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Abstract

This paper proposes two dominance criteria for evaluating education systems described
as joint distributions of the pupils’ cognitive skill achievements and family backgrounds. The
first criterion is shown to be the smallest transitive ranking of education systems compatible
with three elementary principles. The first principle requires any improvement in the cog-
nitive skill of a child with a given family background to be recorded favorably. The second
principle demands that any child’s cognitive skill be all the more favorably appraised as the
child is coming from an unfavorable background. The third principle states that when two
different skills and family backgrounds are allocated between two children, it is preferable
that the high skill be given to the low background child than the other way around. The
criterion considers system A to be better than system B when, for every pair of reference
background and skill, the fraction of children with both a lower background and a better
skill than the reference is larger in A than in B. Our second criterion completes the first by
adding to the three principles the elitist requirement that a mean-preserving spread in the
skills of two children with the same background be recorded favorably. We apply our criteria
to the ranking of education systems of 43 countries, taking the PISA score in mathematics
as the measure of cognitive skills and the largest of the two parents International Socio Eco-
nomic Index as the indicator of background. We show that, albeit incomplete, our criteria
enables conclusive comparisons of about 19% of all the possible pairs of countries. Educa-
tion systems of fast-growing Asian economies - in particular Vietnam - appear at the top
of our rankings while those of relatively wealthy arabic countries such as Lebanon, United
Arab Emirates and Jordan are at the bottom. The fraction of countries that can be ranked
successfully happens to be only mildly increased as a result of adding elitism to the three
other principles.
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“Schools are remarkably similar in the effect they have on the achievement of their
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1 Introduction

All countries have put into place more or less compulsory education systems. These education
systems, usually made of a mixture of public and private schools that follow specific learning
curricula, take children at the age of five and enroll them in learning programs for about 10 to
12 years, depending upon the country. The result of this enrollment is the acquisition, by the
children, of various cognitive skills that are of obvious importance for their future welfare. For
one thing, the cognitive skills are major contributors of children’ future earnings and employment
opportunities (see e.g. Hanushek and Woessmann (2008), Hanushek, Schwerdt, and Woessmann
(2015) or Nickell (2004)). But the acquisition of cognitive skills in mathematics, literacy, etc. may
also impact individuals’ well-being in a way that is not reducible to their pecuniary consequences,
however important these may be. As noticed by many (for example Oreopoulos and Salvanes
(2011)) cognitive skills may indeed foster future information acquisition, and help individuals to
make better decisions about health, spouse partnership, parental choices, etc.

There are by now a few internationally standardized procedures for gathering data on the
measurement of these cognitive skills on suitably chosen samples of children and for comparing
schools and countries based on the distribution of these skills (see e.g. Hanushek and Woessmann
(2011) for a survey of those). One of the most largely commented and discussed such data set
is the Programme for International Student Assessment (PISA), which tests math, science, and
reading performance of 15-year-olds children on a three-year cycle since 2000.

It is also widely acknowledged, notably by Mayer (1997), Black, Devereux, and Salvanes
(2005), Schutz, Ursprung, and Woessmann (2008) or Dahl and Lochner (2012), that family
background plays a determinant role in the child’s cognitive skills acquisition process. As one
sociologist put it to the scholar-politician Daniel Patrick Moynihan in reaction to the (quoted
above) Coleman report on the educational opportunities offered by American schools in the six-
ties: “Have you heard what Coleman is finding? It’s all family.” The precise channels through
which the family background affect the children’ skill acquisition process is still subject to dis-
cussion. One channel may be genetic. Another channel may be the time and energy spent by
the parents in helping the children to acquire those skills. But whatever the channel is, the
family influence on the children’ cognitive skill acquisition process must be accounted for when
evaluating the performance of education systems. Two education systems who produce the same
distribution of cognitive skills can not be considered as equally performing if the distribution
of the children family backgrounds differ between the two. Moreover, there is a widely held
view, often developed under the heading of "equality of opportunity" (see Schutz, Ursprung, and
Woessmann (2008)), that good education systems are those that succeed somehow in breaking
the dependency of the children skill acquisition process upon the family circumstances.

This paper proposes a robust methodology for evaluating education systems on the basis of
a few explicit elementary principles that capture these general ideas. The principles apply to
data on education systems in which every pupil is described by two numbers: one measuring
his/her cognitive skill, and the other measuring his/her family background. Viewed in this way,
the issue of comparing education systems amounts to comparing distributions of pairs of num-
bers, just as in the traditional multi - actually two - dimensional normative evaluation developed
along the lines of Atkinson and Bourguignon (1982) (see e.g. Atkinson and Bourguignon (1987),
Bourguignon (1989), Jenkins and Lambert (1993), Gravel and Moyes (2012), Moyes (2012) for
theoretical contributions and Duclos, Sahn, and Younger (2006), Gravel, Moyes, and Tarroux
(2009), Gravel and Mukhopadhyay (2010) and Hussain, Jorgensen, and Osterdal (2016) for em-
pirical applications). However, the particular nature of the two numbers that describe education
systems suggests principles for comparing them that differ from those considered in the two-
dimensional normative evaluation literature.
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The first principle that we consider is the favorable recording of any improvement in cog-
nitive skill ceteris paribus. Most popular discussions about the relative performance of different
national education systems, notably around the releases of PISA studies, clearly agree with this
principle. The second principle requires that skills be appraised more favorably when observed
in children with low backgrounds. Such a principle clearly underlies many national public schools
systems that provide additional funding to schools located in underprivileged neighborhoods. A
good example of such scheme is the French Zone d’Education Prioritaire program analyzed by
Bénabou, Kramarz, and Prost (2009). The third principle reflects a preference - alluded to above
- for education systems who succeed in reducing the family’s influence on the child cognitive skill.
Consider indeed an education system in which one child from a favorable background achieves
high cognitive skills while another child from a less favorable background achieves a lower skill
level. Consider another education system that differs from the previous one only by the fact that
the high-skill child is now coming from the low family background while the low-skill child is
coming from the high background. Aversion to correlation would suggest that the second system
performs better than the first. At least many empirical studies - such as Schutz, Ursprung, and
Woessmann (2008) - who regress the skill variable over a set of explanatory variables - including
of course some that measure family background - and who compare school systems based on the
value of the regression coefficient of the family variable would agree with this principle.

This paper proposes a dominance criterion for evaluating education systems that is shown to
be the unanimity of all transitive rankings who agree with these three principles. The criterion
says that one education system dominates another if, for any pair of reference levels of background
and skill, the fraction of children with both a lower background and a better skill than that
reference is larger in the dominating than in the dominated system. This criterion shares with one
of the first order criteria of Atkinson and Bourguignon (1982) - when applied to education systems
- the agreement with the first and the third principles. However, it differs from the Atkinson and
Bourguignon (1982) criterion in considering the second attribute - family background - as having
a negative impact on the performance of a education system. Atkinson himself (see especially
Atkinson (1981a) and Atkinson (1981b)) has applied one of the first order dominance criteria of
Atkinson and Bourguignon (1982) to the issue of measuring intergenerational income mobility
(see e.g. Fields and Oke (1999) for a survey on income mobility measurement). By so doing,
he endorsed the view that improving the distribution of parental status ceteris paribus improves
intergenerational mobility. While this view may be defensible for evaluating intergenerational
income mobility - at least if one is adopting for that purpose the perspective of Shorrocks (1978)
- it is less so when appraisal of education system performance is at stake.

The three principles just sketched, and the dominance criterion that they characterize, form
the core of the analysis of this paper. However, the fact that the criterion stands on very con-
sensual principles makes it fairly incomplete. Additional principles need to be called for if one
wants to increase the number of conclusive comparisons of education systems. One such principle
concerns attitude toward inequalities in cognitive skills, given the background. Making such an
attitude precise requires, when developed in the conventional framework of inequality measure-
ment, that cardinal significance be attached to the measurement of cognitive skills. Provided
that this is the case, are inequalities in cognitive skills - ceteris paribus of course - a good or a bad
thing ? While spontaneous intuition - such as that underlying the empirical analysis of Goussé
and LeDonné (2015) - seems to favour the second rather than the first answer to this question,
a second thought may make one more hesitant. This is at least so if one recognizes, in line
with much of the empirical literature (see e.g. Green and Riddell (2003), Heckman, J. Stixrud,
and Uzrua (2006) or Barrett (2012)), that income is a convex function of cognitive skills. If
this convexity is strong enough, it is possible that the function that converts cognitive skill into
well-being (or some other normatively relevant measure of "advantage") be itself convex. If the
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individual well-being (or advantage) is a convex function of cognitive skills, then a utilitarian
ethical observer could favour increasing inequalities - as defined by mean-preserving spread -
in cognitive skills, everything else being the same. Following Bazen and Moyes (2012), we call
elitism such a favorable appreciation of mean-preserving spreads in cognitive skills performed
between children with the same background. As it happens, when we add elitism to the three
other principles, we characterize an additional dominance criteria that is compatible with the
previous one while being more discriminatory. Unfortunately, and for reasons that we believe
to be deep (and beyond the scope of this paper), we are not capable of characterizing a domi-
nance criterion that respects the three first principles but that replaces elitism by the converse
egalitarian view which dislikes mean preserving spreads in cognitive skills.

We then put our dominance criteria to work by comparing the national education systems of
43 countries based on the 2015 wave of the PISA survey. We specifically compare, across those
countries, the joint distributions of the children’s scores in mathematics - as measured by PISA
tests - and their parents social status (defined as the highest International Socioeconomic Index
of the two parents). The most discriminatory criterion - which adds elitism to the three first
principles discussed above - is capable of conclusively ranking nearly 19% of all the possible pairs
of countries. The percentage of clear-cut comparisons obtained from the three core principles
alone - without any elitist principle - is in itself 17.5%. Hence, it happens that the added elitist
value judgement does not contribute much to the ability of the dominance criterion to rank
conclusively education systems. While the fractions of conclusive comparisons may be considered
small, the robustness of the obtained comparisons is worth emphasizing. Among the noteworthy
robust comparisons, one finds that Vietnam has one of the most performing education system in
the world. In effect, the Vietnamese education system dominates 17 out of the 42 other countries,
and is dominated by none. To some extent, this reflects the fact that Vietnamese children do very
well in their PISA test even though they come from parents with relatively low status. Among
the developed countries, Japan and Poland appear to stand the best against the others. Their
education systems dominate that of respectively 9 and 12 other countries, while being dominated
by none of them. Finland, usually described as a top performer insofar as education goes, does not
perform outstandingly according to our criteria. While it is never dominated, it only dominates
five other countries. At the bottom of our rankings, one finds countries such as Jordan, Lebanon
and the United Arab Emirates (UAE). The education system of any of these three countries
dominates that of no other. However the education system of the UAE is dominated by that of
29 countries. The performance of Lebanon (dominated by 25 countries) and Jordan (dominated
by 18 countries) is also low when appraised by our criteria.

The rest of the paper is organized as follows. The next section presents the criteria and
principles used to compare education systems, and establishes the equivalence among them.
Section 3 discusses the data and the empirical methodology. Section 4 shows and discusses the
empirical results and section 5 concludes.

