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Abstract:
The main two methods of endogeneity correction for linear quantile regressions with their ad-

vantages and drawbacks are reviewed and compared. Then, we discuss opportunities of alleviating
the constant effect restriction of the fitted-value approach by relaxing identification conditions.
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1 Introduction

Endogeneity issues in regression models have been well studied in econometrics, though they may
have been less fully investigated in the biometric and biostatistic literature. Endogeneity in regres-
sion model estimation may arise from reverse or feed-back causality, correlated measurement errors
in dependent and independent variables, and unobserved heterogeneity correlated with dependent
and independent variables.

It is not diffi cult to find examples in which endogeneity is a problem in biological sciences. For
example, in observations of natural phenomena in biological sciences, the presence of an unobserved
variable correlated with both the dependent and independent variables is often likely to generate
endogeneity biases in regression estimates. Consider for instance the study of infant weights in
some tropical country. In this context, heavy rains can simultaneously cause higher travelling costs
because of flooded roads, on the one hand, and, worse health status, because of malaria spurred
by a larger number anopheles mosquitoes, on the other hand. Then, lower observed weights may
result from higher malaria incidence. However, it may also come from ineffi cient health care delivery
caused by transportation delays. In that case, in a regression of observed infant weights on malaria
spells, one expects some endogeneity of this latter variable associated with unobserved transport
costs. Moreover, information on rains can be used an instrument for malaria.

In this example, investigating low quantiles of baby weights, and not only the mean weight, is
crucial as these weights are excellent measures of child nutrition status, and what matters is that
the weight does not fall under a minimal threshold.

More generally, analysing distributions of outcomes in biological or medicine studies is funda-
mental as the global average may hide many interesting and vital phenomena. Quantile regressions
have been found a convenient statistical tool for such explorations and for better understanding the
heterogeneity of the observed individual units in general. The practical statistical use of quantile
regressions was popularised by Bassett and Koenker (1978) and Koenker and Bassett (1978) who
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brought to the fore tractable computational techniques and derived asymptotic properties for these
methods.

Quantile regressions allow for any given regressor having different effects for different individual
units. Therefore, using quantile regressions increases the flexibility of the models. It also enables
researchers to explore specific locations of the conditional distribution of the outcome variable, in
particular the lower and upper tails. In that case, more substantial explanations of the variability
of the studied phenomenon can be obtained, particularly in the case of nonconstant effect; that is:
with regression coeffi cients varying across quantiles.

Different approaches have been pursued for dealing with endogeneity issues in quantile regres-
sions. On the one hand, an analogue of the instrumental regression approach, based on exclusion
restrictions, has been developed by Chernozhukov and Hansen (2005, 2006, 2008a,b). It is associ-
ated with specifications of the conditional quantile function of main equation of interest.1 It allows
for nonconstant quantile effects.

On the other hand, the fitted-value approach corresponds to another analogue of the typical
two-stage least-square estimator for quantile regression. It was pioneered by Amemiya (1982) and
Powell (1983) who laid their theoretical properties for two-stage least-absolute-deviations estimators
in a simple setting. First, fitted-values of the endogenous regressors are estimated using a set of
exogenous independent variables. Then, the estimation of the quantile regression of interest is
performed by substituting the endogenous regressors with their fitted-values. This approach can
be seen as imposing restrictions on the quantile of the reduced-form error. It makes sense to pay
particular attention to reduced-form equations in experimental settings or policy design. Blundell
and Powell (2006) pointed out that the reduced-form is of interest when control variables for the
policy maker include instrumental variables. In social statistics, the pro-poor targeting of social
programs can be improved by relying on predictions of living conditions based on well focused
quantile regressions of reduced forms (Muller, 2005, Muller and Bibi, 2010). Similarly, in public
health interventions, predictive quantile equations of health outcomes are useful; and so on for
other biological sciences in which targeting interventions may be important.

Using this approach, Chen (1988) and Chen and Portnoy (1996) studied two-stage quantile
regression in which trimmed least squares (TLS) and least absolute deviations (LAD) estimators
are employed as the first-stage estimators. To reduce the variance of two-stage quantile regression
estimators, Kim and Muller (2018) constructed a weighted average of the dependent variable with
its fitted value from a preliminary estimation, which is employed as the dependent variable in a
final two-stage quantile regression. Kim and Muller (2004) used a similar approach with instead
quantile regression in the first stage. We now turn to a more precise discussion of the conditions
in which these estimation methods yield consistent estimation and other useful properties.

