
Working Papers / Documents de travail

WP 2022- Nr  10

Correcting the Reproduction Number for Time-Varying Tests: 
a Proposal and an Application to COVID-19 in France

Christelle Baunez 
Mickaël Degoulet 
Stéphane Luchini 

Matteo L. Pintus 
Patrick A. Pintus 

Miriam Teschl



Correcting the Reproduction Number for

Time-Varying Tests: a Proposal and

an Application to COVID-19 in France∗

Christelle Baunez† Mickaël Degoulet‡ Stéphane Luchini,§

Matteo L. Pintus¶ Patrick A. Pintus‖ Miriam Teschl∗∗

April 27, 2022

Abstract: We provide a novel way to correct the effective reproduction number for the time-varying

amount of tests, using the acceleration index as a simple measure of viral spread dynamics (Baunez et al.,

2021). Not doing so results in the reproduction number being a biased estimate of viral acceleration and

we provide a formal decomposition of the resulting bias, involving the useful notions of test and infectivity

intensities. When applied to French data for the COVID-19 pandemic (May 13 - November 19, 2020), our
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1 Introduction

The reproduction number is a widely used measure of how fast a pathogen propagates both at
the outset and during an infectious disease outbreak (see for example May and Anderson [20]).
One of its major shortcomings, however, is that it does not control for the quantity of tests (or
any diagnostics) performed in real time. Doing so is of crucial importance for two reasons. One
is the fact that accurate empirical estimates of reproduction numbers are time-varying in nature
(see e.g. Fraser [13] among many others). A considerable source of time variation comes from the
fact that the amount of tests changes substantially across time and hence affects the number of
known cases, due to demand and supply effects. Second, testing acts as a magnifying lens on viral
activity at least on the part of the population that has effectively been tested. The reproduction
number however does not rely on that information but rather makes assumptions on the infectivity
of positive cases based on the observation of onset of symptoms and transmission in closed systems
such as households (see e.g. Cori et al. [10]). But this information, again, depends on tests (or
any diagnostics more generally). Hence inferring infectivity from (assumed) transmissions is only
secondary information based on the availability of tests.

Very early on at the onset of COVID-19, it was possible to diagnose people using PCR tests. From
a public health perspective, this is of course a much more favorable situation, compared to other
infectious diseases for which biological tests are either nonexistent or available much later after the
disease has been discovered. Widespread testing allows early care and treatment whenever early
diagnostics are performed. In addition, it is a rather trivial observation that whenever information
about how many tests are performed in a given period is available, that information should be used
to assess the dynamics of viral spread. After all, positive and negative cases do not fall from heaven;
quite to the contrary, they become visible only through the lens of testing. Considering only positive
cases but ignoring tests means ignoring also how many negative cases are out there, which is the
flip side of the disease and informs about how many people are not infected in a given population.
The latter is a relevant and useful piece of information since incidence of the infectious disease
should ideally be measured against the tested population, not the entire population which includes
people with unknown health status. Given that it is hardly possible to think of reasons that would
justify ignoring deliberately such data about the extent of testing, the question then becomes how
to incorporate that bit of evidence into any indicator that aims at tracking the dynamics of viral
spread. This is the core question that we address in this paper.

In Baunez et al. [4, 5, 6], we have introduced an alternative and novel measure of viral spread in
the context of COVID-19 - the acceleration index. This measure considers the variation of cases
relative to the variation of tests and thus it avoids the shortcomings and addresses the important
question mentioned above. The purpose of this article is to discuss the reproduction number in the
light of our acceleration index, and to show that the former is actually a special case of the latter
and in fact a less accurate metric of the pandemic’s time-varying spread.
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We examine this important issue in two steps. In Section 2, we start from the very definition
of the reproduction number as a gross rate of growth of infected people, traditionally denoted R,
and derive a general formula that connects it to our acceleration index that we denote ε. The
acceleration index is an elasticity that measures the proportional responsiveness of cases to tests,
and it can also be thought of as the ratio between the current and average viral speeds. More
specifically, we present an explicit measure of the ratio between R and ε, the interpretation of which
is further discussed in terms of the infectivity and test intensities. Our theoretical inquiry stresses
that while the acceleration index is a ratio of growth rates - that of cases divided by that of tests
- the reproduction number tracks only the growth rate of cases. In other words, the acceleration
index corrects the reproduction number for the time-varying amount of tests. Not doing so results
in the reproduction number being a biased estimate of viral acceleration and we provide a formal
decomposition of the resulting bias. The main conclusion we derive is that the reproduction number
tends to overestimate (respectively underestimate) the dynamics of viral spread compared to the
acceleration index when the amount of tests is large enough (respectively small enough).

In Section 3, we apply such an analysis to French data and we show that there is a sizeable difference
between both measures. Indeed the reproduction number R largely under-estimates the spread of
the virus, compared to our test-controlled measure of viral acceleration. In Appendix B, we provide
a similar analysis for five other countries to show that this result is not limited to the French case.
It is in this sense that we say that the reproduction number is biased when tests are time-varying.
This has obviously important consequences if the reproduction number is used as the basis for
which public health decisions such as entering or exiting a lock-down. We also look at the effects of
the second lock-down period in France, which started October 30, 2020, through the lens of both
indicators, as a further example that illustrates the bias unavoidably implied by not adjusting for
the volume of tests over time when measuring the pandemic’s acceleration.

A key conclusion follows from our theoretical and empirical results. If public health authorities
aim at measuring as accurately as possible viral acceleration, they have to rely on one of the
following strategies: track in real time either the acceleration index alone, or a combination of the
reproduction number together with the test and infectivity intensities. Although both strategies
are formally equivalent, the latter is not only less parsimonious, it is also arguably more delicate
to operate in practice since one would then like to control the bias that inevitably comes from
time-varying tests. This is one of the main reasons why we argue in favor of using the acceleration
index.

2 Materials and Methods

About a century ago, a series of seminal articles by Kermack and McKendrick [15, 16, 17] have
laid the foundations for a mathematical theory of epidemics. More specifically, their compartmental
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(that is, Susceptible, Infected and Removed or SIR-type) and time-since-infection models have been
extensively used and refined in the academic literature about infectious and emerging diseases. A
core concept in this paradigm is the reproduction number, usually noted R, which roughly captures
how many secondary cases originate, on average, from a pool of primary cases who is still currently
infectious (see May and Anderson [20]).