2 Criteria for comparing education systems

2.1 Framework and notation

We are interested in comparing alternative education systems by means of some anonymous
criterion. Every such system educates a set of n children (with n ≧ 3).1 Every child i ∈ {1, ..., n}

1We assume that education systems all educate the same number of children for pedagogical convenience. This
assumption can be dispensed with if one adheres to the Dalton principle according to which replicating finitely
many times a given population of children with a given distribution of skills and backgrounds is a matter of
indifference.
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has a family background bi, taken from some finite set B = {1, ..., b} of positive integers. At
the end of the education process, every child i acquires a cognitive skill si that is also taken
from some finite set S = {1, ..., s} where s is some positive integer. Hence an education system
e is an ordered list {bei , s

e

i }
n
i=1of such pairs of numbers. This discrete setting does not entail

any significant loss of generality since one can always take the numbers b and s to be very
large, and interpret the units as being suitably small fraction of some scale. The anonymity
of the criterion is the requirement that no importance be given to the children names or other
irrelevant characteristics (beside skills and backgrounds). We make this requirement precise by
summarizing the relevant information associated to an education system e by its b × s integer
density matrix de :

d
e :=



d
e

11 ... d
e

1s
...

...
...

d
e

b1
... d

e

bs


 , (1)

where, for b ∈ B and s ∈ S, the number debs ∈ {0, ..., n} denotes the (possibly null) number of
children with background b and skill s observed in education system e. We of course require that�

(b,s)∈B×S

d
e

bs = n. We let E = {d ∈{0, ..., n}bs :
�

(b,s)∈B×S

dbs = n} denote the (finite) set of all

such possible education systems.
Education systems are compared by means of a reflexive and transitive binary relation � on

E. For any two education systems de
∗

and de
◦

in E, we interpret the statement de
∗

� d
e
◦

as
meaning that education system d

e
∗

performs at least as well as de
◦

. An analogous interpretation
is given to de

∗

≻ de
◦

(strictly better than) and de
∗

∼ d
e
◦

(equally well as). The requirement
of reflexivity and transitivity of the ranking strikes us as quite natural. Notice that we do not
require � to be complete. As discussed earlier, the dominance criteria used in the paper will very
often fail in providing clear-cut comparison of education systems.

For any density matrix de associated to an education system e and any target b of background
and s of skill, we denote by Se(b, s) the success relative to s of children with background b in
the education system e defined by:

Se(b, s) =
s�

σ=s

d
e

bσ(σ − s) (2)

This success is the sum, taken over all pupils of background b who have a better skill than s,
of their skill excess over s. This expression plays a key role in the definition of the dominance
criterion based on elitism discussed below.

2.2 The dominance approach

We now formulate elementary principles that could plausibly underlie the comparisons of edu-
cation systems. Three main such principles drive our attention herein. The first of them is the
favorable appraisal of an improvement in the cognitive skills of a child, everything else the same.
Specifically, consider the following definition of an improvement in a child’s skill.

Definition 1 Improvement in a child’s skill. We say that education system de
∗

is obtained from
education system d

e
◦

by means of an improvement in a child’s skill if there exists some b ∈ B
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and s ∈ {1, ..., s− 1} such that:

d
e
∗

βσ = d
e
◦

βσ for all (β, σ) ∈ (B × S)\{(b, s), (b, s+ 1)}

d
e
∗

bs = d
e
◦

bs − 1 and,

d
e
∗

bs+1 = d
e
◦

bs + 1.

In words, an improvement in a child’s skill describes the process by which a child with
background b sees his/her cognitive skill improving by one unit, everything else remaining the
same. Any such improvement would naturally be considered favorably by an evaluation of an
education system. This formal definition is illustrated below in the (stylized) case where there
are four children and two categories of skill and background who are, in the initial distribution
d
e
◦

, uniformly distributed in the four cells of the matrix.

d
e
∗

=
low skill high skill

low background 0 2
high background 1 1

d
e
◦

=
low skill high skill

low background 1 1
high background 1 1

The second principle considers the dual situation of two education systems that differ only by
the fact that two children with the same skill are coming from different backgrounds. In which
of the two education systems is this cognitive skill achievement the most remarkable? It would
seem that it is when the child is coming from a low, rather than from a high, background. We
define in this spirit as follows the notion of a deterioration in a child’s family background.

Definition 2 Deterioration in a child’s background. We say that education system d
e
∗

is ob-
tained from education system d

e
◦

by means of a deterioration in a child’s background if there is
a background b ∈ {2, ..., b} and a skill s ∈ S such that:

d
e
∗

βσ = d
e
◦

βσ for all (β, σ) ∈ (B × S)\{(b, s), (b− 1, s)}

d
e
∗

bs = d
e
◦

bs − 1 and,

d
e
∗

(b−1)s = d
e
◦

(b−1)s + 1.

An example of an education system d
e
∗

obtained from d
e
◦

by means of a deterioration in a
child’s background is depicted below.

d
e
∗

=
low skill high skill

low background 1 2
high background 1 0

d
e
◦

=
low skill high skill

low background 1 1
high background 1 1

The third considered principle concerns the extent to which an education system reduces the
correlation between the child’s cognitive skill and the child’s family background. To use the
terminology of Daniel Patrick Moynihan mentioned earlier, a good education system is one in
which "it is not all family". And a better education system than another is one in which it
"less family" than in the other. We formulate this reduction in correlation between skill and
background in the following fashion.
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Definition 3 Reduction in correlation between skill and background. We say that education
system de

∗

is obtained from education system de
◦

by means of a reduction in correlation between
skill and background if there are b and b′ in B and s and s′ in S satisfying b < b′ and s < s′ such
that:

d
e
∗

βσ = d
e
◦

βσ for all (β, σ) ∈ (B × S)\{(b, s), (b
′, s), (b, s′), (b′, s′)}

d
e
∗

bs = d
e
◦

bs − 1 and d
e
∗

b′s′ = d
e
◦

b′s′ − 1 ,

d
e
∗

bs′ = d
e
◦

bs′ + 1 and d
e
∗

b′s = d
e
◦

b′s + 1

Hence, a reduction in correlation between skills and background is just a switch of cognitive
skills between two children with differing skills and backgrounds and who are ordered with respect
to both skill and background. In order to be correlation reducing, the high background-high skill
child must switch his/her skill with that of the low-skill-low-background child. An illustration of
such a reduction in correlation between skills and background is, again, provided below in the
four-children-two levels of skill and background case.

d
e
∗

=
low skill high skill

low background 0 2
high background 2 0

d
e
◦

=
low skill high skill

low background 1 1
high background 1 1

In the empirical literature, education systems are often compared on the basis of the value
assigned to them by some Index I. With such an approach, the statement I(e) ≥ I(e′) means
that education system e performs better than education system e

′. A widely used such index is
the linear regression coefficient of the cognitive skills on family background, as used for example
in Schutz, Ursprung, and Woessmann (2008). This index is based on the estimation, for every
education system e, of the following regression model (abstracting from the additional "control"
variables often considered in the regressions):

sei = αe + βebei + εei

where εei is the regression error term observed on child i of system e and αe and βe are the
(theoretical) constant and regression coefficient (respectively) of this linear model applied to
system e. It is well-known from elementary econometrics that the least-square estimate of βe,
denoted �β(e), is defined by:

�β(e) =
cov(sei , b

e

i )

var(bi)

=

n�

i=1

sei b
e

i − ns(e)b(e)

n�

i=1

(bei )
2 − nsb(e)

(3)

where s(e) and b(e) denote the average skill and family background (respectively) observed in the

education system e. The index �β(e) is usually used as a (negative) measure of the performance
of an education system (the lower the index, the better the system). Beside the convenience of
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obtaining the index out of a simple estimation of a linear regression, there is not much justification
for the ranking of education systems that it performs. For one thing, the ranking of education
systems induced by �β does not always record favorably a child’s improvement in cognitive skill. It
will actually record it unfavorably if the improvement concerns a child whose family background is
above the mean. The ranking induced by �β does not either record favorably a child’s deterioration
of family background. However a reduction in the correlation between skill and background will
clearly reduce the value of �β.

In what follows, we propose to compare education systems by the (unique) criterion that
is agreed upon by all reflexive and transitive rankings of education systems in E who consider
favorably child’s improvements in cognitive skill, child’s deteriorations in the family background,
and reductions in correlation between skill and background as just defined. As it turns out, this
criterion is extremely easy to apply. It amounts to verifying, for any reference pair of skill and
background, if the number (fraction) of children with both a worse background and a better skill
than the reference is larger in one education system than another.

The formal statement of this result is the object of Theorem 1 below. The proof of the result
is somewhat technical. It has been for this reason relegated in the Appendix. Some of it uses
abstract results from duality theory and follows a proof strategy adopted by Muller and Scarsini
(2012), but adapted to the discrete nature of our setting using the approach of Magdalou (2018).

Theorem 1 Let de
∗

and de
◦

be two education systems in E. Then, the following two statements
are equivalent.

(a) de
∗

� de
◦

for any reflexive and transitive ranking � that records favorably improvements
in a child’s cognitive skill, deteriorations in a child’s family background and reductions in
the correlation between skill and background as per Definitions 1-3.

(b)
b�

β=1

s�

σ=s

d
e
∗

βσ ≥
b�

β=1

s�

σ=s

d
e
◦

βσ for all (b, s) ∈ B × S.

2.3 Attitudes toward inequalities in cognitive skills

Theorem 1 provides a simple test for checking whether an education system is better than another
for any transitive ranking that records favorably improvements in cognitive skills, deteriorations
of family backgrounds and reductions in correlation between background and skills. The test
consists in verifying if, for any pair of skill and background levels, the fraction of children with
both a better skill and a lower family background than those levels is larger in one system than
another. However the large consensus over which the test stands is likely to make the ranking
highly incomplete. As usual in dominance analysis, any gain in discriminatory power comes at
the cost of requiring the criterion to satisfy additional principles. What could these be ?

One concerns attitude toward inequalities in cognitive skills between pupils with the same
background. Consider indeed two alternative hypothetical situations involving two differently
skilled children with the same family background. Assume that the average cognitive skill -
calculated over the two children - is the same in the two situations but that the two skills
are more spread out in one situation than in the other. By "more spread out", we mean, as
usual in inequality analysis, "resulting from a mean-preserving spread" or, equivalently, a mean-
preserving "regressive transfer". Of course the very notion of a mean-preserving spread of skill
rests on the belief that the skill variable is measured on a cardinal scale so that the very notion of
a "preserved mean" makes sense.2 Suppose we have this belief. Is a more spread-out distribution

2See Allison and Foster (2004) for a discussion of the difficulty of applying conventional concepts of inequality
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of skill better or worse than a less spread-out one ? Intuition coming from conventional attitude
toward income inequality could suggest that a less spread out - or a more equal - distribution
of skills is better than a more spread-out one. Yet, such an intuition may be misleading for an
attribute such a skill. This is at least so if one adopts the welfarist perspective according to
which the "social goodness" of alternative states of affairs depends only upon the distribution of
individual well-being that they generate. As documented in the literature, there seems to be two
channels by which cognitive skills affects well-being. One of them is through the income that the
cognitive skills enable the individual to earn. If one restricts attention to cognitive skill as the
unique determinant of income, one can denote by y(s) the income that an individual with skill
s can earn on the labour market. The empirical evidence (see e.g. Green and Riddell (2003),
Heckman, J. Stixrud, and Uzrua (2006) or Barrett (2012)) on the functional relation y connecting
skill to income is that it is increasing and convex. That is, the gain in earning capacity brought
about by an increase in skill is it self increasing with skill. The other channel through which
cognitive skills affect well-being is a direct one. Cognitive skills help individuals to make better
decisions (in the choice of his/her partner, career profile, medical treatments, etc.) and better
use of the information irrespective of their impact on income. This suggests that the individual
well-being, u say, is an intrinsic function of two variables: skills (s) and income (y):

u = U(s, y)

Yet, since the income y is itself a function of the skills, one can view the individual well-being u
as a function Ψ of the skills only with Ψ defined by:

u = Ψ(s) = U(s, y(s))

As commonly assumed in economics, the function U that associates well-being to every combi-
nation of skill and income would be increasing in both variables and concave with respect to
income (marginal utility of income is decreasing with respect to income at any skill level). Yet,
economic theory, empirical evidence, and introspection do not provide clear evidence about the
concavity or convexity of U with respect to skill. Convexity - e.g. the fact that, given income,
the marginal utility of an increase in skill is increasing with skill - is not implausible. A similar
lack of a priori intuition concerns the relation between the (positive) marginal utility of income
and the skill level. Are skill and income complement, or substitute, for the achievement of a
given level of well-being ? It is not implausible to believe that they are complement, so that
the marginal utility of income is increasing (at least weakly) with respect to skill. To sum up, U
could plausibly satisfy (assuming differentiability):

Uj(.) ≥ 0 for j = s, y (4)

Uyy(.) ≤ 0 (5)

Uss(.) ≥ 0 (6)

Uys(.) ≥ 0 (7)

where, for every i, j ∈ {s, y}, Uj(.) and Uij(.) denote, respectively, the partial derivative of U
with respect to j and the second derivative first with respect to i and second with respect to j.
Under these assumptions, and assuming again differentiability, one can see that

Ψs(.) = Us(.) + Uy(.)ys(.)

