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1 Introduction

This paper explores the existence of local indeterminacy and sunspot fluctuations in gen-

eral infinite-horizon models with external effects leading to increasing returns to scale

(IRS). We aim to determine whether expectation-driven business-cycles exist under em-

pirically realistic values for the main structural parameters regarding utility and produc-

tion functions. We also assess whether such sunspot-driven models can explain several

defining features of observed business-cycles.

Up to now, the sunspot literature has failed to provide a fully credible alternative

to DSGE models as an explanation of the business cycle, for two main reasons. First,

in many models, fluctuations based on self-fulfilling changes in expectations occur at

parameter values (degree of increasing returns to scale, markups, preference parameters,

etc.) that are considered inconsistent with existing empirical estimates. Second, as

early pointed out by Schmitt-Grohé [61], even models that allow sunspot fluctuations to

arise under credible parameter values have difficulties accounting for several characteristic

features of the observed fluctuations.

Our aim in this paper is thus to address the following two questions: (i) is there any

standard (one-sector or two-sector) infinite-horizon model in which sunspot fluctuations

arise under realistic calibration for all the structural parameters? (ii) if such a model

exist, can it also reproduce the salient empirical properties of the business cycle when

self-fulfilling changes in expectations are the main source of transitory fluctuations in

output? We argue that the answer to these two questions is positive.

To address these questions, we combine a theoretical contribution and a data con-

frontation analysis. From a theoretical perspective, we consider the standard framework

of RBC-type models with increasing returns to scale (IRS) based on productive external-

ities put forward in the literature by the seminal contributions of Benhabib and Farmer

[7, 8]. Yet, we do not restrict the specifications of individual preferences and of the pro-

duction function to have particular forms, imposing instead minimal sets of assumptions

on these functions. A key novelty of our analysis is that we express the local stability

conditions of the steady state in terms of five critical and economically interpretable pa-

rameters: the elasticity of intertemporal substitution in consumption (EIS), the Frisch

elasticities of the labor supply curve with respect both to real wage and to marginal

utility of wealth, the elasticity of substitution between capital and labor, and the degree

of increasing returns to scale. As explained below, we argue that the Frisch elasticity

with respect to marginal utility of wealth provides a relevant measure of the degree of
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“wealth effect” on labor supply decisions, which has recently been shown to play a ma-

jor role in the local stability properties of dynamic macroeconomic models (see Dufourt

et al. [20, 21], Jaimovich [41]). We show that our general formulation encompasses as

special cases all the standard formulations for individual preferences proposed in the lit-

erature, such as the Greenwood et al. (GHH) [30] formulation with no income effect,

Hansen’s [34] formulation with separable consumption and labor, and the King et al.

(KPR) [46] formulation with constant positive income effect. For each version of model

(one-sector and two-sector), we can then derive the range of parameter values consistent

with indeterminacy and compare it with the range of available empirical estimates.

We derive two important conclusions. First, we prove that expectation-driven fluctu-

ations in one-sector RBC models are ruled out for any empirically plausible calibrations

for structural parameters. Second, in sharp contrast, we prove that the existence of

expectation-driven fluctuations is a robust property of two-sector models, in the sense

that they arise for a wide range of empirically credible parameter values. For example,

we show that sunspot fluctuations are compatible with any value of the wage elasticity

of labor supply provided the other critical elasticities are in an appropriate range. Like-

wise, sunspot fluctuations can occur for an arbitrarily small value for the elasticity of

intertemporal substitution (EIS) in consumption provided the degree of income effect is

not too small.

Building on these theoretical results, our second step is to confront the two-sector

model submitted to technological shocks and self-fulfilling prophecies with the data. Fol-

lowing the approach of Schmitt-Grohé [61], we first estimate a bivariate VAR model

involving output in first-difference and the consumption-output ratio on quarterly US

data over the period 1948:1 - 2019:4 (all variables are expressed in log). Following Blan-

chard and Quah [13], we identify two kinds of shocks in the data: permanent shocks and

transitory shocks. The permanent shock is the only one having a permanent effect on

the level of output while leaving the long-run consumption-output ratio unaffected. The

transitory shock is the only one leaving both output and consumption-output ratio un-

affected in the long-run. In the model, a permanent shock is interpreted as a permanent

technological shock on the TFP level, while a transitory shock is interpreted as a sunspot

shock resulting from an exogenous (and self-fulfilling) shift in agents’ expectations. Since

we allow changes in expectations to be correlated with technological shocks, we define

the sunspot shock as the component in agents’ expectations which is uncorrelated with

the fundamental TFP shock.
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Following a one-standard-deviation transitory shock, we find that the response of

output is hump-shaped: output jumps when the shock occurs, reaches a peak after three

quarters, and then slowly returns to its initial level. Consumption reacts very little when

the shock occurs and then gradually increases over time before returning to its initial

level. As predicted by standard permanent income theory, when a transitory shock in

income is observed, the response of consumption is much smoother than the response of

output.

We then use a Simulated Method of Moments – Minimum Distance (SMM–MD)

approach to estimate our model and assess its ability to account for the data. We find that

the model comes extremely close to replicating the empirical IRF for both consumption

and output in response to both permanent and transitory disturbances. In particular, the

model perfectly replicates the hump-shaped response of output to a transitory shock, even

though the assumption of rational expectations requires the sunspot shock to be white

noise. This implies, among other things, that the model generates significant endogenous

persistence, in sharp contrast with standard RBC models. As a result, the model also

replicates the positive autocorrelation of output growth over short horizons found in the

data, another feature that standard RBC models cannot match (Cogley and Nason [17]).

Finally, we show that the model does a very good job of accounting for the standard

“stylized facts” of the business cycle emphasized in the RBC literature, even though

these statistics are not targeted in our SMM-MD approach. We conclude that standard

two-sector models in which self-fulfilling changes in agents’ expectations are a key driving

force are credible candidates for the explanation of the business cycle.

The rest of this paper is organized as follows. In Section 2, we present a literature

review. In Section 3, we analyze the aggregate model. We define the general technology

and the general utility function considered throughout the paper. We present a new and

innovative way of decomposing all the elasticities that characterize preferences, focusing

in particular on income effect. We then study the existence and uniqueness of the steady

state and we prove that sunspot fluctuations are not a realistic outcome of standard

aggregate models for all income effects. In Section 4, we consider the two-sector model

under the same general specification of preferences and technologies as in Section 3. As

a result the existence and uniqueness of the steady state is derived under the same basic

conditions as in the aggregate case. We show that the existence of sunspot fluctuations

is a generic property of two-sector models and fully compatible with empirically relevant

values for all the structural parameters. Section 5 details the data confrontation for our
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two-sector model. Section 6 concludes. All the technical proofs are contained in an online

Appendix.