As evident from publications by health agencies around the world since the onset of COVID-19, much
of the guidance for designing policy measures to curb the pandemic relies prominently on estimates
of R, among other things. The reproduction number is initially a theoretical concept, conceived to
understand the transmissibility of an epidemic. Many efforts have been put into defining ways to
empirically estimate it. Broadly speaking, estimation strategies fall into two broad categories. The
first one rests on the basic SIR model (see e.g. Weiss [25] for a clear exposition), which predicts that
the reproduction number R is the product of four parameters: the duration of infection, the number
of contacts per case and the fraction of contacts who are in turn infected, on average, and finally
the fraction of total population susceptible to infection. Although each of these parameters could
be estimated in real-time, this turns out to be a gigantic task, in particular when a novel pathogen
like SARS-Cov-2 emerges. A short-cut to avoid such a demanding procedure is to fit a SIR model
using the number of cases, so as to estimate R directly, given the infection duration (see, among
many others, Althaus [1] for a recent example related to Ebola using maximum likelihood estima-
tion). This is feasible, even in real-time, provided that enough data is available to ensure precision
and structural assumptions about the time-dependency of R are made. A caveat, though, is that
such fitting procedures have limitations (see e.g. Cori et al. [11]). An additional issue arising from
estimation based on compartmental models is the sizeable range of estimates. See Chris et al. [2] for
SARS, and Viceconte and Petrosillo [23] for the early stages of COVID-19. The second estimation
strategy addresses more directly the time-varying dimension of R, which is more in line with epi-
demiological and clinical data. Many health agencies rely on such estimates of time-since-infection
transmission models rather than SIR-type models. Here the basic idea is that R is essentially (1+)
the growth rate of infected, which is the ratio between the number of new (that is, secondary)
cases arising, say, within 24 hours, and the number of primary cases (see Fraser [13]). For example,
the French agency in charge of health statistics uses the Cori method, after Cori et al. [10] (see
https://www.santepubliquefrance.fr/content/download/266456/2671953). Other European
health agencies are also using this method, e.g. Austria (see https://www.ages.at/download/0/0/

e03842347d92e5922e76993df9ac8e9b28635caa/fileadmin/AGES2015/Wissen-Aktuell/COVID19/

Methoden_zur_Schätzung_der_epi_Parameter.pdf) and Germany (see https://www.rki.de/DE/

Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/R-Wert-Erlaeuterung.pdf?__blob=

publicationFile).

Our task here is to relate the acceleration index defined in Baunez et al. [5, 4] and the reproduction
number that is estimated using the time-since-infection approach just described. The main purpose
of this section is to derive a theoretical relationship between both concepts, which helps both to
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explain why they are different, to give a sense of the magnitude of their difference, and to state the
conditions under which they are equivalent. We then turn, in the next section, to data to gauge
whether the difference between the two matters to track the COVID-19 pandemic.

Suppose that data is available about the number of tested and positive persons, up to end date T .
Denote {p1, . . . , pT } the historical times series of the new (per period) number of positive persons
from date t = 1 to end date t = T . Similarly, {d1, . . . , dT } is the historical times series of new
(per period) diagnosed/tested persons. Denote Pt =

∑t
τ=1 pτ and Dt =

∑t
τ=1 dτ the cumulative

numbers of positive and diagnosed persons up to date t.

As stressed in Baunez et al. [5], accurate information about the dynamics of a pandemic rests on
both the number of cases and the number of tests, and the former cannot be properly understood
without the latter. In that paper, we introduce an acceleration index, denoted εT at date T , which
is an elasticity that measures the proportional responsiveness of cases with respect to tests. Given
that the number of cases and tests are not necessarily varying at the same rate across time, groups
and also space, the acceleration index measures the percentage change of cases with respect to a
percentage change of tests and is thus unit-free. The acceleration index is defined as follows:

εT =
[
PT − PT−1

PT

]
÷
[
DT −DT−1

DT

]
(1)

Rearranging the terms of the latter equation, we see that the acceleration index relates to the daily
and average positivity rates, in the following way:

PT − PT−1

DT −DT−1︸ ︷︷ ︸
daily positivity rate

= PT
DT︸︷︷︸

average positivity rate

× εT︸︷︷︸
acceleration index

(2)

Equation (2) shows that the acceleration index is an elasticity, which is a concept widely used by
economists since Marshall [19], to study the responsiveness of demand with respect to a change in
price of a good. More precisely, the acceleration index is an elasticity that relates cumulated stocks
(of cases to tests) over possibly extended periods if the epidemic lasts long. Second, an important
reason why we call such an elasticity an index of viral acceleration can be clarified using an analogy
with linear body motions. Given that our analysis relies on data about cases and tests only, with
the latter as units of measurement, one can think of the acceleration index as the ratio between
current and average viral speed. With tests as the unit of measurement, the daily positivity rate
pT /dT becomes a measure of current viral speed at date T , that is, the fraction of tested people that
turn out to be positive on that day. The average positivity rate PT /DT at date T can be thought
of as average viral speed, taken over the entire data sample. In Appendix A we illustrate through
an example why we do not average over daily positivity rates in the usual way, but rather take the
ratio of cumulated cases to cumulated tests. If then current viral speed is larger than average viral
speed, we are in a situation of viral acceleration and the pandemic is on the loose. In that case,
our acceleration index εT is larger than one, which means that increasing tests by 1% leads to more
than 1% of new cases. An arguably legitimate goal of public health policy would therefore be to
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make sure that the acceleration index gets smaller than one, i.e. that current viral speed becomes
smaller than average viral speed: this would indicate that the pandemic decelerates and becomes
under control. Ideally, one would like to find ever fewer cases the more one tests. This reasoning also
shows why it is not sufficient to look at positivity rates alone - they only indicate viral speed. What
matters for public health is to understand whether speed becomes greater or smaller compared to
its historical average as tests increase, which is what our acceleration index measures. In Appendix
A, we give an example using exponential growth, for which closed-form solutions are derived and
can be used to further illustrate the interpretation of the acceleration index as a unit-free elasticity
that relates to how the current viral speed compares to its historical average.

Regarding the reproduction number, we make a rather general assumption, in accordance with the
mathematical literature on epidemics, that the reproduction number is essentially a gross rate of
growth and, as such, can be written at date t as:

Rt = pt
ft[pt, pt−1, . . . , pt−n] (3)

where ft is a function of new cases from date t to date t − n, which can be thought of as the
infectious potential, that is, the average number of people who have been infected at t and before,
and who can infect people at t. The lag parameter n is related to infection duration. The assumed
time dependence of ft may capture many different phenomena that influence the number of cases,
including for example health policy decisions but also the emergence of new strains of the virus.
However, one specific factor that we have in mind here is the observation that the amount of
performed tests is time-varying and so will be cases. Specifications for ft have been used in the
literature. We focus in this paper on a specific method, captured by Fraser’s [13] equation (9) - see
page 3 of his paper - which defines the time-varying effective reproduction number as follows:

R̂t = pt∑n
j=0 wjpt−j

(4)

where the weights w’s capture the generation time distribution, with
∑n
j=0 wj = 1. This means

that the time-independent function f̂ that follows from the denominator in equation (3) is, in that
case, assumed to be linear in the number of cases p (which does not imply that pt is linear in time of
course). Note that such an assumption implies that, given the reproduction number R̂, the dynamics
of new cases follow an auto-regressive process AR(n). Although for the sake of presentation we
focus on this specific method to estimate the effective reproduction number, our analysis extends
to possible alternatives.

Even though it might go unnoticed at first sight, we should stress that a major difference between the
rather general definition of R in equation (3) and the specific definition of R̂ in equation (4) is that
the function ft implicitly depends on calendar time t. That is, what the latter takes account of is
simply the number of cases detected, but not the fact that those cases will depend on the diagnostic
effort or number of tests that has been realized. The fact that the diagnostics dimension is largely
ignored in the literature about SIR-type models surfaces, for instance, in Wallinga and Lipsitch
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[24], who relate the epidemic growth rate to incidence and generation time interval only. It seems
reasonable to assume that infectious and emerging diseases involve a diversity of pathogens, which
require a variety of technologies to diagnose. In the context of COVID-19, PCR and antigen testing
is of course key. This difference in accounting for cases turns out to be important to understand
the connection between the acceleration index and the reproduction number, as we now show.