≥ 0

measurement to distribution of an ordinal variable and Gravel, Magdalou, and Moyes (2015) for a dominance
approach to the issue.
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if the function y is increasing in skills. More importantly for our purpose, one can also see that,
under assumptions (4)-(7) and the convexity of the function y:

Ψss(.) = Uss(.)	 
� �+2Usy(.)ys(.)	 
� �+Uyy(.)[ys(.)]
2

	 
� �+Uy(.)yss(.)	 
� �
+ + − +

Hence, while the sign of Ψss(.) is a priori ambiguous, it is not implausible that the sum of the
three positive terms outweigh the negative one.

We accordingly consider the possibility for skill to have a positive and convex final effect on
well-being. If we do so, it becomes possible to defend the view that, for a population of children
with the same background, a more unequal - or spread out - distribution of skills of a given
mean is better than a less-spread out one. This approach, which can be viewed as the opposite
to egalitarianism, has been called elitism by Bazen and Moyes (2012). The main elementary
operation that describes the notion of dispersion in skills that would be considered favorably by
elitism is the following.

Definition 4 Dispersion in children skills. We say that education system d
e
∗

is obtained from
education system d

e
◦

by means of a dispersion in children skills if there is a background level
b ∈ B and two skill levels s and s′ in S satisfying s′ > s+ 1 such that:

d
e
∗

βσ = d
e
◦

βσfor all (β, σ) ∈ (B × S)\({(b, s
′), (b, s′ + 1)} ∪ {(b, s− 1), (b, s)})

d
e
∗

bs′ = d
e
◦

bs′ + 1, d
e
∗

bs′−1 = d
e
◦

bs′−1 − 1 , d
e
∗

bs = d
e
◦

bs + 1 and d
e
∗

bs+1 = d
e
◦

bs+1 − 1

if s′ − 1 > s+ 1 and:

d
e
∗

bs′ = d
e
◦

bs′ + 1, d
e
∗

bs′−1 = d
e
∗

bs+1 = d
e
◦

bs′−1 − 2 , d
e
∗

bs = d
e
◦

bs + 1

if s′ − 1 = s+ 1.

As defined here, a dispersion in children skills is an operation by which a child of background
b and (relatively low) skill level s+ 1 "falls down" by one category - to skill s - in exchange of
having, for the same background b, a child with a higher skill s′ − 1 who "climb up" by one
category. This operation clearly disperses skills of children of the concerned category without
affecting the average skill of that category (since the falling down by one category of one child
is exactly compensated by the climbing up by one category of the other). An illustration of the
formal definition of a Dispersion in children skills in a case where there is only one background
and three different skill levels is provided below.

d
e
∗

=
low skill (1) mid skill (2) high skill (3)

background b 2 0 2

d
e
◦

=
low skill (1) mid skill (2) high skill (3)

background b 1 2 1

We now identify, in the following theorem, an easily implementable dominance criterion that
coincides with the unanimity of all reflexive and transitive rankings of education systems in E that
record favorably improvements in cognitive skills, deteriorations of family background, reductions
in correlation between skill and background and dispersions in children skills. Specifically, we
prove in the Appendix the following theorem.
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Theorem 2 Let de
∗

and de
◦

be two education systems in E. Then, the following two statements
are equivalent.

(a) de
∗

� de
◦

for any reflexive and transitive ranking � that records favorably improvements in
a child’s skill, deteriorations in a child’s background, reductions in the correlation between
skill and background and dispersions in children cognitive skills as per Definitions 1-.4

(b)
�

b∈β(e)∪β(e◦)

Se(b, s(b)) ≥
�

b∈β(e)∪β(e◦)

Se
◦

(b, s(b)) for all increasing functions s : B → S and

b�

β=1

s�

σ=1

d
e
∗

βσ ≥
b�

β=1

s�

σ=1

d
e
◦

βσ for every background b.

Statement (b) of Theorem 2 thus provides an exact test for whether or not an education
system stands above another by all rankings that record favorably improvements in a child’s skill,
deteriorations in a child’s background, reductions in the correlation between skill and background
and dispersions in children skills. The main part of the test works as follows. One first assigns
to every background level a specific target of cognitive skill achievement that is non-decreasing
with respect to the background. Thus, children from high backgrounds are assigned higher targets
than those from lower backgrounds. One then sums, over all backgrounds, the success of the
children - as defined by Expression (2) - relative to the target assigned to their background. An
education system that exhibits a larger sum of such success than another for every assignment
of targets that are (weakly) increasing with respect to backgrounds is then said to dominate the
other. In addition of this requirement, Statement (b) demands that the dominating system has a
weakly larger fraction of children coming from a lower background than any specified b than the
dominated one. Put otherwise, Statement (b) requires the "good" education system to have a
marginal distribution of backgrounds that is stochastically dominated at the first order by that of
the "bad" system. This requirement is of course in tune with the idea that the performance of an
education system be considered all the more impressive as the family backgrounds of the children
is unfavorable. In statement (b) of Theorem 1, this negative stochastic dominance condition on
the marginal distribution of backgrounds was not explicitly mentioned because it was implied by
the dominance test associated with this statement. However the ordered success excess criterion
expressed in the first part of Statement (b) of Theorem 2 does not imply the requirement for the
marginal distribution of backgrounds in the dominating system to be stochastically dominated
at the first order by that of the dominating system. One must therefore add this requirement.

One can certainly hesitate in adhering to the elitist value judgement that dispersions in cog-
nitive skills of children with a given family background are, ceteris paribus, a good thing. For
reasons that are not completely clear to us (and actually to other users of multidimensional dom-
inance analysis such as Muller and Trannoy (2012) (p. 138-139) who have discussed difficulties of
the same nature), there does not seem to be an easily identifiable empirical test that corresponds
to the unanimity of all criteria that record favorably improvements in a child’s cognitive skill,
deteriorations in a child’s family background, reductions in the correlation between skill and
background but who dislike dispersions in children cognitive skills. At least, we have not been
capable of identifying such an empirical test.

In the next section, we illustrate empirically the usefulness of our criteria for ranking national
education systems..
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3 Empirical Analysis

3.1 Data and variables

We base our empirical analysis on the 2015 wave of the OECD Program for International School
Assessment (PISA) survey. This survey assesses the skills of some 540 000 students - aged 15
- across 72 countries, 35 of which belonging to the OECD. The empirical analysis actually
focuses on the 43 "full" countries (excluding therefore cities like Hong Kong, Shanghai and
Taipei) who had more than 5 millions inhabitants in 2016. Another criterion of selection of
the 43 country was the availability of information on the family background of the children
for a sufficiently large fraction of them. The PISA survey does indeed provide some detailed
information on the children’ parents and family environment, but the fraction of the sampled
children for which the information is available happens to vary somehow across countries. The
sample of children selected by the PISA team in each country is based on a random selection of
a sample of schools from which, in a second step, a random selection of the pupils is performed.
In the last step, individuals are weighted in such a way as to make the sample representative of
the actual population of the country. It is important to notice that despite these corrections, the
samples of pupils evaluated in the PISA survey are not totally representative of the population
of interest. Excluded from the samples are children who are not enrolled at school, or who are
enrolled in very low grades for their age, or who do not go to school because of physical or
intellectual deficiencies. While these limitations in the coverage of children are somewhat small
in developed countries (where more than 90% of the children population is represented), they
become more important for developing or newly developed countries that are not in the OECD
(see e.g. Carvalho, Gamboa, and Waltenberg (2012)). These considerations have led us to remove
relatively populated countries, such as Argentina and Dominican Republic, from the list.

The cognitive skills evaluated by the PISA survey concern 3 different subjects: Mathematics,
Reading and Science. We focus herein on the Mathematics test, which seems to be less culturally
biased. The results achieved by children on the test are standardized by the PISA team through
a somewhat complex Item Response method described in PISA (2017). The pupils scores are
specifically standardized as resulting from what was, in 1998, a Gaussian distribution centered
at the OECD mean of 500 with a standard deviation of 100. Over the years, as new countries
have been added in the data set, a concern for intertemporal comparability has led to the decision
of maintaining the Gaussian distribution of 1998 as the standard. This has led over the year to a
world distribution of the scores that has slightly moved away from the Gaussian. The 2015 world
distribution of scores in mathematics used in this paper is shown in Figure 1. We emphasize that
the standardization procedure underlying the definition of these individual scores should make
one hesitant in attaching cardinal significance to the information conveyed by this variable (see
e.g. Ferreira and Gignoux (2014) and Jacob and Rothstein (2016)). While this does not cause
any problem for the criterion characterized in Theorem 1, it is of some importance for the more
discriminatory elitist criterion of Theorem 2 who is sensitive to the cardinal measurement of
the score. While the test score provided by PISA is a continuous variable, PISA also provides a
discretization of the score into seven "proficiency categories" defined in Table 1.3

3See again the Report PISA (2017) for a detailed description of the procedure used for defining these categories.
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Level interval of definition mean value % of the world sample

6 ]669.3, 1000] 702.5 1.91
5 ]606.99, 669.3] 632.44 6.37
4 ]544.68, 669.3] 572.99 13.93
3 ]482.38, 544.68] 512.03 20.16
2 ]420.07, 482.38] 450.9 21.81
1 ]357.77, 420.07] 390.01 18.78
0 ]0, 357.77] 308.04 17.05

Table 1: Definition of proficiency levels

Figure 1: World distribution of scores in mathematics, 2015.