2 Literature review

The endogenous fluctuations and sunspot literature was initiated by the seminal contri-

butions of Azariadis [3], Cass and Shell [15], Grandmont [28], and Woodford [65]. Yet

Benhabib and Farmer (BF) [7] is the first paper to analyze these issues in the standard

infinite-horizon one-sector model with endogenous labor supply, the workhorse model of

the RBC literature. They show that in this model, indeterminacy occurs under the as-

sumption of a large amount of externalities leading to an upward-sloping labor demand

function. While this model subjected to sunspot shocks has been shown to account

for the main “stylized facts” of the business cycles at least as well as standard RBC

models (see Farmer and Guo [24]), the assumption of large aggregate IRS in production

was found to be inconsistent with the data.1 Since this seminal contribution, a major

challenge in the literature has been to find extensions of this benchmark model capable

of generating expectation-driven business-cycles under empirically realistic values for all

structural parameters. Two strands of the literature address this challenge. The first

seeks to determine how the local indeterminacy properties of the benchmark one-sector

model evolve when some assumptions on preferences or the production function are re-

laxed. The second adds new ingredients to the benchmark model and reconsiders the

issue of indeterminacy in the extended models. We briefly review some critical papers in

these two strands of the literature.

The BF one-sector model is based on an additively separable utility function and

a Cobb-Douglas technology. Many contributions have tried to generalize this formula-

tion to assess whether the existence of sunspot fluctuations could be compatible with a

downward-sloping labor demand function. Pintus [55] introduced a general technology

into the Benhabib-Farmer framework, while Bennett and Farmer [12] and Hintermaier

[39] considered non-separable preferences as defined by King et al. (KPR) [46], still as-

suming a Cobb-Douglas technology. Pintus [56] generalized their formulation to a general

production function. Lloyd-Braga et al. [51] considered general homogenous preferences

and a general technology. The overall message from this literature is that preference and

1See e.g. Basu and Fernald [4] for empirical estimates of aggregate IRS in the US economy and
Aiyagari [1] for a critique of macroeconomic sunspot models relying on a upward sloping aggregate labor
demand curve.
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technology parameters, like the elasticity of intertemporal substitution in consumption,

the degree of income effect on labor supply, the degree of IRS in production, and the

elasticity of substitution between capital and labor, all interact to influence the local

stability properties of the model. Yet in all these models, the existence of expectation-

driven business-cycles requires at least one structural parameter value which appears to

be outside the range of available empirical estimates. Moreover, in most of these papers

there is no attempt to confront the model subjected to sunspot shocks with the data.

In response to this critique of the sunspot literature, some authors have modified the

production structure of the model. Wen [64] proposed a simple extension consisting in

introducing a variable capital utilization rate into the Benhabib-Farmer setup, in the

spirit of Greenwood et al. [30], which has been proved to be sufficient to allow for the

existence of sunspot fluctuations under empirically plausible values for the structural

parameters. Benhabib and Wen [11] also showed that when this model is subjected to

correlated fundamental and sunspot shocks, it can explain many dimensions of observed

business-cycles. However, although this extended model is reported to successfully explain

the Great Recession of the 30s (see Harrison and Weder [37]), the impulse response

of output to a sunspot shock is not hump-shaped, unlike the empirical response to a

typical “demand shock” revealed by Blanchard and Quah [13]. Clearly, for an explanation

of actual business-cycles based on sunspot shocks/self-fulfilling prophecies to be fully

convincing, these models should be able to replicate all the main stylized facts associated

with a canonical demand shock identified in the empirical literature. Considering a more

general utility function and a general production function, Dufourt et al. [22] showed that

a variable capital utilization model could generate a hump-shaped response of output to

an i.i.d sunspot shock, but that the hump is far too persistent for the model to be

considered satisfactory from an empirical perspective.

Following Benhabib and Farmer [7], monopolistic competition and endogenous

markups have also been considered to generate expectations-driven fluctuations in aggre-

gate models. Increasing returns are based on imperfect competition and not on productive

externalities. Gali [26] considers a monopolistic competition model in which the aggre-

gate markup rate depends on the composition of aggregate demand. Sunspot equilibria

are then possible for large markup rates.2 Jaimovich [40] analyzes firms’ entry decision in

an imperfect competition model in which the number of firms in each sector is small and

influences the price elasticity of sectoral demand. A free entry condition is then used to

2Lloyd-Braga et al. [50] show that models with markup variability are basically equivalent to models
with positive output externalities or to models with constant markup and increasing returns.
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close the model. He shows that variable markups associated with firm entry can generate

sunspot fluctuations when the aggregate labor demand curve is upward-sloping. Com-

bined with “material usage” and a variable capital utilization rate, the model can exhibit

sunspot fluctuations at low markup rates and can account for several features of observed

business-cycles. However, like Benhabib and Wen [11], the paper does not consider the

extent to which the model with i.i.d. sunspot shocks is able to match the autocorrelation

function of output growth and the empirical IRF to demand shocks - the two areas in

which sunspot equilibrium models fail, according to Schmitt-Grohé [61].3 Dos Santos Fer-

reira and Dufourt [18] pursue an alternative route and propose a model where free-entry

conditions lead to an indeterminate number of active firms at equilibrium, influenced

by firms’ mutually consistent conjectures on competitors’ behavior. Sunspot shocks in

this case are not required to be serially uncorrelated, and persistent output fluctuations

triggered by correlated sunspot shocks can then be obtained. Wang and Wen [63] exploit

this idea to show that a variable markup model can generate hump-shaped output dy-

namics in response to sunspot shocks. However, these two contributions do not rely on

the local indeterminacy of the steady state to generate sunspot shocks. As such, they

do not belong to the class of papers covered by Schmitt-Grohé [61]’s critique, while this

paper focuses on models that feature this critical property.

Two-sector models have also been considered, again following the seminal contribu-

tion of Benhabib and Farmer [8]. In this paper, Benhabib and Farmer extend their initial

formulation to a two-sector economy producing differentiated consumption and invest-

ment goods but with the same Cobb-Douglas technology characterized by sector-specific

output externalities leading to increasing returns. Building on the fact that capital and

labor can be freely allocated between sectors, they prove that the existence of local inde-

terminacy becomes compatible with a downward-sloping labor demand function. Unlike

their one-sector contribution, it clearly appears that when external effects in each sector

depend on that sector’s aggregate output, factor reallocations across sectors can have

strong effects on marginal products and indeterminacy can occur with much smaller ex-

ternalities. Harrison [35] builds on these results to show that indeterminacy occurs for a

minimum value of the externality in the investment sector, even with no externality in the

consumption sector. All these conclusions have been recently confirmed by Dufourt et al.

