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Abstract

We study a two-period one-to-one dynamic matching environment in which

agents meet randomly and decide whether to match early or defer. Crucially,

agents can match with either partner in the second period. This “recall”

captures situations where, e.g., a firm and worker can conduct additional in-

terviews before contracting. Recall has a profound impact on incentives and

on aggregate outcomes. We show that the likelihood to match early is non-

monotonic in type: early matches occur between the good-but-not-best agents.

The option value provided by the first-period partner provides a force against

unraveling, so that deferrals occur under small participation costs.
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1 Introduction

Many decentralized matching markets are inherently dynamic and non-stationary. In

labor markets for entry-level professionals, workers and employers typically search

for matches during a well-defined window, conducting interviews sequentially. Some

participants exit the market early, while others spend more time searching. The pool

of participants thus evolves over time. In dynamic matching frameworks, a standard

simplifying assumption is that two agents who meet but do not immediately match

cannot match at a later date. Yet in practice, to the contrary, a worker and an

employer may meet and then each conduct additional interviews before later deciding

to match. How do matching outcomes change if agents can keep track of previous

meetings?

We provide the first analysis of recall in a non-stationary matching environment.

The analysis is built on the two-period, two-sided matching model studied by Dami-

ano, Li and Suen (2005), into which we incorporate recall and study its e↵ects (see

Section 2). Agents have heterogeneous types and prefer to be matched with a partner

of higher type. Agents are randomly paired at the first period, observe their part-

ner’s type, and decide whether to match and exit, by mutual consent, or to defer.

Unmatched agents are again randomly paired in the second period, after which they

have a final opportunity to form matches by mutual consent. Agents in the second

period each have two potential partners to match with. With common preferences,

the stable pairing is generically unique (see Lemma 1).1

We identify key intuitive implications of the fact that recall generates two feasible

pairings for agents in the second period. First, higher-type agents expect to obtain

a better partner in the second period, since they are more likely to be able to match

with the better of their two options. This implies that higher types are more selective

in early matches. Second, some agents remain unmatched in equilibrium. Notice that

both of an agent’s options in the second period may mutually prefer their other option

1For example, consider the highest-type agent: they must match with their preferred partner
in any stable matching, so this pair is matched and removed, and the process repeats with the
remaining agent of highest type, and so on.
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to the given agent. Third, the highest-type agents almost never match early since,

for them, this risk is negligible. In fact, they are almost sure to match with the better

of their two partners in the second period, so that waiting can only benefit them.

Fourth, even low-type agents can get lucky in the second period, as is the case when

they meet a better partner in the second period, who loses their first-period partner

to a blocking pair. We show that this implies that low-type agents are su�ciently

picky in the first period that they never match early.

Our first set of results characterize equilibrium strategies (see Section 3). Since

stability pins down the second period outcome, we focus on matching decisions in

the first period. Lemma 2 shows that best responses are essentially unique and take

the form of a threshold function, meaning that if an agent is willing to match early

with a type v, then they are willing to match with any other type v
0
> v. While

best responses have this simple structure, equilibrium analysis is complicated by the

necessity of finding a fixed point in an appropriate function space. Theorem 1 proves

the existence of an equilibrium with deferrals in symmetric threshold strategies, when

the pool of agents is su�ciently large. The argument is complex, and is contained

in the Appendix. Theorem 2 shows that this equilibrium displays the intuitions

described above.

Notice that, in equilibrium, the set of agents who match early contains neither

low-type agents nor the highest-type agents. It is the good-but-not-best agents who

match early and, as a result, early matches are highly assortative. The (endogenous)

pool of types in the second period displays a non-monotonicity, as the good types

are under-represented relative to the low types and the highest types. Section 4 is

devoted to a thorough analysis of the implications of this finding. We contrast our

findings with the results from Damiano, Li and Suen (2005) in order to understand

the impact of recall on matching outcomes. The qualitative features of our equilib-

rium are quite distinct from the no-recall case: if agents can remember their past

partners, the matching patterns are fundamentally altered.

Further, we explore the welfare implications of recall. We identify countervailing
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e↵ects and quantify them through large-scale numerical simulations.2 In the no-recall

benchmark, two agents who meet in the second period always match and hence late

matches are conditionally random and every agent obtains a partner. By contrast,

under recall second-period matches are assortative and leave some agents isolated. In

addition, we find that there are fewer early matches under recall than under no recall,

and those that do occur are more highly assortative. Overall, welfare is substantially

higher under recall, showing that the benefits of increased assortativity outweigh the

costs of leaving agents unmatched.

We also look at the counterfactual impact of prohibiting early matches in our

framework, forcing all agents to meet a second partner before matching. Even though

this change (weakly) expands feasible partnerships for every market participant, we

find that it decreases welfare. This is explained by two related reasons. First,

eliminating early matches increases the number of unmatched agents. Second, some

first-period meetings are very likely to end up in matches. Including these agents in

the second period imposes a negative externality on others by e↵ectively limiting their

opportunities to meet viable partners. The early matches that arise endogenously

under recall are thus welfare-improving.

Finally, observe that under recall, the first-period meeting confers option value

in the second period matching. In contrast, without recall, the first period partner

is forgotten and there is no option value. The option value under recall is non-

trivial, even for the lowest type agents who know that they will not match in the

first period. This fact has an important implication regarding the possibility for

the market to unravel. Damiano, Li and Suen (2005) show that the introduction

of a small participation cost causes the market to unravel. The key mechanism is

that, without recall, an agent who knows they will not match in the first period is

unwilling to participate at any positive cost, and so all low types abstain from early

participation. But with recall, the option value provides su�cient incentive to all

agents to continue participating. In Section 5, we show that our equilibrium survives

2We run these simulations under the assumptions that types are uniformly distributed over [0, 1]
and that the utility from a match is equal to the product of the partners’ types.
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the introduction of a small participation cost, preventing the large drop in welfare

associated with unraveling in the no-recall case.

Our analysis contributes, first, to the literature on dynamic, non-stationary match-

ing. In an important paper, Damiano, Li and Suen (2005) provide one of the first

analyses of matching in a non-stationary environment. They study a two-period, two-

sided matching model under no recall, non-transferable utilities, and when agents

prefer to be matched with higher-types partners. In this framework, agents who

meet in the second period always match. This leads to a type-independent threshold

strategy in the first period: an agent wants to match with its first-period partner

when the partner’s type is larger than the expected type in the second period, pro-

ducing a uniform threshold. The equilibrium is then characterized by a simple scalar

fixed point equation. The likelihood to match early decreases weakly with type and

the equilibrium with deferral unravels with a small participation cost. We introduce

recall into this framework and show that it has a profound impact. As discussed

above, matchings in the second period can, and do, happen between agents who met

in the first period. In equilibrium, higher types are more selective in the first period,

leading to type-dependent threshold function. This equilibrium is then characterized

by a functional fixed point equation. The likelihood to match early is non-monotonic

with type and the equilibrium with deferral is robust to small participation costs.

Other studies analyze early matching and unravelling in similar contexts.3 Li and

Suen (2000) and Li and Rosen (1998) assume that types are initially uncertain and

consider risk averse preferences with transfers. In their setup, early contracting pro-

vides insurance and agents who appear most promising may match early. Echenique

and Pereyra (2016) consider non-transferable utilities and assume that types are

initially unknown. They show that an early o↵er by one agent induces a negative

externality on the rest of the market, and that this yields strategic unraveling in

equilibrium. Du and Livne (2016) assume that some agents enter only in the second

3Roth and Xing (1994) document how many markets su↵er from unravelling and discuss possible
causes. Contributions on unravelling include Fainmesser (2013), Kagel and Roth (2000), Halaburda
(2010), Ostrovsky and Schwarz (2010), Niederle and Roth (2009), Roth (1991), Sönmez (1999).
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period. They look at the impact of transfers on market outcomes and find that with

non-transferable utilities, some agents may want to match early and sequentially

stable equilibria may fail to exist.

These studies assume that in the second period, agents know the types of every

other agent present in the market and can match with every market participant.4 By

contrast, we consider a fully decentralized framework. As in Damiano, Li and Suen

(2005), agents must first meet to learn each other’s types and to be able to match.

In our setup, market participants are risk-neutral, know their own types, and are

present in the first period

Search and matching is a distinct strand of the literature, building on Mortensen

(1982), Mortensen (1988), Diamond (1982), and Pissarides (2000). Several papers

develop a stationary search and matching analysis of models with non-transferrable

utilities and preferences to be matched with higher types, see e.g. Burdett and

Coles (1997), Adachi (2003), Smith (2006). These papers generally characterize

stationary equilibrium strategies, including the finding of block segregation. In these

frameworks, however, recall has no impact: an agent who is unacceptable today

remains unacceptable in the future.

A small but interesting literature looks at recall in a stationary search and

matching environment with transferable utilities. Carrillo-Tudela, Menzio and Smith

(2011) consider a model of job search where unemployed workers meet firms at ran-

dom and firms make take-it-or-leave-it wage o↵ers. Workers keep track of previous

encounters with potential employers and induce bidding wars between them. They

show that recall allows workers to obtain higher wages, providing a possible res-

olution of Diamond’s paradox. We show that the implications of recall are very

di↵erent, however, in a non-stationary framework. In the stationary environment of

Carrillo-Tudela, Menzio and Smith (2011), workers always match with their current

partner on the equilibrium path. In addition, firms’ behavior does not depend on

4In particular, this means that matching in the second period is perfectly assortative in Echenique
and Pereyra (2016) and Du and Livne (2016). Matching is generally not perfectly assortative in
our framework as agents can only match if they have previously met.
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their own previous encounters. Recall mainly helps workers capture a larger share

of the gains from trade. By contrast in our framework, agents do, in fact, match

with previously met partners. Matching prospects depend on partners’ partners and,

more generally, on the entire network of potential partnerships. Recall in our setup

thus fundamentally alters who matches with whom and the timing of the equilibrium

matches.5

Recall is a standard assumption in the literature on consumer search, see e.g.