The analysis conducted below is based on this discretization of the PISA scores.
As for the family background, we take it to be Highest of the two parents’ International

SocioEconomic Index (HISEI), as defined in Ganzeboom, Graaf, and Treiman (1992)). The
HISEI can be described as a weighted average of the parents’ education and profession, the
latter being itself ranked by the average level of income associated to that profession within the
country. The HISEI is a continuous variable ranging from 0 to 100. We justify the choice of the
HISEI, as compared to, say, the largest of the two parents years of completed education (also
provided in the PISA survey) by the fact that HISEI is sensitive to both the income level and the
education of the children’ parents. It is in effect well-documented that both parents education
and income contribute to the children human capital. To that extent, we feel that HISEI is the
most comprehensive summary indicator of the children family background that is available in
the PISA data. Figure 2 below shows the 2015 world distribution of HISEI in the PISA data
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base.
As can be seen, the HISEI is not at all distributed according to a Gaussian distribution at

the world level.
Table 2 below provides the relevant descriptive statistics for each of the two variables at the

country level. Since our criteria are sensitive to the correlation between skill and background,
the table also provides the observed correlation between the two variables for each country,
using two measures of correlation. The first one is the usual Pearson’s correlation coefficient
(covariance divided by the product of the standard deviation of each of the variable), and the

other is the regression coefficient �β(e) discussed above. While correlation appears to be important,
it does exhibit significant difference between countries. Countries such as Algeria, Japan or
Russia exhibit a rather low correlation (less than 0.25) between children math score and family
backgrounds. At the other extreme, the correlation gets above 0.42 in countries such as Belgium,
France, the Czech Republic, Hungary and Peru. All in all, the world level correlation between
cognitive skill in mathematics and family background, sightly above 0.33, is significant, but not
outlandish.

Figure 2: World distribution of the Highest of the parents’ International Socio-Economic Status
(HISEI), 2015.

Figure 3 shows the estimated linear relation between the two variables measured at the
country level. The correlation appears significantly more important than what is observed within
each country. This difference is not so surprising. The correlation indicated in Figure 3 captures
in part the well-known aggregate relation between economic development - strongly correlated
with average HISEI - and average school achievement. The within-country correlations described
on Table 2 reflect more the effect of the children’s background on their school achievement. It
appears therefore that these individual effects are smaller than the aggregate one.
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Figure 3: Regression of the country’s average math score upon the country’s average family
background

Countries such as Vietnam, Japan or Singapore appear to be top performers in terms of their
achieved math scores, as compared to their predicted math scores. Countries like Algeria, Jordan,
Lebanon and the United Arab Emirates (UAE) appear on the other hand to be under-performers
on that basis.
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The analysis conducted below rides on a discretization of the HISEI based on the quintiles of
world distribution of this variable depicted on Figure 2. The discretization generates the following
5 categories:

• Category 1 : HISEI < 18

• Category 2 : 18 ≤ HISEI < 31

• Category 3 : 31 ≤ HISEI < 48

• Category 4 : 48 ≤ HISEI < 63

• Category 5 : HISEI ≥ 63

3.2 Results

We now provide cross-countries comparisons of the joint distributions of backgrounds (discretized
HISEI) and cognitive skills (discretized score in mathematics) based on the criteria characterized
in Theorems 1 and 2. Each of these criteria amounts to verifying if a finite set of inequalities
connecting the joint distributions hold. Since the verification of these inequalities is done on sam-
ples of the children, we perform statistical inference to make our conclusion somewhat applicable
to the whole population of interest. We use for this purpose the methodology of Davidson and
Duclos (2000) that we adapt to the current setting by following the approach of Gravel, Moyes,
and Tarroux (2009). We provide a brief description of this methodology in the Appendix. The
results reported and discussed in this section are all significant at the 95% confidence interval,
and the joint test of the non-rejection of the hypothesis that all weak inequalities that define
dominance are of the required sign is based on so-called Union-Intersection criterion proposed
in Bishop and Formby (1999).

We start by comparing countries on the basis of first order stochastic-dominance applied to
the marginal distributions of the parent’s discretized HISEI. The results are depicted on the Hasse
diagram of Figure 4. On this diagram, countries are vertically ordered in terms of their average
HISEI score. Vertical links are then drawn between them when (and only when) the countries are
connected by first order stochastic dominance applied to their distributions of discretized HISEI
scores. Countries which appear with a star (*) are those for which the "net secondary school
enrolment rate" is either below 80% or not available. Vietnam for instance does not report its
secondary enrollment rate. The PISA survey obviously provides an upward biased picture of the
countries for which a significant fraction of the children are not enrolled in secondary schools
(because it only focuses on the somewhat privileged segment of its children population who is
enrolled at those schools). However, despite this possible upward bias, the countries marked with
a star tend to be at the bottom of the ranking. The only exception to this is Vietnam, to be
discussed further below.

Recall that observing (the inverse of) first order dominance of the marginal distribution of
the family backgrounds between two countries is necessary for having the dominating countries
to be better than the dominated one by the criterion characterized in Theorem 1. Indeed,
it is well-known (see e.g. Lehmann (1955)) that (inverse) first order dominance between two
marginal distributions of HISEI is equivalent to the possibility of going from the dominated to
the dominating distribution by a finite sequence of deteriorations in a child’ background. Hence,
the somewhat high position of countries such as the United Arab Emirates (UAE) or Singapore
on Figure 4 makes clear that these countries, who rank therefore at the bottom of the inverse
first order ranking, can not dominate any other by the criteria characterized in Theorems 1
and 2. All in all, the ranking of countries based on first order stochastic dominance of their
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Country Average Math score average HISEI Correlation �β(e)

Singapore 564 51.5 0.34 1.632

Japan 533 40.5 0.24 1.019

Korea 524 41.9 0.29 1.415

Switzerland 522 42.9 0.35 1.472

Canada 516 47.7 0.30 1.212

Netherlands 512 44.1 0.32 1.419

Denmark 512 45.7 0.33 1.137

Finland 511 42.8 0.32 1.156

Germany 510 41.1 0.37 1.558

Belgium 507 42.1 0.43 1.828

Poland 505 35.5 0.29 1.090

Norway 503 51.5 0.28 1.130

Austria 497 41.0 0.35 1.510

Russia 496 45.0 0.21 0.802

Australia 496 47.1 0.31 1.300

Sweden 495 47.4 0.36 1.506

Vietnam 495 20.6 0.30 1.110

France 494 40.5 0.42 1.788

UK 493 45.8 0.30 1.274

Czech Republic 493 37.3 0.42 1.900

Portugal 492 38.2 0.40 1.593

Italy 491 39.4 0.33 1.382

Spain 486 37.8 0.33 1.149

Hungary 477 36.9 0.48 1.989

Slovakia 476 37.2 0.35 1.528

Israel 470 48.9 0.36 1.716

US 470 43.7 0.32 1.248

Greece 454 39.8 0.34 1.229

Romania 444 30.1 0.35 1.343

Bulgaria 442 39.5 0.40 1.667

UAE 428 56.8 0.18 1.120

Chile 423 34.0 0.38 1.422

Turkey 421 26.5 0.29 1.129

Thailand 416 23.4 0.27 1.044

Mexico 408 29.7 0.27 0.864

Lebanon 396 49.9 0.15 0.680

Colombia 390 32.2 0.32 1.064

Peru 386 27.3 0.44 1.463

Indonesia 386 22.6 0.34 1.227

Jordan 381 44.1 0.25 0.979

Brazil 378 32.3 0.35 1.313

Tunisia 367 32.2 0.33 1.137

Algeria 360 34.7 0.18 0.525

Table 2: descriptive statistics at the country level
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distributions of HISEI appears to be in tune with the countries’ per capita GDP. Exceptions to
these are Lebanon, Jordan and Russia whose relatively good standing in terms of average and/or
first order dominance of their HISEI distributions (they stand above western European countries
such as Germany, Switzerland, France or the Netherlands) seems at odd with the modest ranking
of these countries in terms of per capita GDP.

Figure 5 shows the first and second order dominance rankings of countries based on the
marginal distributions of mathematics PISA scores (ignoring therefore family background). The
second order criterion considered is the "elitist" one that can be expressed in terms of the
generalized dual Lorenz criterion. According to this criterion, country A ranks above country
B if, for every k, the sum of proficiency levels achieved by the k most proficient children is
higher in A than in B. First order dominance implies second order dominance but the converse
does not hold. On Figure 5, the countries are vertically ordered by their average PISA score in
mathematics. We can observe that first order dominance applied to the marginal distributions of
math scores - irrespective of the children family backgrounds - leads to a rather precise rankings
of the countries. Indeed, out of the 903 possible pairs of distinct countries, 783 are ranked
conclusively by the first-order criterion (a rate of comparability of almost 87%). Moving from
first to second order dominance obviously increases to 825 the number of pairs of countries
that can be conclusively compared (a comparability rate sightly above 91%). Hence, the elitist
value judgement according to which increasing the spread of the distribution of PISA scores in
math - given the mean of that score and the background of the children - does not increase
immensely the discriminatory power of dominance when applied to the marginal distributions
of math scores. Some countries see their standing significantly increased as a result of valuing
favorably increasing dispersion in cognitive skill. The biggest winner in this respect is Korea,
which dominates 37 countries (out of 42) on the basis of first-order dominance, but which second
order-dominates all countries but Japan and Singapore.

The rankings provided in Figures 4 and 5 are useful preliminaries for understanding those
produced by our criteria. Indeed the criteria defined in statements (b) of Theorems 1 and 2
require - as necessary conditions - that there be (inverse) first-order Dominance for the marginal
distribution of family backgrounds. Moreover, the first order stochastic dominance of the marginal
distribution of skills is also necessary for the criterion of statement (b) of Theorem 1 to hold.
Hence, the fact of observing country A dominating country B in Figure 5 while observing the
inverse dominance relationship in Figure 4 is a useful starting ground for observing the dominance
of B by A by our main dominance criterion. However, the ranking of countries provided by the
criterion of Statement (b) of Theorem 1 is not the mere intersection of the first order dominance
of Figure 5 and the (inverse) first order dominance of Figure 4. In addition to these two first order
dominance conditions on the marginals, dominance requires also reductions in the correlation
between skill and background.

Figure 6 provides the Hasse dominance diagram of the 43 countries provided by statements (b)
of Theorems 1 (criterion C1 of the diagram) and 2 (criterion C2). As can be seen, there are many
pairs of countries - more than 82.5% - that can not be compared at all by the very demanding
agreement among all transitive rankings that record favorably improvements in a child’s cognitive
skill, deteriorations in a child’s family background and reductions in the correlation between skill
and background. Moreover, restricting the unanimity to those elitist principles that also record
favorably an increase in the dispersion of cognitive skill only increases the fraction of conclusively
compared pairs of countries from 17.5% to 18.7%. As was the case for marginal distributions of
skill levels, the gain of comparability obtained by adding elitism to the list of the three core
principles is rather modest.