2 Results and Discussion

2.1 Models and assumptions

Let us consider the estimation of the parameter (α) in the following linear equation by using quantile
regression:

yt = x′1tβ + Y ′t γ + ut (1)

= z′tα+ ut,

1See Abadie et al. (2002), Hong and Tamer (2003), Honore and Hu (2004), Ma and Koenker (2006), Chernozhukov,
Imbens and Newey (2007), Lee (2007), Sakata (2007).
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where t = 1, ..., T , [yt, Y
′
t ] is a (G+ 1) row vector of endogenous variables, x′1t is a K1 row vector of

exogenous variables, and ut is an error term. We denote by x′2t the row vector of the K2 exogenous
variables excluded from (1).To shorten notations, let zt = [x′1t, Y

′
t ]′, α = [β′, γ′]′. Assume the first

element of x1t is 1.
By assumption, the following linear equation, which is assumed to be correctly specified, can

be used to generate an exogenous fitted-value for Yt:

Y ′t = x′tΠ + V ′t , (2)

where x′t = [x′1t, x
′
2t] is a K row vector with K = K1 +K2. Matrix Π is a K×G matrix of unknown

parameters, while V ′t is a G row vector of unknown error terms. Assumptions 2 and 4 below will
complete the DGP. However, let us first discuss the reduced form.

Using (1) and (2) yields:
yt = x′tπ + vt, (3)

for t = 1, ..., T ,

π = H(Π)α with H(Π) =

[(
IK1

0

)
,Π

]
(4)

and vt = ut + V ′t γ.

Let ρθ(z) = zψθ(z), where ψθ(z) = θ − 1[z≤0], for any quantile index θ ∈ (0, 1) and 1[.] is the
indicator function. If the orthogonality conditions, E(ztψθ(ut)) = 0, were satisfied, then the one-
stage quantile regression estimator would be consistent. However, when ut and Yt are correlated
under endogeneity of Yt, these conditions are generally not satisfied, and the quantile regression
estimator of α is not consistent.

The Two-Stage Quantile Regression estimator α̂ of α is defined, for any quantile θ, as a solution
to:

min
α

T∑
t=1

ρθ(yt − x′tH(Π̂)α), (5)

where Π̂ is a first-stage estimator. Let us state a few hypotheses and regularity assumptions.

Assumption 1. The sequence {(x′t, ut, vt)} is α−mixing with mixing numbers {α(s)} of size
−2 (4K + 1) (K + 1).

Assumption 2. E(ψθ(vt)|xt) = 0, for an arbitrary θ.

This is the main identifying condition of the fitted-value approach with quantile regression.

Assumption 3. (i) H(Π +BΠ) is of full column rank.
(ii) Let Ft(.|x) be the conditional cumulative distribution function (CDF) and ft(.|x) be the con-
ditional probability density function (PDF) of vt. The conditional PDF ft(·|x) is assumed to be
Lipschitz continuous for all x, strictly positive and bounded by a constant f0 (i.e., ft(·|x) < f0, for
all x).

(iii) The matrices Q = lim
T→∞

E

[
1
T

T∑
t=1

xtx
′
t

]
and Q0 = lim

T→∞
E

[
1
T

T∑
t=1

ft(0|xt)xtx′t
]
are finite and

positive definite.
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(iv) There exists C > 0, such that E(‖xt‖3) < C <∞, for any t.

In Kim and Muller (2018), a general asymptotic expansion is derived that can be used to
compute the particular case in the following theorem by plugging the asymptotic expansion of a
first stage OLS estimator Π̂ in it, to obtain:

Theorem 1. Under Assumptions 1-3, the asymptotic representation for the two-stage quantile
regression estimator is:

T 1/2(α̂− α) = RT−1/2
T∑
t=1

xtψθ(vt)−RQ0Q
−1T−1/2

T∑
t=1

xt(vt − ut) + op(1),

where R = Q−1
zz H(Π)′ and Qzz = H(Π)′Q0H(Π).

Assumption 4. E(Vt|xt) = E(Vt).

Assumption 4 imposes the independence of the reduced-form errors with all non-constant ex-
ogenous variables and it corresponds to the use of unbiased OLS in the first stage.

Assumption 5. (i) There are finite constants ∆, such that E|xtiVjt|3 < ∆, for all i, j and t.

