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Abstract

We study whether fiscal policies, especially public debt, can help to curb the macroeco-

nomic and health consequences of epidemics. Our approach is based on three main features:

we introduce the dynamics of epidemics in an overlapping generations model to take into ac-

count that old people are more vulnerable; people are more easily infected when pollution is

high; public spending and public debt can be used to tackle the effects of epidemics. We show

that fiscal policies can promote the convergence to a stable steady state with no epidemics.

When public policies are not able to permanently eradicate the epidemic, public debt and

income transfers could reduce the number of infected people and increase capital and GDP

per capita. As a prerequisite, pollution intensity should not be too high. Finally, we define a

household subsidy policy which eliminates income and welfare inequalities between healthy

and infected individuals.
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1 Introduction

The Covid-19 epidemic is one of the most serious threat to health in the last decades. To tackle the

crisis, countries have put in place extraordinary measures. “Health is priceless. The government

will provide all the financial means necessary to bring assistance, to take care of the sick, to save

lives. Whatever it takes” declared President Macron in March 2020. This “whatever it takes”

policy is indisputably associated to an increase in public debt, to support economic activity and

health care system.

The aim of this paper is to study the interplay between the health and economic impacts

of epidemics, and to analyze the effects of non-pharmaceutical public interventions, i.e. in the

absence of vaccines,1 in particular health public spending and fiscal policy with public debt.

The recent contributions about the economic consequences of epidemics assess the strategies

to fight the disease. They highlight the role of confinement, social distancing and the speed at

which a vaccine develops (Acemoglu et al., 2020; Alvarez et al., 2020; Eichenbaum et al., 2020;

Toxvaerd, 2021). In our work, we are rather interested in the consequences of the fiscal policy

and public debt on the epidemic control, which are often overlooked in the literature, despite

their importance, as underlined by the OECD (OECD, 2020).

We develop a three-period overlapping generations (OLG) model with young inactive agents,

working adults and old retirees. The dynamics of epidemics are formalized by introducing a SIS

(susceptible–infected–susceptible) model, as in Bosi and Desmarchelier (2020), Goenka and Liu

(2012, 2020) or Goenka et al. (2014).

In our model, the following features are highlighted. First, the impacts of the epidemic depend

on the age of the person affected: the older agent bears a risk of death while the adult agent will

be sick, without fatal consequences, but will have to take time off work. Indeed, empirical studies

show that the mortality of elderly patients is higher than that of young and middle-aged patients

during epidemics, because of their higher vulnerability. Taking the recent example of Covid-19,

elderly patients are more likely to progress to severe disease (see Liu et al., 2020; Williamson et

al., 2020; U.S. Department of Health & Human Services2) and hence, they are more affected by

saturated health’s system capacities entailed by the epidemics.

Secondly, we consider a link between epidemics and environmental issues. The degradation of

the environmental quality increases the rate of contagion of the epidemic. On this point, we rely

on two transmission channels highlighted by empirical works: (1) the loss of biodiversity increases

the risk of transmission of an animal virus to humans (IPBES report, 2020), which is known as

1It follows the terminology of Flaxman et al. (2020).
2https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/older-adults.html
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the dilution effect (Civitello et al., 2015); (2) air pollution (like PM 2.5 and 10) accelerates the

spread of the virus between humans as shown by empirical works interested in the propagation

factors of Covid-19 (Austin et al., 2020; Andree, 2020; Bourdrel et al., 2021 ; Cole et al., 2020;

Isphording and Pestel, 2021; Persico and Johnson, 2021; Rohrer et al., 2020).

Finally, health policy consisting in public spending to prevent, detect, control and treat quickly

the epidemics contributes to push down the contagion rate. The government finances its expen-

ditures through taxation of income and production, but also through the issuance of public debt.

Taking into account public debt lever is particularly relevant to examine the economic conse-

quences of important epidemics. For example, the OECD points out the sharp increase in public

debt expected in OECD area because of the Covid-19 crisis.3

In our model, which takes neither the vaccine nor herd immunity into account, once the

epidemic appears, it cannot disappear spontaneously, without any public intervention. The stable

steady state is indeed characterized by the presence of the virus. However, the government can

increase health expenditures to slow down the spread of the virus. We show that if public debt

increases, it enables the financing of these health expenses. Such a strategy can allow to rule out

the steady state with epidemic and converge to a steady state without epidemic. These results

are conditioned by the pollution intensity of production: the higher the pollution intensity, the

more difficult it is to fight the epidemic. If the public policy is not able to remove entirely the

epidemic, it could however be used to reduce the number of infected people and increase capital

per capita in the long run equilibrium with epidemic. The complexity of the interactions between

fiscal policy and the fight against epidemics is highlighted. In fact, on the one hand, any increase

in public debt leads to a crowding-out effect on productive capital. The latter implies a drop

in production, wages, savings and tax revenues, which curbs the expected effects of increased

public spending, and reduces the effectiveness of public policy. At the same time, it also slows

down pollution and plays a positive role in the fight against the virus. On the other hand, the

increase in debt allows an increase in public spending, and thus a slowing of the epidemic, which

has a stimulus effect on the economy through the increase in the number of workers, savings and

capital (crowding-in effect). The final outcome depends on the relative magnitude of these two

channels. We show that the crowding-in effect dominates if the rate of pollution emission is not

too high.

3According to OECD (2020), “For the OECD area as a whole, outstanding central government debt is expected

to increase from USD 47 trillion in 2019 to USD 52.7 trillion at the end of 2020. This is USD 3.5 trillion higher

than the pre-Covid estimate. As a result of both the rapid increase in borrowing needs and the decline in GDP

across OECD economies, the central government marketable debt-to-GDP ratio for the OECD area is projected

to increase by 13.4 percentage points to around 86% in 2020, the largest increase in a single year since 2007.”
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Finally, when the economy converges to the steady state with epidemic, there are income

inequalities between infected and healthy people. We show that it is possible to design an ap-

propriate redistribution income policy to address welfare disparitities. This policy consists of a

differentiated transfer of income for workers and the sick. It complements the public policy to

combat the virus. We emphasize that such intervention can be costly for healthy people when

public budget for transfer is not sufficiently important.

Our results underline the importance to maintain a high level of public health spending and

a high public budget for transfer to control an epidemic and address its economic consequences.

This implies a sufficient level of public debt. Our conclusions are thus in line with the proposal

of Douglas and Raudla (2020) for the U.S. economy, who argue that the States should suspend

their balanced budget rules and norms, and run deficits in their operating budgets to maintain

services and meet additional obligations due to the pandemic of Covid-19.

There exists a huge literature interested in the analysis of the interactions between economics

and epidemics. Basically, these models are based on mathematical frameworks developed by epi-

demiologists (see Hethcote, 2000, for an interesting survey); they expanded with the HIV epidemic

(see for example Geoffard and Philipson, 1997). This literature has obviously been revived and

adapted to the specificities of the Covid-19. Nonetheless, no study considers simultaneously the

differentiated effects of the consequences of the virus according to the age of the infected persons,

and the role played by the environment in the spread and incidence of the virus. Moreover, public

actions examined in the literature dealing with epidemics and economics greatly differ from those

explored in this paper.

With respect to the different consequences of epidemics according to the age of individuals,

the seminal contribution of Chakraborty et al. (2016) studies the dynamics of poverty and

health in an overlapping generations model, applied to sub-Saharan Africa countries, where poor

health is the result of infectious diseases. Survival depends on whether or not people contract an

infectious disease early in life and prematurely die from it. The Covid-19 epidemic has generalized

this intergenerational issue since older individuals have a much higher probability of developing

a severe form of the disease (Williamson et al., 2020). Hence, Acemoglu et al. (2020) assume

that infection and fatality rates vary between young, adult and old agents. Similarly, Glover et

al. (2020) consider a two-sector economy and suppose that individuals differ by age (young or

retired) and health status, while Brotherhood et al. (2020) consider an economy populated by

a continuum of young and old agents. These works, like most of the articles dealing with the

Covid-19 epidemic in homogeneous agent settings (Alvarez et al., 2020; Eichenbaum et al., 2020;

Toxvaerd, 2021), focus on containment and social distancing strategies. Generally, the results are

conditioned by the date on which a medical solution, such as a vaccine, appears.
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The interplay between environmental degradation and viruses appears in papers analysing

the infectivity of the disease, i.e. the dilution effect. Bosi and Desmarchelier (2020) assume that

pollution externalities deteriorate biodiversity, which in turn affects the dilution effect. They

show that the magnitude of the dilution effect and pollution strongly influence the effects of the

public policies and the persistence of economic fluctuations. Augeraud-Véron et al. (2020) focus

specifically on the conservation of biodiversity and the likelihood of the spread of zoonoses. They

show that the lockdown is more severe in societies valuing more human life, and the biodiversity

conservation is more relevant for more patient and altruistic economies. In Brock and Xepapadeas

(2020), containment policies such as social distancing could stop the epidemic in the short run.