Nonetheless, it happens that every country can be compared with at least one other. However,
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Figure 4: 1st order dominance ranking of countries based on their marginal distributions of
family backgrounds (discretized HISEI).
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Figure 5: Ranking of countries based on their marginal distributions of children skills (1st order
and 2nd order (elitist) dominance).
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a country like Singapore can only be compared with the United Arab Emirates (the only country
in the sample whose marginal distribution of HISEI first-order dominates that of Singapore). It
is also interesting to notice that the ranking of countries provided on Figure 6 is less complete
than the intersection of the rankings based on (inverse) first-order dominance applied to HISEI
alone (as per Figure 4) and first and second order dominance applied to math scores only (Figure
5). For example the marginal distribution of math scores in Finland first-order dominates that of
UK, while the marginal distribution of HISEI in the UK dominates the corresponding distribution
in Finland. However, Finland does not dominate the UK as per the criteria of Theorems 1 and
2. The reason for this absence of dominance comes from the unfavorable correlation between
skill and family background in Finland (as compared to UK). Put differently, the change in the
British joint distribution of skills and background that would be needed to make it identical to
that of Finland includes improvements in children’ skills as per Definition 1 and deteriorations in
family background as per Definition 2. If it did not, then one could not have dominance relations
connecting the marginals of skills and backgrounds of the two countries. But the changes in
the British distribution of backgrounds and skills that would be required to make it identical
to that of Finland also involve additional features that do not reduce correlation between skill
and background as per Definition 3. These unfavorable correlation features that prevent Finland
from dominating UK can not be seen from a look at the standard correlation coefficients between
skills and backgrounds provided by Table 2. Pearson Correlation between skills and background
appears indeed to be marginally lower in the UK than in Finland but the ranking of the two
countries is reversed if one uses the regression coefficient as a measure of correlation. Similar
remarks can be made, using order 2 of dominance and the criterion C2, on Turkey and Brazil,
Hungary and the US, France and Russia and Vietnam and Russia. The definite ranking of all
other pairs of countries observed on Figure 6 is, however, exactly the intersection of the rankings
by (inverse) first-order dominance of the marginal distributions of family background (Figure 4)
and either first or second (elitist) dominance on the marginal of skills (Figure 5).

The resistance of Russia to domination by any other country illustrates well the role played
by the aversion to correlation between skills and backgrounds in our criteria. Indeed, among
the 43 countries depicted in Figure 6, Russia is the country where the correlation between
skills and backgrounds - measured by either the regression coefficient or Pearson - is the lowest.
There are many other countries beside Russia which, by dominating some others, and being
dominated by none, appear at the "top" of the "dominance tree" of Figure 6. These countries
are (in alphabetic order) Belgium, the Czech Republic, Finland, Germany, Indonesia, Japan,
Korea, Poland, Portugal, Singapore, Switzerland, Thailand,Turkey and Vietnam. This latter
country, who dominates 17 others, is clearly a major player in this top group. This prominence
is explained by the fact that Vietnam pupils are by large coming from less favored families than
those of the other countries. Since Vietnam pupils are doing rather well at PISA test, the Vietnam
education system appears to outperform many others. This impressive performance of Vietnam
is something that does not emerge spontaneously from a casual look at PISA rankings, in which
the average Math Score of Vietnam (494) makes this country only a bit above the OECD average.
However, considering that the average social status of Vietnamese parents is by far the lowest
of all countries, the Math attainments of their children appears remarkable. To highlight just
how impressive the attainments of Vietnamese children are at Math PISA test, one can compare
them with those of children from countries with similar average parental social-status. Peru and
Indonesia for example have HISEI averages roughly comparable to that of Vietnam. Yet their
rather average standing at average of 368 and 375 at the Math PISA tests, making them the 2
lowest ranked countries of the official PISA ranking. Another good perform in this "top club" is
Poland who dominates 12 other countries, and Japan (who dominates nine). At the bottom of
the tree, one finds countries dominated by several others, but who dominate none. Members
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Figure 6: Rankings of countries as per the criteria of Theorems 1 and 2.

of this "bottom" pool are Algeria, Brazil, Jordan, Lebanon and UAE. Particularly bad per-
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formance are that of the UAE (dominated by 29 countries), Lebanon (dominated by 25) and
Jordan (dominated by 18). The main reason for this bad performance is the polar opposite of
what explains the good performance of Vietnam .Indeed, the children trained in the education
systems of Jordan, Lebanon and UAE countries are coming from family with relatively good
HISEI categories, even though they perform somewhat poorly in PISA Math tests.

4 Conclusion

This paper has provided and implemented a methodology for appraising the performance of
education systems, described by the (joint) distribution of cognitive skills and family backgrounds
of the children that they educate. The methodology stands on a wide consensus about principles
that could underlie such an appraisal. Three principles were given a particular emphasis:

1) Favorable recording of any improvement in the skill of a child with a given background.
2) A given skill acquired by a child is appraised all the more favorably as the child is coming

from a relatively unfavorable background and,
3) For any two children differing in both their skill and background, it is preferable that the

child with the low background be given the high skill than the other way around.
We identified a simple test that coincides with the unanimity of all anonymous transitive

rankings of education systems that agree with these principles. The test amounts to verifying,
for any levels of background and skill, if there is a higher fraction of children from a lower
background and a better skill in one system than in another. Because the unanimity of rankings
that satisfy these three principles is large, the test that corresponds exactly to it is not extremely
discriminatory. We have therefore also considered the possibility of complementing these three
basic principles with the more controversial elitist idea that a given mean preserving spread in the
skill of two children with the same background should also been considered favorably. We have
also identified an empirically testable criterion that coincides with the unanimity of all transitive
and anonymous rankings that are compatible with elitism and the three other principles. The
test amounts to verifying two sets of conditions:

1) If the expected success of children of a given background over any target assigned to their
background is larger in the dominating than in the dominated distribution for any assignment
of skill target that is increasing with the background and

2) if the fraction of children coming from a lower background than any given level is larger
in the dominating then in the dominated distribution.

We have also illustrated the usefulness of our criteria by comparing the distributions of PISA
scores in mathematics and family backgrounds based on the 2015 wave of PISA data. In this
empirical application, we have taken the highest of the two parents’ index of social status as
the measure of background. The empirical analysis reveals that the criteria are easy to use,
and do generate interesting conclusions. The most salient of them is the excellent performance
of Vietnam . While the 19% of conclusive rankings obtained with the more demanding elitist
criterion can be considered disappointing, the robustness of the conclusions are worth stressing.
In effect, any conceivable assessment of national education systems that records favorably the
three main principles above as well as dispersions in the children skill will agree with those
conclusions. The fraction of conclusive rankings falls at 17.5% when one focuses only on the
three core principles.

Two limitations of our analysis are, however, worth stressing.
The first one is our inability to find an operational criterion that would have replaced elitism

by inequality aversion. This inability, that seems to be based on somewhat difficult features of the
two-dimensional dominance theory developed in this paper, is clearly disappointing. Problems
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of similar nature where encountered by Muller and Trannoy (2012) in a somewhat different
context. The difficulty clearly calls for future research in theoretical dominance analysis. Why is
it that some combinations of elementary principles convert better than others into easy-to-use
dominance criteria ?

A second limitation concerns the relevance of the country as a natural example of an education
system. Consider for example the extremely favorable appraisal of Vietnam that results from our
empirical analysis. Is the high performance of Vietnam really the result of exceptionally well-
designed education institutions developed in this country ? Or is it not, at least to some extent,
the result also of a cultural attitude toward skill acquisition that has little to do with the actual
working of Vietnamese education institutions? While the country level may not be the more
appropriate to appraise the performance of education systems, it is our hope that researchers
will find the methodology developed herein useful for making the required more-fine grained
assessment of education systems performance.

5 Appendix

5.1 Proof of Theorem 1

The proof proceeds in several steps. We first establish, in the following Lemma, that if one wants to

compare two education systems de
∗

and de
◦

by means of an additively separable - across children -

evaluation function in a way that is sensitive to improvements in a child’s cognitive skill, deteriorations

in a child’s background and reductions in correlation between skills and background, then it is necessary

and sufficient that the evaluation function satisfies specific monotonicity and submodular properties.

Lemma 1 Let de
∗

and de
◦

be two education systems in E such that de
∗

has been obtained from de
◦

by either an improvement in a child’s cognitive skill, a deterioration in family background, or a reduction

in correlation between skill and background per Definitions 1-3. Then one has:

b�

β=1

z�

σ=1

d
e
∗

bsΦ(β, σ) ≥
b�

β=1

z�

σ=1

d
e
◦

bsΦ(β, σ) (8)

for a function Φ : B × S −→ R if and only if Φ satisfies:
(i) Φ(b, s+ 1) ≥ Φ(b, s) for all b ∈ B and s ∈ {1, ..., s− 1},
(ii) Φ(b− 1, s) ≥ Φ(b, s) for all b ∈ {2, ..., b}.and s ∈ S and,
(iii) Φ(s′, b) − Φ(s, b) ≥ Φ(s′, b′)− Φ(s, b′) for all (b, s) and (b′, s′) in B × S such that b′ ≥ b and
s′ ≥ s.

Proof. Assume first that de
∗

has been obtained from de
◦

by an improvement in a child’s cognitive skill

as per Definition 1. Then, there exists some b ∈ B and s ∈ {1, ..., s− 1} such that:

d
e
∗

βσ = d
e
◦

βσ∀ (β, σ) ∈ (B × S)\{b, s), (b, s+ 1)

d
e
∗

bs = d
e
◦

bs − 1 and,

d
e
∗

bs+1 = d
e
◦

bs + 1.
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Hence:

b�

β=1

z�

σ=1

d
e
∗

bsΦ(β, σ) ≥
b�

β=1

z�

σ=1

d
e
◦

bsΦ(β, σ)

⇐⇒
b�

β=1

z�

σ=1

(de
∗

bs − d
e
◦

bs )Φ(β, σ) ≥ 0

⇐⇒

Φ(s+ 1, b)−Φ(s, b) ≥ 0

which, when applied to arbitrary b ∈ B and s ∈ {1, ..., s−1} , is equivalent to (i). Assume now that de
∗

has been obtained from de
◦

by means of a deterioration in a child’s family background as per Definition

2. Then, there exists some b ∈ {2, ..., b} and s ∈ S such that:

d
e
∗

βσ = d
e
◦

βσ ∀ (β, σ) ∈ (B × S)\{(b− 1, s), (b, s)}

d
e
∗

bs = d
e
◦

bs − 1 and,

d
e
∗

(b−1)s = d
e
◦

(b−1)s + 1.

Hence:

b�

β=1

z�

σ=1

d
e
∗

bsΦ(β, σ) ≥
b�

β=1

z�

σ=1

d
e
◦

bsΦ(β, σ)

⇐⇒
b�

β=1

z�

σ=1

(de
∗

bs − d
e
◦

bs )Φ(β, σ) ≥ 0

⇐⇒

Φ(b− 1, s)−Φ(b, s) ≥ 0

which, when applied to arbitrary b ∈ {2, ..., b} and s ∈ S, is equivalent (ii). Finally, assume that de
∗

has been obtained from de
◦

by means of a reduction in correlation between skill and family background

as per Definition 3. This means that there are b and b′in B and s and s′ in S satisfying b < b′ and

s < s′ such that:

d
e
∗

βσ = d
e
◦

βσfor all (β, σ) ∈ (B × S)\{(b, s), (b
′, s), (b, s′), (b′, s′)}

d
e
∗

bs = d
e
◦

bs − 1 and d
e
∗

b′s′ = d
e
◦

b′s′ − 1 ,

d
e
∗

bs′ = d
e
◦

bs′ + 1 and d
e
∗

b′s = d
e
◦

b′s + 1

Hence:

b�

β=1

z�

σ=1

d
e
∗

bsΦ(β, σ) ≥
b�

β=1

z�

σ=1

d
e
◦

bsΦ(β, σ)

⇐⇒
b�

β=1

z�

σ=1

(de
∗

bs − d
e
◦

bs )Φ(β, σ) ≥ 0

⇐⇒

Φ(b, s′)−Φ(b, s)− [Φ(b′, s′)−Φ(b′, s)] ≥ 0
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as required by (iii).