Using equations (2) and (3), we can relate our acceleration index and the reproduction number in
the following way, at end date T :

εT = RT ×
AT
BT

with AT = fT [pT , pT−1, . . . , pT−n]
1
T PT

and BT = dT
1
TDT

(5)

Equation (5) shows that the ratio between the acceleration index and the basic reproduction number
can be itself decomposed into a ratio. The numerator of this latter ratio, A, can be thought of as the
current infectivity intensity, that is, the ratio of the average number of primary cases up to period
T who can originate infections in T as a fraction of the historical average of the number of persons
who have been infected since the outset of the pandemic. The denominator, B, on the other hand,
represents the number of tests in period T compared to its historical average up to T , that is, the
current test intensity. To sum up, the ratio of the acceleration index to the reproduction number
is, in any period, the ratio of the infectivity intensity to the test intensity.

From Equation (5) we see that both indicators are equal at all dates t, that is, εt = Rt, if and only
if :

ft[pt, pt−1, . . . , pt−n] = 1
t
Pt ×

dt
1
tDt

(6)

Equation (6) is very important to conceptualize the core idea of this paper: in order to properly
control for the (time-varying) volume of tests/diagnostics, one needs to use the appropriate function
ft, that is, one which depends on calendar time because tests do. Said differently, the function ft
should be specified in such a way that it takes account of the fact that cases are produced by
tests or any other diagnostics. The linear form with no time dependence which appears in the
denominator of equation (4) is therefore problematic, as it assumes away tests which are however
key to measure the pandemic’s dynamics. In this sense, the acceleration index ε nests the basic
reproduction number R: if the function ft is specified as in equation (6), R is equivalent to ε as
it takes account of testing; in any other case, ε is more general than R, as defined for example in
equation (4) that takes account of cases only.

So as to elaborate more on why the acceleration index nests the reproduction number, in the sense
that the former is a test-adjusted version of the latter, let us consider two hypothetical cases. The
first case obtains when daily tests are constant at all dates, which implies that dt = 1

tDt, i.e. Bt = 1,
and that equation (6) now reads as ft(·) = 1

tPt. This means that in the case of time-invariant tests,
the acceleration index and the reproduction number coincide if and only if the numerator of the
infectivity intensity At is equal to the time average of all cases since the initialization date. This
contrasts with the denominator in the expression of R̂ in equation (3): it defines a time-independent
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function f̂(·) =
∑n
j=0 wjpt−j as a moving average of the number of cases over a time window of

length n + 1, which implies that equation (6) is then violated. In the rather specific configuration
such that tests are constant over time, one can see that the acceleration index and the reproduction
number, as defined in (3), might differ because of the time window over which cases are included in
the definition of the indicator of viral spread. More precisely, R̂ assumes a time lag that relates to the
observed generation time of the disease and it is defined as the ratio of current cases over a weighted
moving average. Since the latter tracks more closely the trend in the number of cases, R̂ captures
the proportional deviations from that short-run trend. In contrast, ε relies on the entire history
of the pandemic since the number of cases is divided by a much smoother and longer-term trend
(technically, the cumulative moving average), thus capturing shorter-term trends. The latter aspect
is arguably relevant for public health decisions, due to possible path dependence and regime shifts
related, for example, to mitigation policies and other changing behaviors. In addition, cases rising
fast might make it more probable that new strains of the virus emerge and revive the pandemic,
thus creating a positive feedback loop. In addition, another benefit of de-trending the daily positive
rate by the average positivity rate is to make ε a unit-free measure of viral acceleration that is useful
to compare groups (see for example Baunez et al. [7] on vaccine effectiveness).

A more realistic configuration in view of the COVID-19 pandemic, however, is when tests do vary
over time. Suppose they do but that, unrealistically, the daily number of newly found cases is
now constant over time. In that case, R̂t = 1 and the associated Ât = 1. In such a situation,
equation (6) is again violated because dt 6= 1

tDt, hence Bt 6= 1. Such a violation signals not only
that the acceleration index and reproduction number do not coincide, but also that the latter is
not an accurate indicator of viral spread when tests vary over time but cases hypothetically do
not. Either the test intensity is larger than one, meaning that the current level of tests exceeds its
historical average so that dt > 1

tDt (hence Bt > 1). The reproduction number then overestimates
viral acceleration compared to the acceleration index because, while new cases are still constant,
current tests are above their historical average. In that case, the acceleration index is smaller than
one and signals deceleration of viral spread, despite cases being constant over time. Or the test
intensity is smaller than one (i.e. Bt < 1), so that the reproduction number underestimates viral
spread acceleration because current tests, while being below their historical average, still detect the
same number of cases. The acceleration index is then larger than one, indicating indeed acceleration
of viral spread. Such benchmark cases shed light on the reason why the reproduction number needs
to be adjusted to take into account tests when they are time-varying.

A schematic example to help visualize the latter case is presented in Figure 1, assuming constant
population size for simplicity. Suppose that the numbers of both tests and positive cases have
been constant prior to date t and contrast the alternative outcomes at t+ 1 (scenarii 1 and 2). At
each date, a square represents total population and each dot represents one individual. Red areas
include individuals who have been tested, among which green (respectively red) dots represent
positive (respectively negative) individuals, while the complementary grey areas include untested
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Figure 1: Schematic two-period example with both population and number of positive cases that stay
constant over time. At each date, a dot represents one individual and red areas include individuals
who have been tested, among which green (respectively red) dots represent positive (respectively
negative) cases, while complementary grey areas depict untested individuals with unknown health
status. From the situation at date t depicted in the left panel, two exclusive scenarii originate at
t+1 depending on whether the number of tests goes down (upper right) or up (bottom right), while
the number of positive cases stay constant in each scenario, between t and t+ 1.