(ii) The covariance matrix VT = var
(
T−1/2

∑T
t=1 St

)
is positive definite for T large enough, where

St = (ψθ(vt), vt − ut)′ ⊗ xt, ut = vt − V
′
t γ and ⊗ is the Kronecker product.

Theorem 3. (Kim and Muller, 2018) Under Assumptions 1-5,

D
−1/2
T T 1/2(α̂− α)

d→ N(0, I),

where DT = MVTM
′ and M = R[I,−Q0Q

−1].

Therefore, calculating the estimator and performing asymptotic inference is straightforward
with this approach. In contrast, the instrumental variable approach in that case assume, instead
of Assumption 2, that the conditional quantile of ut with respect to zt is constant: QU |Z(θ|z) =
constant, where ut can be seen as an error in (0,1), - or another interval - and for any θ ∈ (0, 1).
This model can also be extended to nonseparable (in error) models. Practically, the IV approach is
performed by approximating the first-order conditions by iterating some ancillary quantile regres-
sions.

Specifically, the IV-QR estimator of the coeffi cient vector for the endogenous regressors is

γ̃θ = arg min
γ
δ(γ, θ)′Aδ(γ, θ), where A is a positive definite matrix,

and
(
β̃(γθ), δ̃(γθ)

)
= arg min

βθ,δθ

T∑
t=1

ρθ (yt − Ytγθ − x1tβθ − x2tδθ).

The assumption made by Chernozhukov and Hansen (2006) for a quantile model y = Q(Y, x1, UY )
are as follows:
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Assumption B1: Given X1 = x1 for each value Ȳ of Y, y = Q(Ȳ , x1, UY ), where UȲ ∼ U(0, 1),
and Q(Ȳ , x1, θ) is strictly increasing in θ.

Assumption B2: Given X1 = x1, UȲ is independent of X2.

Assumption B3: Given X1 = x1 and X2 = x2, for an unknown function G and a random
vector v, Y = G(X2, X1, ν).

Assumption B4: For any values Ȳ and Ȳ ′, given (ν,X1, X2), UȲ ∼ UȲ ′ .

Assumption B5: (yt, Yt, X1t, X2t) are iid on a compact set.

Assumption B6: For any θ, (βθ, γθ) is in the interior of a compact convex set.

Assumption B7: Assume that y has almost surely a bounded conditional density fy|X1,Y,X2 ,
and let π ≡ (β, γ, δ), α ≡ (β′, γ′), Ψt(θ) ≡ Vt(θ) [Φt(θ)

′, X ′1t]
′, where Φt(θ) ≡ Φt(θ,X1t, X2t) is a

transformation of instrument information, Vt(θ) ≡ Vt(θ,X1t, X2t) is a positive weight function, and

Σ(π, θ) ≡ E
[
θ − 1{y−Y ′γ−X′

1β+Φt(θ)′δ<0}Ψ(θ)
]
and Σ(η, θ) ≡ E

[
θ − 1{y−Y ′γ−X′

1β}Ψ(θ)
]
.

Assume that ∂
∂(β′,γ′)

Σ(α, θ) and ∂
∂(γ′,α′)Σ(π, θ) are continuous and have uniformy full rank, and

that the image of (β, γ) 7−→ Π(α, θ) is simply connected.

Assumption B8: Almost surely, the following estimated function, denoted f(θ,X1, X2), con-
verge in probability uniformy in (θ,X1, X2) over compact sets: Φ̂(θ,X1, X2) and V̂ (θ,X1, X2).

Assume that these functions f(θ,X1, X2) are uniformy smooth functions in (X1, X2) with the
uniform smoothness order greater than dim(Y,X1, X2)/2, and

∥∥f(θ′, X1, X2)− f(θ,X1, X2)
∥∥ <

C
∥∥θ − θ′∥∥a , where C > 0 and a > 0, for all θ, θ′, X1, X2.

Theorem 4. (Chernozhukov and Hansen):

Under Assumptions B1-B8, let εt(θ) ≡ yt − X ′1tβ(θ) − Y ′t γ(θ) and lt(θ, η(θ)) ≡ θ − 1{εt(θ)<0},
then:

√
T (α̂(.)− α(.)) = −J(.)−1 1√

T

T∑
t=1

lt(., α(.))Ψt(.)+op(1) converges in distribution to b(.), which

is a centered Gaussian process with covariance function E
[
b(θ)b(θ′)′

]
= J(θ)−1S(θ, θ′)

[
J(θ)−1

]′,
where J(θ) ≡ E

[
fεt(θ)(0 | X1, Y,X2)Ψ(θ) [Y ′, X ′1]

]
and S(θ, θ′) =

(
min(θ, θ′)− θθ′

)
E
[
Ψ(θ)Ψ(θ′)′

]
.