[20] considering GHH preferences instead of additively separable ones.4 The model prop-

3In this paper, only the autocorrelation function for the (HP-filtered) level of output is considered,
which is quite different from the autocorrelation function of output growth emphasized by Cogley and
Nason [17].

4See also Guo and Harrison [33].
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erly calibrated solves several empirical puzzles traditionally associated with two-sector

RBC models, but is still not able to replicate the hump-shaped output dynamics. Guo

and Harrison [32] also introduce a variable capital utilization rate into the Benhabib and

Farmer model and confirm that lower externalities are required, without providing any

data confrontation analysis.

Worthy of mention too is all the literature departing from the contribution of Benhabib

and Nishimura [9] and Benhabib et al. [10], in which sector-specific externalities are

introduced in two-sector models with differentiated private technologies and constant

social returns. In such a framework, the existence of local indeterminacy relies on a

capital-intensity reversal between the private and social levels and, as shown in Nishimura

and Venditti [53], requires extreme values for the elasticity of intertemporal substitution

in consumption (EIS) which are not in line with empirical estimates.

All in all, although sunspot fluctuations have been shown to arise much more easily in

extended model formulations, there is still no general analysis in the literature. Actually,

as this review shows, no general paper has so far managed to contradict the statement

by Schmitt-Grohé [61] that models of endogenous fluctuations based on sunspots are not

able to properly replicate the main salient features of the dynamics of macroeconomic

variables under empirically realistic calibrations of the structural parameters.

3 A general aggregate model

We consider a closed economy framework in the spirit of Benhabib and Farmer [7] (BF).

The economy is composed of a large number of identical infinitely-lived agents and a large

number of identical producers. Agents consume, supply labor and accumulate capital.

Firms produce the unique final good which can be used either for consumption or invest-

ment. All markets are perfectly competitive, but there are externalities in production.

3.1 The representative firm: a general technological structure

The production sector is composed of a large number of identical firms which operate

under perfect competition. Output Yt is produced by combining labor Lt and capital Kt.

The technology of each firm exhibits constant returns to scale with respect to its own

inputs and we consider that each of the many firms benefits from positive externalities

due to the contribution of the average levels of labor L̄ and capital K̄. These external

effects are exogenous and not traded in markets. The production function is
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Yt = f(Kt, Lt)e(K̄t, L̄t) (1)

with e(K̄t, L̄t) the externality variable. We follow BF by assuming that externalities

affect the technology in a multiplicative way but we depart from them by not requiring

the production function to be Cobb-Douglas. Rather, our production function is general

and satisfies:

Assumption 1. f(K,L) is C2 over R2
++, increasing in (K,L), concave over R2

++ and

homogeneous of degree one. e(K̄, L̄) is C1 over R++ and increasing in (K̄, L̄). Moreover,

for any given L > 0,

lim
K→0

f1(K,L)e(K,L) = +∞ and lim
K→+∞

f1(K,L)e(K,L) = 0

and, for any given K > 0,

lim
L→0

f2(K,L)e(K,L) = +∞ and lim
L→+∞

f2(K,L)e(K,L) = 0

Firms rent capital units at the real rental rate rt and hire labor at the unit real wage

wt. The profit maximization program of the representative firm,

max
{Yt,Lt,Kt}

Yt − wtLt − rtKt,

leads to the standard demand function for capital Kt and labor Lt:

rt = f1(Kt, Lt)e(K̄t, L̄t) (2)

wt = f2(Kt, Lt)e(K̄t, L̄t) (3)

As will become clear, the production function and the optimal decisions of firms in-

fluence the local dynamics of the model through four crucial elasticities: the elasticity of

output with respect to capital stock s(K,L) (which, at equilibrium, is also the share of

capital in total income), the elasticity of capital-labor substitution σ(K,L), and the elas-

ticities of the externality variable with respect to labor, εeL(K̄, L̄), and capital, εeK(K̄, L̄):

s(K,L) = Kf1(K,L)
f(K,L)

∈ (0, 1), σ(K,L) = − (1−s(K,L))f1(K,L)
Kf11(K,L)

> 0 (4)

εeK(K̄, L̄) = e1(K̄,L̄)K̄

e(K̄,L̄)
, εeL(K̄, L̄) = e2(K̄,L̄)L̄

e(K̄,L̄) (5)

Obviously, the choice of a Cobb-Douglas production function, as in BF, implies

σ(K,L) = 1, whereas the use of a general production function entails σ(K,L) ∈ (0,+∞).

To simplify notation, we will for now denote by s, σ, εeK and εeL the corresponding elas-

ticities evaluated at the steady state. In order to allow for a direct comparison with BF,

the externalities are also expressed as follows:

εeK = sΘk εeL = (1− s)Θl (6)
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where Θk,Θl ≥ 0 are the degrees of increasing returns to scale in capital and labor.

BF assume output externalities, implying Θk = Θl = Θ. We allow for a more general

formulation in which external effects can be factor-specific and independent of each-other.

Finally, we make a standard assumption requiring that the aggregate (i.e., taking

external effects into account) labor demand and capital demand functions are decreasing

in the real wage and in the rental rate of capital, respectively:

Assumption 2. Θk < (1− s)/sσ ≡ Θ̄k and Θl < s/(1− s)σ ≡ Θ̄l

It is well known from BF analysis that when the slope of the aggregate labor demand

curve is positive and greater than the slope of the aggregate labor supply curve, inde-

terminacy and sunspot fluctuations can occur in the one-sector infinite-horizon model.

We rule out this possibility here because it entails extremely high degrees of increasing

returns to scale that are at odds with the data. We will be more specific about realistic

degrees of IRS later in the paper.

3.2 The representative household: a general utility function

The economy is composed of a continuum of mass 1 of identical households. In each

period, the representative household is endowed with ` units of time. Given the real

wage wt and the rental rate of capital rt, the household decides how much of its available

time to allocate to leisure time Lt and hours worked lt, and how much to consume ct.

It also rents its capital stock kt to the representative firms, and accumulates capital

according to the following capital accumulation constraint:

kt+1 = (1− δ + rt)kt + wtlt + dt − ct (7)

where δ ∈ (0, 1) is the capital depreciation rate, and dt are potential dividends redis-

tributed ex-post by firms.

In each period, the utility that the household derives from consumption and leisure

is described by a general instantaneous utility function u(c,L). As in the case of the

productive side of the economy, we want our analysis to be as general as possible. We

thus make the following minimum standard assumptions on the utility function:

Assumption 3. u(c,L) is C2 over R2
++ increasing in each argument, strictly quasi-

concave in (c,L), and satisfies the Inada conditions

limc→0 u1(c,L) = +∞, limc→+∞ u1(c,L) = 0

limL→0 u2(c,L) = +∞ and limL→+∞ u2(c,L) = 0.
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The Inada conditions are introduced to ensure an interior optimum. Furthermore,

to avoid basing our analysis of the local stability conditions and of the occurrence of

sunspot fluctuations on exotic features regarding individual preferences, we introduce the

following standard assumption on consumption and leisure:

Assumption 4. Consumption c and leisure L are normal goods.