Sc
en

ar
io

1

Scenario
2

Date t

εt = R̂t = 1

Date t+ 1

Accelerating
Epidemic

εt+1 = 1.5 > R̂t+1 = 1

Decelerating
Epidemic

R̂t+1 = 1 > εt+1 = .75

individuals with unknown health status. From the situation at date t depicted in the left panel,
two exclusive scenarii originate at t + 1, depending on whether the number of tests goes down
(upper right, scenario 1) or up (bottom right, scenario 2), while the number of positive cases stay
constant across scenarii, between t and t + 1. Note that using only the number of positive cases
(hence ignoring the number of tests) leads to the conclusion that the epidemic situation has not
changed since the (two-period) reproduction number R̂ equals one at both dates. In other words, the
epidemic situation neither worsens nor improves. However, comparing scenarii 1 and 2 in Figure
1 clearly reveals that the two alternative dynamics differ sharply: in the upper right panel, the
number of tests goes down between t and t + 1, so that an equal number of cases is detected with
a smaller number of tests, indicating an accelerating epidemic; in contrast, the lower right panel
depicts a situation in which the number of tests increases markedly while an equal number of cases
still materializes, indicating now a decelerating epidemic.
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In addition, it is perhaps instructive to go through the logic that delivers the magnitudes for the
reproduction number R̂ and acceleration index ε in Figure 1. Both equal one at date t, assuming
again for simplicity an identical situation prior to that. Since cases do not changer over time, R̂
does not either and stays equal to one at both dates. In addition, it follows that a half of total
cases - cumulated over the two periods - is detected at t + 1 equally in both scenarii. However
the contribution to cumulated tests at t + 1 is not the same in both cases, compared to t. In
scenario 1, tests are halved so that the contribution to cumulated tests at t + 1 is only 1/3 - that
is, (1/2) ÷ (1 + 1/2). As a consequence, εt+1 = (1/2) ÷ (1/3) = 1.5 in scenario 1: since as much
as a half of total cases cumulated over the two periods is detected using only a third of cumulated
tests, the epidemic is accelerating in period t+ 1, as signalled by the property that εt+1 > R̂t+1 = 1
then. In contrast, the number of tests doubles at t + 1, in scenario 2, so that the contribution to
cumulated tests is now 2/3 - that is, 2 ÷ (1 + 2). It follows that εt+1 = (1/2) ÷ (2/3) = 0.75: the
epidemic is decelerating since only a half of cumulated cases is detected using as much as as two
thirds of cumulated tests, implying that R̂t+1 = 1 > εt+1. This example further illustrates why
taking into account time-varying tests makes for a more accurate measure of epidemic acceleration.
Note also that while the simple example in Figure 1 may give the impression that the positivity
rate suffices to capture the epidemic dynamics, it is worth reiterating that it is a measure of speed
which is not unit-free, as opposed to the acceleration index which is indeed a unit-free measure of
the extent to which viral spread accelerates. Finally, incidence rates are not really useful to capture
viral dynamics when population is constant, as in the example, or slow-moving more realistically.

Two general observations follow the above description of benchmark cases. First, when test intensity
is larger (respectively smaller) than infectivity intensity, the reproduction number tends to over-
estimate (respectively underestimate) viral acceleration compared to the acceleration index. This
implies that the reproduction number must be test-adjusted if it is to serve well as an accurate
enough indicator of viral spread that guides public health policies. Second, following the logic of
the first hypothetical case outlined above, one might envision also versions of the test-adjusted re-
production number that would divide the expression in (3) by a similarly defined growth rate of
tests, over a rolling window. For instance, a short-term test-adjusted reproduction number could
be alternatively defined as:

R̂t =
[

pt∑n
j=0 wjpt−j

]
÷

[
dt∑m

j=0 zjdt−j

]
(7)

given the lag parameter m and
∑m
j=0 zj = 1. The expression in (7) is a simple test-adjusted version

of (4). It would be interesting to investigate the properties of such a test-adjusted reproduction
number, defined over rolling windows, and compare it to the acceleration index. As underlined
above, keeping all the past of the pandemic is important, for instance to compare groups and derive
a unit-free measure of vaccine effectiveness (see Baunez et al. [6, 7]), and possibly to capture path
dependence. Although not addressed in this paper, whether the new indicator that is defined by
equation (7) may turn out to be useful for other purposes is an open question. Finally, although
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this is beyond the scope of this paper, which abstracts from specific models of epidemics, we would
like to stress some unreported results from simulation exercises. In a SIR model augmented to
include time-varying tests, and in which only tested individuals among infected ones are observed,
we have performed simulations indicating when the acceleration index captures more accurately the
epidemic peak and deceleration than the reproduction number with imperfect information (and not
test-adjusted). Interestingly, this happens in particular when tests become progressively available
in a way that might lag the unobserved epidemic peak. Although of course model-and-parameter-
specific, such simulation results go in the direction of the model-free results in this paper that
test-adjusted versions of the reproduction number, such as the acceleration index that we advocate,
better track the dynamics of viral spread.

To go back and better grasp the relation between the more general reproduction number R (not
to be confused with R̂) and ε as indicated in equation (5), a more theoretical analysis and its
implications may be helpful. First of all, as it also becomes clear from equation (5), when A = B

- that is when equation (6) holds - then ε = R. This basically means that if the test intensity B
tracks the dynamics of the infectivity intensity A, there is enough testing to capture viral activity.
In fact, seen from this perspective, we have a clear testing strategy: the daily tests dt need to offset
the assumed infectivity captured by function ft, and more specifically equation (6). The smaller
the total number of cases, the easier it will be to match that testing requirement in particular
through contact tracing. As total cases go up, contact tracing and sufficient testing may come to
its structural and systemic limits. This in itself is a sign that additional health policies will need to
be promoted.

In sum, if A > B, then ε > R, whilst when A < B, ε < R. In the former case, the infectivity
intensity A of the pandemic cannot be matched by the test intensity B in place. That is, R does
not give the appropriate picture of the infectiousness of the pandemic, in fact it underestimates
it. To alleviate this bias, either testing would need to be increased, or viral spread would need to
be cut by establishing policies that reduce contacts or a mixture of both. In any case, it shows
that equation (3) that composes R does depend on more than past and current cases, because they
themselves depend on tests and other factors that may favour or not transmissibility. Conversely, in
the latter case, R will overestimate the speed of the pandemic if the test contribution B is greater
than the infectivity contribution A. In such a situation, greater testing than underlying infectivity
will necessarily find more cases, actually too many to reflect the correct transmissibility. To capture
the correct picture, either testing would need to be reduced, which however seems counterproductive
at least to the extent that testing is a way to look at the underlying viral dynamics, or the infectivity
function ft of equation (3) needs to be adapted to reflect reduced transmissibility.

In the next section, we apply the theoretical decomposition outlined above to capture how the
reproduction number and acceleration index differ in the context of the current COVID-19 epidemic
in France.
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3 Results and Discussion

Before we turn to the application of the above analysis to French data, it might help to dissect a
simple example showing in more details how and why the reproduction number and the acceleration
index might differ. A thorough analysis of (5) requires structural assumptions, in particular to
generate predictions about how both ε, R and their ratio move over time. In fact, the simple case
of deterministic exponential growth, following Fraser’s [13] equation (12), comes in handy here.
Time is assumed to be continuous, to ease derivation of results, and the number of cases grows
exponentially over time, as usually assumed in epidemiological models, of SIR type and related for
example. In such a case, the continuous-time analog of R̂ (not R now) defined in equation (4) is
constant and any difference between R̂ and ε is due to differences between A and B. For ε, we also
have to introduce tests and we assume that they also grow exponentially.

Under those assumptions, we show in Appendix A that while the reproduction number is constant
over time, the acceleration index is not, as it features different regimes depending on how the
growth rate of daily cases compares with the growth rate of daily tests. For example, when the
former is larger than the latter, the acceleration index first rises and then approaches a plateau,
where it equals the ratio of growth rates, which is larger than 1 in that case. In contrast, the
reproduction number stays constant over time. We can visualize this more easily in the simple
setting of exponential growth (see Appendix A), but it also holds more generally that the difference
between both indicators is essentially due to the fact that while the acceleration index is the ratio
of two growth rates, that of cases divided by that of tests, the reproduction number tracks only the
former, thus ignoring the latter. It is also for this reason that we say the acceleration index ε nests
the basic reproduction number R̂, which is simply a special case of ε. Different configurations may
in principle occur, therefore, over time, depending on how fast cases grow compared to the growth
of tests.