In the long run, policies that target the consumption patterns and climate change help to reduce

the potential of the epidemic.

Our contribution highlights the direct consequence of public finance on epidemics and vice-

versa. We show that in the absence of vaccine, health care spending can play a major role in

the fight against the epidemic and public debt can push up GDP per capita. Our paper thus

complement the literature taking into account the costs and benefits of public policies, and the

specific impacts of the epidemic by age groups. In this way, we provide new intuitions about the

effects of public debt and pollution on economic aggregates and epidemics propagation.

The rest of this paper is organized as follows. Section 2 presents the model with epidemics and

the Suceptible-Infected-Suceptible assumptions. Section 3 defines the intertemporal equilibrium.

Section 4 analyzes the existence of steady states and Section 5 the convergence to the steady

states. Section 6 focuses on the role of fiscal policy. Section 7 presents transfer schemes to address

inequalities among agents. Finally, Section 8 concludes, while technical details are relegated to

an Appendix.

2 An OLG model with pollution and epidemics

We consider a discrete time (t = 0, 1, ...) overlapping generations (OLG) model. The dynamics of

epidemics follow a SIS (Susceptible-Infected-Susceptible) model. There are three types of agents,

households, a government, and firms which generate pollution.

2.1 Environmental quality

Environmental quality decreases with pollution Pt, which is a flow that proportionally raises with

production Yt:

Pt = αYt
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where α > 0 is the pollution rate.

This global pollution index encompasses the degradation imposed by human activity on the

quality of the environment. It reflects both the level of pollutant emissions and changes in

biodiversity. It can be represented by Ecological Footprint measurements or by Environmental

Performance Index (Wendling et al., 2020).

2.2 Population and epidemics

As in Bosi and Desmarchelier (2020), Goenka and Liu (2012, 2020) or Goenka et al. (2014),

the dynamics of epidemics are driven by a SIS model, with susceptible and infected people. It

differs from the SIR (Susceptible-Infectious-Recovered) model recently used in economics (see e.g.

Acemoglu et al., 2020; Eichenbaum et al., 2020) which also introduced the category of recovered

people. In our OLG framework, considering the SIS rather than the SIR model does not alter

the results.

We consider a model with three period-lived agents: childhood, adulthood, and old age. The

population size of a generation is constant and equal to N . When young, an agent has contact

with other generations what makes her susceptible or infected at the beginning of his adult life.

Thus, at the beginning of each period, there are also N adults and N old consumers, which

inherit their type from the previous period. Let Hi
t be healthy susceptible people and Iit be

infected people, with the superscript i = a for adult people and i = o for old people. At time t,

we have 2N = Ha
t + Ho

t + Iat + Iot . We assume that susceptibility to infection does not depend

on age. The number of adult and old agents being susceptible and infected are thus the same,

i.e. Ha
t = Ho

t = Ht and Iat = Iot = It.

Nevertheless, the health impacts of the infection are assumed to be heterogeneous, i.e. age-

dependent.4 This is consistent with the fact that older infected people really face a more impor-

tant probability to die and to develop severe illness, because of physiological changes that make

them more vulnerable. While the size of adult population is not affected by the proportion of

infected people, epidemics shorten longevity of the elder, meaning that their longevity or survival

probability decreases with the proportion of infected people. The more infected people there are

in the population, the higher the probability to die prematurely when old. We do not consider

the individual effect of infection on mortality, but we rather focus on the negative externality

associated with epidemics for all elderly population. The general intuition is that a high num-

ber of infected people in the economy tends to reduce the efficiency of medical services or can

be source of congestion effects in the healthcare sector, and hence entails a negative externality

4We consider an OLG model precisely to take into account that adult and old people do not face the same

consequences of being infected.
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on the old vulnerable population. Several studies have underlined the negative indirect effects

associated with important epidemics as they tend to disrupt and suspend health services (Chang

et al., 2004; Rust et al., 2009; Kontis et al., 2020). As an example, this is also typically what we

observe since the beginning of the Covid-19 crisis. Elderly patients are more likely to progress

to severe disease (Liu et al., 2020; Williamson et al., 2020; U.S. Department of Health & Human

Services) and thus, they are more affected by saturated health’s system capacities.

At the beginning of the period, we have 2N = 2Ht + 2It of adult and old people, which is

equivalent to 1 = ht + it, where ht = Ht/N represents the share of healthy people and it = It/N

represents the share of infected people. Note that it can also be interpreted as the likelihood of

being infected.

Let θt > 0 be the transmission rate of the epidemics among healthy agents and γ ∈ (0, 1)

the rate of recovery among infected people. The rate θt can also be interpreted as the average

number of contacts per unit time such that an infective transmits the disease. The dynamics of

healthy people are given by:

Ht+1 = Ht + γIt − θt
It
N
Ht

where γIt represents cured people and θt
It
NHt new people infected, which is given by healthy

people (Ht) times the risk of meeting infected individual ( ItN ) times the transmission rate (θt).

The dynamics of infected people are exactly the opposite:5

It+1 = It − γIt + θt
It
N
Ht

These last two equations rewrite:

ht+1 = γit + (1− θtit)ht (1)

it+1 = (1− γ) it + θtitht. (2)

On the one hand, to keep things as simple as possible, the rate of recovery γ is constant,

as in Goenka and Lui (2020). On the other hand, we assume that the transmission rate θt is

increasing with pollution Pt. Many evidences support this assumption. Recently, Cole et al.

(2020) highlight that PM2.5 and NO2 concentrations have a positive link with Covid-19 cases,

hospital admissions and deaths in Germany, while Coker et al. (2020) shows that an increase in

PM2.5 concentration is associated to an increase of mortality in the Northern Italian regions. The

transmission rate θt is also decreasing with public expenditures in health care Gt, which represent

masks, tests, emergency services, research for treatments, among the others. The higher Gt, the

5Note that we assume that the proportion of people which die prematurely during the old age is too negligible

in the society to affect the dynamics of epidemics.
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higher public health response capacity and the lower the spread of epidemics. Let gt ≡ Gt/N be

public expenditures per adult and pt ≡ Pt/N pollution per adult. For tractability, we assume:

Assumption 1 θt = θ(Gt/Pt) = θ(gt/pt) > 0 for all gt/pt, with θ′(gt/pt) < 0. In addition,

θtit < 1.

The inequality θtit < 1 means that the probability for a healthy people to be infected is less

than one. Using (1), it also implies that ht > 0 whatever the value of γ.

2.3 Households

The economy is populated by overlapping generations of agents living for three periods. When

young, an agent does neither consume nor work but, as we already mentioned, has contact with

other generations such that he becomes susceptible or infected at the next period. In contrast,

an agent is active and consume at the adult age, and is retired and consumes at the old age. The

preferences of the household j ∈ {1, ..., N} born at period t− 1 are represented by the following

utility function over consumption when adult cjt and old djt+1:

ln cjt + β(ht+1) ln djt+1 (3)

where β(ht+1) ∈ (0, 1] measures the longevity when old or the survival probability. This utility

function introduces a heterogeneity between adult and old agents facing the virus. To be more

specific, whereas an infected adult has no chance to die, the probability to not live through the

entire old-age increases with the proportion of infected people in the population or equivalently

the survival probability increases with the proportion of non-infected susceptible people ht+1 at

old age, i.e. β′ (ht+1) > 0. We also assume that β(ht+1) is strictly concave, which implies that

β′ (ht+1) < β′ (0). With this specification, we formalize the idea that the possible saturation

of the health system when the proportion of infected becomes high leads to a decrease of the

survival probability of the elderly population. Thus, the sensitivity of β to h captures also the

limited resilience of healthcare institutes.

The budget constraints faced by an individual j ∈ {1, ..., N} are given by:

σjt + cjt = Ωjt + τjt (4)

djt+1 =
rt+1

β(ht+1)
σjt (5)

where σjt represents savings of individual j. Since each household supplies one unit of labor if

she is healthy, Ωjt is the labor income, which is equal to the real wage paid by the firm to workers

wt if individual j is healthy and 0 if she is infected. τjt T 0 is a lump-sum subsidy/tax which is
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specific to each individual and can for instance be used by the government to (partially) cover the

loss of labor income. The return of savings is rt+1/β(ht+1), with rt+1 the marginal productivity

of capital, because there is perfect annuity on the asset markets.6

We deduce that the savings of individual j are equal to:

σjt =
β(ht+1)

1 + β(ht+1)
(Ωjt + τjt) (6)

In our model, pollution affects the consequences of the epidemic through two channels, a direct

and an indirect one. On the one hand, the direct effect is measured by the effect of pollution on

the transmission rate θ (g/p). The higher the pollution, the higher the rate of spread, and the

higher the number of infected individuals. On the other hand, it mechanically lowers the number

of healthy individuals h, which reduces the life expectancy of the oldest people β (h) and the

saving rate β (h) /(1 + β (h)).