Assuming that the intertemporal utility function is additively separable over time,

the representative consumer solves the following lifetime utility maximization program

(where β ∈ (0, 1) is the subjective discount factor):

max
{ct, lt, kt+1}t=0...∞

+∞∑
t=0

βtu(ct, `− lt)

s.t. kt+1 = (1− δ + rt)kt + wtlt + dt − ct, t = 0...∞
k0 given

(8)

Denoting by λt the Lagrange multiplier on constraint (7) and Rt = 1 − δ + rt the net

return factor on capital, the first-order conditions can be written as

u1(ct, `− lt) = λt, (9)

u2(ct, `− lt)
u1(ct, `− lt)

= wt (10)

λt = βRt+1λt+1 (11)

Equation (10) describes the optimal consumption-leisure trade-off, while equations (9)

and (11) jointly describe the optimal arbitrage between consumption and saving (i.e., the

Euler equation). An optimal path must also satisfy the transversality condition:

lim
t→+∞

βtλtkt+1 = 0 (12)

Following Rotemberg and Woodford [59], we can rewrite the optimality conditions

(9-10) in terms of time-invariant Frisch consumption-demand and labor-supply curves

involving the real wage wt and the marginal utility of wealth λt :

ct = c(wt, λt), lt = l(wt, λt) (13)

As was the case for the productive size of the economy, we show later that the local

dynamics of the model around the steady state is determined by a limited number of

critical elasticities. Denote by

εcw = c1(w,λ)w
c

, εcλ = c2(w,λ)λ
c

, εlw = l1(w,λ)w
l

, εlλ = l2(w,λ)λ
l

, (14)

the Frisch elasticities of the demand and supply functions (13), and by

εcc = − u1(c,L)
u11(c,L)c

, (15)
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the elasticity of intertemporal substitution in consumption. We can easily prove the

following Lemma:

Lemma 1. The three critical elasticities εcc, εlw and εlλ are related to the individual

utility function by

εcc = − u1
u11c

, εlw = 1
l

(
−u11u2

u11u22−u12u21

)
, εlλ = 1

l

(
u21u1−u11u2
u11u22−u12u21

) (16)

Moreover, the remaining two elasticities εcw and εcλ are related to εcc, εlw, and εlλ through

the following equations

εcw = C (εlw − εlλ) , εcλ = −εcc + C
(

1− εlλ
εlw

)
εlλ (17)

where C = θ(1−s)/(θ−sβδ) < 1 is the steady state ratio of wage income over consumption

(wl/c), which is independent of the specification of the individual utility function, and

θ = 1− β(1− δ).

Proof. See Appendix 7.1.

An implication of this Lemma is that, as far as the representative consumer’s decision

is concerned, the dynamic properties of the model are completely determined by the three

elasticities εlw, εlλ, and εcc, in addition to the parameter C, which is independent of the

specification of individual preferences.

Using this Lemma, we can immediately derive the following Proposition:

Proposition 1. Under Assumption 3, εcc > 0 and εlw > 0. Moreover, under Assump-

tion 4, εlλ ≥ 0, εcλ ≤ 0, and thus

εcc ≥ Cεlλ(εlw−εlλ)
εlw

≡ εNcc. (18)

Proof. See Appendix 7.2.

The importance of this Proposition is that it shows how assumptions on preferences

(namely Assumptions 3 and 4) naturally translate into restrictions on the critical elas-

ticities εcc, εlw, and εlλ. Note that these restrictions (εcc > 0, εlw > 0, εlλ ≥ 0, and

εcc ≥ εNcc) are actually much simpler than working directly with the standard concavity

and normality assumptions based on the utility function.

Another nice feature of considering these elasticities, instead of considering the first-

order and second-order derivatives of u(·), is that the former have a clear economic

interpretation. The EIS in consumption εcc and the Frisch elasticity of labor supply
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εlw have a well-known interpretation that requires no further discussion. On the other

hand, since λt is the marginal utility of wealth, the elasticity εlλ captures the extent

to which a change in the household’s expected wealth over its entire lifetime affects the

current labor supply decision. Indeed, when, for any reason, lifetime income decreases, the

intertemporal budget constraint obtained from aggregating (7) over time becomes more

restrictive, and λt increases as the household’s consumption choices are more constrained.

As implied by the normality assumption, it follows that consumption and leisure decrease

while hours worked increase. The elasticity εlλ captures the extent to which such a change

in lifetime income affects the current labor supply decision.

In short, εlλ is a properly defined measure of the wealth effect on labor supply. This

elasticity is particularly important because the recent literature has shown that the inten-

sity of this wealth effect plays a significant role in the local stability properties of many

dynamic macroeconomic models (see Dufourt et al. [20, 21], Jaimovich [41]). However,

this literature only addressed particular utility functions in which the wealth effect is

known to be either “positive” (but not precisely defined) or zero. Moreover, these spe-

cific utility functions also require the introduction of other cross-restrictions on the three

critical elasticities defined above. With our analysis, however, the intensity of the wealth

effect on labor supply can be chosen independently of the values given to the other two

elasticities (εlw and εcc).

To better illustrate these points, the following Proposition clarifies the restrictions

implied by some of the most widely used classes of utility functions:

Proposition 2. Under KPR preferences,

u(c,L) =


c1−γ

1−γ v(L), with γ > 0, γ 6= 1

log(c) + log(v(L)), with γ = 1

with L = ` − l and v(L) increasing and concave (if γ ≤ 1) or decreasing and convex (if

γ > 1), the critical elasticities satisfy:

εcc = 1
γ
, εlw = L

l
1

(1−εcc)v′(L)L/v(L)−v′′(L)L/v′(L)
> 0, εlλ = εccεlw.

Under generalized GHH preferences,

u(c, l) = 1
1−γ

(
c− l1+χ

1+χ

)1−γ
,

with γ > 0 and χ ≥ 0, the critical elasticities satisfy:

εcc = 1
γ

(
1− C

1+χ

)
, εlw = 1

χ
, εlλ = 0.