In the next proposition, we establish,an equivalence between Statement (b) of Theorem (1) and the

fact of observing, for the two education systems de
∗

and de
◦

mentioned in this statement, Inequality

(8) for all functions Φ satisfying properties (i)-(iii) of Lemma 1. We specifically establish the following.

Proposition 1 Let de
∗

and de
◦

be two education systems in E. Then, the two following statements
are equivalent:

(a)

b�

β=1

z�

σ=1

d
e
∗

βσΦ(β, σ) ≥
b�

β=1

z�

σ=1

d
e
◦

βσΦ(β, σ) for all functions Φ : S×B −→ R satisfying Properties

(i)-(iii) of Lemma 1 and,

(b)

b�

β=1

s�

σ=s

d
e
∗

βσ ≥
b�

β=1

s�

σ=s

d
e
◦

βσ for all (b, s) ∈ B × S..

Proof. (a) =⇒ (b).

Assume that the inequality:

b�

β=1

z�

σ=1

d
e
∗

bsΦ(β, σ) ≥
b�

β=1

z�

σ=1

d
e
◦

bsΦ(β, σ) (9)

holds for all functions Φ satisfying Properties (i)-(iii) of Lemma 1. In particular therefore, inequality (9)
holds for the function Φsb defined, for any (s, b) ∈ S ×B, by:

Φbs(β, σ) = 1 if β ≤ b and σ ≥ s

= 0 otherwise (10)

which clearly satisfies Properties (i)-(iii) of Lemma 1. Since Inequality (9) holds for any such function

Φsb, one has, for every (b, s) ∈ B × S:

b�

β=1

z�

σ=1

d
e
∗

bsΦ
bs(β, σ) ≥

b�

β=1

z�

σ=1

d
e
◦

bsΦ
bs(β, σ)

⇐⇒
b�

β=1

s�

σ=s

d
e
∗

βσ ≥
b�

β=1

s�

σ=s

d
e
◦

βσ

for all such (b, s) as required by (b).
(b) =⇒ (a).

Assume that (b) holds. In order to demonstrate that Inequality (9) must hold for all functions Φ satisfying
Properties (i)-(iii) of Lemma 1, we start by writing Inequality (9) as:

b�

b=1

s�

s=1

∆dbsΦ(b, s) ≥ 0 (11)

where, for every (b, s) ∈ S ×B:

∆dbs = d
e
∗

bs − d
e
◦

bs
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Inverting the order of the summation of the skill variable, we can write alternatively Inequality (11) as:

b�

b=1

1�

s=s

∆dbsΦ(b, s) ≥ 0 (12)

Doing a discrete (or Abelian, see e.g. Fishburn and Vickson (1978) eq. 2.49), sum by part of Expression

(12) yields (after exploiting the fact that

b�

b=1

1�

s=s

∆dbs = 0):

b�

b=1

2�

s=s

∆dbsΦ2(b, s− 1)

−
b−1�

b=1

1�

s=s

∆dbs∆Φ1(b, 1)

−
b−1�

b=1

b�

β=1

2�

s=s

s�

σ=s

∆dβσΦ12(b, s− 1)

≥ 0 (13)

where, for every (b, s) ∈ {1, ..., b− 1} × {1, ..., s− 1}:

Φ1(b, s) = Φ(b+ 1, s)−Φ(b, s)

Φ2(s, b) = Φ(b, s+ 1)−Φ(b, b)

denote the partial discrete (to the right) difference of Φ with respect to family background and skill
respectively and where:

Φ12(b, s) = Φ(b+ 1, s+ 1)−Φ(b+ 1, s)−Φ(b, s+ 1) + Φ(b, s) (14)

denote the discrete (to the right) difference of difference of Φ first with respect to background and second
with respect to skill. Hence, a sufficient condition for (13) to hold for all functions Φ satisfying Φ1 ≥
0 ≥ Φ2 and Φ12 ≤ 0 as required by Properties (i)-(iii) of Lemma 1 is to have:

b�

β=1

s�

σ=s

∆dβσ ≥ 0

for all s ∈ {1, ..., s} and b ∈ {1, ..., b}, as required by Statement 2 of Theorem 1.

We propose to prove Theorem 1 as a corollary of the just proved Proposition 1 and the next Proposi-

tion, which establishes an equivalence between the fact of going from an education system to another by

a finite sequence of improvements in cognitive skills, deteriorations in family backgrounds and reductions

in correlation between cognitive skill and family background on the one hand, and the fact of observing

Inequality 9 for all functions Φ satisfying Properties (i)-(iii) of Lemma 1 on the other. In order to state

and prove this Proposition, we introduce some additional notation and auxiliary results.

We start by defining the binary relation �1on E as follows: de
∗

�1 d
e
◦

if and only if de
∗

has been

obtained from de
◦

by either (non-inclusively) an improvement in a child’s cognitive skill, a deterioration

in family background, or a reduction in correlation between skill and background per Definitions 1-3.
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This binary relation is anti-symmetric and reflexive but is not transitive. The transitive closure of �1,

denoted ��1, and defined by:

d
e
∗ ��1 de

◦

⇐⇒ ∃ a sequence {det}tt=0 of education systems such that:

d
e0 = d

e
∗

,

d
et = d

e
◦

and

d
et � 1d

et+1 for t = 0, ..., t− 1

We now observe that the fact for education system d
e
∗

to result from system d
e
◦

by means of either

an improvement in a child’s cognitive skill, a deterioration in family background, or a reduction in

correlation between skill and background per Definitions 1-3 - that is de
∗

�1 d
e
◦

- can equivalently

be described by the fact that the difference ∆d = d
e
∗

− de
◦

belongs to some set T 1 ⊂ Z
bs. Define

specifically the sets Tskill, Tfam and Tcorrel by:

Tskill = {∆d ∈Zbs : ∆dβσ = 0 ∀ (β, σ) ∈ (B × S)\{(b, s), (b, s+ 1)},

∆dbs = −1 and ∆dbs+1 = 1 for some (b, s) ∈ B × S\{s}}

Tfam = {∆d ∈Zbs : ∆dβσ = 0 ∀ (β, σ) ∈ (B × S)\{(b− 1, s), (b, s)},

∆dbs = −1 and ∆dbs+1 = 1 for some (b, s) ∈ B\{1} × S}

Tcorrel = {∆d ∈Zbs : ∆dβσ = 0 ∀ (β, σ) ∈ (B × S)\{(b, s), (b
′, s), (b, s′), (b′, s′)},

∆dbs = −1 = ∆db′s′ and

∆dbs′ = 1 = ∆db′s for some (b, s) and (b′, s′) ∈ B × S such that (b, s) << (b′, s′)}

Each of these set is finite, as is the set B(T 1) = Tskill ∪ Tfam∪ Tcorrel. Hence de
∗

− de
◦

∈ B(T 1) if
and only if de

∗

�1 d
e
◦

. Define now the set T 1 as follows:

T 1 = {m ∈ Zbs : m =

#B(T 1)�

t=1

λtmt for λt ∈ N and mt ∈ B(T
1)} (15)

Hence T 1 is the set of all differences in education systems de
∗

− de
◦

(whatever the involved education

systems de
∗

and de
◦

are) generated by the fact of obtaining de
∗

from d
e
◦

by a finite sequence of im-

provements in a child’s cognitive skill, deteriorations in family background and reductions in correlation

between skill and background as per Definitions 1-3. Put differently, de
∗

−de
◦

∈ T 1 if and only if de
∗

��1 de
◦

. It must be remarked that 0 ∈ T 1. It can also be noticed that B(T 1) is a finite basis of the set

T 1 in the (obvious sense) that any m ∈ T 1 can be written as

#B(T 1)�

t=1

λtmt for λt ∈ R+, mt ∈ B(T 1)

and t = 1, ...,#B(T 1). As can be noticed also, one can never have m = m′ + m” for m,m′ and
m” ∈ B(T 1). Hence, the elements of B(T 1) are "irreducible" and B(T 1) is therefore a Hilbert basis of

the set T 1 (see e.g. Cook, Fonlupt, and Schrijver (1986)).
We now show that the set T 1 is a discrete and pointed convex cone. That is T 1 is such that for any

m and m′ such that m ∈ T 1 and m′ ∈ T 1, it is the case that λ1m+λ2m
′ ∈ T 1 for all λ1 and λ2 ∈ N

(discrete cone) and if m ∈ T 1 and −m ∈ T 1, one has m = 0 (pointed cone).
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Lemma 2 The set T 1 is a discrete and pointed cone. That is, it is such that for any m and m′ such

that m ∈ T 1 and m′ ∈ T 1, it is the case that λ1m+ λ2m
′ ∈ T 1 for all λ1 and λ2 ∈ N and m = 0

if m ∈ T 1 and −m ∈ T 1.

Proof. Suppose that m and m′ belong to T 1. Using Expression (15), one has m =

#B(T 1)�

t=1

λtmt

and m′ =

#B(T 1)�

t=1

λ′tmt for {λ
′
t} ∪ {λt} ⊂ N and mt ∈ B(T 1). For any λj ∈ N (j = 1, 2).

one has λ1m+ λ2m
′ =

#B(T 1)�

t=1

(λ1λt + λ2λ
′
t)mt for mt ∈ B(T 1) and (λ1λt + λ2λ

′
t) ∈ N and

t = 1, ...,#B(T 1), which implies (using Expression (15) again) that λ1m+ λ2m
′ ∈ T 1. Hence T 1 is a

discrete cone. To show that it is pointed, consider any m such that m ∈ T 1 and m �= 0. This means that

m =

#B(T 1)�

t=1

λtmt for λt ∈ N and mt ∈ B(T
1) and −m =

#B(T 1)�

t=1

λ′tmt for λ
′
t ∈ N and mt ∈ B(T

1)

for t = 1, ...., #B(T 1). One therefore has:

#B(T 1)�

t=1

λtmt = −

#B(T 1)�

t=1

λ′tmt

⇐⇒
#B(T 1)�

t=1

(λt + λ′t)mt = 0−

For this equality to hold for some (λt+λ′t) > 0, there must exists some mt and m′ ∈ B(T 1) such that
mt = −γmt′ for some strictly positive γ. But this is impossible given the definition of the elementary

operations associated to the set B(T 1).

With these preliminaries, we are ready to prove the following proposition, which, when combined

with the equivalence established in Proposition 1,proves Theorem 1.

Proposition 2 .Let de
∗

and de
◦

be two education systems in E. Then, the two following statements
are equivalent:

(a)

b�

β=1

z�

σ=1

d
e
∗

βσΦ(β, σ) ≥
b�

β=1

z�

σ=1

d
e
◦

βσΦ(β, σ) for all functions Φ : S×B −→ R satisfying Properties

(i)-(iii) of Lemma 1 and

(b) de
∗

− de
◦

∈ T 1.