2.4 Firms

Markets are perfectly competitive and production is performed by a representative firm. Output

Yt is produced with labor Lt and capital Kt according to a constant returns to scale technology.

Yt = A (ht)F (Kt, Lt)

The total factor productivity A (ht) experiences a large decrease if the proportion of infected

people becomes higher than a threshold: A (ht) = 1 if ht > h

A (ht) = A < 1 otherwise

The parameter h ∈ (0, 1) is a threshold for epidemics, representing massive epidemic outbreak

which implies quarantine and containment. As a result, a virulent epidemic causes a double

penalty on the production side. On the one hand, it reduces the amount of people able to work,

on the other hand, it reduces the productivity of the population not infected.

For tractability, we use a Cobb-Douglas technology:

Yt = A (ht)Ltf (at) = A (ht)Lta
s
t

with s ∈ (0, 1/2) the capital share in total income and at = Kt/Lt the capital-labor ratio.

Production, at the origin of pollution flow, is taxed by the government at a rate τft ≥ 0.

Hence, firms choose inputs by maximizing its profit
(

1− τft
)
Yt− rtKt−wtLt, such that we get:

rt =
(

1− τft
)
A (ht) sa

s−1
t ≡ r(at) (7)

wt =
(

1− τft
)
A (ht) (1− s)ast ≡ w(at). (8)

6For simplification, we also assume complete depreciation of capital.
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2.5 Public sector

To limit the adverse economic effects of an epidemic, public authorities generally implement a

policy mix aiming at improving the health situation and mitigating the effects on the economic

activity. In this perspective, we consider that the government can fight the disease and improve

health by financing public health expenditures Gt. These spending have a direct effect on epi-

demics, since they reduce the rate of transmission θt.
7 In addition, the government can also limit

the economic costs of epidemics by paying some lump-sum subsidies τjt to adult households. We

define τt =
∑N
j=1 τjt/N the average subsidy.

To finance these expenditures, the government levies a tax on production, at the rate τft ≥ 0,

or can issue debt Bt. Since capital and public debt are perfectly substitutable assets, they face the

same return. Hence, debt reimbursement from the previous period emission is given by rtBt−1.

The intertemporal budget constraint for the government therefore satisfies for all t > 0:

Bt = rtBt−1 +Gt + τtN − τft Yt (9)

with B−1 ≥ 0 given.

3 Intertemporal equilibrium

On the labor market, we recall that each adult agent supplies inelastically one unit of labor, but

only healthy people are able to work. This means that at equilibrium, we have Lt = Ht. We

deduce that:
N∑
j=1

Ωjt = wtLt = wtHt (10)

We define debt and capital per adult as bt ≡ Bt/N and kt ≡ Kt/N . Production per adult is

given by Yt/N = A (ht) a
s
tht, with at = kt/ht. Then, using (7), the government budget constraint

(9) rewrites:

gt = bt − r(at)bt−1 − τt + τft A(ht)a
s
tht (11)

Equilibrium on the asset market is ensured by kt+1 + bt =
∑N
j=1 σjt/N . We use (6), (8), (10),

and kt+1 = at+1ht+1 to get:

at+1ht+1 + bt =
β(ht+1)

1 + β(ht+1)
(w(at)ht + τt) (12)

Since pt = αYt/N , equation (1), that describes the dynamics of healthy people, rewrites:

ht+1 = ht + (1− ht) [γ − θ[gt/(αA(ht)a
s
tht)]ht] (13)

7Gt could be masks, tests, emergency services, controls, information campaign...
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with θ[gt/(αA(ht)a
s
tht)](1− ht) < 1 under Assumption 1.

By inspection of equation (11), we now define which policy parameters will be considered as

fixed and will be used to conduct comparative statics.

Assumption 2 bt = b > 0, τt = τ > 0, with b > τ , and τft = τf ∈ (0, 1) are constant for all

t > 0.

The subsidy to adult and the tax rate are considered as constant, as well as debt per capita.

This implicitly means that debt sustainability is not an issue or debt is always fixed at a level

which is sustainable. Moreover, Assumption 2 enforces that debt per capita is high enough with

respect to the average subsidy supporting adults income.

Then, public spending will vary to satisfy the government budget constraint:

gt = b(1− r(at))− τ + τfA(ht)a
s
tht ≡ g(at, ht) (14)

which is an increasing function in at and ht. Public expenditures are thus pro-cyclical. In case

of strong epidemics, we could a priori observe a decrease in at and/or ht, and therefore of public

spending. Then, public debt could be used to maintain a sufficient level of public spending if

debt emission is higher than debt reimbursement.

Considering this last equation and Assumption 2, an intertemporal equilibrium is a sequence

(ht, at) satisfying equations (12) and (13) for all t > 0, i.e.

ht+1 = ht + (1− ht) [γ − θ[g(at, ht)/(αA(ht)a
s
tht)]ht] (15)

at+1ht+1 + b =
β(ht+1)

1 + β(ht+1)
[(1− τf )(1− s)A(ht)a

s
tht + τ ] (16)

with θ[g(at, ht)/(αA(ht)a
s
tht)](1− ht) < 1.

Note that both ht and at = kt/ht are predetermined variables, with initial conditions h0 =

H0/N > 0 and a0 = K0/H0 > 0.

Our model highlights multiple important interplays between the real side of the economy and

epidemics. On the one side, epidemic affects labor supply, and therefore labor income. On the

other side, economic activity affects the evolution of epidemic by determining the amount of

public health spending, but also the level of pollution. In addition, our model also emphasizes

relevant properties characterizing the consequences of epidemics: the productivity of workers

lowers in case of epidemic outbreak and we observe a damaging effect on longevity, what affects

negatively the saving rate.
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4 Steady states with and without epidemic outbreak

A steady state corresponds to a long-term equilibrium in which the share of infected people 1−h

and the capital-labor ratio a are stationary. A steady state is a solution (h, a) satisfying:

(1− h) [γ − θ[g(a, h)/(αA(h)ash)]h] = 0 (17)

ah+ b =
β(h)

1 + β(h)
[(1− τf )(1− s)A(h)ash+ τ ] (18)

with

g(a, h) = b[1− (1− τf )A(h)sas−1]− τ + τfA(h)ash (19)

and

θ[g(a, h)/(αA(h)ash)](1− h) < 1 (20)

By direct inspection of equation (17), we distinguish two types of steady states. Some are

characterized as states with infected people, h < 1, and the others as states with only healthy

-susceptible- people, h = 1.

We focus first on states with infected people. From (17), a steady state with h < 1 satisfies:

γ = θ[g(a, h)/(αA(h)ash)]h (21)

Using (19), we easily get:

g

p
=

g(a, h)

αA(h)ash
=

b− τ
αAhas

− b(1− τf )s

αha
+
τf

α
≡ η(h, a) (22)

with A = 1 if h > h. Therefore, equation (21) rewrites:

γ = θ(η(h, a))h = θ

[
b− τ
αAhas

− b(1− τf )s

αha
+
τf

α

]
h ≡ Z(h, a) (23)

In the following, we assume that there is a primary deficit independently of the subsidy τ .

Whatever the public support to workers, we consider that the amount of public health spending

exceeds tax revenues at least when there is epidemic outbreak, g > τfAhas. Using the steady state

value for g given in equation (19), this corresponds to the inequality (b− τ)a1−s > b(1− τf )sA,

which also ensures η(h, a) > 0. We thus have:

Assumption 3 a >
[
b(1−τf )sA

b−τ

] 1
1−s ≡ a.

A steady state with h < 1 also satisfies equation (18):

F (h, a) ≡ ah+ b− β(h)

1 + β(h)
[(1− τf )(1− s)A(h)ash+ τ ] = 0 (24)

with A(h) = 1 if h > h and A(h) = A if h < h.
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Lemma 1 Equation (23) implicitly defines a function h = H1(a) which is increasing for a < a <

â and decreasing for a > â, with

â ≡
[
b(1− τf )A

b− τ

] 1
1−s

> a

The maximum value taken by this function is given by ĥ = H1(â). We also have that H1(a) =

H1(+∞) = γ/θ(τf/α) and H1(a) > γ/θ(τf/α).

Equation (24) implicitly defines a function h = H2(a) which is strictly increasing for all a > a.

Moreover, we have H ′2(a) = −∂F∂a /
∂F
∂h which is increasing in A meaning that when h crosses h,

A becomes equal to 1 and the slope increases.

Proof. See Appendix A.

Before examining in details existence and uniqueness of a steady state with h < 1, we focus

on steady states with no infected people. A solution h = 1 satisfies equation (17). It also implies

that A(h) = 1. Therefore, equation (18) rewrites:

F (1, a) = a− β(1)

1 + β(1)
(1− τf )(1− s)as + b− β(1)

1 + β(1)
τ = 0 (25)

and allows to identify directly the existence of steady states with h = 1.