Under Generalized Hansen [34] preferences,
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u(c, l) = c1−γ

1−γ −
l1+χ

1+χ
,

with γ > 0 and χ ≥ 0, the critical elasticities satisfy:

εcc = 1
γ
, εlw = εlλ = 1

χ
. (19)

According to Proposition 3, in the case of KPR preferences, only two of the three

critical elasticities εcc, εlw, and εlλ are independent since they are related through the

equation εlλ = εccεlw. In the case of generalized GHH preferences, the restriction εlλ = 0

is well-known, having been introduced on purpose to eliminate the wealth effect on labor

supply. However, there is often far less awareness that, with this class of preferences,

changing the calibration of the preference parameter χ to change the value of the wage

elasticity of the labor supply, εlw = 1/χ, meanwhile generates a change in the EIS in

consumption, εcc. In fact, Proposition 2 implies that changing the calibration of χ to χ′ 6=
χ also requires adjusting the calibration of γ to γ′ =

(
1− C

1+χ′

)
εcc if one wants to keep the

initial value of the EIS unchanged. Finally, under generalized Hansen preferences, a strong

restriction relating the two Frisch elasticities of the labor supply curve is introduced, since

we have in this case: εlw = εlλ.

The particular case of the Jaimovich-Rebelo formulation

Jaimovich and Rebelo (JR) [42] were the first to discuss the importance of the income

effect on the occurrence of indeterminacy and sunspot fluctuations. Their discussion is

based on the following specification of the instantaneous utility function:

u(ct, lt, Xt) =

[
ct−

l
1+χ
t
1+χ

Xt

]1−γ
−1

1−γ
(20)

with Xt = cφtX
1−φ
t−1 and φ ∈ [0, 1]. As they state, this specification nests as polar cases

the GHH utility function (when φ = 0) and the KPR utility function (when φ = 1)

formulations. The magnitude of the income effect is therefore controlled by varying the

value of γ between these two extremes.

Assuming γ = 1 and Θk = Θl = Θ, Jaimovich [41] shows that, for some values of

Θ compatible with a negatively-slopped labor demand function, there exist two bounds

0 < φ < φ < 1 such that when φ ∈ (φ, φ) local indeterminacy and sunspot fluctuations

occur under realistic values for all the structural parameters. The conclusion is that the

income effect has a non-linear effect on the range of values consistent with indeterminacy,

which appears to arise under intermediate amounts of income effect, and to be ruled out

with either low or high amounts.
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A difference between the JR specification and our specification is that, except for the

two polar cases φ = 0 and φ = 1, the JR utility function assumes that an additional state

variable Xt enters the utility function:

Xt =
t−1∏
s=0

c
φ(1−φ)s

t−s X
(1−φ)s

0

It follows that the utility function at time t depends on the whole history of past consump-

tion decisions. The result is that the consumption demand and labor supply decisions no

longer write c(wt, λt) and l(wt, λt) but c(wt, λt, Xt) and l(wt, λt, Xt). In short, compared

to our specification, such a formulation introduces two additional elasticities εcX and εlX

associated with consumption habits which generate a dynamic link between current and

future consumption and labor supply decisions – what Jaimovich refers to as a form of

“dynamic” income effects.5

To avoid the complexities of introducing additional state variables, Nourry et al.

[54] and Dufourt et al. [21] consider a modified JR utility function which only involves

current-period variables, namely

u(ct, lt) =

[
ct−

l
1+χ
t
1+χ

cφt

]1−γ
−1

1−γ
(21)

We recover the two polar cases of a GHH and a KPR utility function associated with

φ = 0 and φ = 1, respectively. Moreover, it is now possible to vary the values of the

three critical elasticities εcc, εlw, and εlλ by considering alternative calibrations for the

three parameters γ, χ, and φ. However, the critical elasticities are very cumbersome

combinations of these parameters, and when one parameter is adjusted so as to change

the value of one elasticity, the other parameters also have to be adjusted to maintain the

value of the other elasticities constant. It is therefore much better to work with a general

utility function and calibrate the three critical elasticities directly, as we do in this paper.

3.3 Intertemporal equilibrium and steady state

At a symmetric general equilibrium of the economy, prices {wt, rt, λt} adjust so that all

markets clear at any date t, with the externality variables satisfying (kt, lt) = (kt, lt)

for any t. Imposing the latter equalities in the set of physical constraints and optimality

conditions (1)-(3), (11), and (13), we obtain that a symmetric general equilibrium satisfies

in any t,

5As we will show later on, absent these additional ingredients, sunspot fluctuations cannot occur
under empirically relevant calibrations for any size of income effect.
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λt = β(1− δ + rt+1)λt+1

kt+1 = (1− δ)kt + yt − ct

rt = f1(kt, lt)e(kt, lt)

wt = f2(kt, lt)e(kt, lt) (22)

ct = c(wt, λt)

lt = l(wt, λt)

yt = f(kt, lt)e(kt, lt)

together with the initial condition k0 given and the transversality condition (12).

From these dynamic equations, we immediately derive that if a steady state exists,

the rental rate of capital at the steady state is

r∗ = 1−β(1−δ)
β

≡ θ
β

In order to study the existence and uniqueness of a steady state, we analyze the existence

of a 6-uple (k∗, y∗, l∗, c∗, w∗, λ∗) solution to the set of equations

f1(k∗, l∗)e(k∗, l∗) =
θ

β
(23)

f2(k∗, l∗)e(k∗, l∗) =
u2(c∗, `− l∗)
u1(c∗, `− l∗)

(24)

c∗ = f(k∗, l∗)e(k∗, l∗)− δk∗ (25)

w∗ = f2(k∗, l∗)e(k∗, l∗) (26)

y∗ = f(k∗, l∗)e(k∗, l∗) (27)

c∗ = c(w∗, λ∗) (28)

Note that, for analytical convenience, instead of considering the Frisch labor supply

equation l∗ = l(w∗, λ∗), we reintroduce the initial optimality condition involving the

marginal rate of substitution between consumption and labor.

We first prove the following Lemma:

Lemma 2. At the steady state, the ratios y∗/k∗, c∗/k∗ and w∗l∗/c∗ satisfy

y∗

k∗
= θ

sβ
, c∗

k∗
= θ−sβδ

sβ
, and w∗l∗

c∗
= θ(1−s)

θ−sβδ ≡ C

Proof. See Appendix 7.3.

Using this Lemma, we derive the following Proposition:

Proposition 3. Under Assumptions 1-4, a unique steady state generically exists. More-

over, for any given calibration of structural parameters, there always exists a value `∗ > 0
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such that when ` = `∗, the steady state is constant across calibrations with l∗ = l̄∗ < `∗.

Proof. See Appendix 7.4.

An implication of Proposition 3 is that, when analyzing how alternative calibrations

for the structural parameters affect the stability properties of the model, it is possible to

maintain the steady state (k∗, y∗, l∗, c∗, w∗, λ∗) unchanged by adjusting the value for `∗

accordingly. In other words, we can follow the usual practice of “calibrating” the level of

hours worked at the steady state without difficulty.