Let us now compare the two approaches in the next subsection.

2.2 Advantages and drawbacks of the two approaches

On the one hand, the fitted-value approach is often convenient. It corresponds to an elementary OLS
and quantile regressions, which is practically analogous to the two-stage least-square procedure. For
this reason, it has been used by empirical researchers keen to avoid computation problems.2 In
particular, no non-parametric estimation, no simulations, no numerous iterations of computation

2See: Arias, Hallock and Sosa-Escudero (2001), Garcia, Hernandez and Lopez (2001), Chortareas, Magonis and
Panagiotidis (2012), Chepatrakul, Kim and Mizon, (2012).
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steps nor optimisation grid are needed. The fitted-value approach also allows the use of a new
method of variance reduction for quantile regressions proposed by Kim and Muller (2018) under
very general conditions.

In contrast, an issue with the IV approach is that it may be costly in terms of numerical
computations to perform. For example, the following table, extracted from Kim and Muller (2012)
compares computation times using the fitted-value approach in Kim and Muller (2004, 2018) and the
Chernozhukov and Hansen (2005, 2006) procedure and programs, for a simple simulation setting.

Table 1: Comparison of computation times

Nb of
observations

Number of endogenous regressors: 1 2 3 4
Kim and Muller Test:
Time in seconds

100 0.1 0.06 0.06 0.1

500 0.18 0.38 0.54 0.82
Chernozhukov and Hansen Test:

Time in hours!
100 0.0007 0.0215 1 82

500 0.0013 0.1299 9 703

The computation time for the Chernozhukov and Hansen test is much higher because of the iter-
ations for the numerical approximation of the first-order conditions, especially with more than one
endogenous regressor. Although this drawback may be alleviated by using more effi cient algorithms,
it remains an issue when there are many endogenous regressors.

On the other hand, the fitted-value approach is often plagued by the occurrence of constant
effects, as claimed by Lee (2007). That is: all coeffi cients, except for the intercept, should be the
same for all considered quantiles, which makes the model less flexible and therefore less realistic.
However, even if this drawback is real, this is not completely so. Muller (2017) showed that
it is possible to estimate two-stage quantile regressions using the fitted-value approach that are
consistent with a particular form of nonconstant effects. In that case, heterogeneous coeffi cients
can be allowed for some of the model regressors only. This can be obtained by assuming weaker
instrumental variable restrictions than usual. Under these weakened conditions, the endogeneity can
be treated by using the fitted-value approach, although the nonconstant effects have to correspond
to parameters that are in the model but cannot be identified precisely. However, nonconstant effects,
varying with the quantile index, can still be present in the true model. Another shortcoming of
the fitted-value approach is that the first-stage equation must be well specified, whereas this is not
required for the instrumental variable approach.

However, there is also some common ground between the two approaches. Indeed, even under
constant effects, quantile regressions can be useful when only one given quantile is of interest, for
example when the considered intervention or experiment is targeted to this quantile. In that case,
both methods are appropriate. Moreover, when one is only interested in the individual mean, then
the two approaches can be seen as equivalent under exact identification (Galvao and Montes-Rosas,
2012).

2.3 Relaxing identification conditions

The above-mentioned interest in relaxing identification requirements for quantile regression under
endogeneity invites to pursue the discussion in this direction. Assumption 2 imposes that zero is
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the given θth-quantile of the conditional distribution of vtθ, where the quantile index θ has been
added to vt to show well that Assumption 2 characterizes a given quantile index θ.

Assumption 6: For a given quantile index θ, the cdf of vtθ conditional on xt, denoted Fvtθ|xt ,
the cdf of vtθ conditional on x1t, denoted Fvtθ|x1t , and the marginal cdf of x2t, denoted Fx2t , are
continuous and strictly increasing.

Now, instead of Assumption 2, the weaker Assumption 2’can be used.