Wolinsky (1986), Armstrong (2017), and Choi, Dai and Kim (2018). In this litera-

ture, consumers search sequentially for products and then buy the searched product

which brings highest payo↵. There are at least two main di↵erences with our frame-

work. First, conditional on prices, decisions of a consumer are not a↵ected by the

decisions of other consumers. Decisions of when to stop searching and which product

to buy are single decision maker problems. By contrast, the incentives of an agent in

our framework depend on what others do, leading to much more complex strategic

interactions. Second, a consumer can always buy a product they searched in the

past. There is no risk that the product disappears if not bought right away. By

contrast, this risk plays a key role in our framework. An agent is not guaranteed she

will be able to match later with a partner met today.6

2 Model

In this Section, we describe a dynamic model of decentralized matching with recall.

Agents meet potential partners randomly over two periods. “Recall” means that

agents keep track of previous meetings and can later match with those partners.

At the end of the second period, an agent may feasibly match with either of the

5Carrillo-Tudela and Smith (2017) introduce on the job search into the stationary framework
of Carrillo-Tudela, Menzio and Smith (2011). With on the job search and recall, some agents who
lose their jobs can find a new job right away and this a↵ects aggregate output.

6Interestingly, there are contexts where this risk may appear in consumer search. Think, for
instance, about sellers having limited quantities of products to sell. Such capacity constraints would
introduce features related to our analysis: a consumer who does not buy a product right away would
risk losing her chance of purchasing later, in ways that depend on others’ purchase decisions.
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two partners she has met. Our main objective is to understand the equilibrium

properties of this matching process, with a particular emphasis on identifying the

impact of recall on matching outcomes.

Our framework is most closely related to the model of dynamic, decentralized

matching of Damiano, Li and Suen (2005), with the primary distinction being our

inclusion of recall. Matching is two-sided and one-to-one. For clarity, we adopt

the terminology of marriage markets, with women and men, throughout the paper,

but our framework applies more generally to buyers and sellers, workers and firms,

colleges and students, etc. Let W denote the set of women, M the set of men, with

N = W [ M the set of all agents. We assume that there are as many women as

men, and the total number of agents is a finite N � 6 with #W = #M = N

2 . Each

woman and man has a type, drawn independently and identically from a probability

distribution H. We assume that the support of H is an interval [a, b] and that

H admits a strictly positive density h. Let wi 2 [a, b] denote a realized type of a

woman i and mj a realized type of a man j. We omit the subscripts when there is

no ambiguity.

Agents care only about the type of their matched partner. Let ui(m|w) denote

the utility that woman i of type w earns from matching with a man of type m and

uj(w|m) the utility that man j of type m earns from matching with a woman of type

w. Denote by ui(;|w) the utility derived by woman i when she remains unmatched,

and similarly for uj(;|m). We consider preferences that satisfy the following assump-

tions:

Assumption 1. For any woman i of type w 2 (a, b],

(i): ui(m|w) is linear and strictly increasing in m, and

(ii): ui(a|w) = ui(;|w).

The parallel assumptions hold for uj(w|m) for any man j of type m.

Assumption 1(i) is common in the literature. It implies that agents have aligned

preferences on both sides of the market and strictly prefer to be matched with a

partner of higher type. Linearity further implies that agents are risk neutral, which
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simplifies the intertemporal considerations since an agent’s match if she defers in the

first period is stochastic. Assumption 1(ii) implies that agents are indi↵erent between

matching with the lowest type and being unmatched. We make this assumption for

tractability; it allows us to normalize a, the lower bound of the type space, to zero.

Setting a = 0, an example of symmetric utilities satisfying Assumption 1 is

ui(m|w) = uj(w|m) = mw. Utilities need not be symmetric, however, and could

have individual-specific slopes.

Agents observe their own type and can match either in period t = 1 or t = 2.

In period 1, a woman w randomly meets with a man m - all meetings are equally

probable. Upon meeting, each agent learns the other agent’s type, and decides to

match now or to defer. If both agents decide to match early, they match and exit

the market with the corresponding payo↵s. If at least one agent decides to defer,

they both remain in the market for the next period. We refer to a match in period

1 as an early match.

In period 2, every remaining woman w randomly meets with a remaining man m

- all meetings where every agent meets someone new are equally probable.7 Under

recall, an agent in period 2 has two possible partners, and can notably match with

the agent met in period 1. By contrast, there is no recall in Damiano, Li and Suen

(2005) and an agent in period 2 simply matches with the agent met in period 2.

A key feature of recall is that it gives rise to a network of possible partnerships

among remaining agents. Two agents are connected in this network if they met either

in period 1 or period 2. In our framework, this network has a simple structure: each of

its connected components is a circle of even size. Considering more than two periods

or more meetings per period would lead to a more complex structure. By contrast,

this network reduces to disconnected pairs in the usual frameworks without recall.

The emergence of a nontrivial network of possible partnerships is thus a defining

feature of recall.

7The only case where remaining agents cannot meet someone new is when only one woman and
man have not matched early. Since they are then the only two agents remaining, they must match
together in any case.
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We assume that the matching formed in period 2 is stable, conditional on the

feasible partnerships. Formally, denote by µ a matching in period 2, where µ(i) = j

and µ(j) = i mean that woman i is matched with man j. A matching is feasible if

µ(i) = j only if i and j met in period 1 or 2. With a slight abuse of notation, let µ(wi)

denote the type of woman wi’s partner under matching µ. Following Assumption

1(ii), set µ(wi) = a when woman wi is unmatched under µ. We adapt the usual

notion of stable matchings under non-transferable utilities to our setup as follows,

see, e.g., Roth and Sotomayor (1992). A pair (wi,mj) is a blocking pair if: (i) wi

and mj met either in period t = 1 or t = 2, and (ii) ui(µ(wi)|wi) < ui(mj|wi) and

uj(µ(mj)|mj) < uj(wi|mj). A feasible matching µ is stable if there is no blocking

pair.

Since preferences are aligned, feasible stable matchings can be simply described

and are generically unique. Consider a connected component of the network of

partnerships. Pick the woman with highest type in the component. Let this woman

match with her preferred partner among her two possible choices. Then, remove

these two agents and repeat, picking the woman with the highest type among the

remaining women, and let her match with her preferred remaining partner, etc.

With probability 1, agents are never indi↵erent and the feasible stable matching is

generically unique. We collect these observations in the following Lemma, whose

proof is immediate and omitted.

Lemma 1. For every set of meetings and early matchings, the network of possible

partnerships among remaining period 2 agents is composed of disjoint circles of even

size. Under Assumption (1), with probability 1 there is a unique feasible stable match

in period 2. In every component of the network, the woman and the man with highest

types match with their preferred feasible partner.

In equilibrium, an agent prefers to match early when the utility of matching right

away is greater than the expected utility from waiting, which, under Assumption 1,

is equal to the utility of the expected type of the stable partner. This expectation,

however, depends on others’ decisions, and in particular on the distribution of types
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that match early or defer. In other words, strategic interactions in period 1 generate

an endogenous type distribution in period 2, which has to be accounted for in agents’

first period matching decisions. This linkage is a key feature of dynamic matching

and, as we will show below, is profoundly a↵ected by recall.

Formally, a pure strategy �i of woman i 2 W is a measurable function from the

men’s type space into the binary set {1, 2}, where �i(m) = 1 when i announces she

wants to match early with man m and �i(m) = 2 when i defers. Similarly, the

pure strategy of man j is a function from the women’s type space into {1, 2}. Early

matches are executed by mutual consent : an early match takes place if and only if

both agents announce they want to match early. By contrast, both agents reach the

second period if at least one agent defers.

Let ��i = (�1, �2, . . . , �i�1, �i+1, . . . , �N) denote a strategy profile of all agents

other than i. From i’s point of view, ��i induces a type distribution in period 2. If

woman i of type wi meets a man m in period 1, denote by E��i [µ(wi) | wi,m] the

expected type of i’s partner in the stable matching formed in period 2 if i defers.8

Note the critical dependence of this expectation on m.

In our analysis, we focus on strategies where an agent announces she wants to

match early if and only if she prefers to match early. This is a standard way of ruling

out miscoordination on mutual consent, where agents may defer even though both

agents strictly prefer to match early. We further assume that, when an agent is in-

di↵erent between matching early and deferring, she agrees to match with probability

one. Formally, then, a profile � is an equilibrium if for all i, j, w,m, �i(m) = 1 if and

only ifm � E��i [µ(wi) | wi,m], and �j(w) = 1 if and only if w � E��j [µ(mj) | mj, w].

In particular, note that everyone playing “always early” is an equilibrium in

pure strategies. Indeed, assume that ��i = 1. If woman i deviates and decides

to defer, then she will not meet a new partner in the second period, since she and

her first period partner are the only two agents present in the market. Therefore,

8Since the stable match is generically unique, the expectation is well-defined except when all
other agents match early with probability one. In this case, i matches with her first period partner
independent of her strategy, and we set E��i [µ(wi) | wi,m] = m.

10



E��i=1[µ(wi) | wi,m] = m and i is indi↵erent between matching early or waiting.