To further illustrate what happens in the case of exponential growth outlined above and studied in
more details in Appendix A, we now provide an illustration such that the growth rate of daily cases
is twice as large as the growth rate of daily tests. Figure 2 illustrates how the acceleration index
and the reproduction number, as well as the infectivity and test intensities, evolve over time in this
particular example. In Figure 2, panel (a), we report the evolution over time of the time-varying
acceleration index ε(t) and the constant reproduction number R̂ that follow from the numerical
example. In Appendix A, we show that while R̂ is constant, ε tends to the ratio of growth rates,
which is equal to 2 in the example. As a consequence, a first regime with the reproduction number
exceeding the acceleration number happens, followed by a second regime that features the reverse
configuration. Not surprisingly, panel (b) in Figure 2 shows that the first regime materializes before
day 9, when B(t) > A(t) - that is the test intensity exceeds the infectivity intensity - while the
second regime is associated with A(t) > B(t) after day 9. Panel (b) reveals in particular that the
plateau for the acceleration index that is featured in panel (a) comes from the fact that both A(t)
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Figure 2: Numerical example for exponential growth of both daily cases and daily tests. Panel
(a) Acceleration index (blue curve) and Reproduction number (green curve). Panel (b) Infectivity
intensity (orange curve) and Test intensity (red curve)
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and B(t) grow at the same rate, with the infectivity intensity exceeding the test intensity. Overall,
therefore, the acceleration tracks the ratio of growth rates - which equals 2 in our example - while
the reproduction number underestimates that ratio because it roughly reflects only its numerator.

Interestingly, we can derive from panel (b) in Figure 2 an operational tool to track, and possibly to
control, in real time the difference between ε and R̂. Figure 2 illustrates an acceleration epidemic
phase, where positive cases grow faster than tests. As a consequence, test intensity B(t) eventually
lags behind, infectivity intensity A(t). However, the implication that R̂ underestimates viral accel-
eration after day 9, compared to ε is not unescapable. In fact, one could aim at controlling the ε/R̂
ratio: as data is updated in real-time, whenever it is observed that the infectivity intensity gets
larger than the test intensity (that is, A > B), one should increase the latter by making sure that
daily tests accelerate. Ideally, the test intensity should track as closely as possible the infectivity
intensity, in order to optimize the accuracy of R̂ as an indicator of viral acceleration. Note that
this goes in the same direction as the effort by public authorities to control viral spread by testing
more and isolating the detected positive cases as much as possible. In that sense, to ensure that
testing accelerates in the run up to an epidemic peak has two benefits: improving the epidemic
situation, in so far as testing more contributes to the control of viral spread, and increasing the
accuracy of the indicating tracking viral acceleration. Admittedly, tracking ε in real time is a more
parsimonious way to attain accuracy, compared to tracking R̂ as well as A and B (or their ratio).
Our decomposition shows formally that both approaches are equivalent though, and this result does
not rely on exponential growth but holds more generally.

The conclusion that the reproduction number R̂ alone may poorly capture the dynamics of viral
spread when tests vary over time, as expressed formally in equation (5), is not a mere theoretical
curiosity. It strongly suggests possible pitfalls associated with its exclusive use in guiding and
evaluating public health policies such as Non Pharmaceutical Interventions (NPI thereafter) in
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practice. Either ε, or R̂ together with the ratio of infectivity and test intensities A/B, should be used
to track viral acceleration. Casual reading of the literature reveals, however, that the reproduction
number alone is widely assumed as the success metric to assess the effects of NPI (see e.g. Flaxman
et al. [12] among many others). However, it should be clear by now that the conclusions thus derived
should be considered with caution, at best, whenever tests are not accounted for. For example, Haug
et al. [14] state that “In Fig. 4c, ‘enhancing testing capacity’ and ‘surveillance’ exhibit a negative
impact (that is, an increase) on Rt, presumably related to the fact that more testing allows for more
cases to be identified.” Although increasing testing might indeed lead to an increasing reproduction
number, it does not follow that such a NPI has an adverse effect on the epidemic, especially if tests
are rising as much as during the March-April 2020 period considered by the latter authors in their
study. Again, we cannot stress enough that whenever data about how many tests are performed is
readily available (as in Haug et al. [14] but also for many other related studies), it should be used to
measure as accurately as possible the dynamics of viral spread and adjust the reproduction number
using property (6). Obviously, testing does not realistically capture all infected individuals unless
all the population is tested each and everyday, but this observation should push policies towards
testing as much as possible, not towards ignoring data about tests altogether.

In Figure 3, panel (a), we report both the acceleration index (blue curve) and the reproduc-
tion number (green curve) over time, using data for France (May 13 to November 19, 2020).
All the data used in this paper is publicly available from the web page “Données relatives aux
résultats des tests virologiques COVID-19 SI-DEP” https://www.data.gouv.fr/fr/datasets/

donnees-relatives-aux-resultats-des-tests-virologiques-covid-19/ (accessed November
20, 2020, at 19 : 15). The acceleration index ε is computed using equation (1) while the reproduction
number R̂ is computed from equation (4) with n = 7 and equal weights w. Note that the infection
kernel could be adapted to account for sub-exponential growth as in Chowell et al. [9]. The lower
spikes of the reproduction number R̂ are due to lower amount of testing during week-ends. This can
clearly be seen in the panel (d) of Figure 3 that presents the number of daily tests (in pink). We
represent here the raw data rather any smoothed estimates in order to avoid any additional layer of
interpretation.

In panel (c) of Figure 3, we present local polynomial regressions for R̂ and ε of panel (a), that use the
Savitzky-Golay filter also known as a locally estimated scatter-plot smoothing method in modern
statistics (see Cleveland and Devlin [8]). The blue line is again our acceleration indicator. In red, we
show the reproduction number as used by Santé Publique France, whereas the green line represents
our own estimation. As can be noted, the reproduction number estimated by Santé Publique France
falls within the confidence bands of our own estimate which are the dotted green lines. Even though
Santé Publique France refers to the Cori method, we have not found public information about the
weights attached to past values for the number of cases in computing infectivity. In addition, as
can be seen from the confidence bands, the acceleration index is estimated more precisely than the
reproduction number, because we take account of variations of tests and thus cases due to the week-
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Figure 3: France - Panel (a) Acceleration index (blue curve) vs reproduction number (green curve).
Panel (b) Infectivity intensity (orange curve) vs test intensity (red curve). Panel (c) Kernel estimates
with confidence bands (dashed lines). Panel (d) Daily tests (purple line) and infectivity function
(black curve). Beige area depicts the lock-down period. Source: Agence Santé Publique France and
authors’ computations.

