ) Agriculture 100 96.55 106.06 108.35 122.30

Var(pAt ) Agricultural price 100 97.15 105.01 106.91 118.44
Var(Ht) Hours 100 99.02 101.72 102.37 106.31
Var(Rt) Real interest rate 100 99.99 100.01 100.02 100.04
Var(rert) Exchange rate 100 98.74 102.21 103.05 108.15
Var(tbt) Trade balance 100 97.86 103.75 105.17 113.81
Var(b∗t ) Net Foreign Asset 100 95.07 108.66 111.93 131.86
E(Wt) Welfare -429.3143 -429.2872 -429.3619 -429.3799 -429.4893
λ (%) Welfare cost 0.1903 0.1750 0.2171 0.2273 0.2891

Table 3: Changes in Standard-Errors of Simulated Observables Under Climate Change Scenar-
ios.

Notes: The model is first simulated as described in Section 4. Theoretical variances of each variable are then estimated and
normalized to 100. Then, variances of weather (ηWt ) shocks are modified to reflect different climate scenarios (compared to
the reference 1994–2016 period, changes in the standard error are as follows: RCP 2.5, −8.24%; RCP 4.5, +14.11%; RCP
6.0, +19.44%; RCP 8.5, +51.91%). New simulations are estimated using the modified variances of these shocks, and the
theoretical variances of the variables of interest are then compared to those of the reference period.

and reducing the intensity of the capital, would critically exacerbate the results reported in762

Table 3.763

8.2 The welfare cost of weather-driven business cycles under climate change764

To get a welfare perspective on climate change, we compute how much consumption households765

are willing to abandon to live in an economy free of weather shocks. We compute the path of766

the economy contrasting two regimes using a second order approximation to the policy function.767

The regime a is free of weather shocks (i.e., σW = 0 in Equation 1) while regime b includes768

weather shocks as estimated in the fit exercise. We introduce λ as the fraction of consumption769

that the household would be willing to give up to live in the regime a rather than the b. Put770

differently λ denotes the welfare cost of weather shocks and is computed as:771

Et

∞∑
τ=0

βτU
(
(1− λ)

[
Cat+τ − bCat−1+τ

]
, hat+τ

)
= Et

∞∑
τ=0

βτU
(
Cbt+τ − bCbt−1+τ , h

b
t+τ

)
. (35)

The last two rows of Table 3 report the corresponding welfare mean and cost computed under772

alternative scenarios. First of all, the simulations show that today, New Zealanders would be773

willing to give up to 0.1% of their unconditional consumption in order to live in an economy free774
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of droughts. The magnitude of this cost is not negligible, as our model evaluates the welfare775

costs of business cycles induced by productivity shocks to 0.05%, 0.03% for spending shocks,776

0.05% for investment shocks, 0.44% for labor supply shocks, 0.08% for sector reallocation shock,777

0.002% for foreign consumption shock and 0.04% for foreign discount factor.29 Using a CRRA778

utility function, welfare cost of business cycles are typically low as shown by Lucas (1987, chap.779

3) and Lucas (2003, section II) while with the same utility function, the welfare cost of the780

weather is non-trivial. This conflicting result with the standard macroeconomic literature is781

connected to the weather hysteresis effect: when an adverse weather shock deteriorates land782

productivity, agricultural output is low for an extended period of time as livestocks and crops783

needs time to recover. The resulting consequence is an higher uncertainty for households on784

their agricultural consumption which natural drives the welfare cost of business cycles. The785

magnitude of these results can be contrasted with those of Donadelli et al. (2017) who consider786

temperature shocks and who find an even larger welfare cost peaking to 18.1%.787

We approximate climate change by increasing the variance of weather shocks. The results788

from this exercise are illustrative as we do not account for crop and livestock adaptation.789

Therefore, these costs can be interpreted as a maximum bound of the feasible welfare costs. In790

all our scenarios except for the optimistic RCP 2.5, households would be worse off under the791

new weather conditions in which the volatility of droughts has increased. Under the optimistic792

scenario, they would only abandon only 0.18% of their permanent consumption. In the worst-793

case scenario, this fraction would reach 0.29%. With respect to the benchmark situation over794

the 1994-2016 period, the welfare cost increased by 0.09, from 0.19 for the historical period to795

0.28% for the worst-case scenario. This suggests that there is a strong non-linear relationship796

between the variance of the shock and the welfare cost as exemplified by Donadelli et al. (2017)797

for temperature shocks.798

9 Conclusion799

In this paper, we have investigated how the weather can play an autonomous role in generating800

business cycles. We have developed and estimated a DSGE model for a small open economy,801

New Zealand. Our model includes an agricultural sector that faces exogenous weather varia-802

29On average, these costs lie in the ballpark of estimates obtained in the RBC literature, see for example Otrok
(2001) except for the labor supply shock. The latter generates important welfare costs as it directly affects utility
function.