As a first step to characterize equilibria, we show that best responses display a

natural threshold property. Say that a strategy �i is a threshold strategy if, for every

wi, there exists m⇤ such that �i(m) = 1 if m � m
⇤ and �i(m) = 2 if m < m

⇤. In a

threshold strategy, an agent wants to match early if and only if the type of her period

1 partner is high enough. We derive the following result in the Online Appendix.

Lemma 2. For any agent i and strategy profile ��i, the best-response of agent i is

unique and is a threshold strategy.

Lemma 2 relies on showing a single-crossing property of E��i [µ(wi) | wi,m] with

respect to m. While single-crossing is natural, its proof must deal with the following

complication. As the type of one’s first-period partner improves, he becomes more

attractive to his second period partner as well, and so the chance of losing him in the

second period is higher.9 This result allows us to focus on threshold strategies without

loss of generality. We further focus on symmetric threshold strategies, where agents

share a common type-dependent threshold function f(·). In that case, �i(m) = 1

if and only if m � f(wi). Denote by Ef [µ(wi) | wi,m] the expected type of i’s

stable partner in period 2 when all other agents follow the threshold strategy f . In

equilibrium, at the threshold, woman i is indi↵erent between matching early, with a

man of type f(wi), or deferring, and hence being matched with a man of expected

type Ef [µ(wi) | wi, f(wi)]. An equilibrium in symmetric threshold strategies is thus

characterized by the following key fixed-point equation:

8i, wi, f(wi) = Ef [µ(wi) | wi, f(wi)]. (1)

Note that this characterization relies on a functional fixed-point equation. In

the absence of recall, the analogous characterization relies on a much simpler scalar

fixed-point condition. We discuss at length the complexities introduced by recall in

Section 4.

9For this reason, single-crossing would generally fail if the type distribution had mass points.
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3 Equilibrium Analysis

We now state our first main result. We say that an equilibrium is an equilibrium

with deferral if matchings happen with positive probability in the second period.

Theorem 1. Consider any distribution of types over [a, b] with strictly positive den-

sity. Under Assumption 1, there exists N̄ 2 N such that for every market size N � N̄

there exists an equilibrium with deferral in symmetric threshold strategies.

The proof of Theorem 1 is involved, and presented in Appendix A. We describe

here its main steps and intuitions. Suppose that agents follow a symmetric weakly

increasing threshold strategy f(·). Introduce the best-response operator �̃ as follows:

8i, wi, �̃(f)(wi) is the lowest type m that solves m = Ef [µ(wi) | wi,m] (2)

Thus, �̃(f)(wi) is the type m with the following property. When wi meets m in the

first period, her expected stable partner in the second period, given f , is precisely

m. We show in the Appendix that �̃(f) is well-defined and is itself an increasing

function.

It is important to recall that, fixing f , i’s second-period expectation depends

non-trivially on the type of her first period partner, since, e.g., she will generally

match with that partner with positive probability. By Equation 1, an equilibrium

in symmetric threshold strategies is a fixed point of the functional operator �̃(·).

In particular, the constant function f(w) = a corresponds to the strategy “always

early” and is a fixed point of �̃(·). To show existence of an equilibrium with deferral,

we focus on the subspace of weakly increasing functions f such that f(a) � a+" with

" > 0. We establish the following facts. (1) If " is small enough, the best-response

operator is a self-map over this subspace: if f(·) belongs to it, then �̃(f)(·) belongs to

it as well. (2) This subspace is a convex compact set, and (3) The functional operator

�̃(·) is continuous over the subspace. By Schauder’s fixed point Theorem, we then

conclude that �̃ has a fixed point in the subspace, which identifies an equilibrium
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with deferral in symmetric threshold strategies by construction.

A key step in establishing (1) is to show that when f(·) is bounded away from a,

even an agent of lowest type has a strictly positive probability of matching with her

second period partner. To see why, note that any agent has some chance to meet

someone she does not want to match with in the first period. The endogenous type

distribution of agents reaching the second period thus has full support. Together with

the stability of period 2’s matching, we show that this implies that the probability of

matching with the preferred partner in period 2 is strictly less than 1 for all agents

except for those of highest type. Thus, and even though agents of lowest type are

never preferred, they may end up matched with their second period partner.

We use this observation to show that agents’ option value from waiting is bounded

away from their default option, even for agents of the lowest type, and we are able

to characterize this bound. At this stage in the proof, a di�culty is that if a woman

of lowest type meets a man of lowest type in period 1 and if both end up in the

same component of size 4 in period 2, they must match together.10 It is only for this

reason that we require a minimum market size. To address this issue, we show that

when N is high enough, the probability that two such agents end up in a component

of size greater than or equal to 6 is large enough, even if many agents are matching

with high probability in the first period. We then show that when " is small enough

and N is large enough, the best-response operator is a self-map over the subspace of

threshold functions, establishing (1).

We next describe key features of equilibria with deferral. We investigate their

properties in more detail in the following Sections with the help of numerical simu-

lations.

Theorem 2. Every equilibrium with deferral in symmetric threshold strategies f(·)

satisfies the following conditions:

(i) f(a) > a and f(b) = b

10In that case, the lowest type woman meets man j in period 2, the lowest type man meets
woman i in period 2 and i and j had met - without matching - in period 1. Because their period 2
prospective partners are of lowest type, however, i and j match in period 2.
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(ii) f(·) is strictly increasing and continuous.

(iii) There exists an x
⇤ 2 (a, b) with f(x⇤) = x

⇤ such that f(x) < x for every

x 2 (x⇤
, b).

Theorem 2 shows that in a symmetric equilibrium, the common threshold function

starts strictly above the 45 degree line, crosses the 45 degree line at least once over

the interval’s interior and ends up reaching it again at the highest type from below.

f(a) > a since, as described above, the expected type of the period 2 partner of a

lowest type agent is strictly positive. f(b) = b since an agent of highest type is sure

to match with his preferred partner, hence never wants to match early. f(x) < x

for high types since when a high-type agent meets a first period partner of the same

type, she has a small chance of meeting a better partner in the second period and,

even if she does, the improvement will be small. On the other hand, the agent faces

some risk in deferring, as she may lose her good first-period partner in the stable

match and receive a worse outcome.

While Theorem 1 does not guarantee a unique equilibrium with deferral, we

conjecture that it is typically unique. To compute an equilibrium numerically, one

can iterate the best response operator �̃, starting from an initial symmetric strategy.

In extensive simulations, we have found that this process converges rapidly to the

same functional fixed point for many initial strategies, suggesting uniqueness and

stability of the equilibrium with deferral.

4 The e↵ects of recall

4.1 The equilibrium threshold and outcome

We now turn to understanding how recall a↵ects matching outcomes. An important

benchmark is the case of two-period random matching without recall, which is studied

by Damiano, Li and Suen (2005). This model corresponds to the scenario in which

an early meeting that does not result in a match is permanently dissolved, as if the
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two agents had never met. In that case, notice that every agent who does not match

early simply obtains a draw from the (endogenous) distribution of types active in

the second period and matches with that partner. In particular, the quality of this

matching does not depend on type and every agent has identical expectations for late

matches. Therefore, the first-period threshold, x0, also does not depend on type.

In the first period, all meetings in which both types are above x
0 match early

(obtaining matches better than they expect in the second period), and all remaining

pairs pass to the second period, where they are randomly re-paired to obtain their

final match. Therefore, under the threshold strategy x
0, the probability of a first-

period pair not matching and passing into the second period is

1� (1�H(x0))2 (3)

where H is the ex-ante type distribution. The equilibrium threshold x
0 is char-

acterized by a scalar fixed point condition, equating this threshold to the induced

expected type in the second period.

In this Section and the next we consider a simple parameterization of the model

in which types are distributed uniformly on [0, 1] and the productivity of any match

is given by the product of types. In this case, Equation 3 simplifies to (2x0 � (x0)2).

Since two agents match and leave the market only when each agent’s type is greater

than x
0, the equilibrium threshold strategy without recall, x0, solves the following

equation:

x
0 =

Z 1

0

Z
x
0

0

1

2x0 � (x0)2
tdtds+

Z
x
0

0

Z 1

x0

1

2x0 � (x0)2
tdtds (4)

=
3�

p
5

2
⇡ 0.38, (5)

where the right hand side of Equation (4) is the expected type in the second period

with respect to the type distribution induced by the (constant) threshold strategy

x
0.11

11To see why, note that a pair of types in the second period is drawn uniformly from an L-
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(a) Equilibrium threshold strategy, no recall
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(b) Equilibrium threshold strategy, recall

0 0.2 0.4 0.6 0.8 1
Type

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Probability of matching early, no recall
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(d) Probability of matching early, recall
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(e) Density of second period types, no recall
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(f) Density of second period types, recall

Figure 1: Equilibrium outcomes, without and with recall

shaped subset of the unit square, as in Figure 5 below. Taking an expectation of the corresponding
marginal distribution, the left part of this L-shaped set yields the first integral of the right hand
side of Equation Equation (4), while the right part yields the second integral of the right hand side.
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(a) Expected partner type, no recall
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(b) Expected partner type, recall

Figure 2: Expected type of a matched partner, without and with recall

We now compare matching outcomes with and without recall. With recall, nu-

merical results were obtained by simulating a market with N = 750 participants

20,000 times. The equilibrium threshold function, and its induced properties, were

computed numerically via iterated best responses starting from a threshold strategy

of �̃0(x) = 1 for all x in a discrete grid of 1000 types on the unit interval. Figure

1 first depicts the equilibrium threshold strategy, the probability of matching early,

and the resulting endogenous distribution of types in the second period as a function

of an agent’s type. Outcomes in the benchmark case of no recall (Damiano, Li and

Suen (2005)) are depicted in the Left panels, while outcomes of our model with recall

are depicted in the Right panels.