Assumption 2’: For a given quantile θ and under Assumption 1:

vtθ is independent of x2t, conditionally on x1t. (6)

In Muller (2007), it is shown that

Theorem 5: Under Assumptions 6 and 2’, for a quantile regression process of the reduced form
(3):

(a) There is a constant effect for the variables in x2t.
(b) A nonconstant effect is possible for the variables in x1t.
(c) For all θ, F−1

vtθ|x1t (θ) is linear in x1t.

The popular ‘linear location-scale hypothesis’in the quantile regression literature on the non-
constant effect (e.g., Koenker, 2005, pp. 104—105) is consistent with Result (c) in Proposition 1.
Moreover, Result (c) may be easily relaxed by including polynomial terms in x1t in the model. Al-
ternatively, the reduced form in (3) could be specified as being partially linear in x2t, and nonlinear
in x1t, with an unknown nonlinear functional form. This still yields a constant effect for x2t and an
unrestricted nonlinear effect for x1t. In that case, Result (c) could be discarded. Finally, instead of
imposing Assumption 2’, one may first test for which coeffi cients the hypothesis of constant effect
is rejected or not in typical quantile regression estimation, so as to guide the precise specification
of this assumption. Finally, the results in Muller (2017) are:

Theorem 6: Under Assumptions 1 and 2:

(a) The components of πθ in the reduced form (3) for any quantile index θ can be identified,
for the constant coeffi cients π2θ = π2 of x2t, but not for the non-constant coeffi cients π1θ of x1t.

(b) For the quantile model (1), the coeffi cient vector γθ of the endogenous regressors Yt in the
quantile model is identified, while constant with respect to the quantile index θ: γθ = γ, for all
θ ∈ (0, 1).

(c) The coeffi cient vector βθ of the exogenous regressors x1t in the quantile model can be non-
constant with respect to the quantile index θ, while it is not identified in general.

In biological sciences, obtaining a condition like in Assumption 2’, or a similar one by reversing
the roles of x1t and x2t, should be much easier than in social sciences. Indeed, experimental settings
or specification of controls could be designed accordingly.

3 Conclusion

The design of identification conditions for solving endogeneity issues in quantile regressions is still
an open research area. The diverse methods used in the literature to deal with the problems
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discussed here correspond to non-encompassing restrictions. It seems therefore fruitful to further
investigate and develop each kind of approach. We have sketched the state of the question from
which such extension could be built on.

In particular, a few reservations would deserve further investigation. First, studying some practi-
cal applications based on actual policy data or experiment data that are characterised by constant
effect of treatment variables would assist in clarifying the potential of the respective methods.
Second, the rigid distinction between constant effect and nonconstant effect for endogenous and
exogenous regressors could be relaxed to generate more flexible specifications. Third, as always,
finding instruments, even if weakened ones, is still hard in general. However, owing to controlled
experiments, this may be easier in biological sciences than in other study areas.

References

[1] Abadie, A., J. Angrist and G. Imbens (2002), “Instrumental Variables Estimates of the Effect
of Subsidized Training on the Quantiles of Trainee Earnings,”Econometrica, 70, 91-117.

[2] Amemiya, T. (1982), “Two Stage Least Absolute Deviations Estimators,”Econometrica, 50,
689-711.

[3] Arias, O., K.F. Hallock and W. Sosa-Escudero (2001), “Individual Heterogeneity in the Re-
turns to Schooling: Instrumental Variables Quantile Regression Using Twins Data,”Empirical
Economics, 26, 7-40.

[4] Bassett G. and Koenker R. (1978), “ Asymptotic theory of least absolute error regression,”
Journal of the American Statistical Association, 73:618-22.

[5] Blundell, R. and J.L. Powell (2006), “Endogeneity in Nonparametric and Semiparametric Re-
gression Models,”pp. 312-356, Chapter 8 in M. Dewatripont, L.P. Hansen and S.J. Turnovsky,
“Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress,
vol. II,”Cambridge University Press.

[6] Chen, L.-A. (1988), “Regression Quantiles and Trimmed Least-Squares Estimators for Struc-
tural Equations and Non-Linear Regression Models,”Unpublished Ph.D. dissertation, Univer-
sity of Illinois at Urbana-Champaign.

[7] Chen, L.-A. and S. Portnoy (1996), “Two-Stage Regression Quantiles and Two-Stage Trimmed
Least Squares Estimators for Structural Equation Models,”Commun. Statist.-Theory Meth.,
25, 1005-1032.