(a) Acc. Index and Rep. Number

in
d
ex

0

.75

1.5

2.25

3

May
21

Jul.
6

Aug.
16

Sep.
26

Nov.
19

e = 1

Acc. index εt
Rep. Number R̂t

(b) Infectivity and test intensities

in
te

n
si

ty

0

1.75

3.5

5.25

7

May
21

Jul.
6

Aug.
16

Sep.
26

Nov.
19

Aug. 5

Test intensity (Bt)
Infectivity intensity (At)

(c) Estimates

in
d
ex

0

.75

1.5

2.25

3

May
21

Jul.
6

Aug.
16

Sep.
26

Nov.
19

e = 1

Rep. Number SPF (RSPF
t )

Acc. index (εt)
Rep. Number (R̂t)

(d) Daily tests and infectivity function

te
st

(t
h
ou

sa
n
d
s)

0

80

160

240

320 in
fectivity

(th
ou

san
d
s)

0

15

30

45

60

May
21

Jul
6.

Aug.
16

Sep.
26

Nov.
19

Daily tests (dt)
infectivity (f̂t)

end effect. In effect, being a ratio of growth rates (that of cases over that of tests), the acceleration
index turns out to be smoother than the reproduction number (which is closer to the growth rate
of cases).

If we concentrate on panel (c) of Figure 3, we see that right after the end of the first lock-down, both
indicators are roughly “plateauing” just under 1, with R̂ being slightly above ε. We concentrate
here on the green line, i.e. our estimation of R. This estimated R̂ then rises quickly to a higher
plateau in the first half of July to indicate greater transmissibility, and stays at a level of about
1.2 until mid-August. At that same time ε first remains put at a level smaller than 1 and becomes
greater than 1 a few days later, effectively crossing R̂ at the beginning of August and accelerating
all along until about mid-August.

The difference in dynamics of both indicators for France can easily be explained by looking at
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panel (b) in Figure 3. Here, we report the two terms that appear in equation (5), that is, A, the
infectivity contribution (orange curve), and B, the test contribution (red curve). The latter graph
exhibits spikes, due to the fact that much less tests, if any, are performed during week-ends. The
test contribution follows a downward trend that simply reveals the fact that tests being done in
a given period constitute, over time, a smaller and smaller fraction of the cumulated amount of
diagnostics. What we see in panel (b) in particular is that before August 5, the test contribution B
is greater than the infectivity contribution A that has, at first, also a downward trend. A greater
testing rate implies that more cases will be found. This corresponds to the period when R is greater
than ε. But R̂ basically overestimates viral activity because it does not consider tests and focuses
on cases only, while ε takes account of this because it looks at the ratio of both infectivity and test
contributions. The opposite is true for the period after August 5, when the infectivity intensity A
becomes greater than the test intensity B, hence ε greater than R̂. Despite growing daily tests until
the end of August, as we can see in panel (d) of Figure 3, R remains first at a plateau but then
steadily declines until the second half of September.

This clearly shows that R̂ has been unable to represent viral acceleration basically during both
summer months because, as we can see from panel (b), the infectivity contribution is rising more
quickly than the test contribution. Therefore, R̂ overlooks the testing dimension and only captures
the number of cases, but those are undervalued given a lower test rate B. Even worse, testing then
declines at the end of August while the infectivity function f , indicated in black in panel (d) starts
going up. This affects R̂ that declines to reach a level of about 1 by the end of September. This is
in very stark contrast to ε that accelerates from early July onwards and then hovers at a plateau of
about 2 up to end of September. It takes appropriately into account the relationship between the
changing growth rates of testing and infectivity.

Both indicators go up again from the end of September onwards as testing rises again. But while
R̂ reaches a plateau again as the first curfew measures where put into place to cut transmission,
ε further indicates acceleration. Both indicators then start declining when, at the end of October,
the second lock-down was put into place.

However, R̂ < 1 since the beginning of November, whilst at the same time, our indicator ε still
shows an ongoing acceleration, although a reduced one with respect to the time before the lock-
down. What we see very clearly from panel (d) is that lock-down coincides with a great reduction
of testing. Obviously, lock-down is aimed at reducing contacts and thus viral spread. This will
necessarily reduce cases and hence R declines. But if at the same time testing is reduced as well,
which is the only way to get a clearer picture of the viral activity this necessarily influences R̂ more
dramatically and explains the under-evaluation of the viral spread than ε that continues to indicate
acceleration. More specifically, ε indicates what happens to cases when we reduce testing by some
percentage change. The fact that the percentage change of cases goes in the same direction as the
percentage change of testing, i.e. that both decrease, is a good sign and indicates that lock-down
measures have their effect. But looking at ε does not yet allow to give an all-clear such as R does.
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As a consequence, ε captures more accurately the considerable time variation of virus propagation
than R̂.

To make clear that the discrepancy between the reproduction number and the acceleration index
shown in Figure 3 is not specific to France, we report in Appendix B a similar decomposition
for five other countries. Such a comparison reveals that the reproduction number might either
underestimate or underestimate viral acceleration, depending on the country and the time period,
due to not correcting for the time-varying amount of testing. This readily suggests that this issue
might be highly relevant in many other countries as well, where public health authorities are also in
dire need of accurate indicators to track epidemics. As such, this observation should also preoccupy
international bodies that design cooperation strategies to fight pandemics, including of course the
World Health Organization and other regional agencies.

There is a number of interesting observations that can be drawn from the different experiences in
France and those other 5 countries, which, however, should be independently evaluated in later
research. First, in periods where the infectivity intensity A is greater than the testing intensity
B, the acceleration index is larger than the reproduction number. This means that in those ac-
celeration phases, the testing strategy is lagging behind the acceleration of viral propagation, so
that the reproduction number is consistently underestimating acceleration of viral spread. This is
the empirical confirmation of what we have already seen in our hypothetical numerical example for
exponential growth in Figure 2. Second, increasing daily testing alone is not sufficient to track viral
spread as we can note from observing the differences in the respective panels (b) and (d). In partic-
ular panels (b) and (d) for Austria and UK show that despite a high and increasing amount of daily
testing, their test intensity remains more or less stable and does not match closely the infectivity
intensity. However, in South Korea, but also in Argentina, test intensity does track rather closely
the infectivity intensity and therefore, the gap between our acceleration index and the reproduction
number is much smaller. It would be interesting to know how health authorities decided on their
testing strategies in those two latter countries. Third, the reproduction number, which is agnostic
about tests, is a poor indicator to guide efficient testing strategies. However, what we may be able
to deduce from those empirical examples is that as soon as the acceleration index turns out to be
greater than 1, there is a clear sign that diagnostic effort need to accelerate, i.e. that the test inten-
sity need to be increased. It seems likely that in such a case, testing may be not only be used as a
learning instrument about viral dynamics, but also as an instrument to guide public health policies
and combat that dynamics, possibly in addition to other health policy measures. Said differently,
the response to an indication of viral spread acceleration (that is, acceleration index larger than 1)
must also be an acceleration in an instrument to offset that trend (a rising test intensity).