The equilibrium threshold strategy is type-independent without recall (Figure

1(a)), but increasing in type and crossing the 45 degree line once from above under

recall (Figure 1(b)), consistently with Theorem 2. The probability of matching

early is piecewise constant - and weakly increasing - without recall: agents with

a type below 0.38 have zero probability to match early while agents with a type

above 0.38 have probability 0.62 to match early (Figure 2(a)). By contrast, the

likelihood of matching early is continuous and non-monotonic in type under recall

(Figure 2(b)). Low types do not match early because they are unacceptable to their

partners, whereas the highest types rarely match early since, with high probability,
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they can obtain the better of their two partners after the second-stage match. This

non-monotonicity is a direct consequence of recall, and has a natural interpretation

in applications. Agents who are most likely to match early are good-but-not best:

the mode of the distribution is equal to 0.805. As a consequence, these agents are

underrepresented in the second-period type distribution under recall (Figure 1(f)).

By contrast, without recall, the distribution of types present in the second period is

weakly decreasing and piecewise constant (Figure 1(e)).

Next, we depict in Figure 2 the ex-ante expected type of a matched partner as

a function of type, both under no-recall on the Left and recall on the Right.12 We

see that expected outcomes without recall are essentially binary (Figure 2(a)): low-

type agents (those below x
0) expect a partner of type x

0, obtained in the second

period, while high-type agents (those above x
0) expect a partner of type 1�2(x0)2

2�2(x0)2 =

3
4(
p
5�3) ⇡ 0.57. By contrast, under recall, the expected type of a matched partner

is continuous and increasing in own type (Figure 2(b)). Every agent in the second

period has two feasible partners, and stability implies that agents with higher types

are more likely to obtain their preferred partner in the final match. The first-period

partner thus has option value in the second period and this value is higher for high-

type agents since they are more likely to be able to match with their first-period

partner when they so desire. All else equal, higher types hold higher expectations

for their second-period outcomes, implying that they will be choosier in the first

period. This yields an increasing threshold strategy and an increasing expected type

of a matched partner.

Recall has another distinct implication: the possibility of remaining unmatched.

Without recall, every agent matches with a partner. Under recall, however, the

stable match in the second period generally leaves some agents isolated. Figure 3

depicts the simplest such example, in which two agents out of six are isolated in the

stable match.

12Under recall, remember that being unmatched is equivalent to being matched with a lowest
type.
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m1 w2

w1 m2

m3 w3

Figure 3: An example of a stable matching µ with types satisfying m2 > m1 > m3 and w3 >
w1 > w2 where wi and mi meet in the first period, and where m1 meets w2, m2 meets w3 and m3

meets w1 in the second period. A directed arc points to the preferred partner of each agent. The
resulting stable match is µ = {(m1, w1), (m2, w3), (m3, ;), (w2, ;)}.

The decision to defer a first period match must account for this possibility. Natu-

rally, the probability of remaining isolated in the stable match is decreasing in own

type, and deferring becomes vanishingly risky for the highest type, who obtains her

preferred partner with probability one. Figure 4 depicts the ex-ante probability of

remaining isolated in equilibrium as a function of type. The good-but-not-best types

match early with the highest probability since, for them, the risk of deferring is sub-

stantial, whereas the potential benefit from waiting, when the first-period partner

is already good, is limited. Notice also that even the lowest type obtains a partner

with probability near (but not exactly) one half.
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Figure 4: Probability of being isolated in equilibrium as a function of type

Finally, Figure 5 depicts the space of type-pairs, along with each agent’s equilib-
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rium threshold function, both with and without recall. The pairs of types that match

early under recall are depicted by the shaded “lens”, where each agent’s first-period

partner lies above her threshold. Without recall, and the corresponding option values

in the second period, the incentives to match early are stronger. Here, early matches

happen between all first-period type pairs in the upper-right quadrant, where both

types exceed x
0. The set of type pairs that match early under recall is a subset of

those that match early without recall; recall reduces the frequency of early matches

from about 38% to about 10%. Under recall, higher types become more optimistic

about the second period, as they are relatively likely to attract a better match,

whereas it causes lower types to be less optimistic, since their risk of being isolated

is relatively high, and their chance of attracting a better match is lower.

Figure 5: Equilibrium threshold strategy of a pair of agents (M,W ). The solid curve and solid
vertical line represent agent M ’s equilibrium threshold function with recall (�̃) and without recall
(x0), respectively. The dashed curve and dashed vertical line represent agent W ’s equilibrium
threshold function with recall and without recall, respectively.

Consequently, the equilibrium thresholds with and without recall intersect: low-

type agents are more inclined to match early under recall, whereas high-type agents

are more inclined to match early without recall.

Finally, note that without recall, every agent prefers to meet a higher-type partner
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in both the first and second period, all else equal. With recall, this is no longer true:

the ideal partner type for an agent can be interior. This is because higher-type

partners are riskier, as their outside options are stronger.

4.2 Welfare

We turn now to analyzing the welfare properties of this matching environment, fo-

cusing on the e↵ects of recall. To keep the analysis simple, define welfare here as the

sum of the utilities of all agents. Since the match value is given by the product of

types, the first-best e�cient match is perfectly assortative. Specifically, the average

value per match tends to E[x2] = 1
3 as N tends to infinity. On the other hand, purely

random matching produces an average value of E[x]2 = 1
4 . We normalize these av-

erage welfare levels to one and zero, respectively, and quote all subsequent welfare

figures as a proportion of the first-best welfare gains on this scale. Numerical results

were obtained by simulating a market with N = 750 participants 100,000 times.

In the benchmark scenario without recall, where all agents apply the equilibrium

threshold of x0 ⇡ 0.38, the average match value is 26.88%. Introducing recall has sev-

eral distinct e↵ects on welfare. First, fewer matches happen early, but early matches

are more highly assortative than early matches without recall. Next, second-period

matches are also more assortative under recall, as having multiple partners allows for

endogenous assortativity that cannot arise under the purely random matching that

dictates late matches without recall. Finally, some agents will remain isolated under

recall, an ine�ciency that negatively impacts welfare relative to the benchmark case.

In sum, the average value under recall is 33.24%, exhibiting a substantial net posi-

tive welfare e↵ect of recall. Thus, the benefits of more e�cient assortativity outweigh

the cost of isolated agents.13 On average, 12.6% of agents remain unmatched under

recall in equilibrium, indicating that along with the higher average value, there is

more variation in value across agents.

We now quantify the e↵ects of early matching in the presence of recall. To do

13Note that this conclusion is sensitive to the specification of values as the product of types.
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so, we consider a model that is identical to our principal specification, but in which

early matching is prohibited. In this case, every agent randomly meets two di↵erent

partners, after which the stable match is implemented. The main finding is that

welfare decreases to 29.28% in this specification. An important factor leading to this

conclusion is that early matching reduces the number of isolated agents. Prohibiting

early matches increases the frequency of isolated agents to 13.5%. We conclude that

in the presence of recall, the early matches that arise endogenously are beneficial

from a welfare perspective, both because they are highly assortative and because

they increase the number of matched agents. Thus, a social planner would prefer

to allow early matches to arise endogenously as opposed to making any attempt at

prohibiting them.14

We now analyze in further detail the distribution of value at the equilibrium of our

model with recall and endogenous early matching. Figure 6 shows the equilibrium

expected partner type as a function of own type, replicating Figure 2(b), along with

the 75th and 25th percentiles. The three curves are predominantly increasing, show-

ing the assortative finding that higher types tend to match with higher types. The

exception is that the 75th percentile curve is decreasing above type 0.99. The reason

is that the probability of matching early is quickly vanishing for types approaching

the upper bound, and matching early involves matching to a very high type partner.

Thus, as an agent’s type approaches the upper bound, she becomes less likely to

match with a very high type, and more likely to match with her preferred partner

in the second period. This is better in expectation, but the distribution of stable

partners has a thinning upper tail for the highest types.

14It would be interesting to compare this figure against the second-best outcome of our model:
the most e�cient match subject to the two-period matching process. However, the e�cient match
is computationally complex and we have been unable to compute it for reasonable market sizes. In
the second-best, the planner would implement some first-period matches, as first-period partners
who remain in the market but are likely to match together eventually in the second-period impose
a negative externality on others by e↵ectively limiting their options.
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Figure 6: Expected type of matched partner, along with 75th and 25th percentiles.

Figure 7 depicts the same curves focusing on the second-period matching market,

by conditioning on agents who do not match early. While the 25th percentile curve

is increasing, the 75th percentile curve is clearly nonmonotonic, and even the curve

depicting the expected partner is nonmonotonic. This e↵ect arises because, condi-

tional on not matching early, an agent’s type is negatively correlated with her first

period partner’s type, with whom she eventually matches with substantial probabil-

ity. Thus, as an agent’s type increases, her first period partner’s type may decrease

on average, as seen in the right panel, leading to a net decrease in her average stable

match. The discontinuity in the 75th percentile of the first period partner’s type

arises from the fact that, at the discontinuity, the 75th percentile jumps from the

type at the upper bound of the lens to the type at the lower bound of the lens.
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(a) Type of stable match in equilibrium
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(b) Type of first period partner in equilibrium

Figure 7: Conditional on not matching early, expected type of matched partner (Left panel) and
first period partner (Right panel), along with 75th and 25th percentiles.