38



tions affecting land productivity, and in turn the production of agricultural goods. We find803

from a statistical standpoint that weather shocks do matter in explaining the business cycles804

of New Zealand. Both the VAR and the DSGE model find that a weather shock generates a805

recession through a contraction of agricultural production and investment combined with a rise806

in hours worked. Our business cycle decomposition exercises also show that weather shocks807

are an important driver of agricultural production and, in a smaller proportion, of the GDP.808

Finally, we use our model to the analysis of climate change by increasing the variance of weather809

shocks consistently with projections in 2100. The rise in the variability of weather events leads810

to an increase in the variability of key macroeconomic variables, such as output, agricultural811

production or the real exchange rate. In addition, we find important welfare costs incurred by812

weather-driven business cycles, as today households are willing to pay 0.19% of their uncondi-813

tional consumption to live in a world with no weather shocks, and this cost is increasing in the814

variability of weather events.815

The analysis of weather-driven business cycles is a burgeoning research area given the im-816

portant context of climate change. In this paper, we have analyzed the importance of weather817

shocks on the macroeconomic fluctuations of a developed economy. However, the application818

of our framework to developing countries could highlight the high vulnerability of their pri-819

mary sectors to weather shocks. In addition, from a policymaker’s perspective, our framework820

could be fruitfully employed to evaluate the optimal conduct of monetary policy to mitigate the821

destabilizing effects of weather shocks for different scenarios of climate change. Fiscal policy822

could also play a role in a low-income country, for instance by providing disaster payments,823

which may be seen as insurance schemes paid by the tax payers. These disaster payments may824

make sense in the absence of well-functioning insurance markets. Another possibility could be825

the introduction of trends in the model, which could be affected by weather events both in the826

short and in the long run. This would provide a scope for crop adaptation and environmental827

policies aiming at offsetting the welfare costs of weather. Finally, weather shocks could also have828

implications for financial markets, through a possible rise in the equity premium as predicted829

by the risk disaster theory in asset pricing.830

831
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A Building Projections up to 2100937

To investigate the potential impact of climate change on aggregate fluctuations, we assume938

that the volatility the weather (ηWt ) (Equation 1) will be affected by climate change. Instead939

of arbitrarily setting a value for this shift, we provide an approximation using a proxy for the940

drought index. To do so, we rely on monthly climatic data simulated from a circulation climate941

model, the Community Climate System Model (CCSM). The resolution of the dataset is a942

0.9◦ × 1.25◦ grid. Simulated data are divided into two sets: one of historical data up to 2005943

and one of projected data from 2006 to 2100. The projected data are given for four scenarios of944

greenhouse gas concentration trajectories, the so-called Representative Concentration Pathways945

(RCPs). The first three, i.e., the RCPs of 2.6, 4.5 and 6.0, are characterized by increasing946

greenhouse gas concentrations, which peak and then decline. The date of this peak varies947

among scenarios: around 2020 for the RCP 2.6 scenario, around 2040 for the RCP 4.5 and948

around 2080 for the RCP 6.0. The last scenario, the doom and gloom 8.5 pathway, is based on949

a quickly increasing concentration over the whole century. The first panel of Figure 13 shows950

emissions and projections of the emissions of one of the major greenhouse gases, i.e., CO2, up951

to 2100.30
952

For these four scenarios, soil moisture deficit data are not available. We therefore use total953

rainfall as proxy, as rainfalls are strongly correlated with droughts, although the effects of954

temperatures on the evapotranspiration of lands is not taken into account. Simulated data for955

each scenario are provided on a grid on a monthly basis. We aggregate them at the national956

level on a quarterly basis. More details on the aggregation can be found in the online appendix.957

These data are then used to estimate the evolution of the volatility of the weather shock.958

We do so using a rolling window approach. In the DSGE model, we assume that the weather959

shock is autoregressive of order one. We therefore fit an AR(1) model on each window. The size960

of the latter is set to 25.5 years, i.e., the length of the sample data used in the DSGE model,961

so each regression is estimated using 102 observations. The standard error of the residuals are962

then extracted to give a measure of the evolution of the volatility of the weather shock. The963

middle panel in Figure 13 illustrates the evolution of the standard error for each scenario. It964

is then possible to compute the average growth rate of the standard error over the century965

30The data used to graph the CO2 emission projections are freely available at http://www.pik-potsdam.de/

~mmalte/rcps/.
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depending on the climate scenario.31 The results are displayed in the right panel of Figure 13.966

In the best-case scenario, RCP 2.5, the variance of the climate measure is reduced by 4.1%;967

under the RCP 4.5 and RCP 6.0 scenarios, it increases by 6.82% and 9.29%, respectively; under968

the pessimistic RCP 8.5 scenario, it drastically increases by 23.25%.969
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Notes: The curves of panel (a) represents historical CO2 emissions as well as their projections up to 2100 under each
scenario. The estimation of the standard errors of projected precipitations σWt for each representative concentration
pathway is represented in panel (b). Their linear trend from 2013 to 2100 is depicted in panel (c).

Figure 13: Estimations of the increase of the standard error of the weather shock under four
different climate scenarios.

970

31More details on the procedure can be found in the appendix.
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Variable Interpretation Value
β Discount factor 0.9883
δK Capital depreciation rate 0.025
α Share of capital in output 0.33
g Share of spending in GDP 0.22
ϕ Share of agricultural goods in consumption basket 0.15
H̄N = H̄A Hours worked 1/3
¯̀ Land per capita 0.40
αN Openness of non-agricultural market 0.25
αA Openness of agricultural market 0.45
χB International portfolio cost 0.0007

Table 4: Calibrated parameters on a quarterly basis.