Proposition 1 Under Assumptions 1-3 and

A
b

b− τ
<

β(1)

1 + β(1)

1− s
s

(26)

there exists b1 > 0 such that for all b < b1, there is a unique steady state with no infected people,

(a1, 1), which always satisfies inequality (20).

Proof. See Appendix B.

Assuming that b is not too large, the crowding-out effect of public debt is not too high.

Moreover, inequality (26) ensures that savings allowing to finance public debt and to invest in

productive capital is sufficiently high. Under these conditions, there exists a steady state in which

all the population is healthy and the level of capital is high.

We now analyze steady states characterized by infected people h < 1. Based on Lemma 1,

steady states with h < 1 are solution satisfying h = H1(a) = H2(a). As previously mentioned,

when the number of infected people is too high (h < h), the economy observes an epidemic

outbreak that reduces the productivity of factor A(h). We thus examine the existence of steady

states with such properties (h < h < 1) which will coexist with the steady state without infected,

(a1, 1).
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Since H1(a) is single peaked, a steady state with h < 1 is characterized by h < h̄ if the

sufficient condition ĥ < h holds. From (23), ĥ is a solution of:

h =
γ

θ(η(h, â))
(27)

Substituting â =
[
b(1−τf )A
b−τ

] 1
1−s

in (22), we get:

η(h, â) =
(1− s)

αh(1− τf )
s

1−sA
1

1−s

(
b− τ
b

) 1
1−s

b+
τf

α
(28)

which is a decreasing function of h.

The left-hand side of (27) is of course increasing in h from 0 to 1, while the right-hand side is

decreasing in h from a positive value when h = 0. Therefore, if h > γ
θ(η(h,â)) , the value ĥ which

solves (27) belongs to (0, h) and a steady state with infected people is always marked by epidemic

outbreak. Let us assume:

Assumption 4 hθ(η(h, â)) > γ.

We show the following result (see also Figure 1):

Proposition 2 Under Assumptions 1-4,

b

b− τ
<

β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))

1− s
s

and θ(τf/α) < 1 + γ (29)

there exist b2 > 0 and α such that if b < b2 and α > α, there is a unique steady state (a2, h2),

with a < a2 < â and h2 < h < 1, characterized by a positive share of infected people and with

epidemic outbreak.

This steady state coexists with the one with no infected people, (a1, 1), and is characterized by

a lower capital-labor ratio. We have the following ranking: a < a2 < a1 < â.

Proof. See Appendix C.

We notice that conditions (29) and b < b2 both ensure the existence of a steady state with

epidemic outbreak that coexists with the one with no infected people.8 A level of debt not too

high associated to a high enough saving rate maintain a sufficient level of saving. The inequality

α > α, which means a sufficiently high pollution rate, ensures that θ(η(h, a)) does not strongly

depends on the capital-labor ratio. This ensures the uniqueness of the steady state because H1(a)

is not too steep (see Figure 1).

We note that the existence of both steady states requires a level of debt not too significant.

This is due to the fact that one channel through which debt intervenes on the equilibrium goes

8Note that this inequality (29) is more stringent than inequality (26).
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through savings. Part of savings is devoted to finance public debt. Therefore, if debt is too large,

the level of savings is no more sufficient to sustain a positive level of capital, which may rule out

the existence of any steady state.
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Figure 1: Steady states with epidemics outbreak (a2, h2) and no infected people (a1, 1)

We pay a particular attention to the effect of a variation in the productivity parameter A

on the steady state with epidemics. A decrease or a sufficiently low level of A can be seen as

the economic impacts of a virulent pandemic, that may require containment measures costly

for economic activity for example.9 In such a period of containment, there is not only a lower

productivity or efficiency of labor, but also a lower capital utilization. Therefore, we analyze now

in more details the effect of a variation of A on h2 and a2:

Proposition 3 Under Assumptions 1-4, inequality (29), θ(τf/α) < 1 + γ, α > α and b < b2,

following a slight increase of the productivity A, the sign of the variation of h2 is indeterminate.

Moreover, there exist αA and αA(6 αA) such that a slight increase of A implies an increase

of a2 for α > max{α, αA} and a decrease of a2 for αA > α > α and A low enough.

Proof. See Appendix D.

The fall in the productivity parameter A implies opposite effects on the transmission rate θ.

Through this direct effect of A, pollution decreases more than public spending, which means that

the transmission rate θ goes down.

9Note that we do not explicitly introduce the reduction of social interactions due to a containment even if it

could be taken into account through a variation of θ.
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A lower productivity also implies a fall in income that reduces savings and hence capital-labor

ratio if α is high enough. Indeed, in this case, the positive effect of a fall in A on savings, that goes

through the reduction of θ, is not sufficient to compensate for the negative income effect. Since a

lower capital-labor ratio also means lower public spending relative to pollution, the transmission

rate θ goes up through this channel. These two competing effects on θ explain that the effect of

A on the proportion of healthy people h2 is not so clear-cut.

The steady state with infected people depends also on pollution intensity of production,

captured by α, as it modifies the transmission rate of epidemics. When α goes up, so does θ:

epidemic spreads more easily. Examining Figure 1, the curve H1(a) shifts downward, whereas

H2(a) is not affected: both a2 and h2 fall. A higher pollution intensity is thus damaging for the

economy as it increases the transmission rate of epidemics and therefore the number of infected

people. This negatively affects both the labor income and the saving rate (β(h)/(1 + β(h))),

which reduces capital investment along the steady state with epidemic outbreak. Therefore, any

environmental policy or technological progress that aims to reduce the pollution rate is useful. It

decreases the proportion of infected people, through a lower transmission rate. But interestingly,

it will also raise capital and production. We are not able to quantify the precise impact of such

policy measures on economic variables, but this type of environmental improvement can at least

been considered as a tool accompanying an appropriate fiscal policy.

5 Convergence to epidemic or non-epidemic steady state

We analyze the issue of convergence by studying the local stability properties of the two steady

states (a1, 1) and (a2, h2). Using Assumption 1, equations (15) and (16) rewrite:

ht+1 = ht + (1− ht) [γ − θ(η(ht, at))ht] (30)

at+1ht+1 + b =
β(ht+1)

1 + β(ht+1)
[(1− τf )(1− s)Aastht + τ ] (31)

where A = 1 if ht > h and η(ht, at) is given by equation (22). We also keep in mind that

this two-dimensional dynamic system involves two predetermined variables, ht and at = kt/ht.

Differentiating these two equations in the neighborhood of a steady state, we get:

dht+1 = Jhhdht + Jhadat (32)

dat+1 = Jahdht + Jaadat (33)
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where the terms Jii are the elements of the associated Jacobian matrix given by:

Jhh = 1− γ + θ(η)h− (1− h)

[
θ(η) + hθ′(η)

∂η

∂h

]
(34)

Jha = −(1− h)hθ′(η)
∂η

∂a
(35)

Jah =
β(h)

1 + β(h)
(1− τf )(1− s)A

as

h
−
[
a

h
−

β′(h)

h(1 + β(h))2
((1− τf )(1− s)Aash+ τ)

]
[
1− γ + θ(η)h− (1− h)

[
θ(η) + hθ′(η)

∂η

∂h

]]
(36)

Jaa =
β(h)

1 + β(h)
(1− τf )(1− s)sAas−1 +

[
a

h
−

β′(h)

h(1 + β(h))2
((1− τf )(1− s)Aash+ τ)

]
(1− h)hθ′(η)

∂η

∂a
(37)

with η = η(h, a). Substituting h = 1 in these equations, we easily obtain:

Proposition 4 Under Assumptions 1-4, inequality (26) and b < b1, the steady state with no

infected people, (a1, 1), is a saddle because θ(η1) > γ, where η1 ≡ η(1, a1).

Proof. See Appendix E.

Under Assumption 4, the steady state with no epidemics is a saddle. Hence, since the two

dynamic variables are predetermined, the economy cannot converge toward a steady state with-

out infected people. Indeed, the dynamics of the capital-labor ratio, which is governed by the

equilibrium between capital investment and savings, is stable. However, under Assumption 4,

the transmission rate exceeds the recovery rate at the steady state without epidemics. Then, the

evolution of healthy people is unstable, which explains that one cannot converge to this steady

state with no epidemics.

We focus now on the dynamics around the steady state (a2, h2) characterized by h2 < 1:

Proposition 5 Under Assumptions 1-4, inequality (29), α > α and b < b2, there exits β̃′(1) > 0

such that the steady state (a2, h2) is stable for β′(1) > β̃′(1).

Proof. See Appendix F.

The steady state with epidemics is the only one which is stable. This means that the economy

should converge to this steady state rather than toward the steady state with no infected people.

As a direct implication, under our current assumptions, epidemics will persist and will not collapse

even in the long run.