To further illustrate the differences between R̂ and ε and their consequences for public health deci-
sions, we consider Figure 4. We use a background map that is in the public domain and can be down-
loaded via https://commons.wikimedia.org/wiki/File:D%C3%A9partements_de_France-simple.

svg. Figure 4 is then constructed by incorporating our own data into this background map and
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Figure 4: Acceleration index and reproduction number for French départements at different dates.
October 30 dates the start of the second lock-down in France. Data source: Agence Santé Publique
France and authors’ computations.
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gives an overview of how the second lock-down, which started on October 30, 2020, has contributed
to reduce virus circulation across French départements. Looking at the two bottom maps shows
that the acceleration index has been reduced everywhere during the period from October 30 to
November 19. While a similar improvement is indicated by the reproduction number, as one con-
cludes from the top maps, that measure of virus spread tells an altogether different story. Three
weeks after the beginning of the second lock-down in France, the acceleration index suggests that
the acceleration regime still prevails, except for 6 départements which happen to be the happy few,
but with values still close to unity. However, one concludes rather wrongly from the reproduction
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number that, at the same date, deceleration is underway in most départements in green. In view
of the discussion about the ε/R̂ ratio in Section 3, this comes as no surprise since the reproduction
number under-estimates virus circulation, due to the fact that it does not take tests into account.

To sum up, two main differences between the reproduction number and the index appear in panel
(c). The first being that R̂ crosses unity earlier than the acceleration index, which starts to increase
around July 6. This is most likely due to the infectivity rate reaching its lowest point around that
date (as seen in panel (b)). Passing that date, the infectivity rate begins to increase, while the
test rate continues downwards. This explains why the acceleration index could not start growing
before July 6. Overall, therefore, R̂ is larger than ε before August 5. The second difference is a
sudden decrease of the reproduction number in the second half of September, while the acceleration
index stays at a plateau. This can be explained by panel (d), in which we see a sharp plummet in
the number of daily tests around that period. Less tests equals less detected cases, which R̂ relies
heavily on for its calculation. Seeing R̂ rising sharply from about 1 in early October is all the more
surprising when seen in isolation. In contrast, the acceleration index, which accounts for variations
of both cases and tests, consistently shows a succession of periods of steep rise followed by plateaus
over the summer and until the second lock-down.

In practice, many public health agencies report (daily or weekly) positivity rates, to complement
the information contained in the reproduction rate R̂. In light of the connection with ε that we
have highlighted in this paper, both formally and empirically, we argue that the acceleration index
is closer to a sufficient statistic that helps tracking the rapidly changing dynamics of any pandemic,
because it explicitly takes into account the dynamics of diagnostics. All in all, the acceleration index
is a test-adjusted reproduction number. In the context of COVID-19, diagnostics equal tests, but
our claim is valid more generally when this is not the case. This means that the acceleration index
can potentially be applied to any effort designed at detecting infected people, no matter what the
pathogen agent triggering the infectious disease turns out to be. In real time, this is quite valuable,
we believe, to guide health policies and to assess containment measures, especially in the context of
a new pathogen appearing (such as SARS-Cov-2), with unforeseeable pandemic dynamics.

4 Conclusion

We show in this paper that the reproduction number is a special case of the acceleration index
proposed in Baunez et al. [5]. While the former only considers the growth rate of cases, the latter
measures variations of cases in relation to that of tests, and it does so in a unit-free manner since
it is an elasticity. Most importantly, the acceleration index is a sufficient statistic of viral spread in
the sense that it aggregates all the relevant information in a synthetic manner. In contrast, looking
at pieces of information, like positivity or prevalence rates, separately might lead to the misleading
conclusion that there is conflicting evidence about whether the epidemic worsens or improves. As
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such, a test-controlled reproduction number like the acceleration index should be part of any data
dashboard to track an epidemic, and especially to guide public policy in the design of the most
efficient methods to curb it. For example, we have shown in Baunez et al [5] that an accurate
measure of virus circulation is a key input to feed algorithms that are designed to efficiently allocate
the diagnostic effort across space.

The result that the reproduction number is, as a measure of viral spread, subject to a considerable
bias is not specific either to France or to the period considered, as illustrated using data from five
other countries. Such a comparison reveals that the reproduction number might either underestimate
or underestimate viral acceleration, depending on the country and the time period, due to not
correcting for the time-varying amount of testing. This readily suggests that this issue might be
highly relevant in many other countries as well, where public health authorities are also in dire
need of accurate indicators to track epidemics. As such, this observation should also preoccupy
international bodies that design cooperation strategies to fight pandemics, including of course the
World Health Organization and other regional agencies.

Relatedly, a key conclusion follows from our theoretical and empirical results. If public health
authorities aim at measuring as accurately as possible viral acceleration, they have to rely on one of
the following strategies: track in real time either the acceleration index alone, or a combination of
the reproduction number together with the test and infectivity intensities. Although both strategies
are formally equivalent, the latter is not only less parsimonious, it is also arguably more delicate
to operate in practice since one would then like to control the bias that inevitably comes from
time-varying tests. This is one of the main reasons why we argue in favor of using the acceleration
index.

Such observations make the acceleration index a more parsimonious indicator to track a pandemic
in real-time, as it is context-dependent: the acceleration index takes into account the effort to
diagnose people who have been infected by the pathogen. In the case of COVID-19, diagnostics equal
PCR (and other types of biological) tests, but this might not be the case for other diseases where
diagnostics require even greater effort. However, our analysis makes a strong case for incorporating
in any measure of pathogen circulation the observed effort to diagnose the agent that makes people
sick.

Even though there is a variety of infectious (and emerging) diseases, with different pathogens and
various ways to diagnose them, we claim that our conceptual approach is general enough to shed
light, not only on the current pandemic, but also on any future ones which may come. In addition,
our analysis extends to alternative methods to estimate the effective reproduction number, beyond
the specific example stressed in this paper for the sake of presentation.

Finally, we would like to mention some limitations of our analysis. Some important issues, beyond
the scope of our paper, have however been addressed by the literature. First, the fact that unac-
counted cases arise when testing is not compulsory (see Pullano, Di Domenico, Sabbatini et al. [21]
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for France). Second, the coexistence of symptomatic and asymptotic cases during COVID-19 has
led to additional statistical methods (see Khailaie et al. [18]). Another limitation of our acceleration
index is that its accuracy depends positively on the amount of tests performed. For instance, detect-
ing infected people who are asymptomatic but still potentially infectious requires an active policy
and enough testing capacities. Even though the more tests the better in terms of how accurate the
acceleration index is, should be included in the analysis that testing policy requires costly resources.
From an economic standpoint, future research should also examine cost-efficiency of policies aims
at mitigating epidemics, including using testing actively.
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A Exponential Growth: an Illustrative Example

We now illustrate the relationship between the acceleration index and the reproduction number
when time is assumed, to ease derivation of results, to be continuous and when the number of
cases grows exponentially over time, as usually assumed in epidemiological models, of SIR type and
related for example. See for example Fraser’s [13] equation (12). Although typically ignored in
the latter strand of literature, we introduce tests and we assume that they also grow exponentially.
More formally, using the notation in the previous section, suppose that the number of cases per unit
of time is denoted by p(t) = αeβt while the number of tests per unit of time is d(t) = γeνt, where
the growth rates β and ν are assumed to be positive for the sake of illustration. The reproduction
number is then constant over time, as we now show when the infection kernel is uniform, that is,
if the weights w are constant and equal to 1/δ to ensure that w

∫ δ
0 ds = 1. Note that it is not

difficult to show that the constancy of R̂ holds for other infection distributions as well. The analog
of equation (4) is as follows:

R̂(t) = p(t)
w
∫ δ

0 p(t− s)ds
(8)

which implies that, given p(t) = αeβt, one has:

R̂(t) = R̂ = βδ

1− e−βδ (9)

It is easily seen that the reproduction number is the growth rate of daily cases (adjusted for the
delay δ) only, since it obviously does not take into account tests. In fact, R̂ is the growth rate of
the denominator in equation (8), that is, what we note f̂ in the main text.