[8] Chernozhukov, V. and C. Hansen (2005), “An IV Model of Quantile Treatment Effects,”
Econometrica, 73, 245-261.

[9] Chernozhukov, V. and C. Hansen (2006), “Instrumental Quantile Regression Inference for
Structural and Treatment Effect Models,”Journal of Econometrics, 132, 491-525.

[10] Chernozhukov, V. and C. Hansen (2008a), “Instrumental Variable Quantile Regression: A
Robust Inference Approach,”Journal of Econometrics, 142, 379-398.

[11] Chernozhukov, V. and C. Hansen (2008b), “The Reduced Form: A Simple Approach to Infer-
ence with Weak Instruments,”Economics Letters, 100, 68-71.

8



[12] Chernozhukov, V., G.W. Imbens and W.K. Newey (2007), “Instrumental Variable Estimation
of Nonseparable Models,”Journal of Econometrics, 139, 4-14.

[13] Chevapatrakul, T., T. Kim and P. Mizen (2009), “The Taylor Principle and Monetary Policy
Approaching a Zero Bound on Nominal Rates: Quantile Regression Results for the United
States and Japan,”Journal of Money, Credit and Banking, 41, 1705-1723.

[14] Chortareas, G., G. Magonis and T. Panagiotidis (2012), “The Asymmetry of the New Keyne-
sian Phillips Curve in the Euro Area,”Economics Letters, 114, 161-163.

[15] Galvao, A.S. and G. Montes-Rosas (2015), “On the Equivalence of IV Estimators for Linear
Models,”Economic Letters, 134, 13-15.

[16] Garcia, J., P.J. Hernandez and A. Lopez (2001), “How Wide is the Gap? An Investigation of
Gender Wage Differences Using Quantile Regression,”Empirical Economics, 26, 149-167.

[17] Hong, H. and E. Tamer (2003), “Inference in Censored Models with Endogenous Regressors,”
Econometrica, 71, 905-932.

[18] Honore, B.E. and L. Hu (2004), “On the Performance of Some Robust Instrumental Variables
Estimators,”Journal of Business and Economic Statistics, 22, 30-39.

[19] Kim, T. and C. Muller (2004), “Two-Stage Quantile Regressions when the First Stage is Based
on Quantile Regressions,”The Econometrics Journal, 18-46.

[20] Kim, T. and C. Muller (2012), “A Test for Endogeneity in Quantiles,”Working Paper Aix-
Marseille School of Economics.

[21] Kim, T. and C. Muller (2017), “A Robust Test of Exogeneity Based on Quantile Regressions,”
Journal of Statistical Computation and Simulation, Vol. 87, No. 11, 2161-2174.

[22] Kim, T. and C. Muller (2018),“Inconsistency Transmission and Variance Reduction in Two-
Stage Quantile Estimation”(with T.-H. Kim), Forthcoming in Communications in Statistics:
Computation and Simulation.

[23] Koenker, R. (2005), “Quantile Regressions,”Cambridge University Press, Cambridge.

[24] Koenker, R. and G. Bassett (1978), “Regression quantiles,”Econometrica 46, 33-50.

[25] Lee, S. (2007), “Endogeneity in Quantile Regression Models: A Control Function Ap-
proach,”Journal of Econometrics, 141, 1131-1158.

[26] Ma, L. and R. Koenker (2006), “Quantile Regression Methods for Recursive Structural Equa-
tion Models,”Journal of Econometrics, 134, 471-506.

[27] Muller, C. and S. Bibi, “Refining Targeting against Poverty: Evidence from Tunisia,”Oxford
Bulletin of Economics and Statistics, Vol. 72, No. 3, June 2010.

[28] Muller, C. (2005), “Optimising Anti-Poverty Transfers with Quantile Regressions,”Applied
and Computational Mathematics, Vol. 4, No. 2.

[29] Muller, C. (2018), “Heterogeneity and nonconstant effect in two-stage quantile regression,”
Econometrics and Statistics, Volume 8, October, Pages 3-12

9



[30] Powell, J. (1983), “The Asymptotic Normality of Two-Stage Least Absolute Deviations Esti-
mators,”Econometrica, 51, 1569-1575.

[31] Sakata, S. (2007), “Instrumental Variable Estimation Based on Conditional Median Restric-
tion,”Journal of Econometrics, 141, 350-382.

10


	WP_AMSE-2019_20.pdf
	biostat.pdf