We notice that the condition α > α is the one that ensures the uniqueness of the steady

state with epidemic outbreak (see Proposition 2). Of course, it promotes the stability of the

steady state. Convergence toward the steady state with epidemic outbreak requires β′(1) high

enough, i.e. the longevity is sufficiently sensitive to the share of healthy people. Taking into
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account the dynamic equations (30) and (31), consider an increase in ht and at. This induces an

important increase in labor income, savings and hence future capital. At the same time, these

raises may favor a higher transmission rate θt, which dampens the positive dynamics for ht. When

agent’s longevity is highly sensitive to an improvement of the health condition in the economy,

the increase in savings is dampened which prevents capital accumulation to be explosive. Rather,

the economy converges to a stationary long-run equilibrium with epidemic outbreak.

6 The role of fiscal policy

The fiscal instruments seem to play a crucial role on the existence of both steady states and

their stability properties, through their impacts on the transmission rate which depends on public

spending. The question is therefore to know if a modification of the fiscal policy could improve the

health and macroeconomic situation described until now. We investigate first whether following

an appropriate choice of the level of debt b and transfer τ , the existence of the steady state with

epidemic outbreak (a2, h2) can be ruled out and the economy may rather converge to the steady

state without epidemics.

Considering that Assumption 4 is not satisfied, i.e. hθ(η(h, â)) < γ, we show in the following

proposition that the steady state with epidemic outbreak may be ruled out while the steady state

with no infected people becomes stable.

Proposition 6 Under Assumptions 1-3, hθ(η(h, â)) < γ, α > α and

b

b− τ
< min

{
β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))

1− s
s

;
β(1)

1 + β(1)

1− s
A

}
(38)

there exits bb > 0 such that for b < bb, the steady state (a2, h2) does no more exist while the steady

state (a1, 1) is stable.

Proof. See Appendix G.

This proposition shows that for an appropriate choice of debt b and transfer τ , the economy can

enter in a configuration where there is only one existing steady state, the one without epidemics

and infected people. Figure 2 illustrates the proposition.

In addition, this unique steady state is stable because the transmission rate is now lower than

the rate of recovery, which implies that the share of infected people converges to zero. This means

that the economy might converge toward the long-run equilibrium without epidemics. The results

of Proposition 6 requires that the transmission rate is sufficiency low, hθ(η(h, â)) < γ, i.e. η(h, â)

not too low. By direct inspection of (28), we observe that it is possible if either b or (b − τ)/b
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Figure 2: Steady state with no infected people (a1, 1)

are not too close to 0, taking into account that the pollution rate α is not too high. Debt has

to be positive but not too important to remove the unfavorable situation in which the economy

converges to a steady state with epidemics. Of course, as already mentioned after Proposition 2, if

the level of debt is too high, the two steady states are ruled out and the economy surely collapses

because it is not possible to sustain investment in capital that does not converge to zero. Another

unfavorable policy corresponds to the situation where, in contrast to Proposition 6, Assumption

4 holds but the level of debt rules out the existence of the steady state with epidemics. In such

a configuration, the steady state without epidemics still exists but is unstable, which means that

the public policy is not able to improve the health and economic situations.

Focusing on the results of Proposition 6, public debt has a crowding-out effect on capital

because part of savings is used to finance it. At the steady state with epidemic outbreak, h is of

course lower than at the steady state without epidemic. This means that both the labor income

and the saving rate β(h)/(1 + β(h)) are lower. As a result, for a given level of debt, the share

of savings devoted to finance public assets is larger at the steady state with epidemic outbreak.

This explains that there are levels of debt such that savings can no more sustain a positive level of

capital with epidemic outbreak, whereas it is still possible at the steady state without epidemic.

If the government has not the degree of freedom to set its fiscal instruments such that As-

sumption 4 will be violated, public policy cannot be managed to achieve a transition toward

the steady state without epidemic. In such a context, the question is rather to know what can

improve the features of the stable steady state with epidemics. Accordingly, we examine now

how, under Assumption 4, the government can manage its policy instruments, in particular its
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public debt b and tax τf , to increase the steady state values with epidemic outbreak, namely a2

and h2. Let us focus first on a variation of debt b:

Proposition 7 Under Assumptions 1-4, inequality (29), θ(τf/α) < 1 + γ, α > α, β′(1) > β̃′(1)

and b < b2, there exists b3 > 0 such that following a slight increase of debt, h2 increases if b < b3.

Moreover, there exists α̃ > 0, α > 0 and b4 > 0 such that a slight increase of debt implies a

decrease of a2 for α > max{α, α̃} and an increase of a2 for α < α < α(6 α̃) and b < b4.

Proof. See Appendix H.

Debt increase affects positively h as it allows to increase public spending. This tends to reduce

the transmission rate of epidemics. However, at the same time, it might reduce the capital-labor

ratio and, hence, increases the cost of debt, which affects negatively the amount of public spending

devoted to health. This last effect on the transmission rate is dampened by a negative effect of

the capital-labor ratio reduction on pollution. When debt is not too important, the possible

negative effect is not too high and the net effect of the debt variation on h is positive.

The debt increase entails competing effects on the capital-labor ratio. On the one hand, it has

a negative effect on capital accumulation through a standard crowding-out effect. On the other

hand, a higher level of debt allows to increase public health spending, to reduce the transmission

rate of epidemics and hence to increase the share of healthy people. This tends to favor capital

accumulation in the economy as it increases the labor income and the saving rate, which depends

positively on the share of healthy people through the longevity β. Hence, we highlight a new

mechanism through which debt can finally have a crowding-in effect on capital.

As regards the crowding-in effect, it is dampened if the pollution rate is sufficiently high. In

such a case, the increase of the share of healthy people through the reduction of the transmission

rate is too low. To summarize, the crowding-out effect dominates when α is high, but there is a

positive effect of debt on the capital-labor ratio if b is not too high and α has an intermediate

value. Of course, when longevity is highly sensitive to the health condition, the critical value of

α under which the crowding-in effect of the debt dominates is larger.

Note that the existence of b4 > 0 requires τ > 0. A positive average transfer allows to define a

policy favorable to capital accumulation. The increase in h entailed by an increase in government

debt leads to a higher positive effect on savings when households’ incomes are subsidized. The

increase in savings generated by a higher longevity is more important when the government makes

high income transfers.

When a debt increase affects positively the share of healthy people and the capital stock, the

positive effect on production is clear cut, and we can conjecture a positive effect on welfare. Using
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(23) and (24), we can also easily conjecture that a decrease of the average lump-sum subsidy τ

will have the same effect than an increase of public debt.

We now address the effect of a variation of the product tax rate on the steady state with

epidemics:

Proposition 8 Under Assumptions 1-4, inequality (29), θ(τf/α) < 1 + γ, α > α, β′(1) > β̃′(1)

and b < b2, there exists b5 > 0 such that following a slight increase of the tax rate on production

τf , h2 increases for b < b5.

Moreover, there exist α̃τ > 0 and ατ > 0 such that a slight increase of τf implies a decrease

of a2 for α > max{α, α̃τ} and an increase of a2 for α < α < ατ (6 α̃τ ) and τ close to b.

Proof. See Appendix I.

The effects of a variation of τf and b on the steady state with epidemics are very similar. On

the one hand, an increase of the tax rate increases the amount of public health funds available, g,

which reduces the transmission rate of epidemics, even if the capital-labor ratio becomes lower.

This raises the share of healthy people, and therefore labor. It improves aggregate savings and

hence capital accumulation, through higher labor income and saving rate. On the other hand, a

higher tax reduces available income, which has a negative effect on the amount of savings. The

first effect of the tax rate, which is positive, is the dominant one if the pollution rate α takes

intermediate values and the average subsidy τ is sufficiently high and close to the level of debt b

to ensure a high enough income.

On the contrary, the second effect, which is negative, dominates when the pollution rate α

is high enough. In this case, pollution is important, the transmission rate higher and the labor

force h smaller. The fall in savings entailed by the tax τf is highly costly since the variation of

healthy worker is quite weak and this policy instrument will not be efficient to increase a2.

Although the effect of a variation of τf and b are similar, it is important to note that both

instruments are not perfect substitute. While public debt decreases the share of saving allocated

to private assets without affecting directly the amount of saving, production tax has a direct effect

on saving. The negative effect of τf thus depends on the saving rate. The condition to have a

policy favorable for a2 requires τ close to b. This implies a low level of government spending g

and hence a high transmission rate θ. In such a case, saving rate is sufficiently low, so does the

negative effect of τf .
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7 Transfers to address inequalities between healthy and

infected agents

In our model, epidemics create inequality. Indeed, at the steady state with epidemics, we can

distinguish two groups of individuals that have heterogeneous income profile. People are either

healthy at adult age, able to work and hence earn a wage, or are infected at adult age and receive

only the lump sum subsidy. Government can put in place a transfer program for redistribution

motives. We address this question in the section.