3.4 Local stability analysis

We now carry out a thorough analysis of the local stability properties of the steady state

when the dynamics is defined by (22). In order to do so, we log-linearize the set of

equations in (22) around the unique steady state. Using Lemmata 1 and 2, we obtain

(where hatted variables denote percentage deviations from the steady state):

λ̂t = λ̂t+1 + θr̂t+1

k̂t+1 = (1− δ)k̂t + θ
sβ
ŷt −

(
θ−sβδ
sβ

)
ĉt

r̂t =
(
−1−s

σ
+ sΘk

)
k̂t +

(
1−s
σ

+ (1− s)Θl

)
l̂t

ŵt =
(
s
σ

+ sΘk

)
k̂t +

(
− s
σ

+ (1− s)Θl

)
l̂t

ĉt = C (εlw − εlλ) ŵt +
(
−εcc + C

(
1− εlλ

εlw

)
εlλ

)
λ̂t

l̂t = εlwŵt + εlλλ̂t

ŷt = s(1 + Θk)k̂t + (1− s) (1 + Θl) l̂t

This is a system of seven equations in seven variables, only two of these equations

being dynamic. To analyze the local stability properties of the model, we first reduce the

system by using the five static equations to eliminate five variables, ŷt, ĉt, l̂t, ŵt, and r̂t,

from the dynamic equations. The obtained system of minimal dimension – two dynamic

equations in two variables, k̂t and λ̂t − can be expressed as: k̂t+1

λ̂t+1

 =

 J11 J12

J21 J22

 k̂t

λ̂t

 ≡ J

 k̂t

λ̂t


where J is the Jacobian matrix of the underlying non-linear 2-dimensional system eval-

uated at the steady state, which is given in the following Proposition:
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Proposition 4. The elements of the Jacobian matrix J are:

J11 = 1
β

{
1 + θΘk +

θ(1−s)( 1
σ

+Θk)(εlwΘl+εlλ)

1+εlw[ sσ−Θl(1−s)]

}
, J12 = 1

sβ

{
θ(1−s) εlλ

εlw
(εlwΘl+εlλ)

1+εlw[ sσ−Θl(1−s)]
+ (θ − sβδ)εcc

}
J21 = θ

1−s
σ
−sΘk−

εlw
σ

[Θl(1−s)+sΘk]

1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1
σ

+Θl)
J11, J22 =

1+εlw[ sσ−Θl(1−s)]+θ{ 1−s
σ
−sΘk−

εlw
σ

[Θl(1−s)+sΘk]}J12
1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1

σ
+Θl)

Proof. See Appendix 7.5.

The local dynamics of the model is thus determined by the nine structural parameters

constituting the matrix J : four of them concern the productive side of the economy,

namely s, σ, Θk, and Θl, four of them concern individual preferences, namely β, εcc, εlw,

εlλ, and finally there is the depreciation rate of capital δ.

Using the geometrical methodology of Grandmont et al. [29] as presented in the online

Appendix 7.6, we prove that there exist two bifurcation loci in the parameter space such

that, when εcc is increased from 0 to +∞, a change in the stability properties of the steady

state occurs when εcc crosses any of the two loci. These results are formally summarized

in the following Lemma:

Lemma 3. Under Assumptions 1-4, let Ω = (β, δ, s, σ,Θk,Θl) be the set of structural

parameters. For any ω ∈ Ω such that σ ≤ σ̄ ≡ θ/(1 − β), there exist two bifurcation

curves crossing the 3-dimensional plane (εlw, εlλ, εcc) and generating a change in the local

stability properties of the steady state:

– a flip bifurcation curve εFcc (εlw, εlλ) associated with one real eigenvalue of J cross-

ing -1,

– a (degenerate) transcritical bifurcation curve εTcc (εlw, εlλ) associated with one real

eigenvalue of J crossing 1.

These bifurcation curves appear for any εlw > εlw, with

εlw ≡ 1−s−σsΘk
(1−s)Θl+sΘk

.

There also exists one critical bound εlλ (εlw) such that D = 1 when εlλ = εlλ (εlw). This

critical bound exists for any (Θk,Θl) such that Θk ∈ [0,Θk) and Θl ∈ (Θl, Θ̄l), with

Θk ≡ sβ
(1−s)σ−(1−β)

, Θl ≡ 1−β+Θk
β

.

The formal expressions of the bifurcation curves and the critical bound are given in Ap-

pendix 7.6.

Proof. See Appendix 7.6.
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The following Theorem now provides a complete picture of the local stability proper-

ties of the aggregate model.

Theorem 1. Under Assumptions 1-4, let σ ≤ σ̄ ≡ θ/(1−β) and consider the bifurcation

curves, critical bound, and thresholds defined in Lemma 3. Then the following results hold:

Case 1 - Low wage elasticity of labor supply: εlw ∈ (0, εlw).

The steady state is a saddle-point.

Case 2 - High wage elasticity of labor supply: εlw > εlw.

– Under low capital externalities Θk ∈ [0,Θk), the steady state is

i) for Θl ∈ [0,Θl),

- a saddle-point if εcc ∈ [0, εTcc) ∪ (εFcc,+∞),

- a source if εcc ∈ (εTcc, ε
F
cc).

ii) for Θl ∈ (Θl, Θ̄l),

- a saddle-point if εcc ∈ [0, εTcc) ∪ (εFcc,+∞),

- a source if εcc ∈ (εTcc, ε
F
cc) and εlλ < εlλ(εlw),

- a sink if εcc ∈ (εTcc, ε
F
cc) and εlλ > εlλ(εlw).

– Under large capital externalities Θk ∈ (Θk, Θ̄k), the steady state is

- a saddle-point if εcc ∈ [0, εTcc) ∪ (εFcc,+∞),

- a source if εcc ∈ (εTcc, ε
F
cc).

Proof. See Appendix 7.7.

Theorem 1 – characterizing the local stability properties of the one-sector model for

any specification of individual preferences, any specification for the production function,

and any degrees of IRS in capital and labor consistent with downward-sloping labor and

capital demand curves – considerably generalizes all existing results in the literature.6

Two main conclusions can be drawn from this Theorem. First, from a theoretical stand-

point, it is possible to identify an area in the parameter space such that the steady state

is locally indeterminate and sunspot fluctuations exist, even though externalities are mild

enough to ensure downward-sloping capital demand and labor demand curves (see case

6The literature shows that sunspot fluctuations require a sufficiently large (possibly larger than one)
elasticity of capital-labor substitution and/or a sufficiently large elasticity of intertemporal substitution
in consumption. Moreover, local indeterminacy is ruled out under GHH preferences with no-income
effect and KPR preferences (see Bennett and Farmer [12], Hintermaier [39], Lloyd-Braga et al. [51], and
Pintus [55, 56]).
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2(ii) of the Theorem). Second, as we show below, this area of indeterminacy nonetheless

does not occur for any empirically plausible calibrations for structural parameters. The

robust conclusion is then that in the one-sector model, indeterminacy and the existence

of sunspot fluctuations are ruled out for any plausible parameter configuration.