5 Participation costs and unravelling

We here take up the issue of how equilibrium dynamics are influenced by the intro-

duction of small per-period participation cost c. An important result in Damiano,

Li and Suen (2005) is that under no recall, even arbitrarily small costs of partici-

pation destroy the interior equilibrium and lead to a complete unravelling whereby

all agents match early. As a consequence, the assortativity that arises through the

sorting properties of dynamic matching are lost, and the equilibrium outcome is a

purely random match. In this sense the equilibria of the no-recall environment are

discontinuous at c = 0. By contrast, we show below that under recall an equilibrium

with deferral still exists in the presence of small participation costs.

The matching process now works as follows. Prospective first-period partners

are assigned through a random pairing, as before. Every agent, after learning her

type, decides whether or not to pay c and participate in the first period. If both

agents in a prospective pair participate, they meet and decide whether to match

or defer. Otherwise, they do not meet. Notice that an agent may therefore par-

ticipate, but not meet a partner, which occurs if the prospective partner does not
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participate.15 Any agent who has met a partner decides whether to accept or defer,

with matches executed under mutual agreement, all as before. In the second pe-

riod, all remaining agents are again assigned prospective partners randomly, subject

to the constraint that their second-period prospective partner is distinct from their

first-period prospective partner. As before, if both agents in a prospective pairing

participate in the second-period, they meet; otherwise they do not. Any unmatched

agent who does not participate in the second period exits with her outside option.

Finally, the (still unique) stable match is implemented from among all agents active

in the second period.

The next result shows that our main equilibrium existence argument is robust to

the inclusion of small participation costs.16

Theorem 3. There exists N̄ such that for every N > N̄ there is a cN > 0 such that

for all c < cN the matching process with participation costs exhibits an equilibrium

with deferral in symmetric threshold strategies and full participation.

Proof. See Appendix C.

There is therefore a fundamental di↵erence introduced by the inclusion of recall in

terms of unravelling. Let us provide some intuition. Without recall, and as explained

by Damiano, Li and Suen (2005), agents whose types are below the threshold x
0 know

they will not match early, and thus are unwilling to pay any c > 0 to participate in

the first period. So the first period must consist exclusively of high types, whereas

the second period contains low types. But this cannot be an equilibrium, as an agent

near, but just below, the threshold would profit from deviating to participating in

the first period, as he, being among the best possible partners in the second period,

would be acceptable to his first-period partner, who will be better than his second-

period partner. This deviation snowballs and leads to a situation where all agents

prefer to match early: the equilibrium unravels.

15Our focus, however, is on exhibiting a full-participation equilibrium, in which such events are
o↵-path.

16We conjecture that there is an equilibrium parametrized by c that converges to the equilibrium
we identify for the c = 0 case above, but we have not proven this continuity.
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The key insight is that under recall, the first-period meeting provides option value

even if the agent knows she will not match early, because the first-period partner

remains a viable matching opportunity in the second period. Thus even low types

who know they will not match early are still willing to pay to meet a first-period

partner, and the unraveling argument from the no-recall case breaks down. While

any model operates under specific assumptions, our view is that the option value

e↵ect is important in applications. Any mechanism through which a current meeting

provides the possibility of future benefits generates option value and will provide a

force against unraveling. It is common in many settings for professionals to invest

in networking, for example, where the objective is to initiate relationships that may

produce downstream benefits.

6 Conclusion

We have shown that dynamic matching outcomes are impacted in fundamental ways

when agents have the option of matching with others they have met previously. The

e↵ects introduced by recall seem important in the real world. Take, for instance, the

annual job search that occurs in many fields. When a firm and worker interview,

they can match right away. But if either side defers, in hopes of improving their

outcome, so that the firm and the worker each conduct a subsequent interview with

a second counterpart, it is very natural that the possibility remains of matching with

each other eventually. Indeed, the choice of acceptance or deferral by the worker

(and the firm) must take into account (i) the possibility of meeting a better partner,

(ii) the probability that the second partner will be available to match, given that

it will have other feasible options, (iii) the probability that the first partner turns

out to be the best partner, but becomes unavailable due to matching with someone

else, resulting in either (iii:a) matching with a worse partner, or (iii:b) remaining

unmatched as the final outcome.

The result is that, in equilibrium, the higher an agent’s type, the higher is her

threshold for accepting an early match. The mutually agreeable early matches are
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highly assortative and involve relatively high-type agents – but not the very best

agents, as they can a↵ord to be patient. Since early meetings confer option value in

the second period, the equilibrium is robust to the inclusion of a small participation

cost, and unraveling does not occur, in contrast to the no-recall case.

We have looked at a two-period model with non-transferable utilities, aligned

preferences and random meetings. It would be interesting to see how recall a↵ects

outcomes in more general non-stationary environments, e.g., if utilities are trans-

ferable, even partially, if preferences are not fully aligned, if there are more than

two periods, or with a di↵erent meeting technology. Developing a full-fledged un-

derstanding of the impact of recall on non-stationary decentralized matching would

be potentially fruitful and certainly challenging direction of future research. While

details will undoubtedly di↵er, we conjecture that the key finding that recall has a

first-order impact on matching outcomes will prove long-lived.

In particular, we identify three key features of recall that should apply to any

decentralized, non-stationary environment. First, higher types tend to be more se-

lective in early matches, since recall allows them to expect better future outcomes.

Second, with recall, agents are linked through an evolving network of potential part-

nerships. The structure of this network a↵ects realized matchings and is determined

by characteristics of the meeting process. Third, meetings that do not lead to matches

right away are nonetheless valuable, and such option values can help markets resist

unravelling. A natural next step would then be to investigate how recall a↵ects the

functioning of real-world decentralized markets. It would be interesting to test the

predictions of our model on real data, in particular regarding the non-monotonicity

of matching time with respect to type. Yenerdag (2021) implements lab experi-

ments built from our theoretical framework. He finds fairly strong support for the

theoretical results.
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Appendix A Proof of Theorem 1

Let Y be the set of all weakly increasing threshold strategies. That is,

Y = {f : [a, b] ! [a, b]|f(x) � f(y) 8x > y}.

In this appendix, we define �̃, the best response operator, in a more general way
than it is defined in Equation 2. We let �̃ be a mapping on Y defined as

�̃[f ](x) ⌘ minBf (x) 8x 2 [a, b], (6)

where Bf (x) = {y 2 [a, b] : Ef [µ(x)|x, y]  y}. We call the mapping �̃ best response
mapping. Note that in Lemma 2, we prove a key single crossing condition: for any
given x 2 [a, b] and f 2 Y , the function Ef [µ(x)|x, y] � y satisfies single crossing
condition from above. In addition, in Theorem 2 we show that Ef [µ(x)|x, y] is
continuous in y and for any given x 2 [a, b] and f 2 Y , there always exist y 2 [a, b]
that solves Ef [µ(x)|x, y] = y. Hence, these are su�cient to conclude that the two
definitions, given in Equation 2 and Equation 6, are equivalent on Y .

We let L1[a, b] denote the space of integrable functions with respect to the Lebesgue
measure on [a, b]. Note that with the usual L1 norm, L1[a, b] is a Banach space. Fi-
nally, for any fixed ✏ 2 [a, b], we let Y✏ be a subset defined as

Y✏ = {f 2 Y|f(x) � ✏ 8x 2 [a, b]}.

We prove the theorem by proving four di↵erent lemmas:

Lemma 3. Best response mapping �̃ is well defined, and �̃[f ] 2 Y for all f 2 Y.

Lemma 4. There exists an ✏ 2 (a, b] and N̄ 2 N such that for all market size N � N̄

the best response mapping �̃ is a self-map on Y✏. That is,

�̃ : Y✏ ! Y✏.

Lemma 5. For all ✏ 2 [a, b], Y✏ is a convex and compact subset of Banach space
L
1[a, b].

Lemma 6. The best response mapping �̃ : Y✏ ! Y✏ is continuous in L
1.

The proof of Lemma 4 is in the next subsection. The proofs of Lemma 3, 5 and
6 appear in the Online Appendix. We now prove Theorem 1.

Proof of Theorem 1

By Lemma 3 and Lemma 4, there exists an ✏ > a and N̄ 2 N such that for all
market size N � N̄ the best response mapping, �̃, is well defined self map on Y✏.
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Note that Y✏ is obviously non-empty. By Lemma 5, it is also convex and compact.
Moreover, �̃ is continuous by Lemma 6. Therefore, by Schauder fixed-point theorem
�̃ admits a fixed point in Y✏. It follows from the the proof of Theorem 2 that any such
fixed point satisfies Equation 1. Also, note that it is an equilibrium with deferral by
construction.

A.1 Proof of Lemma 4

For a shorter proof, we simplify the equations with the following normalization:
a = 0. That is, our type space is of the form [0, b]. Note that this is without loss of
generality under Assumption 1.

Also, the following definitions and notations will be useful for the proof. We say
that a strategy profile is a trivial strategy profile if, and only if, all agents match
early with probability 1. We use capital letters Wj and Mj to denote random type
of woman j and man j, respectively. We say that a pair (m,w) is a “period t pair”
if man m and woman w meets in period t 2 {1, 2}. Without loss of generality, we
relabel all agents such that (mj, wj) is a period 1 pair for all j = 1, 2, . . . , N2 . Now,
suppose that all agents follow a threshold strategy f 2 Y . We let A(f) be the set of
all possible type pairs of a period 1 pair that did match early under the symmetric
threshold strategy f . That is, A(f) is the following set

A(f) = {(wj,mj) 2 [0, b]2 : wj < f(mj) or mj < f(wj)}. (7)

Therefore, from an agent i’s point of view, a period 1 pair (wj,mj) j 6= i that did
not match early is a realization of bi-variate random vector (Wj,Mj) conditional on
being in the set A(f), denoted by (Wj,Mj)|A(f). Note that the bi-variate random
vector (Wj,Mj)|A(f) is exchangeable. Moreover, from agent i’s point of view, each
(Wj,Mj)|A(f) for j = 1, 2, . . . , i � 1, i + 1, . . . , N2 , is independent and identically
distributed. We use Wj|f and Mj|f to denote the corresponding marginalizations of
(Wj,Mj)|A(f).