Prior distributions Posterior distribution
Shape Mean Std. Mean [5%:95%]

SHOCK PROCESS AR(1)
Economy-wide TFP (SD) σZ W 1 2 2.1 [1.81:2.38]
Hours supply (SD) σH W 1 2 5.19 [3.95:6.33]
Spending (SD) σG W 1 2 3.98 [3.48:4.46]
Investment (SD) σI W 1 2 9.87 [6.76:12.81]
Sector reallocation (SD) σN W 1 2 8.69 [6.78:10.56]
Weather (SD) σW W 1 2 0.81 [0.71:0.91]
Foreign time-preference (SD) σE W 1 2 5.61 [4.74:6.43]
Foreign consumption (SD) σC W 1 2 0.69 [0.6:0.77]
Economy-wide TFP (AR term) ρZ B 0.5 0.2 0.5 [0.38:0.61]
Labour supply (AR term) ρH B 0.5 0.2 0.89 [0.84:0.95]
Spending (AR term) ρG B 0.5 0.2 0.83 [0.77:0.89]
Investment (AR term) ρI B 0.5 0.2 0.42 [0.26:0.59]
Sector reallocation (AR term) ρN B 0.5 0.2 0.85 [0.79:0.92]
Weather (AR term) ρW B 0.5 0.2 0.36 [0.23:0.51]
Foreign time-preference (AR term) ρE B 0.5 0.2 0.09 [0.02:0.16]
Foreign consumption (AR term) ρC B 0.5 0.2 0.95 [0.92:0.98]

STRUCTURAL PARAMETERS
Risk consumption σC N 2 0.35 1.64 [1.24:2.02]
Labor disutility σH N 2 0.75 3.87 [2.98:4.84]
Land expenditure cost φ N 1 1 2.58 [1.65:3.42]
Share of land in agricultural output ω B 0.2 0.1 0.1 [0.03:0.16]
Consumption habits b B 0.7 0.1 0.4 [0.28:0.52]
Labor sectoral cost ι N 1 0.75 2.89 [2.11:3.7]
Substitutability by type of goods µ G 2 1 6.32 [4.46:8.25]
Substitutability home/foreign µA G 2 1 1.09 [0.74:1.43]
Substitutability home/foreign µN G 2 1 0.75 [0.59:0.9]
Land efficiency decay rate δ` B 0.2 0.07 0.06 [0.03:0.08]
Investment cost κ N 4 1.5 1.1 [0.54:1.65]
Land-weather elasticity - current θ1 U 0 500 29.17 [6.87:54.03]

Marginal log-likelihood -1467.21

Notes: The column entitled “Shape” indicates the prior distributions using the following acronyms: N describes a normal
distribution, G a Gamma, U an Uniform, B a Beta, and W a Weibull.

Table 5: Prior and posterior distributions of structural parameters and shock processes.

Variable Interpretation Model Data

C̄/Ȳ Ratio of consumption to output 0.55 0.57
Ī/Ȳ Ratio of investment to output 0.23 0.22
400× (r̄ − 1) Real interest rate 4.72 4.75
(1− ϕ)αN + ϕαA Goods market openness 0.28 0.29
nȲ A/Ȳ Ratio of agricultural production to GDP 0.08 0.07

Table 6: Steady state ratios (empirical ratios are computed using data between 1990 to 2017).
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Standard Deviation Autocorrelation Correlation w/ output
Model Data Model Data Model Data

Total output 3.37 2.72 0.85 0.95 1.00 1.00
Consumption 4.21 2.50 0.90 0.90 0.68 0.72
Hours 2.71 2.80 0.86 0.97 0.21 0.05
Investment 11.17 11.94 0.84 0.94 0.79 0.68
Agricultural output 13.48 13.32 0.91 0.92 0.50 0.40
Foreign output 2.14 3.45 0.95 0.98 0.14 0.65
RER variations 3.18 3.60 0.26 0.26 0.12 0.07
Weather 0.87 0.86 0.36 0.37 -0.12 -0.02

Table 7: Comparison of empirical business cycle moments with their theoretical counterpart
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1 Data

1.1 Data source

The sample period begins in 1994:Q3 and extends to 2016:Q4. All data are log deviations from
their trend, except share prices and the weather. Share prices are in deviation from their trend.
Trends are obtained by applying an HP filter. The time reference for all indexes is 2010:Q1.
More details on the data can be found in the online appendix.
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Weather data are obtained from weather stations at a monthly rate. The measure we use
is based on soil moisture deficit observations. We refer to the online appendix for an extensive
presentation of the index.

• Gross domestic product: real per capita output, expenditure approach, seasonally
adjusted. Source: Statistics New Zealand.

• Rest of the world gross domestic product: weighted average of GDP of top partners
(Australia, Germany, Japan, the United Kingdom and the United States). US dollars,
volume estimates, fixed PPPs, seasonally adjusted. Source: OECD.

• Agricultural output: real agriculture, fishing and forestry gross domestic product,
seasonally adjusted. Source: Statistics New Zealand.

• Consumption: households final consumption expenditure, seasonally adjusted. Source:
Statistics New Zealand.

• Investment: gross fixed capital formation, seasonally adjusted. Source: Statistics New
Zealand.