To illustrate this statement, it is now useful to introduce some empirical restrictions

on the nine structural parameters s, σ, Θk, Θl, β, εcc, εlw, εlλ and δ, that influence the

local stability properties of the steady state. We take advantage of the fact that a narrow

range of empirical estimates exist for several of these parameters so as to concentrate

our analysis on the remaining critical elasticities. In particular, it is widely accepted in

the literature that, at a quarterly frequency, the subjective discount factor is close to

β = 0.99, consistent with a long-run annual return on capital of around 4%. Likewise,

empirical estimates of the annual depreciation rate of capital are typically around 10%,

implying δ = 0.025. In the US, the share of capital income in total income is typically

estimated around 30%, implying a capital elasticity in the production function close to

s = 0.3. Estimates for other critical elasticities are often more variables across empirical

studies, but a range including most available empirical estimates can nonetheless be

defined. For example, based on the recent empirical literature (see e.g. León-Ledesma

et al. [49], Klump et al. [48], Duffy and Papageorgiou [19] and Karagiannis et al.

[44]), we consider that a plausible range for the capital-labor elasticity of substitution

is σ ∈ (0, 2). Likewise, using the various empirical estimates provided by Campbell [14],

Vissing-Jorgensen [62], and Gruber [31], we consider that a plausible range for the EIS in

consumption is εcc ∈ (0, 2). Finally, estimates of increasing returns to scale by Basu and

Fernald [4] for US manufacturing industry provide a value of around 10% with standard

deviation 0.33, which enables us to define a range of empirically credible values for the

aggregate degree of IRS in the model, Θ = (1−s)Θl+sΘk, of Θ ∈ (0, 0.43). Regarding the

Frisch wage-elasticity of the labor supply curve, it is well known from the literature that

for various reasons this elasticity can be large at the aggregate level even though it is small

at the individual level (see e.g. Rogerson and Wallenius [58], and Prescott and Wallenius

[57] for a discussion). Our choice here is to not restrict this elasticity a priori in order to

include Hansen’s [34] specification of individual preferences – associated with an infinitely

elastic aggregate labor supply curve – into the analysis, since these preferences are widely

used in the DSGE literature. This leads us to introduce the following Assumption:

Assumption 5. Realistic structural parameters: β = 0.99, δ = 0.025, s = 0.3,

σ ∈ (0, 2), εcc ∈ (0, 2) and Θ ∈ (0, 0.43) with Θ = (1− s)Θl + sΘk.
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We then obtain the following Proposition which follows directly from Theorem 1:

Proposition 5. Under Assumptions 1-5, the steady state is a saddle-point.

Proof. See Appendix 7.8.

Proposition 5 illustrates the practical importance of Theorem 1 since it shows that,

even though from a theoretical standpoint some parameter configurations exist for which

the steady-state is locally indeterminate (a sink) or fully unstable (a source), the steady-

state is always a saddle point when we restrict parameters to the range of empirically

credible values. This is true for any specification of the production function or of the

individual utility function.

It is also worthwhile to emphasize that even though Proposition 5 is obtained for

specific values for (β, δ, s), it actually remains valid in a significantly large neighborhood

of these values covering all empirically interesting cases. In particular, corollary 5 holds

for any plausible value close to β = 0.99 and δ = 0.025, and for the whole interval

s ∈ (0.25, 0.4) of empirically available estimates for the capital income share across in-

dustrialized countries.7 On the other hand, we can also completely get rid off Assumption

5 and consider instead other restrictions on structural parameters frequently imposed in

the literature to show again that indeterminacy is not a realistic outcome of the one-sector

model. The following Proposition summarizes these implications:

Proposition 6. Under Assumptions 1-4, for any σ > 0, local indeterminacy is ruled out

in the following cases: i) Θk = Θl, ii) εlw = 0, iii) εlλ = 0, iv) Θl = 0.

Proof. See Appendix 7.9.

Case i) of Proposition 6 corresponds to the standard specification of Benhabib and

Farmer [7] with output externalities and was initially proved by Hintermaier [39] under the

assumption of a Cobb-Douglas technology. Here, we extend this result to any production

function. Cases ii), iii), and iv) correspond, respectively, to the case of an inelastic labor

supply, to the case of GHH preferences with no-income effect on labor supply, and to the

case in which externalities occur solely through the aggregate capital. In all these cases,

indeterminacy is ruled out under all otherwise standard assumptions regarding the utility

and production functions defined in Assumptions 1-4.

7Cross-country estimates of the capital income share are in the range 25%-40%. See for instance
Karabarbounis and Neiman [43].
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4 A general two-sector model

As emphasized by Jaimovich and Rebelo [42], aggregate and sectoral comovement are

central features of business-cycles. We now assess whether indeterminacy and sunspot

fluctuations are a more likely outcome of multisector infinite horizon models. There

are of course many possible ways of constructing multisector economies. To facilitate

comparison with the existing literature, we choose to focus our analysis on a two-sector

model similar to the one analyzed by Benhabib and Farmer [8], except that we do not

restrict the specifications of the utility and the production functions.8

Thus, we consider a two-sector economy in which firms produce differentiated con-

sumption and investment goods using capital and labor. As in Benhabib and Farmer

[8], we assume that capital and labor are perfectly mobile across sectors, and that both

sectors produce their goods with the same technology at the private level. However, we

assume, as in Dufourt et al. [20], that only the firms in the investment good sector are

affected by productive externalities. This choice is based on the fact that empirical esti-

mates for the degree of IRS in the consumption sector are close to zero, while they are

positive and significant in the investment sector (see e.g. Harrison [36]).

Given these assumptions, firms in the consumption sector produce output Yct accord-

ing to the production function:
Yct = f(Kct, Lct) (29)

where Kct and Lct are capital and labor allocated to the consumption sector.

In the investment sector, output YIt is also produced according to the same production

function, but is affected by a productive externality

YIt = f(KIt, LIt)e(K̄It, L̄It) (30)

where KIt and LIt are the numbers of capital and labor units used in the production of

the investment good, and e(K̄It, L̄It) is the externality variable. The functions f(., .) and

e(., .) of course satisfy Assumption 1. Following Benhabib and Farmer [8], we also restrict

the specifications of externalities to consider output externalities, satisfying Θk = Θl =

Θ ≥ 0.9 Recall from Proposition 6 that under such a restriction, local indeterminacy is

completely ruled out in the aggregate model.