We let gf (wj,mj) denote the probability distribution function of (Wj,Mj)|A(f).
Note that gf (wj,mj) is given by

gf (wj,mj) =
h(wj)h(mj) (wj ,mj)A(f)

P(A(f)) , (8)

where (wj ,mj)A(f) is the indicator function that takes value 1 if (wj,mj) 2 A(f), and
0 otherwise, and P(A(f)) denotes the probability of (Wj,Mj) 2 A(f) with respect
to the ex-ante type distribution. Notice that we have P(A(f)) > 0 for all non trivial
threshold strategy f . We let N2 be the number of total agents in period t = 2.
For each agent N2 is a random variable in period t = 1. From the perspective of
an agent who met with someone but did not match early in the first period, the
random variable N2 has binomial distribution with parameters N

2 � 1 and P(A(f)).
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In particular,

Pf (N2 = 2n2 + 2) =

✓
N

2 � 1

n2

◆
(P(A(f)))n2(1� P(A(f)))N

2 �1�n2 , 8n2 2
⇢
0, 1, . . . ,

N

2
� 1

�
.

(9)

Next, given an N2 � 4 we introduce a graph g to denote a realization of two
period meetings among N2 agents in a compact way. We assume that a graph g has
the following link structure: a pair (m,w) is linked in g i↵ (m,w) is a period 1 or
period 2 pair. Given this, we let G(N2

2 ) denote the set of all possible graphs.
Since every remaining agent on one side meets with a new agent on the other side,

each component of a graph g must be a cycle. And, each agent can be in a component
of di↵erent possible sizes. Let C(N2) denote the set of all possible component sizes
given that there are N2 agents in period t = 2. Hence, C(N2) is given by

C(N2) =

(
{N2} if N2 = 4, 6

{4, 6, . . . , N2 � 4, N2} if N2 � 8.
(10)

Note that for all N2 � 8, no agent can be in a component of size 2 since every agent
meets with a distinct agent in each period. Similarly, no agent can be in a component
of size N2 � 2, since that would imply that there exists an agent who meets with the
same person in both periods, which is not possible.

Next, conditional on there are N2 agents in the second period, we let PN2(C)
denote the probability of an agent being in a component of size C 2 C(N2). Note
that we assume that each pair (mj, wj) is a period 1 pair for all j = 1, 2, . . . , N2 .
Given this, it is easy to verify the following useful inequality:

PN2(C = 4)  1

3
8N2 � 8. (11)

For simplicity of notation, we relabel all agents as follows: For any given compo-
nent size C 2 C, pairs (mj, wj), j = 1, 2, . . . , C2 are period 1 pairs. Pairs (mj, wj+1),
j = 1, 2, . . . , C2 � 1 and (mC

2
, w1) are period 2 pairs. For example, we have the

following configuration for a component of size C = 6:

m1 w2

w1 m2

m3 w3

Figure 8: A realization of two period meeting process: a component of size C = 6. A pair linked
with single line represents a period t = 1 pair and double line represents a period t = 2 pair.

Now, we are ready to state the auxiliary claims to prove Lemma 4. Without loss
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of generality, all the claims below are stated in terms of a generic man i = 1.

Claim 1. If f is a weakly increasing threshold function with f > a, then

Ef [µ(m1)|m1 = a, w1 = a, C] � Pf (M2 � M3,W3 � W2)Ef [W2|M2 � M3,W3 � W2] 8C � 6.

Moreover, the inequality is strict for C � 8.

Claim 2. Fix any m1 2 [a, b]. If f is a weakly increasing threshold function with
f > a, then

Ef [µ(m1)|m1, w1 = a]  Ef [µ(m1)|m1, w1 = x] 8x 2 [a, b]

Claim 3. Let f be a weakly increasing threshold function. If fc  f , then

Efc [W2|M2 � M3,W3 � W2]  Ef [W2|M2 � M3,W3 � W2].

The proofs of Claim 1, 2 and 3 are presented in the Online Appendix D.3, D.4
and D.5, respectively. Now, we prove Lemma 4.

Proof of Lemma 4

By Lemma 3, we know that �̃[f ] weakly increasing for all f 2 Y . Therefore, it
is su�cient to show that there exists an ✏ > 0 and N̄ such that for all N � N̄

�̃[f ](0) � ✏ for all f 2 Y✏. To that end, fix a generic man i = 1. First, note that
Claim 2 implies that

�[f ](0) � Ef [µ(m1)|m1 = 0, w1 = 0] 8f 2 Y . (12)

Now, take any weakly increasing function f with f(x) > 0, 8x 2 [0, b] . And, consider
the term Ef [µ(m1)|m1 = 0, w1 = 0]:

Ef [µ(m1)|m1 = 0, w1 = 0] =

N
2 �1X

n2=0

Pf (N2 = 2n2 + 2)EN2=2n2+2
f

[µ(m1)|m1 = 0, w1 = 0],

(13)

where EN2=2n2+2
f

[µ(m1)|m1 = 0, w1 = 0] is the expectation conditional on N2 =
2n2 + 2 total number of agents in period t = 2 (including m1 and w1).

In addition, conditional there are N2 agents in period 2, C(N2) is the set of all
possible component sizes that man m1 can be in with w1. Note that Equation 10
characterizes the set C(N2) for any givenN2 � 4. Thus, for all n2 2 {0, 1, 2, . . . , N2 �1}
we have the following equation,

EN2=2n2+2
f

[µ(m1)|m1 = 0, w1 = 0] =
X

C2C(N2=2n2+2)

PN2=2n2+2(C)Ef [µ(m1)|m1 = 0, w1 = 0, C],
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Note that man m1 is matching with w1 = 0 with probability 1 if and only if C = 4.
Hence, we can write

EN2=2n2+2
f

[µ(m1)|m1 = 0, w1 = 0] =
X

C2C(N2=2n2+2)\4

PN2=2n2+2(C)Ef [µ(m1)|m1 = 0, w1 = 0, C].

(14)

Next, note that by Claim 1 we have

Ef [µ(m1)|m1 = 0, w1 = 0, C] � Pf (M2 � M3,W3 � W2)Ef [W2|M2 � M3,W3 � W2] 8C � 6,
(15)

with strict inequality for C � 8. Thus, combining Equation 14 and Equation 15, we
obtain

EN2
f [µ(m1)|m1 = 0, w1 = 0] � PN2(C � 6)Pf (M2 � M3,W3 � W2)Ef [W2|M2 � M3,W3 � W2], 8N2 � 6,

(16)

with strict inequality for all N2 � 8. Next by Equation 11 we have

PN2(C � 6) � 2

3
8N2 � 6. (17)

Note that the inequality given in Equation (17) is strict as long as N2 6= 8, since
PN2(C � 6) is increasing in N2 for all N2 � 8 and it is equal to 1 for N2 = 6. There-
fore, by Equation (15) and Equation (17), we obtain the following strict inequality:

EN2
f

[µ(m1)|m1 = 0, w1 = 0] >
2

3
Pf (M2 � M3,W3 � W2)Ef [W2|M2 � M3,W3 � W2], 8N2 � 6.

(18)

Next, also note that the man m1 matches with w1 = 0 for N2  4. Therefore,
combining Equation 13 and Equation 18, we have the following inequality:

Ef [µ(m1)|m1 = 0, w1 = 0] > Pf (N2 � 6)
2

3
Pf (M2 � M3,W3 � W2)Ef [W2|M2 � M3,W3 � W2].

(19)

Note that Equation (19) holds for every N � 6.
Now, for any weakly increasing threshold function f with f(x) > 0, 8x 2 [0, b]

we state the following observation:

Pf (M2 � M3,W3 � W2) �
1

4
. (20)

This follows from the fact that the negative (non positive) correlation between
marginal random variables W2|f and M2|f , of (W2,M2)|f . Hence, since (W2,M2)|f
and (W3,M3)|f are independent and identical, Equation 20 is obvious. Therefore,
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from Equation 19 and Equation 20, we obtain the following inequality:

Ef [µ(m1)|m1 = 0, w1 = 0] > Pf (N2 � 6)
1

6
Ef [W2|M2 � M3,W3 � W2]. (21)

Next, consider a constant function fc for some c > 0. Note that

lim
c!0

Efc [W2|M2 � M3,W3 � W2] > 0, (22)

as long as the pdf of ex-ante type distribution, h, is strictly positive everywhere. We
let K⇤ = lim

c!0
Efc [W2|M2 � M3,W3 � W2]. Now, take any ✏ 2 (0, K⇤]. Now, Claim 3

implies that

Ef [W2|M2 � M3,W3 � W2] � K
⇤
> 0 8f 2 Y✏. (23)

Thus, combining Equation 21 and Equation 23, we obtain

Ef [µ(m1)|m1 = 0, w1 = 0] > Pf (N2 � 6)
1

6
K

⇤ 8f 2 Y✏ and ✏ 2 (0, K⇤]. (24)

As it is stated in Equation 9, we know that N2 has binomial distribution with
parameters N

2 � 1 and with success probability P(A(f)). Also, note that if f 2 Y✏,
then we have P(A(f)) � Pf✏(A(f✏)). Hence,