Using (4)-(6), we have adult and old consumption for agent j:

cjt =
1

1 + β(ht+1)
(Ωjt + τjt) (39)

djt+1 =
rt+1

1 + β(ht+1)
(Ωjt + τjt) (40)

Substituting these two expressions in the utility function (3), we get the agents j welfare :

Wjt ≡ β(ht+1) ln rt+1 + (1 + β(ht+1))[ln(Ωjt + τjt)− ln(1 + β(ht+1))] (41)

As Ωjt is equal to the labor income for healthy and zero for infected, the subsidies τjt can be

used to correct inequality and ensure the same welfare for both kind of agents.

Using (41), at the steady state with epidemics (a2, h2), the difference between the welfare of

a healthy (j = H) and an infected (j = I) individual is given by:

WH −WI = (1 + β(h2)) [ln(w(a2) + τH)− ln τI ]

where τH is the subsidy distributed to each healthy individual and τI the one distributed to each

infected people. Then, the welfare is the same for all people if WH = WI , which is equivalent to:

τI − τH = w(a2) = (1− τf )A(1− s)as2 (42)

Given the values of the average subsidy τ and the share of healthy agents h2, the transfer system,

τH and τI , is constrained and should satisfy:

τ = h2τH + (1− h2)τI (43)

Note that using (42), we have τI = τH + w(a2). Substituting τI in equation (43), we obtain

τ = τH + (1− h2)w(a2) < τH +w(a2). Since τ > 0, this means that the income received by each

agent is identical and positive.

This result is summarized in the following proposition:

Proposition 9 Under Assumptions 1-4, inequality (29), θ(τf/α) < 1 + γ, α > α, β′(1) > β̃′(1)

and b < b2, all individuals have the same welfare at the steady state with epidemics (a2, h2) if τH

and τI satisfy equations (42) and (43).
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This proposition shows that once the policy parameters b, τf and τ are fixed to determine the

levels of a2 and h2, the two levels of subsidy τH and τI can be used to equalize the levels of income

and welfare of healthy and infected people. Two subsidies different from zero are required to be

able to fix the redistribution policy independently of the level of the average subsidy τ and of the

stationary levels a2 and h2. An income redistribute policy in favor of infected τI > τH is a way to

avoid inequality generated by epidemics. Note that such policy could come at an additional cost

for healthy people. When public budget for transfer τ is low enough, healthy individuals becomes

a taxpayer (τH < 0). To tackle inequality due to epidemics without reducing income profile of

healthy people, government should devote a large amount of fund to transfer policy. This has to

come with an increase in debt.

To sum up, we show that in case of epidemics, the fiscal policy can be used first to rule out any

steady state with epidemics and promote the convergence to a stable long-run equilibrium with

no epidemics. If the implementation of such a policy is not possible, we argue that a government

should try to improve the situation at the stable steady state with epidemics. We show that

this is possible by raising debt or increasing the fiscal pressure if associated public spending are

used to improve health care. Another novelty of this paper is to underline that the effectiveness

of these policies strongly depends on the level of pollution, which is linked to the production

technology. Finally, if the economy converges to the steady state where healthy and infected

individuals coexist, it is possible to redistribute income between individuals with an appropriate

choice of subsidies to rule out welfare inequalities.

8 Conclusion

In this paper, we examine the interplay between epidemics, pollution and fiscal policies in a

macroeconomic framework. The health impacts of the infection depend on the pollution in-

tensity and on the age profile of the agent. To take into account these features, we study the

dynamics of epidemics in an OLG model where fiscal instruments are used to fight the health and

macroeconomic consequences of the disease. We emphasize situations in which the transmission

rate of epidemics exceeds the recovery rate, implying that the economy cannot achieve a state

without epidemics. Public debt and income transfers may address such unfavorable situations.

We determine some fiscal policies that allow the economy to converge to a state without infected

people and with a higher level of capital. In a context in which public policy is not able to re-

move entirely the epidemic, it could however be used to reduce the number of infected people and

increase capital per capita in the long run. In an economy where an effective vaccine against the

23



viruses does not exist or is nor sufficiently available, fiscal policy with public debt is an appropri-

ate tool for living with the epidemic, keeping the number of infected people at a stationary, and

potentially low, level. It requires, however, a not too high pollution intensity. This result thus

highlights the potential role of environmental policies to prevent and fight efficiently infectious

diseases. Finally, a redistribution using subsidies to households is recommended to reduce or even

rule out welfare inequalities.

Appendix

A Proof of Lemma 1

A steady state with h < 1 satisfies equations (23) and (24). Using (22), we obtain the following

derivatives:

∂η

∂h
=

b(1− τf )sA− (b− τ)a1−s

αAh2a
(A. 1)

∂η

∂a
= s

b(1− τf )A− (b− τ)a1−s

αAha2
(A. 2)

Under Assumption 3, we have ∂η/∂h < 0 and there exists â ≡
[
b(1−τf )A
b−τ

] 1
1−s

> a such that

∂η/∂a > 0 for a < â and ∂η/∂a < 0 for a > â. Therefore, equation (22) implicitly defines a

function h = H1(a) which is increasing for a < a < â and decreasing for a > â. The maximum

value taken by this function is given by ĥ = H1(â). We also have η(h, a) = η(h,+∞) = τf/α.

We deduce that H1(a) = H1(+∞) = γ/θ(τf/α) and H1(a) > γ/θ(τf/α).

Then, differentiating Equation (24), we obtain:

∂F

∂h
= a− β′(h)

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ]− β(h)

1 + β(h)
(1− τf )(1− s)Aas (A. 3)

∂F

∂a
= h

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
(A. 4)

Using (24) and (A. 3), we have:

∂F

∂h
h =

β(h)

1 + β(h)
τ − b− β′(h)h

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ] < 0

Using the last equation, we note that:

∂F

∂a
> h

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
= h

[
1− β(h)

1 + β(h)
(1− s)

(
1− τ

b

)]
> 0

meaning that ∂F
∂a > 0 for all a > a. Therefore, equation (24) implicitly defines a function

h = H2(a) which is strictly increasing for all a > a. We note that H ′2(a) = −∂F∂a /
∂F
∂h is increasing

in A, which means that when h crosses h, A becomes equal to 1 and the slope increases.
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B Proof of Proposition 1

Under Assumption 3, we have β(1)
1+β(1)τ − b < 0. Using (25), we can easily deduce the following:

1. If β(1)
1+β(1)τ − b is not too negative, there are two steady states with a > 0 and h = 1;

2. If β(1)
1+β(1)τ − b is sufficiently negative, there is no steady state with a > 0 and h = 1.

Note that in the last case, the crowding-out effect of public debt is too high. Even if all the

population is healthy, the transfer τ is too low to maintain a sufficient level of saving allowing to

finance public debt and to invest in productive capital.

Assuming that b is not too large, we are in the configuration with two steady states. To show

the existence of the steady state with the highest level of capital, we note that ∂2F (1, a)/∂a2 > 0

and F (1,+∞) > 0. Therefore, if:

A
s

1− s
b

b− τ
<

β(1)

1 + β(1)
(B. 5)

there exist b1 > 0 such that F (1, a) < 0 for all τ < b < b1.

C Proof of Proposition 2

We examine the conditions for the existence of steady states with infected people and epidemic

outbreak, i.e h < h < 1. From (24), we have:

F (h, â) = hâ

(
1− β(h)

1 + β(h)

A(h)

A

(b− τ)(1− s)
b

)
+ b− τ β(h)

1 + β(h)
(C. 6)

Under Assumption 4, we have F (ĥ, â) > 0, which is equivalent to H2(â) > H1(â) = ĥ.

Therefore, there exists a steady state with h < 1 if H2(a) < H1(a). From (24), we have:

F (γ/θ(τf/α), a) =
γ

θ(τf/α)

(
a− β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))
(1− τf )(1− s)Aas

)
+b− τ β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))
(C. 7)

Thus, when the following inequality:

a <
β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))
(1− τf )(1− s)Aas ⇔ b

b− τ
s

1− s
<

β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))

is satisfied, there exists b2 > 0 such that for b < b2, we have F (γ/θ(τf/α), a) < 0. As

F (γ/θ(τf/α), a) < 0 is equivalent to H2(a) < H1(a) = γ/θ(τf/α), we have sufficient condi-

tions for the existence of a steady state with h < 1. Note that F (γ/θ(τf/α), a) < 0 implies

F (1, a) < 0 because ∂F (a, h)/∂h < 0, which ensures also the existence of the steady state (a1, 1).
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Furthermore, we note that the steady state (a1, 1) solves H2(a1) = 1, which is equivalent to

F (1, a1) = 0. Since H2(a) is an increasing function whatever the value of A, it is clear that a

steady state with h < 1 is always characterized by a lower level of capital-labor ratio a than a

steady state with h = 1. Using (C. 6), we further have F (1, â) > 0. Since ∂F (h, a)/∂a > 0, this

implies that a1 < â.