Cumulated cases and tests are then noted P (t) =
∫ t

0 p(τ) dτ and D(t) =
∫ t

0 d(τ) dτ , respectively. It
is easy to derive, by straight integration, the expressions:

P (t) = α

β

(
eβt − 1

)
, D(t) = γ

ν

(
eνt − 1

)
(10)

It follows that our acceleration index is given, as function of time, by:

ε(t) = p(t)/P (t)
d(t)/D(t) = β

ν

(
1− e−νt

1− e−βt

)
(11)

From equation (11), one concludes that the acceleration index, which is an elasticity that measures
the responsiveness of cases to tests, is essentially the ratio of the growth rate of cumulated cases
divided by that of cumulated tests, since p(t) = dP (t)/dt and d(t) = dD(t)/dt. In addition, ε tends
to the ratio of the growth rate of daily cases to that of daily cases β/ν. This means that the
acceleration index tracks that ratio over time and converges to it eventually.

It follows that three cases occur. When β = ν, that is, when both daily cases and daily tests grow
at the exact same rate, then our acceleration index equals 1 at all dates. When the two growth
rates differ, however, ε(t) converges, when t goes to infinity, to the ratio of growth rates β/ν,
independently of the scale parameters α and γ. As an illustrative example, suppose that β > ν, so
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that positives grow faster than tests. Then the pattern of our acceleration index ε(t) over time will
have two regimes: it first grows almost linearly and eventually reaches the upper bound β/ν > 1.
Obviously, in that case both the daily positivity rate p(t)/d(t) and the average positivity P (t)/D(t)
grow over time, and the latter quantity exceeds the former all the time so that acceleration prevails.
The symmetric case when β < ν is easily adapted.

The property that the reproduction number is constant under our assumptions essentially means
that the dynamics of the acceleration index is driven by that of A(t)/B(t), which we now decompose
to help understand how R̂ and ε compare over time. It follows from the definition of A and B in
equation (5) that:

A(t) = t

(
eβt − eβ(t−δ)

δ(eβt − 1)

)
and B(t) = νt

(
eνt

eνt − 1

)
(12)

To further illustrate what happens in the theoretical case outlined above with β > ν, let us take a
numerical example. Suppose that the growth rate of cases β equals 20% while the growth rate of
tests ν = 10%. In addition suppose that the delay parameter δ = 4 so that the weight w = 1/4.
Figure 2 illustrates how the acceleration index and the reproduction number, as well as the infectivity
and test intensities, evolve over time in this particular example, with both functions A(t) and B(t)
increasing with time t.

The exponential example is also useful to illustrate the formal relationship between viral speed and
the acceleration index. To do that, let us now make an analogy with linear body motions to relate
our indicators to speed and acceleration. If one think of the positivity rate as viral speed and
define it as s(t) = p(t)

d(t) then straightforward computations give s(t) = α
γ e

(β−ν)t. By analogy, viral
acceleration could be defined as the derivative of viral speed, that is, a(t) = s′(t) = α

γ (β−ν)e(β−ν)t.
Not surprisingly, then, it turns out that the sign of a(t) indicates acceleration in the sense that a
positive sign reveals acceleration (this happens when β > ν since speed goes up over time in that
case) while a negative sign reveals deceleration (when β < ν).

However, a drawback of a(t) as a measure of acceleration is that it is scale-dependent since it depends
on scale parameters α and ν, though their ratio. In other words, a(t) depends on the absolute level
of speed, that is, of the positivity rate. On the contrary, the acceleration index given by Equation
(11) does not and is unit-free, since it is an elasticity. Note that a possible, also unit-free, alternative
would be to define acceleration as the semi-elasticity a(t)/s(t) = β − ν. However, since it relates
the percentage change of positives case to the absolute change of tests, it is arguably less amenable
to interpretation than the elasticity. It is easily shown that the semi-elasticity would be obtained if
the average positivity rate would alternatively be defined as the average of the daily positivity rates
up to date T , as opposed to the ratio of number of cumulated cases to the number of cumulated
tests as in Equation (2) which leads to the acceleration index as an elasticity. Finally, note that the
acceleration index equals one when viral speed stays constant over time.
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B Test-Controlling the Reproduction Number in Practice:

Five Additional Countries

In this appendix, we provide estimates for both the acceleration index and the reproduction number,
for Argentina, Austria, South Africa, South Korea and the United Kingdom, using the same method
that is applied in Section 3 for France and over the same period (May 13 to November 19, 2020).
The public data source for the five countries comes from Our World in Data (Ritchie et al. [22]).
The resulting estimates, depicted in Figures 5 to 9 (that are hence directly comparable to Figure
3 for France), unambiguously reveal that the substantial bias due to time-varying tests, which is
corrected by the acceleration index but not by the reproduction number, is not specific to France
or to a particular period. In fact, the corresponding bias forces the reproduction number to either
underestimate (Argentina over the whole period is a case in point) or overestimate viral acceleration,
depending on the country and the period considered. This observation suggests that a similar bias
should come as no surprise for other countries as well.

Figure 5: Argentina - Panel (a) Acceleration index (blue curve) vs reproduction number (green
curve). Panel (b) Infectivity intensity (orange curve) vs test intensity (red curve). Panel (c) Kernel
estimates with confidence bands (dashed lines). Panel (d) Daily tests (purple line) and infectivity
function (black curve). Source: Our World in Data and authors’ computations.
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Figure 6: Austria - Panel (a) Acceleration index (blue curve) vs reproduction number (green curve).
Panel (b) Infectivity intensity (orange curve) vs test intensity (red curve). Panel (c) Kernel estimates
with confidence bands (dashed lines). Panel (d) Daily tests (purple line) and infectivity function
(black curve). Source: Our World in Data and authors’ computations.
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Figure 7: South Africa - Panel (a) Acceleration index (blue curve) vs reproduction number (green
curve). Panel (b) Infectivity intensity (orange curve) vs test intensity (red curve). Panel (c) Kernel
estimates with confidence bands (dashed lines). Panel (d) Daily tests (purple line) and infectivity
function (black curve). Source: Our World in Data and authors’ computations.
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Figure 8: South Korea - Panel (a) Acceleration index (blue curve) vs reproduction number (green
curve). Panel (b) Infectivity intensity (orange curve) vs test intensity (red curve). Panel (c) Kernel
estimates with confidence bands (dashed lines). Panel (d) Daily tests (purple line) and infectivity
function (black curve). Source: Our World in Data and authors’ computations. Testing data for
South Korea were incomplete: five dates were missing. Missing values were completed by a linear
interpolation.
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Figure 9: United Kingdom - Panel (a) Acceleration index (blue curve) vs reproduction number
(green curve). Panel (b) Infectivity intensity (orange curve) vs test intensity (red curve). Panel
(c) Kernel estimates with confidence bands (dashed lines). Panel (d) Daily tests (purple line) and
infectivity function (black curve). Source: Our World in Data and authors’ computations.
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