Pf (N2 � 6) � Pf✏(N2 � 6) 8f 2 Y✏ (25)

since P(A(f))) is increasing in f . Therefore, for every N � 6 we can establish the
following inequality:

Ef [µ(m1)|m1 = 0, w1 = 0] > Pf✏(N2 � 6)
1

6
K

⇤ 8f 2 Y✏ and ✏ 2 (0, K⇤]. (26)

Now, fix an ✏ 2 (0, K
⇤

6 ). Then, by Equation 71, established in the proof of Claim 1,
and by Equations 13-14, it is easy to verify that we can take a �(✏) > 0 such that

�(✏) = inf
f2Y✏,N�6

(Ef [µ(m1)|m1 = 0, w1 = 0]� Pf✏(N2 � 6)
1

6
K

⇤) > 0. (27)

Hence, combining Equation 26 and Equation 27, for every N � 6 we obtain the
following inequality

Ef [µ(m1)|m1 = 0, w1 = 0] � Pf✏(N2 � 6)
1

6
K

⇤ + �(✏) 8f 2 Y✏. (28)

Now, from Equation 9 it is obvious that Pf✏(N2 � 6) is increasing in N and converges
to 1 as N converges to infinity. That is, for every ⌘ > 0 there exists N̄ 2 N such
that Pf✏(N2 � 6) � (1� ⌘) for all N � N̄ . Thus, for all ⌘ 2 (0, 6�(✏)

K⇤ ], we can find an
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N̄ 2 N such that for all N � N̄ we have

Ef [µ(m1)|m1 = 0, w1 = 0] � 1

6
K

⇤
> ✏ 8f 2 Y✏. (29)

Hence, combining Equation 12 and Equation 29 we obtain

�̃[f ](0) > ✏ 8f 2 Y✏, (30)

which was to be shown.

Appendix B Proof of Theorem 2

Take an ✏ > a and N such that �̃ on Y✏ admits a fixed point by Theorem 1. Assume
that every agent follows a threshold strategy f 2 Y✏, not necessarily an equilibrium
strategy. We are going to show that the theorem holds for �̃[f ], which in turn would
imply that the theorem also holds for any equilibrium threshold strategy, since an
equilibrium threshold strategy is just a fixed point of �̃. To that end, take a man i

and, without loss of generality, set it to i = 1.

(i) Note that we have �̃[f ](a) > a, which immediately follows from the fact that
�̃[f ] 2 Y✏. Now, if f is an equilibrium, then �̃[f ] = f > a. For the second part,
take a man m1 = b who meets with a woman w1 in the first period. Recall
that all agents strictly prefer to be matched with higher type. Thus, stability
of µ implies that

Ef [µ(b)|b, w1] = Ef [max{W2, w1}] 8w1 2 [a, b]. (31)

Moreover, since W2|f admits a strictly positive density over [a, b], we have

Ef [µ(b)|b, w1] > w1 8w1 2 [a, b), (32)

Ef [µ(b)|b, w1] = w1 w1 = b. (33)

Now, note that �̃[f ](b) = min{w1 2 [a, b] : Ef [µ(b)|b, w1]  w1}. Hence, by
Equation (32) and Equation (33) we conclude that �̃[f ](b) = b. Hence, if f is
an equilibrium, then �̃[f ](b) = f(b) = b. ⇤

(ii) Fix a man m1 2 [a, b) who meets with a woman w1 in period 1. Under any
threshold strategy f 2 Y✏, there exists a strictly positive probability of being
unmatched for man m1 in the second period for every w1 2 (a, b]. Too see this,
for any component size of C � 6, we have

Pf (W2 > W3,M2 > m1) > 0 Pf (MC
2
> m1,WC

2
< w1) > 0.

That is, there exists a strictly positive probability that (w2,m2) strictly prefer
each other and (w1,mC

2
) strictly prefer each other. Hence, for all w1 2 [a, b]
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we have

Ef [µ(m1)|w1,m1] < b 8m1 2 [a, b). (34)

Next, given an m1, consider a function � defined as

�(w1) ⌘ Ef [µ(m1)|m1, w1]� w1. (35)

We now claim that �̃[f ](m1) is equal to the smallest argument that satisfies
�(�̃[f ](m1)) = 0. To see this, recall that �̃[f ](m1) is given by

�̃[f ](m1) = min{w1 2 [a, b]|Ef [µ(m1)|m1, w1]  w1} 8m1 2 [a, b]. (36)

Next, recall that the pdf of ex-ante type distribution, h, is assumed to be
strictly positive and smooth. Moreover, f is weakly increasing. Thus, given
any m1 2 [a, b], Ef [µ(m1)|m1, w1] is a continuous function of w1, since w1 only
enters as a limit and integrand of corresponding well defined integrals. In fact,
it is Lipschitz continuous. Therefore, by (i) and Equation (34), we can invoke
intermediate value theorem and conclude that for all m1 2 [a, b] there exists a
w1 2 [a, b] such that �(w1) = 0. Moreover, we have also shown in the proof of
Lemma 2 the function � satisfies single crossing condition from above. Hence,
all these results and Equation (36) imply that the �̃[f ](m1) is the smallest
argument that satisfies �(�̃[f ](m1)) = 0.1718

Next, fix any w1 2 [a, b]. Note that stability of µ implies that man m1 cannot
worse o↵ by having a higher type, since all agents strictly prefer higher type.
Thus, since h is assumed strictly positive and smooth, then the probability
distribution function of Wj|f is also strictly positive and smooth. Hence, it is
su�cient to conclude that Ef [µ(m1)|w1,m1] is strictly increasing in m1. This
implies that �̃[f ] is strictly increasing. Hence, if f is an equilibrium, then f is
strictly increasing since �̃[f ] = f .

Moreover, note that given a w1 2 [a, b], E�[µ(m1)|w1,m1] is continuous as a
function of m1, since m1 only enters as a limit of corresponding integrals. In
fact, it is Lipschitz continuous. Therefore, this implies that the smallest solu-
tion to Equation (35) changes continuously in m1. Hence, �̃[f ] is continuous.
Therefore, it implies that if f is an equilibrium threshold strategy, then f is
continuous. ⇤

(iii) Fix a man m1 2 [a, b) who meets with a woman w1 in period 1. From man m1’s
point of view, the type of his stable match in the second period, µ(m1), is a ran-
dom variable. Given, a threshold function f , m1, w1 and market size N , µ(m1)
can yield three di↵erent outcomes: Matching with first period partner, match-

17Note that this implies that if f is an equilibrium threshold strategy, then it satisfies Equation (1).
18This also implies that the two definitions of �̃ given by Equation (6) and Equation (2) are

equivalent.
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ing with second period partner, and being unmatched. Let, E1(f,N,m1, w1),
E2(f,N,m1, w1), E;(f,N,m1, w1) denote the events under which m1 is matched
with first period partner, second period partner and being unmatched, respec-
tively. Therefore, we have

(a) [µ(m1)|E1(f,N,m1, w1)] = w1

(b) [µ(m1)|E2(f,N,m1, w1)] = [W2|E2(f,N,m1, w1)]

(c) [µ(m1)|E;(f,N,m1, w1)] = a.

Next, let p1(f,N,m1, w1), p2(f,N,m1, w1) and p;(f,N,m1, w1) denote the prob-
abilities of the corresponding events. Hence, by the law of total probabilities:

Ef [µ(m1)|m1, w1] = p1(f,N,m1, w1)w1 + p2(f,N,m1, w1)E[W2|f, E2(f,N,m1, w1)] + p;(f,N,m1, w1)a.
(37)

Now, note that W2|f admits strictly positive probability density function.
Then, it is easy to verify that E[W2|f, µ(m1) = W2, w1,m1] is a continuous
function of w1 and m1. Also, we have E[W2|f, E2(f,N,m1, w1)] 2 (a, b) for all
m1, w1 2 [a, b]. Therefore, there exists a y 2 (a, b) such that

max
w1,m12[a,b]

E[W2|E2(�, N,m1, w1)] = y < b. (38)

Hence, for all x 2 [y, b) we can conclude:

Ef [µ(x)|x, x]  p1(f,N, x, x)x+ p2(f,N, x, x)y + p;(f,N, x, x)a < x, (39)

since we have p1(f,N, x, x) > 0, p2(f,N, x, x) > 0 and p;(f,N, x, x) > 0 for all
x 2 [y, b). Thus, Equation (39) implies that �̃[f ](x) < x for all x 2 [y, b).