Proof. The fact that (b) implies (a) is an immediate consequence of Lemma 1 and the fact that

d
e
∗

−de
◦

∈ T 1 if and only if de
∗ ��1 de

◦

.We therefore only prove that (a) implies (b). For this sake,

we write (a) as:
b�

β=1

z�

σ=1

∆dβσΦ(β, σ) ≥ 0

for all Φ : S × B −→ R satisfying Properties (i)-(iii) of Lemma 1. Let F denote the set of all such

functions. It is easy to check that F is a linear space, as is obviously Rbs in which the discrete and
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pointed cone T 1 lies. It is also reasonably straightforward to check that the two linear spaces F and Rbs

are in strict duality under the bilinear mapping g : Rbs ×F → R defined by:

g(m,Φ) =
b�

β=1

z�

σ=1

mβσΦ(β, σ)

That is, for all Φ : S×B −→ R satisfying Properties (i)-(iii) of Lemma 1 such that Φ(β, σ) �= Φ(β′, σ′)
for at least two distinct pairs (β, σ) and (β′, σ′) in S × B, there exists some m ∈ T 1 such that

g(m,Φ) �= 0 and, conversely,for any m ∈ T 1 such that m �= 0, one can find some function Φ ∈ F
such that g(m,Φ) �= 0. We now observe that, by virtue of Lemma 1, F is the dual cone of the set T 1

under the function g(m,Φ). That is, F = {Φ : S × B −→ R : g(m,Φ) ≥ 0 for all m ∈ T 1}. By

assumption,

b�

β=1

z�

σ=1

∆dβσΦ(β, σ) ≥ 0 for all Φ ∈ F . Hence d
e
∗

−de
◦

belongs to the dual cone of F or,

equivalently, to the dual cone of the dual cone of T 1. Call this set T 1∗∗. By virtue of the Bipolar theorem
(see Wikipedia or,for example,Muller and Scarsini (2012) (Theorem 4.3)), T 1∗∗ is the smallest closed
set containing the convex cone generated by T 1. The convex cone generated by T 1, denoted Co(T 1), is
defined by

Co(T 1) = Co{λm : λ ∈ R+, m ∈ T 1}

where Co(A) denote the convex hull of A. Now de
∗

− de
◦

∈ T 1∗∗ and de
∗

− de
◦

∈ Zbs. Since

T 1 ⊂ Zbs, the set Co(T 1) is obviously a rational cone in the sense that it is generated by the rational
pointed cone T 1. By Hilbert theorem, the rational pointed cone T 1 has a unique Hilbert basis B(T 1)

that spans Co(T 1) (and T 1). Since de
∗

−de
◦

∈ T 1∗∗ ∩Zbs, de
∗

−de
◦

∈ T 1 and this completes the
proof.

5.2 Proof of Theorem 2

The proof strategy follows that used in the proof of Theorem 1. We start by establishing, in the following

extension of Lemma 1, that the comparison of two education systems de
∗

and de
◦

by means of an

additively separable - across children - evaluation function in a way that is sensitive to improvements in

a child’s cognitive skill, deteriorations in a child’s background, reductions in correlation between skills

and background and dispersions in children cognitive skill requires the evaluation function to satisfy

monotonicity, submodularity and restricted convexity properties. We specifically prove the following.

Lemma 3 Let de
∗

and de
◦

be two education systems in E such that de
∗

has been obtained from de
◦

by either an improvement in a child’s cognitive skill, a deterioration in family background, a reduction

in correlation between skill and background or a dispersion in children cognitive skills as per Definitions

1-4. Then one has:
b�

β=1

z�

σ=1

d
e
∗

bsΦ(β, σ) ≥
b�

β=1

z�

σ=1

d
e
◦

bsΦ(β, σ) (16)

for a function Φ : B × S −→ R if and only if Φ satisfies:
(i) Φ(s+ 1, b) ≥ Φ(s, b) for all b ∈ B and s ∈ {1, ..., s− 1},
(ii) Φ(b− 1, s) ≥ Φ(b, s) for all b ∈ {2, ..., b}.and s ∈ S,
(iii) Φ(s′, b)−Φ(s, b) ≥ Φ(s′, b′)−Φ(s, b′) for all (b, s) and (b′, s′) in B such that b′ ≥ b and s′ ≥ s

and,

(iv) Φ(s′, b)−Φ(s′−1, b) ≥ Φ(s+1, b)−Φ(s, b) for all b in B and s and s′ in S such that s′ > s+1.
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Proof. The proof of the necessity and sufficiency of conditions (i)-(iii) for having Inequality (16)

with any two education systems de
∗

and de
◦

such that de
∗

has been obtained from de
◦

by either an

improvement in a child’s cognitive skill, a deterioration in family background, a reduction in correlation

between skill and background has already been established in Lemma 1. We therefore only establish here

the necessity and sufficiency of (iv) for the satisfaction of Inequality (16) for education systems de
∗

and

d
e
◦

such that de
∗

has been obtained from de
◦

by a dispersion in cognitive skill as per Definition 4. Let

indeed de
∗

and de
◦

be two such systems for which, as per Definition 4, there is a background b ∈ B and
skill levels s and s′ in S satisfying s′ > s+ 1 such that :4

d
e
∗

βσ = d
e
◦

βσfor all (β, σ) ∈ (B × S)\({(b, s
′), (b, s′ + 1)} ∪ {(b, s− 1), (b, s)})

d
e
∗

bs′ = d
e
◦

bs′ + 1, d
e
∗

bs′−1 = d
e
◦

bs′−1 − 1 , d
e
∗

bs = d
e
◦

bs + 1 and d
e
∗

bs+1 = d
e
◦

bs+1 − 1

if s′ − 1 > s+ 1 and:

d
e
∗

bs′ = d
e
◦

bs′ + 1, d
e
∗

bs′−1 = d
e
∗

bs+1 = d
e
◦

bs′−1 − 2 , d
e
∗

bs = d
e
◦

bs + 1

if s′ − 1 = s+ 1. Hence inequality (16) holds with such de
∗

and de
◦

if and only if one has

Φ(s′, b)− Φ(s′ − 1, b)−Φ(s+ 1, b) + Φ(s, b) ≥ 0

for any b ∈ B and skill levels s and s′ in S satisfying s′ > s + 1, which is nothing else than what is
required by (iv).

We now establish the analogue of Proposition 3 of the last subsection. Specifically, we prove the

equivalence between Statement (b) of Theorem 2 and the fact of observing, for the two education systems

d
e
∗

and de
◦

.mentioned in this statement, Inequality (16) for all functions Φ satisfying properties (i)-(iv)

of Lemma 3. We specifically establish the following.

Proposition 3 Let de
∗

and de
◦

be two education systems in E. Then, the two following statements
are equivalent:

(a)

b�

β=1

z�

σ=1

d
e
∗

βσΦ(β, σ) ≥
b�

β=1

z�

σ=1

d
e
◦

βσΦ(β, σ) for all functions Φ : S ×B −→ R satisfying Properties

(i)-(iv) of Lemma 3 and,

(b)
�

b∈B

Se(b, s(b)) ≥
�

b∈B

Se
◦

(b, s(b)) for all increasing functions s : B → S and
b�

β=1

s�

σ=1

d
e
∗

βσ ≥

b�

β=1

s�

σ=1

d
e
◦

βσ for every background b.

Proof. (a) =⇒ (b).

Assume that de
∗

and de
◦

are two education systems in E for which Inequality (16) holds for all functions
Φ : S ×B −→ R satisfying Properties (i)-(iv) of Lemma 3. In particular therefore, inequality (16) holds

for the function Φs(.) defined, for any increasing function s : B → S, by:

Φs(.)(b, s) = max[s− s(b), 0]
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Indeed, Φs(.) satisfies Properties (i)-(iv) of Lemma 3. Since Inequality (16) holds for any such function
Φs(.), one has:

b�

β=1

z�

σ=1

d
e
∗

βσmax[σ − s(β), 0] ≥
b�

β=1

z�

σ=1

d
e
◦

βσmax[σ − s(β), 0]

⇐⇒�

b∈B

Se(s(b), b) ≥
�

b∈B

Se
◦

(s(b), b)

as required by the first criterion of Statement (b). For the second criterion of this statement, simply

observe that, for every b ∈ B, the function Φb : S × B −→ R defined, for every σ ∈ S, by:

Φb(β, s) = 1 if β ≤ b

= 0 otherwise

also satisfies (more than often trivially) Properties (i)-(iv) of Lemma 3. Hence Inequality (16) holds for

Φb so that one has, for every b:

b�

β=1

z�

σ=1

d
e
∗

βσΦ
b(β, σ) ≥

b�

β=1

z�

σ=1

d
e
◦

βσΦ
b(β, σ)

⇐⇒
b�

β=1

s�

σ=1

d
e
∗

βσ ≥
b�

β=1

s�

σ=1

d
e
◦

βσ

for every b, as required by the second part of Statement (b).
(b) =⇒ (a)

We proceed just as in the corresponding step of the proof of Proposition 1 (with the same notation) by

writing Inequality (16) as:
b�

b=1

1�

s=s

∆dbsΦ(b, s) ≥ 0 (17)

or, after performing an Abel decomposition of the inner term of Inequality (17) only:

b�

b=1

1�

s=s

∆dbsΦ(b, 1)

+
b�

b=1

2�

s=s

s�

σ=s

∆dbσΦ2(b, s) ≥ 0 (18)

Paralleling the ingenious approach proposed by Bourguignon (1989) for his ordered poverty gap criterion,

one can observe that the second term of the left hand side of Inequality (18) can be written as:

b�

b=1

2�

s=s

s�

σ=s

∆dbσΦ2(b, s) =
b�

b=1

2�

s=s

s�

σ=s

[∆dbσ + gsb−1 − gsb ]Φ2(b, s)

−
b�

b=2

2�

s=s

Φ12(b− 1, s− 1)g
s
b−1 (19)
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for any list of bs non-negative numbers gsb (for b = 1, ..., b and s = 1, ..., s) satisfying g
s
0 = gs

b
= 0 for

every s ∈ {1, ..., l}. Doing an additional Abel decomposition of the first term of the right hand side of
Expression (19) enables one to write this expression as:

b�

b=1

2�

s=s

s�

σ=s

∆dbσΦ2(b, s) =

b�

b=1

[
2�

s=s

s�

σ=s

∆dbσ +
2�

s=s

gsb−1 −
2�

s=s

gsb ]Φ2(b, 1)

−
b�

b=1

2�

s=s

[
s�

σ=s

σ�

j=s

∆dbj +
s�

σ=s

gσb−1 −
s�

σ=s

gσb ][Φ2(b, s− 1)−Φ2(b, s)]

−
b�

b=2

2�

s=s

Φ12(b− 1, s− 1)g
s
b−1 (20)

Substituting (20) back into inequality (18) enables one to write this latter inequality as follows (after

performing an Abel decomposition of the first term of the left hand side of this inequality this time with

respect to the outer term of Inequality (17):

−
b�

b=1

b�

β=1

1�

s=s

∆dβsΦ1(b, 1)

+
b�

b=1

[
2�

s=s

s�

σ=s

∆dbσ +
2�

s=s

gsb−1 −
2�

s=s

gsb ]Φ2(b, 1)

+
b�

b=1

2�

s=s

[
s�

σ=s

σ�

j=s

∆dbj +
s�

σ=s

gσb−1 −
s�

σ=s

gσb ]Φ22(b, s− 1)

−
b�

b=2

2�

s=s

Φ12(b− 1, s− 1)g
s
b−1

≥ 0 (21)

where Φ22(b, s− 1) = Φ2(b, s)−Φ2(b, s− 1)). We now observe that, for every b ∈ B and s ∈ S, one
has:

s�

σ=s

(s− σ)dbσ = s

s�

σ=s

dbσ −
s�

σ=s

σdbσ

= s

s�

σ=s

dbσ − s

s�

σ=s

dbσ −
s+1�

σ=s

σ�

j=s

∆∆dbj

= −
s+1�

σ=s

σ�

j=s

∆dbj (22)
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Using this expression, one can write Inequality (21) as:

−

b�

b=1

b�

β=1

1�

s=s

∆dβsΦ1(b, 1)

+
b�

b=1

[
1�

s=s

(s− 1)∆dbs +
2�

s=s

g
s
b−1 −

2�

s=s

g
s
b ]Φ2(b, 1)

+
b�

b=1

2�

s=s

[

s−1�

σ=s

(σ − s+ 1)∆dbσ +
s�

σ=s

g
σ
b−1 −

s�

σ=s

g
σ
b ]Φ22(b, s− 1)

−

b�

b=2

2�

s=s

Φ12(b− 1, s− 1)g
s
b−1

≥ 0 (23)

As is clear, a sufficient condition for Inequality (23) to hold for all functions Φ satisfying properties
(i)-(iv) of Lemma 3 (that are all such functions such that Φ1 ≤ 0, Φ12 ≤ 0, Φ2 ≥ 0 and Φ22 ≥ 0 is to
have:

b�

β=1

1�

s=s

∆dβs ≥ 0 and, (24)

s−1�

σ=s

(σ − s+ 1)∆dbσ +
s�

σ=s

gσb−1 −
s�

σ=s

gσb ≥ 0 (25)

for all b ∈ B and s ∈ S for some list of (b + 1)s non-negative numbers gsb−1 (for b ∈ B and s ∈ S)
satisfying gs0 = gs

b
= 0 for every s ∈ S. Condition (24) for every b is nothing else than the second

requirement Statement (b) of Theorem 2. We now establish that a sufficient condition for the existence
of a list of (b+1)s non-negative numbers gsb−1 (for b ∈ B and s ∈ S) satisfying g

s
0 = gs

b
= 0 for every

s ∈ S for which (25) holds for every (b, s) ∈ B × S ∈ {1, ...,m} is to have:
�

b∈B

�

σ∈{sb,...,s}

max(σ − sb)∆dbσ ≥ 0 (26)

for every (s1, ..., sb) ∈ Sb such that s1 ≤ ... ≤ sb. To see this, suppose that Inequality (26) holds for all

such (s1, ..., sb). For every (b, s) ∈ B × S, define the numbers
s�

σ=s

gσb−1 recursively as follows:

s�

σ=s

gσb−1 = min
s≥sb

s�

σ=s

(σ − s)∆dbσ +
s�

σ=s

gσb

starting from:
s�

σ=s

gσ
b−1

= min
s≥sb

s�

σ=s

(σ − s)∆db−1

and setting

s�

σ=l

gσ0 = 0 for every s. Hence
s�

σ=s

gσb−1 is the minimal difference in success between the two

education systems e and e◦ for all backgrounds above b and all success target above s. These numbers

are clearly non-negative (since inequality (26) holds) and decreasing, as required. Moreover, the min

condition in the definition of these numbers guarantees that condition (25) holds and this completes the

proof.
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Just like for Theorem 1, we prove Theorem 2 as a corollary of the just proved Proposition 3 and

Proposition 4 below. The latter proposition states the equivalence between the fact of going from an

education system to another by a finite sequence of improvements in cognitive skills, deteriorations

in family backgrounds, reductions in correlation between cognitive skill and family background and

increasing dispersions in skills on the one hand, and the fact of observing Inequality (16) for all functions

Φ satisfying Properties (i)-(iv) of Lemma 3 on the other.

For this sake, we define the binary relation �2on E as follows: de
∗

�2 d
e
◦

if and only if de
∗

has been

obtained from de
◦

by either (non-inclusively) an improvement in a child’s cognitive skill, a deterioration

in family background a reduction in correlation between skill and background or an increase in children

skill dispersion as per Definitions 1-4. Just like its subrelation �1 defined in the proof of Theorem 1, �2
is anti-symmetric and reflexive but not transitive. Its transitive closure, denoted ��2, and is defined :

d
e
∗ ��1 de

◦

⇐⇒ ∃ a sequence {det}tt=0 such that:

d
e0 = d

e
∗

,

d
et = d

e
◦

and

d
et � 2d

et+1 for t = 0, ..., t− 1

As in the proof of Theorem 1, we can equivalently write de
∗

�2 d
e
◦

by the fact that the difference

∆d = de
∗

− de
◦

belongs to the set B(T 2) = B(T 1) ∪ Tspread where the set Tspread is defined by:

Tspread =

= {∆d ∈Zbs : ∃b ∈ B, s, s′ ∈ S s.t. s+ 1 < s′, dβσ = 0 for which:

∆dβσ = 0 ∀ (β, σ) ∈ (B × S)\({(b, s), (b, s+ 1)} ∪ {(b, s′ − 1), (b, s′)}),

∆dbs′ = 1, ∆dbs′−1 = −1 , ∆dbs = 1 and ∆dbs+1 = −1 if s′ > s+ 2 and,

∆dbs′ = 1, ∆dbs′−1 = ∆dbs+1 = −2 , ∆dbs = 1 if s′ = s+ 2}

We finally define the set T 2 of all differences in education systems de
∗

− de
◦

resulting from the fact of

obtaining de
∗

from de
◦

by a finite sequence of improvements in a child’s cognitive skill, deteriorations in

family background and reductions in correlation between skill and background as per Definitions 1-4.as

follows:

T 2 = {m ∈ Zbs : m =

#B(T 1)�

t=1

λtmt for λt ∈ N and mt ∈ B(T
2)} (27)

Just like for in the proof of Theorem 1, de
∗

− de
◦

∈ T 2 if and only if de
∗ ��1 de

◦

. It is clear that

0 ∈ T 2, and that B(T 2) is a finite basis of the set T 2 in the (obvious sense) that any m ∈ T 2 can

be written as

#B(T 2)�

t=1

λtmt for λt ∈ R+, mt ∈ B(T
2) and t = 1, ...,#B(T 2). It can also be observed

that one can never have m = m′ +m” for m,m′ and m” ∈ B(T 2) so that B(T 2) is a Hilbert basis

for the set T 2 (see e.g. Cook, Fonlupt, and Schrijver (1986)). Using similar arguments as in Lemma 2

above, one can verify that, just like T 1, T 2 is a discrete and pointed convex cone.

These remarks enable us to prove the following proposition which, when combined with the equiva-

lence established in Proposition 3,proves Theorem 2. The proof of this proposition follows exactly the

same structure as that of Proposition 2 and is therefore omitted.
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Proposition 4 .Let de
∗

and de
◦

be two education systems in E. Then, the two following statements
are equivalent:

(a)

b�

β=1

z�

σ=1

d
e
∗

βσΦ(β, σ) ≥
b�

β=1

z�

σ=1

d
e
◦

βσΦ(β, σ) for all functions Φ : S×B −→ R satisfying Properties

(i)-(iii) of Lemma 1 and

(b) de
∗

− de
◦

∈ T 2.

5.3 Statistical Inference

Comparing distributions on the basis of the criteria identified in statements (b) of Theorems 1 and 2

amounts to verifying that a certain number of inequalities are connecting two distributions. Specifically

comparing education systems e∗ and eo by the criterion of Part (b) of Theorem 1 consists in verifying

that the inequality
b�

β=1

s�

σ=s

(de
∗

βσ − d
e
◦

βσ) ≥ 0

⇐⇒

γ1e
∗

bs − γ1e
◦

bs ≥ 0

holds for all pairs (b, s) observed on the discrete grid {1, ...b} × {1, ...s} where, for j = e∗, e◦:

γ
1j
bs =

b�

β=1

s�

σ=s

d
j
βσ

Analogously, comparing the very same education systems by the criterion of Part (b) of Theorem 2

amounts to verifying that the inequalities:

b�

β=1

s�

σ=1

(de
∗

βσ − d
e
◦

βσ) ≥ 0 (28)

⇐⇒

γ2e
∗

b − γ2e
◦

b ≥ 0

and �

b∈{1,...,b}

[Se
∗

(b, sb)− Se
◦

(b, sb)] ≥ 0 (29)

⇐⇒

γ2e
∗

s − γ2e
◦

s ≥ 0

hold for all b in the finite grid {1, ..., b} and all (s1, ..., sb) ∈ {1, ...s}
b such that s1 ≤ s2 ≤ ... ≤ sb

where, for j = e∗,e◦:

γ
2j
b =

b�

β=1

s�

σ=s

d
j
βσ
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and:

γ2js =
b�

b=1

Sj(b, sb)

We base the test for the statistical significance of these collections of inequalities on the statistics T 1bs,
T 21b and T 22bs(b) defined by:

T 1bs =
�γ1e

∗

bs − �γ1e
◦

bs
�ω1e

∗

bs

Ne∗
+

�ω1e
◦

bs

Ne◦

� 1

2

,

T 2b =
�γ2e

∗

1b − �γ2e
◦

1b
�ω2e

∗

b

Ne∗
+

�ω2e
◦

b

Ne◦

� 1

2

and,

T 2s =
�γ2e

∗

s − �γ2e
◦

s
�ω2e

∗

s

Ne∗
+

�ω2e
◦

s

Ne◦

� 1

2

where, for j = e∗, e◦:

(i) N j is the size of the sample drawn from population j,
(ii) �γ1jbs , �γ

2j
b and �γ2js are the sample estimates of γ

1j
bs , γ

2j
b and γ2js respectively and,

(iii) �ω1jbs , �ω
2j
b and �ω2js are the estimates of the variance of �γ1jbs , �γ

2j
b and �γ2js respectively.

Since the PISA samples of the different countries can be considered independent, one can use David-

son and Duclos (2000) (p. 1445) argument based on the law of large numbers and the Central limit

theorem to provide the following estimates of those variances:

�ω1jbs =
1

Nj

b�

β=1

s�

σ=s

d
j
βσ − (�γ

1j
bs)

2,

�ω2jb =
1

Nj

b�

β=1

s�

σ=1

d
j
βσ − (�γ

2j
b )

2 and,

�ω2js =
1

Nj

b�

b=1

s�

σ=s(b)

d
e

bσ(σ − s(b))2 − (�γ2js )2

We test dominance based on the liberal Union-Intersection criterion (UI) of Bishop, Formby, and Thistle

(1989). This amounts to conclude that education system e
∗ dominates system e

◦ for the dominance

criterion of Theorem 1 if and only if:

min
(b,s)∈{1,...,b}×{1,...,s}

T 1bs > −C
1
α and max

(b,s)∈{1,...,b}×{1,...,s}
T 1bs > C1α

where C1α is the critical value for a significance level of α (α being the probability of rejecting H0

when H0 is true) derived from the Studentized Maximum Modulus (SMM) distribution provided by

Stoline and Ury (1979) with the appropriate degrees of freedom. Similarly, one concludes that system

e
∗ dominates system e

◦ for the dominance criterion of Theorem 2 if and only if:

min
b∈{1,...,b}

T 2b > −C
2b
α and max

b∈{1,...,b}
T 21b > C2bα
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and:

min
(s1,...,sb)∈{1,...,s}

b:s1≤s2≤...≤sb

T 2s > −C
2s
α and max

(s1,...,sb)∈{1,...,s}
b:s1≤s2≤...≤sb

T 2s > C2sα

where again C2bα and C2sα are the critical values for a significance level of α taken from the SMM

distribution with the number of degree of freedom appropriate for the number of inequalities associated

to (28) and (29) respectively. All dominance test performed in this paper have been done at the 95%

confidence interval.
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