Finally, we note that there is a unique steady state with h < 1 if we have H ′2(a) > H ′1(a) at

each equilibrium satisfying H2(a) = H1(a). Using (24) and (A. 4), we have:

H ′2(a) =
h2
[
1− β(h)

1+β(h) (1− τ
f )(1− s)sAas−1

]
b− β(h)

1+β(h)τ + β′(h)h
(1+β(h))2 [(1− τf )(1− s)Aash+ τ ]

(C. 8)

Using now (23) and (A. 2), we obtain:

H ′1(a) =
−θ′(η)s b(1−τ

f )A−(b−τ)a1−s

αAa2

θ(η)− θ′(η) (b−τ)a1−s−b(1−τf )sA
αAha

(C. 9)

The inequality H ′2(a) > H ′1(a) is thus equivalent to:

αAaγ > θ′(η)[(b− τ)a1−s − b(1− τf )sA]

−θ′(η)s
b(1− τf )A− (b− τ)a1−s

ah∂F∂a

[
b− β(h)

1 + β(h)
τ +

β′(h)h

(1 + β(h))β(h)
(ah+ b)

]
(C. 10)

Note that h and a have finite and strictly positive values. We deduce that H ′2(a) > H ′1(a) for

α high enough. It means that there exists α such that for α > α, there is a unique steady state

(a2, h2) such that h < 1.

Finally, inequality (20) is satisfied at the steady state (a2, h2) if θ(η(h2, a2))(1 − h2) < 1.

Using (21), this is equivalent to θ(η(h2, a2)) < 1 + γ. Using Lemma 1, this is always satisfied

because θ(τf/α) < 1 + γ.

D Proof of Proposition 3

Focusing on equations (23) and (24) with h < 1, the effect of a variation of A on the steady state

with epidemics outbreak (a2, h2) is given by:

I

da
dh

+

∂Z/∂A
∂F/∂A

 dA =

0

0


with

I =

∂Z/∂a ∂Z/∂h

∂F/∂a ∂F/∂h


which implies that:

da

dA
= − 1

DetI

(
∂F

∂h

∂Z

∂A
− ∂Z

∂h

∂F

∂A

)
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dh

dA
= − 1

DetI

(
−∂F
∂a

∂Z

∂A
+
∂Z

∂a

∂F

∂A

)
with −1/DetI > 0.

We first examine the effect of A on h2, examining the sign of dh/dI, which is given by the

sign of:

−∂F
∂a

∂Z

∂A
+
∂Z

∂a

∂F

∂A
= hθ′(η)

b

αA2a2−s

[
b− τ
b

a1−s − β(h)

1 + β(h)
(1− τf )2(1− s)sA2

]
This is strictly positive for all a < â if b−τ

b â1−s < β(h)
1+β(h) (1 − τf )2(1 − s)sA2. This is

equivalent to b
b−τ < β(h)

1+β(h)s(1 − s), which is never satisfied. This is negative for all a > a

if b−τ
b a1−s > β(h)

1+β(h) (1 − τf )2(1 − s)sA2. This is equivalent to b
b−τ s >

β(h)
1+β(h) (1 − s), but is

incompatible with inequality (29). As a result, we have no clear-cut conclusion concerning the

effect of A on h.

We then examine the effect of a variation of the productivity on the stationary capital-labor

ratio, da/dA. It is given by the sign of the following expression:

∂F

∂h

∂Z

∂A
− ∂Z

∂h

∂F

∂A
= θ′(η)

b− τ
αA2ash

[
b− β(h)

1 + β(h)
τ +

β′(h)h

(1 + β(h))β(h)
(ah+ b)

]
+

[
γ + θ′(η)

b(1− τf )sA− (b− τ)a1−s

αAa

]
(1− τf )(1− s)as β(h)

1 + β(h)

This is positive if and only if:

αAaγ > θ′(η)[(b− τ)a1−s − b(1− τf )sA]

−θ′(η)
b− τ

(1− τf )(1− s)Aa2s−1h

[
1 + β(h)

β(h)
b− τ +

β′(h)h

β(h)2
(ah+ b)

]
(D. 11)

There exist αA > 0 and αA(6 αA) such that this inequality is satisfied for α > αA and is not

satisfied for α < αA.

Using (C. 10) and (D. 11), αA > α is equivalent to:

b− τ
b

[
ah+

β(h)

1 + β(h)
(1− τf )(1− s)sAas(1− h)

]
>

β(h)

1 + β(h)
s(1− s)(1− τf )2A2 (D. 12)

Using a > a, this requires:[
b(1− τf )s

b− τ

] s
1−s
[
h+

β(h)

1 + β(h)
(1− s)(1− h)

b− τ
b

]
>

β(h)

1 + β(h)
(1− τf )(1− s)A

1−2s
1−s (D. 13)

which is satisfied if A is low enough.
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E Proof of Proposition 4

Substituting a = a1 and h = 1 in equations (34)-(37), we note that Jha = 0, which means that

the two eigenvalues are given by:

Jhh = 1− γ + θ(η1) (E. 14)

Jaa =
β(1)

1 + β(1)
(1− τf )(1− s)sAas−11 (E. 15)

where η1 ≡ η(1, a1). Using (A. 4) and the result that ∂F/∂a > 0 for all h > 0, we easily deduce

that Jaa ∈ (0, 1).

Using Assumption 4, we have 1 > h > ĥ = γ/θ(η(ĥ, â)). This implies that θ(η(ĥ, â)) > γ.

Since ĥ < 1 and â > a1, we deduce that θ(η1) = θ(η(1, a1)) > θ(η(ĥ, â)) > γ. This means that

Jhh > 1.

F Proof of Proposition 5

The stability of the steady state (a2, h2) is given by the roots of the characteristic polynomial

P (λ) = λ2 − Tλ+D = 0, where T = Jhh + Jaa and D = JhhJaa − JhaJah are the trace and the

determinant of the Jacobian matrix obtained from the linearized system (32)-(33).

Using (34)-(37) and (23), we get:

T = 1 + γ − θ(η) +
β(h)

1 + β(h)
(1− τf )(1− s)sAas−1 (F. 16)

−(1− h)hθ′(η)

[
∂η

∂h
− a

h

∂η

∂a
+
∂η

∂a

β′(h)

h(1 + β(h))2
((1− τf )(1− s)Aash+ τ)

]
D =

β(h)

1 + β(h)
(1− τf )(1− s)sAas−1[

1 + γ − θ(η)− (1− h)hθ′(η)

(
∂η

∂h
− a

sh

∂η

∂a

)]
(F. 17)

We note that equation (23) with h < 1 implies that θ(η) > γ. Using (A. 4), ∂F/∂a > 0,

θ′(η) < 0, ∂η/∂h < 0 and ∂η/∂a > 0 at the steady state (a2, h2), we deduce that D < 1.

Using (F. 16) and (F. 17), and also (23) and (24), we have:

P (1) = 1− T +D

= (1− h)

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

] [
θ(η) + hθ′(η)

∂η

∂h

]
+ (1− h)

θ′(η)

h

∂η

∂a

[
b− β(h)

1 + β(h)
τ +

β′(h)h

β(h)(1 + β(h))
(ah+ b)

]
(F. 18)

Substituting (A. 1) and (A. 2), 1 − T + D > 0 is equivalent to H ′2(a) > H ′1(a), where H ′2(a)

and H ′1(a) are given by (C. 8) and (C. 9) respectively. This is satisfied for α > α.
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Using (23), (24), (A. 1),(A. 2), (F. 16) and (F. 17), we obtain:

P (−1) = 1 + T +D

= [2− θ(η)(1− h)]

[
1 +

β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
+(1− h)θ′(η)

[
(1− s) b− τ

αAhas
+

β(h)

1 + β(h)
(1− τf )(1− s)sAas−1 (1− s)b(1− τf )

αha

−sb(1− τ
f )A− (b− τ)a1−s

αAha2
β′(h)

β(h)(1 + β(h))
(ah+ b)

]
(F. 19)

Note that on the one hand, the second term (third line) on the right-hand side of this equation

is negative because θ′(η) < 0. On the other hand, the third term (fourth line) on the right-hand

side of equation (F. 19) is positive because θ′(η) < 0 and ∂η/∂a > 0. Moreover, using inequality

(20), we note that θ(η)(1−h) < 1. Since a2 and h2 have finite values, we easily deduce that there

is β̃′(1) > 0 such that 1 + T +D > 0 and (a2, h2) is a sink for (β′(h) >)β′(1) > β̃′(1).

G Proof of Proposition 6

Under α > α, inequality (38) and b < b2, we have F (γ/θ(τf/α), a) < 0 or equivalently H2(a) <

H1(a) (see the proof of Proposition 2).