• Paid hours: average weekly paid hours (FTEs) total all ind. & both sexes, seasonally
adjusted. Source: Statistics New Zealand.

• Employment: labor force status for people aged 15 to 64 years, seasonally adjusted.
Source: Statistics New Zealand.

• Population: actual population of working age, in thousands, seasonally adjusted. Source:
Statistics New Zealand.

• Real effective exchange rate: Real Broad Effective Exchange Rate for New Zealand.
Source: Bank for International Settlements.

• Weather: soil moisture deficit at the station level. Source: National Climate Database,
National Institute of Water and Atmospheric Research.

1.2 Measuring the Weather

The measure of weather we use is an index of drought constructed following the methodology
of Kamber et al. (2013). It is based on soil moisture deficit observations1 and is collected from
the National Climate Database from National Institute of Water and Atmospheric Research.
Raw data is obtained from weather stations at a monthly rate. The spatial covering of these
stations is depicted in 1(a), while its temporal covering is represented in 1(b). To get quarterly
national representative data, both spatial and time scales need to be changed. In a first step,
we average monthly values of mean soil moisture deficit at the region level. We then remove
a seasonal trend by simply subtracting long term monthly statistics. Long term statistics are
evaluated as the average value over the 1980 to 2016 period. Then, we follow Narasimhan and
Srinivasan (2005) to create the soil moisture deficit index.

The measure of weather reads as follows:

1. We collect for each weather station the data ”MTHLY: MEAN DEFICIT (WBAL)”,
denoted Dt,m.

1Named “MTHLY: MEAN DEFICIT (WBAL)” in the database.
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2. For each m = {1, . . . , 12} month in each t = {1980, . . . , 2016} year, we compute monthly
soil water deficit (expressed in percent) for each month as:

MDt,m = Dt,m −Med(Dm)
Med(Dm) . (1)

3. The index for any given month is then computed as:

SMDIt,m = 0.5× SMDIt,m−1 + MDt,m

50 , (2)

using SMDI1980,m = SD1980,m
50 , m = {1, . . . , 12} as initial values for the series.

4. Then, we aggregate the monthly values of the index at the national level by means of a
weighted mean, where the weights reflect the share of yearly agricultural GDP of each
region.2

5. In a final step, monthly observations are quarterly aggregated.
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Figure 1: Covering of weather stations used to construct the soil moisture deficit index.

2 The Restricted-VAR Model

To observe how the economy responds to a weather shock, we develop an empirical framework,
and analyze the impulse response functions following a drought shock.

2.1 Modeling framework

We estimate a VAR (vector autoregressive) model on New Zealand data presented in section 6.
The VAR model needs to reflect the small open economy assumption. That is, New Zealand’s

2The regional agricultural GDP data we use ranges from 1987 to 2014. The weight after 2014 is set to the
average contribution of the region to the total agricultural GDP over the whole covered period.
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macroeconomic variables may react to foreign shocks, but domestic shocks should not signifi-
cantly impact the rest of the world. We therefore follow Cushman and Zha (1997) and create
an exogenous block for the variables from the rest of the world. Exogeneity is also imposed
for the weather variable, so that it can affect the domestic macroeconomic variables, and so
that neither domestic nor foreign macroeconomic variables can affect the weather variable. We
therefore have three blocks: one for the domestic economy, another for the weather, and another
for the rest of the world.

The model writes:XW
t

X?
t

XD
t

 =
p∑
l=1

A11
l 0 0
0 A22

l 0
A31
l A32

l A33
l


XW

t−l
X?
t−l

XD
t−l

+

ηWtη?t
ηDt

 , (3)

where t = 1, . . . , T is the time subscript, p is the lag length,3 XW
t , X?

t and XD
t are column

vectors of variables for the weather block, the rest of the world, and the small open economy,
respectively. The error terms ηWt , η?t and ηDt are exogenous and independent with zero mean
and variance σηW , ση? , and σηD , respectively. The coefficients in A11

l to A33
l , are the parameters

of interest that need to be estimated. The coefficients set to zero in the matrix of coefficients
insure the exogeneity between blocks.

The weather block writes:

XW
t =

[
ω̂t
]′
,

where ω̂t is the weather measure, i.e., the drought index. The international economy block
writes:

X?
t =

[
ŷ?t

]′
,

where ŷ?t stands for foreign real output growth. Finally, for our New Zealand economy model,
the domestic block is:

XD
t =

[
ŷt ŷAt ı̂t ĥt ĉt r̂ert

]′
,

where ŷt is real GDP growth, ŷAt is agricultural real output growth, it denotes investment, ĥt
is hours worked, ĉt is consumption, and r̂ert is real effective exchange rate.

For clarity purposes, Equation 3 can be rewritten in the following way:

Xt =
p∑
l=1

AlXt−l + ηt, (4)

where Xt =
[
XW
t X?

t XD
t

]′
is the n × 1 vector of endogenous variables at time t, Al =A11

l 0 0
0 A22

l 0
A31
l A32

l A33
l

, for l = 1, . . . , p are the n×n matrices of lagged parameters to be estimated,

and ηt =
[
ηWt η?t ηDt

]′
, the n × 1 vector contains white noise structural errors, normally

distributed with zero mean and both serially and mutually uncorrelated.