Finally, recall that we have previously shown �̃[f ](a) > a, �̃[f ] is continuous
and strictly increasing (see the proofs for (i) and (ii)). Therefore, by inter-
mediate value theorem, there exists an x

⇤
< y such that �̃[f ](x⇤) = x

⇤ and
�̃[f ](x) < x for all x 2 (x⇤

, b). The proof now follows from the fact that
�̃[f ] = f if f is an equilibrium threshold strategy. ⇤

Appendix C Proof of Theorem 3

We prove the theorem in two main steps. First, we assume full participation in
period t = 1 and t = 2. Then, under this assumption, we prove existence of optimal
symmetric threshold strategies for all participation cost c < c̄ for some c̄ 2 (0, a).
Then, under any optimal threshold strategy, we show that no remaining agent has
incentive to deviate from participating in the second period market. Finally, we show
that no agent has incentive to deviate from participating in the first period market.
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To that end, assume full participation in both periods. Take a man i and set it
to i = 1, without loss of generality. Fix a type m1 2 [a, b], and suppose that m1 is
meeting with a woman w1 2 [a, b] in period 1. Note that if all agents except i = 1
follow a symmetric threshold strategy f , then the m1 decides to match early with
w1 if, and only if,

Ef [µ(m1)|m1, w1]�
c

m1
 w1, (40)

where c is a given per period cost. Now, recall that in the proof of Lemma 2, we
have shown that for any fixed m1 2 [a, b] the following function

Ef [µ(m1)|m1, w1]� w1 (41)

has a single crossing property from above as a function of w1 2 [a, b]. Note that for
any fixed m1 2 [a, b] this property still holds if we subtract any constant c

m1
from

Equation 41. That is, fixing any m1 2 [a, b], the following function

Ef [µ(m1)|m1, w1]� w1 �
c

m1
(42)

has the single crossing property (from above) as a function of w1.
Also, note that we have proven following properties in Theorem 2:

(i) Ef [µ(m1)|m1, w1] > a 8m1, w1 2 [a, b]

(ii) Ef [µ(m1)|m1, w1] < b 8m1 < b,w1 2 [a, b]

(iii) Ef [µ(m1)|m1, w1] = b i↵ m1 = w1 = b

(iv) For all w1 2 [a, b], Ef [µ(m1)|m1, w1] is strictly increasing as a function of m1

(v) Ef [µ(m1)|m1, w1] is continuous in m1 and inw1.

Now, for any m1 2 [a, b] and f , define a function � given as

�(w1) ⌘ Ef [µ(m1)|m1, w1]� w1 �
c

m1
. (43)

Note that depending on c > 0 there may not exist a w1 2 [a, b] such that �(w1) = 0.
Given the properties (i)� (v), the following condition, given eq. (44), is su�cient to
guarantee the existence of a w1 that guarantees �(w1) = 0.

Ef [µ(a)|m1 = a, w1 = a]� a� c

a
> 0, (44)

Next, fix any ✏ > 0 and consider the following functional map defined on Y✏.

�̃[f ](m1) ⌘ min{w1 2 [a, b] : Ef [µ(m1)|m1, w1]� w1 �
c

m1
 0} 8m1 2 [a, b].

(45)
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Also, suppose the following condition holds.

Ef [µ(m1)|m1 = a, w1 = a]� a� c

a
> 0 8f 2 Y✏. (46)

Then, from the discussion above, properties (i)�(v) and the single crossing condition
imply that for all m1 2 [a, b] �̃[f ](m1) is the smallest argument that makes � equal
to 0.

Moreover, by Claim 2 we have

Ef [µ(m1)|m1, w1 = a] < Ef [µ(m1)|m1, w1 = x] 8x 2 (a, b]. (47)

Therefore, if Equation 46 holds, then Equation 47 implies that

�̃[f ](a) � Ef [µ(m1)|m1 = a, w1 = a]� c

a
8f 2 Y✏. (48)

Moreover, if there exists an ✏ > a such that

�̃[f ](a) � ✏ 8f 2 Y✏, (49)

then we can conclude that the mapping �̃ given in Equation 45 is a well defined self
map. Indeed, we are going to show there exists a ✏ > a and c̄ > 0 such that for all
c  c̄, the equation Equation 46 and Equation 49 holds, and, thus, the mapping �̃

given in Equation 45 is a well defined self map.
To that end, first note that we have a > 0 and by Assumption 1 matching with

type a is same as being unmatched. Moreover, a man of type m1 = a who meets with
a woman of type w1 = a in period 1 matches with w1 with probability 1 whenever
m1 is in a component of size 4. Taking these into account, it is easy to verify that
Equation 24 given in the proof of Lemma 4 simply becomes

Ef [µ(m1)|m1 = a, w1 = a] >
5a

6
+ Pf✏(N2 � 6)

1

6
K

⇤ 8f 2 Y✏, ✏ 2 (a,K⇤] and N � 6.

(50)

Where in Equation (50), K⇤ is given by

K
⇤ = lim

c!a

Efc [W2|M2 � M3,W3 � W2] > a. (51)

Note that the assumptions imposed on probability distribution function h are su�-
cient to guarantee K

⇤
> a. Now, fix any ✏ 2 (a, 5a6 + K

⇤

6 ). It is shown that we can
find a �(✏) > 0 such that

�(✏) = inf
f2Y✏,N�6

(Ef [µ(m1)|m1 = a, w1 = a]� 5a

6
� Pf✏(N2 � 6)

1

6
K

⇤) > 0. (52)
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Hence, for all N � 6 we can write

Ef [µ(m1)|m1 = a, w1 = a] � 5a

6
+ Pf✏(N2 � 6)

1

6
K

⇤ + �(✏) 8f 2 Y✏. (53)

Note that by Equation 9 Pf✏(N2 � 6) is increasing in N and converges to 1 as
N converges to infinity. That is, for every ⌘ > 0 there exists N̄ 2 N such that
Pf✏(N2 � 6) � (1 � ⌘) for all N � N̄ . Thus, for all ⌘ 2 (0, 3�(✏)

K⇤ ], we can find an
N̄ 2 N such that the following condition holds

Ef [µ(m1)|m1 = a, w1 = a] � 5a

6
+

1

6
K

⇤ +
�(✏)

2
8f 2 Y✏ and N � N̄ . (54)

Therefore, by setting a c̄ <
a�(✏)
2 we can conclude that Equation 46 and Equation 49

hold for all c  c̄. That is, there exists an N̄ 2 N such that for all market size N � N̄

there exists an ✏ > a and c̄ > 0 such that for all c < c̄ the mapping �̃ defined in
Equation 45 is a well defined self map. Then, since �̃ is continuous in L

1 and Y✏ is
compact, convex and non-empty, there exists a fixed point of �̃.

Next, take any corresponding fixed point � of �̃ given that the participation cost
is some c  c̄. Note that � is an optimal threshold strategy under the assumption of
full participation in both periods.

We now show that under the assumption of full participation in the first period,
and given the threshold strategy �, no agent has incentive to deviate from partici-
pating in the second period market with participation cost c. To that end, take a
man m1 who meets with a woman w1 in period 1 but not matched early under �.
There are two cases to consider:

Case 1: �(m1) > w1. In this case, man m1’s utility from not participating in the second
period market is at most m1w1. On the other hand, E�[µ(m1)|m1, w1] is the
expected type of m1’s stable partner if he participates in the second period
market. Note that, since � is a fixed point of �̃, we have m1E�[µ(m1)|m1, w1]�
c > m1w1 (see Equation (45)). Thus, utility from participating second period
market is strictly grater than not participating.

Case 2: �(m1)  w1 and m1 < �(w1). If man m1 does not participate in costly second
period market, then he will be unmatched. Again, we havem1E�[µ(m1)|m1, w1]�
c > am1 by construction. Thus, utility from participating second period mar-
ket is strictly grater than not participating.

Thus, we have shown that, assuming full participation in period 1 matching
market, there exists a c̄ <

a�(✏)
2 such that for all c 2 (0, c̄), there exists an optimal

threshold strategy � such that no remaining agent has incentive to deviate from
participating in the second period market.

Now, to complete the proof, we need to show that the upper bound of participa-
tion cost, c̄, is such that no agent has incentive to deviate from participating in the
first period market.
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To see this, note that man m1’s expected type of his match before he participates
the first period market is greater or equal to19

Z
b

a

E�[µ(m1)|m1, w1]h(w1)dw1 8m1 2 [a, b], (55)

where � is any optimal threshold strategy with an associated per period cost c.
Expected type of m1’s match conditional on not participating in the first period
market is given by

E�[µ(m1)|m1, a]. (56)

That is, not participating in the first period market is as if agent m1 meets with
w1 = a in the first period, since matching with type a is equal to being unmatched.
Now, by Claim 2 we have

Ef [µ(m1)|m1, a] < Ef [µ(m1)|m1, w1] 8m1 2 [a, b], w1 2 (a, b] and f 2 Y✏. (57)

Since h, the pdf of ex-ante type distribution, is strictly positive, then

Z
b

a

Ef [µ(m1)|m1, w1]h(w1)dw1 � Ef [µ(m1)|m1, a] > 0 8m1 2 [a, b], f 2 Y✏ (58)

Now, the left hand-side of Equation 58 is a continuous function of m1 defined on a
compact interval [a, b]. Then, we have

min
m12[a,b]

⇢Z
b

a

Ef [µ(m1)|m1, w1]h(w1)dw1 � Ef [µ(m1)|m1, a]

�
> 0 8f 2 Y✏ (59)

Similarly, the expectation is continuous as a function of f defined on a compact set
Y✏. Then, we have

C1(✏)
⇤ = min

f2Y✏

min
m12[a,b]

⇢Z
b

a

Ef [µ(m1)|m1, w1]h(w1)dw1 � Ef [µ(m1)|m1, a]

�
> 0.

(60)

We use C1(✏)⇤ to denote this minimum since it is related with period 1 participation.
Therefore, by setting c̄ < min{a�(✏)

2 ,
aC1(✏)⇤

2 }, for all c 2 (0, c̄) there exists an optimal
threshold function � such that no agent has incentive to deviate from participating
in the second period matching market. Moreover, Equation (60) implies that for all

19Note that under a non trivial threshold strategy �, some type m1 matches early after meeting
with some w1. In that case, the utility from matching early is higher than the second period stable
match. Thus, Equation 55 is a lower bound under �.
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c 2 (0, c̄) the following condition holds

m1

Z
b

a

E�[µ(m1)|m1, w1]h(w1)dw1 � 2c > m1E�[µ(m1)|m1, a] 8m1 2 [a, b], (61)

which in turn implies that no agent has incentive to deviate from participating in
the first period matching market. Thus, this completes the proof of Theorem 3.
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