Since hθ(η(h, â)) < γ, the peak of H1(a) is above h. We show now that it can be higher than

h = 1. Indeed, ĥ = H1(â) > H2(â)(> 1) is equivalent to:

F (ĥ, â) = âĥ

[
1− β(ĥ)

1 + β(ĥ)

1− s
A

b− τ
b

]
+ b− τ β(ĥ)

1 + β(ĥ)
< 0 (G. 20)

Under inequality (38), this is satisfied if b(> τ) is lower than an upper bound b′2 > 0. We note

bb > 0 as being bb ≡ min{b2; b′2}. Under α > α, H ′2(a) > H ′1(a) if H2(a) = H1(a), which implies

that H2(a) and H1(a) do not cross for all a ∈ (a, â). Therefore, there are no steady state with

h < 1.

This also means that H1(a1) > H2(a1) = 1. This implies that θ(η(a1, 1)) < γ. Using the

proof of Proposition 4, we deduce that the steady state (a1, 1), which still exists, is stable.

H Proof of Proposition 7

Focusing on equations (23) and (24) with h < 1, we have:

I

da
dh

+

∂Z/∂b
∂F/∂b

 db =

0

0


with

I =

∂Z/∂a ∂Z/∂h

∂F/∂a ∂F/∂h
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Thus, da
dh

 = −I−1
∂Z/∂b
∂F/∂b

 db

with

I−1 =
1

DetI

 ∂F/∂h −∂Z/∂h

−∂F/∂a ∂Z/∂a


The steady state with epidemics outbreak (a2, h2) is characterized by a2 < â and H ′2 =

− ∂F/∂a
∂F/∂h > H ′1 = − ∂Z/∂a

∂Z/∂h . Using Lemma 1, at the point (a2, h2), we have ∂Z/∂a < 0, ∂Z/∂h > 0,

∂F/∂a > 0 and ∂F/∂h < 0. We thus deduce that DetI < 0.

The effect of a variation in debt on the steady state with epidemics outbreak (a2, h2) is given

by:
da

db
= − 1

DetI

(
∂F

∂h

∂Z

∂b
− ∂Z

∂h

)
dh

db
= − 1

DetI

(
−∂F
∂a

∂Z

∂b
+
∂Z

∂a

)
with −1/DetI > 0.

We first examine the effect of a debt variation on h, examining the sign of dh/db. We have:

−∂F
∂a

∂Z

∂b
+
∂Z

∂a
= −h

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
θ′(η)

a1−s − (1− τf )sA

αAa

+ θ′(η)s
b(1− τf )A− (b− τ)a1−s

αAa2

Thus, we have dh/db > 0 if and only if:

ah

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
(a1−s − (1− τf )sA) > sb(1− τf )A− s(b− τ)a1−s

Since the left-hand side of this inequality is positive, there is b3 > 0 such that it is satisfied if

b < b3.

We then examine the effect of a debt variation on the stationary capital-labor ratio, i.e. da/db.

Using the proof of Lemma 1, we have:

∂F

∂h

∂Z

∂b
− ∂Z

∂h
= −θ′(η)

∂η

∂h
h− θ(η(h, a))

+ θ′(η)
∂η

∂b

[
β(h)

1 + β(h)
τ − b− β′(h)h

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ]

]
with, under Assumption 3:

∂η

∂b
=
a1−s − (1− τf )sA

αhAa
> 0 ;

∂η

∂h
h =

b(1− τf )sA− (b− τ)a1−s

αhAa
< 0

We thus have − ∂η
∂hh = ∂η

∂b b−
τa1−s

αhAa
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∂F

∂h

∂Z

∂b
− ∂Z

∂h
= θ′(η)

(
∂η

∂b

[
β(h)

1 + β(h)
τ − β′(h)h

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ]

]
− τa1−s

αhAa

)
− θ(η(h, a))

∂F

∂h

∂Z

∂b
− ∂Z

∂h
= −θ(η(h, a))− θ′(η)

τa1−s + (1− τf )sAτβ(h)

αAha(1 + β(h))

− θ′(η)
a1−s − (1− τf )sA

αAha

β′(h)h

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ] (H. 21)

We have da/db > 0 if this last expression is strictly positive. ∂F
∂h

∂Z
∂b −

∂Z
∂h > 0 is equivalent to:

αAaγ < −θ′(η)
τa1−s + (1− τf )sAτβ(h)

1 + β(h)
− θ′(η)[a1−s − (1− τf )sA]

β′(h)h(ah+ b)

β(h)(1 + β(h))
(H. 22)

Therefore, there exist α > 0 and α̃(> α) such that this inequality is satisfied for α < α and is

not satisfied for α > α̃.10

H ′2(a) > H ′1(a) is equivalent to α > α, or (C. 10). Inequalities (H. 22) and (C. 10) are both

satisfied for α < α < α. This interval is non empty if:

β′(h)h

β(h)(1 + β(h))
(ah+ b)B1 > B2 (H. 23)

with

B1 ≡ a1−s − (1− τf )sA− sb(1− τ
f )A− (b− τ)a1−s

ah∂F/∂a
(H. 24)

B2 ≡ s
b(1− τf )A− (b− τ)a1−s

ah∂F/∂a

(
b− β(h)

1 + β(h)
τ

)
− τa1−s + (1− τf )sAτβ(h)

1 + β(h)

−[(b− τ)a1−s − b(1− τf )sA] (H. 25)

Using a > a, B1 > 0 and B2 < 0 if:

[
(1− τf )sA

] 1
1−s h2

τ

b

(
b

b− τ

) 2−s
1−s
[
1− β(h)

1 + β(h)
(1− s)b− τ

b

]
> b(1− s)

There exists b4 > 0 such that this is satisfied if b < b4.

I Proof of Proposition 8

The effect of a variation in τf on the steady state with epidemics outbreak (a2, h2) is given by:

I

da
dh

+

∂Z/∂τf
∂F/∂τf

 dτf =

0

0


10α and α̃ may not be equal because a, h and η depend on α.
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which implies that:
da

dτf
= − 1

DetI

(
∂F

∂h

∂Z

∂τf
− ∂Z

∂h

∂F

∂τf

)
dh

dτf
= − 1

DetI

(
−∂F
∂a

∂Z

∂τf
+
∂Z

∂a

∂F

∂τf

)
with −1/DetI > 0.

We first examine the effect of τf on h, examining the sign of dh/dτf , which is given by the

sign of:

−∂F
∂a

∂Z

∂τf
+
∂Z

∂a

∂F

∂τf
= −h2

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
θ′(η)

(
bs

αha
+

1

α

)
+ θ′(η)s

b(1− τf )A− (b− τ)a1−s

αAa2
Aash(1− s) β(h)

1 + β(h)

Therefore, we have dh/dτf > 0 if and only if:[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

](
bs

a
+ h

)
> s

b(1− τf )Aas−1 − (b− τ)

a
(1− s) β(h)

1 + β(h)

There exists an upper bound b5 > 0 such that this inequality is satisfied for b < b5.

We then examine the effect of a tax variation on the stationary capital stock, da/dτf . It is

given by the sign of the following expression:

∂F

∂h

∂Z

∂τf
− ∂Z

∂h

∂F

∂τf
= hθ′(η)

(
bs

αha
+

1

α

)[
β(h)

1 + β(h)
τ − b− β′(h)h

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ]

]
−

[
θ′(η)

b(1− τf )sA− (b− τ)a1−s

αhAa
+ θ(η)

]
Aash(1− s) β(h)

1 + β(h)
(I. 26)

This is positive if and only if:

− θ
′(η)

1− s

(
bs

as
+ ha1−s

)[
1 + β(h)

β(h)
b− τ +

β′(h)h

β(h)2
(ah+ b)

]
−θ′(η)[b(1− τf )sA− (b− τ)a1−s] > αγAa (I. 27)

There exists ατ > 0 and α̃τ (> ατ ) such that this inequality is satisfied for α < ατ and is not

satisfied for α > α̃τ .11

H ′2(a) > H ′1(a) is equivalent to α > α, or (C. 10). Inequalities (H. 22) and (I. 27) are both

satisfied for α < α < ατ . This interval is non empty if:[
β′(h)h

(1 + β(h))β(h)
(ah+ b) + b− β(h)

1 + β(h)
τ

]
[

1 + β(h)

β(h)

(
bs

(1− s)as
+
ha1−s

1− s

)
− sb(1− τ

f )A− (b− τ)a1−s

ah∂F/∂a

]
> 0 (I. 28)

Since the first term into brackets is strictly positive, this inequality is satisfied if the second

term into brackets is strictly positive. Using a > a, this requires:

h2
1 + β(h)

β(h)

(
bs

1− s
+

ha

1− s

)[
1− β(h)

1 + β(h)
(1− s)

(
1− τ

b

)]
> (1− s)(b− τ) (I. 29)

11ατ and α̃τ may not be equal because a, h and η depend on α.
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Taking into account the expression of a given in Assumption 3, inequality (I. 29) is satisfied if τ

is sufficiently close to b.
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