2.1.1 The domestic weather block

The estimated VAR model contains a domestic weather block to study the impact of weather
conditions on business cycle fluctuations. We rely on the same weather variable as in the DSGE
model whose construction is explained in subsection 1.2. When it takes positive values, the
weather variable depicts a prolonged episode of dryness. It is the only variable in the exogenous
domestic weather block.

3We use a lag of one in the model basing our choice on the value of both Hannan-Quinn and Schwarz criteria
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2.1.2 The foreign economy block

The foreign economy block comprises only one variable: real output y∗t , computed as a weighted
average of the respective value observed for New Zealand’s most important historical trading
partners: Australia, United States, United Kingdom and Japan. Weights are fixed according to
the share of imports and exports with New Zealand at each quarter.

2.1.3 The domestic economy block

The domestic economy block comprises real output growth yt, real agricultural output growth
yAt , investment it, hours worked ht, consumption ct, and real effective exchange rate rert.

2.2 Macroeconomic response to weather shocks

We now present the empirical results of the impulse responses to a one standard deviation
shock to the weather variable, i.e., the drought indicator to assess the macroeconomic response
following this shock. These IRFs are reported in Figure 2. The solid green lines are the responses
while the gray areas are the 68% error bands obtained from 250 bootstrap runs. The responses
are computed for 20 periods. We focus on the shock to the weather variable The complete set
of IRFs is graphed in Figure 3 and Figure 4, where each column represents the response of the
system to a specific shock.
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the 250 bootstrap runs. The response horizon is in quarters.

Figure 2: VAR impulse response to a 1% weather shock (drought) in New Zealand.

Figure 2 shows multiple channels affecting the business cycles after a climate shock. Overall,
the empirical evidence suggests that a drought episode acts as a negative supply shock. As
in Buckle et al. (2007), it creates a significant recession through a decline of the GDP. This
contractionary is triggered by the large fall in agricultural production. The drought is also
accompanied by a decrease in investment and stock prices, fueled by the weaker demand for
capital goods from farmers. These findings regarding the reaction of financial markets are
quantitatively similar to those found by Hong et al. (2016) for the US. The results from the
restricted VAR model can then be used as a guide to compare the propagation of the weather
shock between the model and the VAR.
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3 The non-linear model

3.1 Households

The marginal utility of consumption is given by:

λct =
(
CtC

−b
t−1

)−σC
, (5)

The stochastic discount reads as:

Λt,t+1 = βEt

{
λct+1
λct

}
. (6)

The Euler equation is given by:

Et {Λt,t+1} rt = 1. (7)

The real exchange rate is obtained by:

Et

{
rer∗t+1
rer∗t

}
= rt
r∗t

(1 + pNt Φ′(b∗jt)). (8)

The labor supply equation in each sector is:

χhσHt = C−σCt wNt

(
hNt
ht

)−ι
, (9)

χhσHt = C−σCt wAt

(
hAt
ht

)−ι
. (10)

The labor effort disutility index generating costly cross-sectoral labor reallocation:

ht =
[(
hNt

)1+ι
+
(
hAt

)1+ι
]1/(1+ι)

. (11)

The CES consumption bundle is determined by:

Ct =
[
(1− ϕ)

1
µ (CNt )

µ−1
µ +

(
ϕεAt

) 1
µ (CAt )

µ−1
µ

] µ
µ−1

, (12)

The consumption price index in real terms determines the relation between relative prices in
the consumption basket of households:

1 = [(1− ϕ) (pNC,t)1−µ + ϕ(pAC,t)1−µ]
1

1−µ , (13)

where pNC,t = PNC,t/Pt and pAC,t = PAC,t/Pt. In addition, consumption price indexes by type of
good follow:

pNC,t =
[
(1− αN ) (pNt )1−µN + αNrert

1−µN
] 1

(1−µN ) , (14)

pAC,t =
[
(1− αA) (pAt )1−µA + αArert

1−µA
] 1

(1−µA) . (15)
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3.2 Non-agricultural Firms

Technology is given by:

Y N
t = εZt

(
KN
t−1

)α (
HN
t

)1−α
, (16)

Law of motion of physical capital is:

INt = KN
t − (1− δK)KN

t−1, (17)

First order conditions, determining the real wage, the shadow value of capital goods, and
the return of physical, emerge from the solution of the profit maximization problem:

wNt = (1− α) pNt
Y N
t

HN
t

, (18)

qNt = pNt + κpNt ε
i
t

(
εit
INt
INt−1

− 1
)
− Et

Λt,t+1
κ

2p
N
t+1

(εit+1
INt+1
INt

)2

− 1

 , (19)

qNt = Et

{
Λt,t+1

[
αpNt+1

Y N
t+1
KN
t

+ (1− δK) qNt+1

]}
. (20)

3.3 Farmers

Each farmer i ∈ [n, 1] has a land endowment `it, whose time-varying productivity (or efficiency)
follows a law of motion given by:

`t =
[
(1− δ`) + τ

φ
Xφ
t ,

]
Ω
(
εWt

)
`t−1 (21)

With a damage function:

Ω
(
εWt

)
=
(
εWt

)−θ
, (22)

Each representative firm i ∈ [nt, 1] operating in the agricultural sector has the following pro-
duction function:

Y A
t = `ωt−1

[
εZt

(
KA
t−1

)α (
κAH

A
t

)1−α
]1−ω

, (23)

The law of motion of physical capital in the agricultural sector is given by:

IAt = KA
t − (1− δK)KA

t−1. (24)

First order conditions are given by:

wAt = (1− ω) (1− α) pAt
Y A
t

HA
t

, (25)

qAt = pNt + κpNt ε
i
t

(
εit
IAt
IAt−1

− 1
)
− Et

Λt,t+1
κ

2p
N
t+1

(εit+1
IAt+1
IAt

)2

− 1


(26)

qAt = Et

{
Λt,t+1

[
α (1− ω) pAt+1

Y A
t+1
KA
t

+ (1− δK) qAt+1

]}
(27)

pNt

τXφ−1
t `t−1Ω

(
εWt
) = Et

{
Λt,t+1

(
ω
Y A
t+1
`t

+
pNt+1

τXφ−1
t+1 `t

[
(1− δ`) + τ

φ
Xφ
t+1

])}
(28)
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3.4 The foreign economy

The foreign economy is determined by a set of three equations:

log (c∗t ) = (1− ρ∗) log
(
c̄∗j

)
+ ρ∗ log

(
c∗t−1

)
+ σ∗η

∗
t (29)

βEt
{
λ∗t+1/λ

∗
t

}
r∗t = 1, (30)

1/c∗t = λ∗t , (31)

3.5 Closing the economy

First, the market clearing condition for non-agricultural goods is determined when the aggregate
supply is equal to aggregate demand:

(1− nt)Y N
t = (1− ϕ)

(1− αN )
(
pNt
pNC,t

)−µN (
pNC,t

)−µ
Ct + αN

(
pNt
rert

)−µN
C∗t


+ Y N

t gεGt + It + ntXt + 0.5χB(B∗t )2. (32)

In addition, the equilibrium of the agricultural goods market is given by:

ntY
A
t = ϕ

(1− αA)
(
pAt
pAC,t

)−µA (
pAC,t

)−µ
Ct + αA

(
pAt
rert

)−µA
C∗t

 , (33)

The aggregation of hours, investment and output are given by:

Ht = (1− nt)HN
t + ntH

A
t (34)

It = (1− nt) INt + ntI
A
t (35)

Yt = (1− nt) pNt Y N
t + ntp

A
t Y

A
t (36)

The net foreign asset position for the home country is given by:

B∗t = r∗t−1
rert
rert−1

B∗t−1 + tbt,

where tbt is the real trade balance that can be expressed as follows:

tbt = pNt

[
(1− nt)Y N

t − Y N
t gεGt − It − ntXt − 0.5χB(B∗t )2

]
+ pAt ntY

A
t − Ct. (37)

And a set of structural disturbances:

log(εZt ) = ρZ log(εZt−1) + σZη
Z
t , with ηZt ∼ N (0, 1) , (38)

log(εGt ) = ρG log(εGt−1) + σGη
G
t , with ηGt ∼ N (0, 1) , (39)

log(εIt ) = ρI log(εIt−1) + σIη
I
t , with ηIt ∼ N (0, 1) , (40)

log(εHt ) = ρH log(εHt−1) + σHη
H
t , with ηAt ∼ N (0, 1) , (41)

log(εWt ) = ρW log(εWt−1) + σW η
W
t , with ηWt ∼ N (0, 1) , (42)

log(εNt ) = ρN log(εNt−1) + σNη
N
t , with ηNt ∼ N (0, 1) , (43)

log(εCt ) = ρC log(εCt−1) + σCη
C
t , with ηCt ∼ N (0, 1) , (44)

log(εEt ) = ρE log(εEt−1) + σEη
E
t , with ηEt ∼ N (0, 1) . (45)
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4 Steady state

From the Euler equation, given a discount factor β, the real rate reads as:

r̄ = 1/β. (46)

Given a steady state value of h̄N and h̄A set to 1/3, the steady state disutility of labor supply
is given by:

h̄ =
[(
h̄N
)1+ι

+
(
h̄A
)1+ι

]1/(1+ι)
. (47)

Normalizing price indexes p̄N , p̄A and q̄ to one, the rate of return of physical capital is determined
by:

z̄ = r̄ − (1− δ) . (48)

The stock of capital of the non-agricultural sector is given by combining firm first order condition
on physical capital and the technology constraint:

K̄N = H̄N

(
Z̄

α

)(1/(α−1))

, (49)

and the output per firm is given by the supply curve:

Ȳ N =
(
K̄N

)α (
H̄N

)1−α
. (50)

While investment per firm is given by:

ĪN = δK̄N . (51)

First order condition on labor demand implies that the equilibrium wage is equal to the marginal
product of labor:

W̄N = (1− α) Ȳ
N

H̄N
. (52)

Assuming perfect mobility across labor type in the deterministic steady state of the model, the
underlying wage is equal across sectors:

W̄A = W̄N . (53)

Reversing the marginal labor product equation, the production per farmer is given by:

Ȳ A = H̄AW̄A

(1− ω) (1− α) . (54)

Under perfect capital mobility across sectors, the invertion of the marginal product equation
pins down the steady state capital per farmer:

K̄A = (1− ω)αȲ
A

Z̄
. (55)

Given a land endowment ¯̀, a stock of physical capital K̄A and the demand for labor H̄A, then
we compute the parameter affecting the labor productivity κA:

κA =

( Ȳ A

¯̀ω

)1/(1−ω) (
K̄A

)−α1/(1−α)
1
H̄A

. (56)
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Letting %̄ denote the steady state lagrangian multiplier on the land productivity law of motion,
the first order condition on land determines this lagrangian multiplier in steady state:

%̄ =
(
ω
Ȳ A

¯̀ + δ` ¯̀
)
/ (r − (1− δ`)) .

From the first order condition on land expenditures, the land expenditure per farmer reads as:

X̄ = δ`φ%̄. (57)

While the shift parameter in the land augmenting productivity, τ , reads as:

τ = 1
%̄¯̀X̄φ−1 . (58)

The stock of physical capital per farmer is given by:

ĪA = δK̄A.

To compute the share of entrepreneurs operating in the agricultural sector, we must combine
resources constraints in each sector by substituting consumption:

(1− n) Ȳ N = (1− ϕ) C̄ + Ȳ Ng + (1− n) ĪN + nĪA + nX, (59)
nȲ A = ϕC̄. (60)

We obtain the following equation:

(1− n) (Ȳ N − ĪN ) = n

((1− ϕ)
ϕ

Ȳ A + ĪA + X̄

)
+ Ȳ Ng (61)

From the latter equation, it’s straightforward to pin down the value of n:

n = (1− g) Ȳ N − ĪN

(1− ϕ) /ϕȲ A + ĪA + X̄ + Ȳ N − ĪN
.

Finally, the consumption is given by any of the resource constraints:

C̄ = n

ϕ
Ȳ A.

5 The welfare cost of weather-driven business cycles

To get a welfare perspective on climate change, we compute how much consumption households
are willing to abandon to stay in an equilibrium free of weather shocks.4 Consider the following
utility function:

Ut = 1
1− σ (Cjt+τ − bCt−1+τ )1−σ −

χεHt+τ
1 + σH

h1+σH
jt+τ , (62)

The taylor expansion up to second order of the left term of the utility function is given by:

E [UC,t] '
1

1− σ (C − bC)1−σ−1
2σ (C − bC)−σ−1E

[
(ct − c)2

]
+1

2σb
2 (C − bC)−σ−1E

[
(ct−1 − c)2

]
4In standard macroeconomic models, the comparison of different scenarios is achieved through the computation

of the fraction of consumption streams from alternative regime to be added (or subtracted) to achieve a benchmark
reference (see for instance, Lucas (2003)). In our situation, this approach allows us to get an evaluation of the
welfare cost of climate change in terms of unconditional consumption.
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(63)

While for the right term of the utility function:

E [UH,t] ' −
χ

1 + σH
h1+σH − 1

2σHχh
σH−1E

[
(ht − h)2

]
(64)

Expressed in terms of variances, the utility function up to second order is given by:

E [Ut] ' Ū −
1
2σ
(
1− b2

)
(C − bC)−σ−1 v (ct)−

1
2σHχh

σH−1v (ht) (65)

where v (ct) and v (ht) denote the variance of each endogenous variables.
Then, the welfare function up to second order is a linear function of the utility function:

E [Wt] = Ū

1− β −
1
2σ
(
1− b2

) (C̄ − bC̄)−σ−1

1− β v (ct)−
1
2σHχ

hσH−1

1− β v (ht) (66)

The welfare cost between two regimes with the same steady state is given by:

(1 + λ)1−σ =
1

1−σ

(
C̄ − bC̄

)1−σ
− γCv

(
cAt

)
+ γH

[
v
(
hBt

)
− v

(
hAt

)]
[

1
1−σ

(
C̄ − bC̄

)1−σ
− γCv

(
cBt
)] (67)

Which can be expressed as:

λ =

 1
1−σ

(
C̄ − bC̄

)1−σ
− γCv

(
cAt

)
+ γH

[
v
(
hBt

)
− v

(
hAt

)]
[

1
1−σ

(
C̄ − bC̄

)1−σ
− γCv

(
cBt
)]


1/(1−σ)

− 1 (68)

6 Estimation of the DSGE Model

We apply standard Bayesian estimation techniques as in Smets and Wouters (2003, 2007). In
this section, we describe the data sources and transformations. The model is estimated using
6 time series with Bayesian methods and quarterly data for New Zealand over the sample time
period 1994:Q2 to 2016:Q4. Data with trends are detrended using the HP filter. The time
reference for all indexes is 2010:Q1. Transformed data is shown in Figure 5.

6.1 Macroeconomic time series transformation

Concerning the transformation of the series, the point is to map non-stationary data to a
stationary model. The data that are known to have a trend or unit root are made stationary
in two steps. First, we divide the sample by the civilian population, denoted Nt. Second, data
are taken in log and we use a first difference filtering to obtain growth rates. Real variables are
deflated by GDP deflator price index denoted Pt.

As an illustration, the calculation method used to detrend real GDP per capita gap is as
follows:

ŷt = log
(

Yt
PtNt

)
− Γ

(
log

(
Yt
PtNt

))
, (69)

where Γ (.) is the quadratic trend, linearized thanks to the log.
Turning to the weather index, we simply apply the logarithm function:

ω̂t = log(SMDIt)
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6.2 Measurement equations of the DSGE model

The final dataset includes seven times series: real GDP, real investment, hours worked, real
agricultural output, consumption, foreign output and the weather index. Measurement equations
read as follows:

100× ŷt
100× ı̂t
100× ĥt
100× ŷAt
100× ĉt
100× ŷ∗t
100×∆r̂er∗t
100× ω̂t


=



log(Yt/Ȳ )
log(pNt It/Ī)
log(Ht/H̄)
log(ntpAt Y A

t /
(
Ȳ An̄

)
)

log(Ct/C̄)
log(Y ∗t /Ȳ ∗)
log(RERt−1/RERt)
log(εWt )


.

6.3 Comparing the VAR and the DSGE model

Since we used the VAR as a guideline for building our DSGE model, we report in Figure 6
the estimated response of the DSGE model (taken at posterior mean) following a 1% weather
shock and the corresponding response of the VAR model.5 The gray areas represent 68 and
95 percent probability intervals. Figure 6 shows that the model does very well at reproducing
the estimated effects of weather shocks, including the hump-shape response of real GDP, real
agricultural production and the muted response of hours. Another challenging aspect of the
fit exercise is to capture the higher persistence of the response of macro-variables compared
to the weather shock process. In particular, the weather requires five quarters to vanish while
output, investment and hours take more than fifteen periods to go back to steady state. The
introduction of an endogenous land input successfully captures this hysteresis effects. However,
the model does overstate the contraction of output and its persistence while it does understate
the decline in investment.

7 Building long run scenarios of weather shocks

To estimate the variability of the weather process ηWt , we rely on simulated weather data from
a circulation climate model, the Community Climate System Model (CCSM). We consider the
data simulated under the four well-employed Representative Concentration Pathways (RCP 2.6,
RCP 4.5, RCP 6.0, and RCP 8.5). They are given on a 0.9◦ × 1.25◦ grid, at a monthly rate,
for two distinct periods. The first one corresponds to “historical” values, and ranges from 1850
to 2005. The second one gives observations for “future” values up to 2100. Since our DSGE
models is fed-up with quarterly data at the national level, we need to aggregate the raw data
provided by the CCSM. To do so, we compute the average value of total rainfall at the region
level by means of a weighted mean. The weight put on each cell of the grid in a given region
is the proportion of the region covered by the cell. Values are then averaged for each month,
at the national level. The aggregation is done using a weighted mean, where weights are set
according to the share of agricultural GDP of the region.6 Resulting data is then converted to
quarterly data, by summing the monthly values of total rainfall. The final dataset of simulated
data contains quarterly data of rainfall at the national level for the historical period (ranging
from 1983 to 2005) and for the future period (covering 2006 to 2100) for each RCP scenario.

5The IRFs of the DSGE model are obtained from the measurements equations in ?? which makes them
comparable with the VAR’s IRFs.

6The regional agricultural GDP data we use ranges from 1987 to 2014. The weight after 2014 is set to the
average contribution of the region to the total agricultural GDP over the whole covered period.
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Scenario Compound quarterly
rate (σi,ηW )

Average growth rate of
the standard error

(∆σi,ηW )

Average growth rate of
the variance (∆σ2

i,ηW
)

RCP 2.6 −0.1218964× 103 −4.095090 −8.022482
RCP 4.5 0.1923896× 103 6.820885 14.10701
RCP 6.0 0.2591393× 103 9.294213 19.45225
RCP 8.5 0.6096352× 103 23.249574 51.90457

Notes: For each Representative Concentration Pathways, we estimate the quarterly rate of growth of the standard deviation
of the weather measure (σi,ηW ), the corresponding average growth rate over the whole 1989–2100 period (∆σi,ηW ) and
the average growth rate of the variance (∆σ2

i,ηW ) .

Table 1: Estimations of growth rates of standard errors of the weather process under different
scenarios.

We then need to estimate how the variance of the weather shock changes through time in
each of the i = {RCP 2.6,RCP 4.5,RCP 6.0,RCP 8.5} scenario. We proceed by rolling window
regression, the size of each window being set to 102 quarters, matching the size of the number of
observations used to estimate the DSGE model. In each step of the rolling window regression,
we fit an AR(1) model to the data and compute the standard deviation of the residuals. We
estimate the growth rate of the standard deviation ∆σi,ηW by least squares, regressing the
natural logarithm of the standard deviation previously obtained on time. Then, we estimate
the average growth rate ∆σηW of the standard deviation over the 1989–2100 period for the ith
scenario as:

∆σi,ηW = (1 + σi,ηW )q − 1, (70)

where σi,ηW is the estimated compound quarterly rate of growth for the standard error of the
weather shock process under the ith climate change scenario, and q is the number of quarter in
the whole sample, i.e., 347. ?? summarizes the estimates.
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Figure 3: VAR impulse responses to a 1% shock (1/2)
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Figure 4: VAR impulse responses to a 1% shock (2/2)
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Figure 5: Observable variables used in the VAR and the DSGE estimations.
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Figure 6: Comparison of the DSGE and the VAR impulse responses to a 1% weather shock
(drought) in New Zealand.
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