Assuming that factor markets are perfectly competitive and that capital and labor

inputs are perfectly mobile across the two-sectors, the first-order conditions for profit

8In Benhabib and Farmer [8], consumers have Hansen’s type of individual preferences and the pro-
duction functions are Cobb-Douglas.

9This assumption allows us to avoid having to consider a much larger number of cases.
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maximization of the representative firm in each sector are:

rt = f1(Kct, Lct) = ptf1(KIt, LIt)e(K̄It, L̄It), (31)

wt = f2(Kct, Lct) = ptf2(KIt, LIt)e(K̄It, L̄It) (32)

where rt, pt, and wt are respectively the rental rate of capital, the price of the investment

good, and the real wage rate at time t, all in terms of the price of the consumption good,

which is chosen here as the numeraire.

As in the previous section, we restrict the degree of IRS to ensure that the capital and

labor demand functions are negatively sloped. Under output externalities, this is ensured

by the following Assumption, replacing Assumption 2 above:

Assumption 6. Θ < s/(1− s)σ

Denoting by it the investment, the budget constraint faced by the representative

household is
ct + ptit = rtkt + wtlt + dt, (33)

where again dividends dt are zero at equilibrium. The law of motion of the capital stock

is:
kt+1 = (1− δ)kt + it (34)

The household then maximizes its present discounted lifetime utility

max
{kt+1,ct,lt,it}∞t=0

+∞∑
t=0

βtu(ct, `− lt) (35)

subject to (33), (34), and k0 given. The first-order conditions and the transversality

condition are the same as (9)-(12), with the return factor now defined as:

Rt+1 = (1−δ)pt+1+rt+1

pt
(36)

4.1 Intertemporal equilibrium and steady state

We consider symmetric rational expectation equilibria which consist of prices

{rt, pt, wt}t≥0 and quantities {ct, lt, it, kt, Yct, YIt, Kct, KIt, Lct, LIt}t≥0, with the external-

ity variables satisfying (KIt, LIt) = (KIt, LIt) for any t, thereby satisfying the household’s

and the firms’ first-order conditions as given by (9)-(11) and (31)-(32), the technological

and budget constraints (29)-(30) and (33)-(34), the market equilibrium conditions for the

consumption and investment goods

ct = Yct, it = YIt, (37)

with GDP defined as yt = ct + ptit, the market equilibrium conditions for capital and

labor
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Kct +KIt = kt, Lct + LIt = lt, (38)

and the transversality condition (12).

Combining (29)-(30) and firms’ first-order conditions (31)-(32), we derive

pte(KIt, LIt) = 1 and that the equilibrium capital-labor ratios in the consumption

and the investment sectors are identical and equal to kt/lt = Kct/Lct = KIt/LIt =

swt/ ((1− s)rt). Combining this with Assumption 1, aggregate output yt can be rewrit-

ten as yt = f(kt, lt), and the first-order conditions with respect to capital and labor in the

consumption and investment sectors can be expressed as rt = f1(kt, lt) and wt = f2(kt, lt).

It follows that a symmetric general equilibrium satisfies in any t,

λt = βλt+1

[
(1− δ)pt+1 + rt+1

pt

]
(39)

kt+1 = (1− δ)kt +
yt − ct
pt

(40)

rt = f1(kt, lt) (41)

wt = f2(kt, lt) (42)

pt =
1

e(KIt, LIt)
(43)

ct = c(wt, λt) (44)

lt = l(wt, λt) (45)

yt = f(kt, lt) (46)

Kct =
sct
rt

(47)

Lct =
(1− s)rtKct

swt
(48)

kt = KIt +Kct (49)

lt = LIt + Lct (50)

together with the initial condition k0 given and the transversality condition (12).

It is easy to show that the same conclusion as in Proposition 3 applies here: under

Assumptions 1, 3, 4, and 6, there exists a unique steady state. Moreover, this steady state

can be maintained constant across calibrations by adjusting the value of ` accordingly.10

4.2 Local stability analysis

As in the former section, we log-linearize the system of equations (39)-(50) around the

steady state. Once again, this system contains only two dynamic equations, so that it

10A proof of this statement can be provided upon request.

23



can be reduced to a system of minimal dimension, i.e. a system involving two dynamic

equations in two variables k̂t and λ̂t. This reduced system can be expressed as: k̂t+1

λ̂t+1

 =

 J11 J12

J21 J22

 k̂t

λ̂t

 ≡ J

 k̂t

λ̂t


where the Jacobian matrix J is given in the following Proposition:

Proposition 7. The elements of the Jacobian matrix J are:

J11 = A22B11+B21

A21
, J12 = A22B12−B22

A21
, J21 = B11, J22 = −B22

with

A21 = 1 +
θ(1−s)
σ

εlλ

1+
sεlw
σ

− (1−δ)Θ
sδ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]
, A22 =

θ(1−s)
σ

1+
sεlw
σ

+ θ(1−δ)Θ
δ

1+
sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

B11 = 1+Θ
sβ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]
, B12 = 1

β

[
1 +

θ(1−s)
σ

εlλ

1+
sεlw
σ

+ θΘ
1+

sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

]

B21 = 1− Θ
sβδ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]
, B22 = θΘ

βδ

1+
sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

Proof. See Appendix 7.10.

We can thus carry out the same kind of analysis as in Section 2 and provide a detailed

local stability analysis of the steady state, considering a family of economies parameter-

ized by the three elasticities (εcc, εlw, and εlλ) that govern the EIS in consumption, the

wage elasticity, and the income effect, and by the technological parameters σ and Θ gov-

erning the elasticity of capital-labor substitution and the degree of increasing returns to

scale (IRS) in the investment sector.

Similar to the previous section, we prove in the online Appendix 7.11 that there exist

three bifurcation loci in the parameter space such that, when εcc is increased from 0 to

+∞, a change in the stability properties of the steady state occurs when εcc crosses any

of the three loci. We establish the following Lemma:

Lemma 4. Under Assumptions 1, 3, 4 and 6, let Ω = (β, δ, s, σ,Θ) be the set of struc-

tural parameters. For any ω ∈ Ω, there exist three bifurcation curves crossing the 3-

dimensional plane (εlw, εlλ, εcc) and generating a change in the local stability properties of

the steady state:

- a flip bifurcation curve εFcc (εlw, εlλ) combined with one real eigenvalue of J

crossing -1,
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- a Hopf bifurcation curve εHcc (εlw, εlλ) combined with two complex conjugate

eigenvalues of J crossing the unit circle,

- a (degenerate) transcritical bifurcation curve εTcc (εlw, εlλ) combined with one real

eigenvalue of J crossing 1.

There also exist four critical bounds ε̄lλ (εlw) , ε̃lλ (εlw) , ε̂lλ (εlw) and εlλ (εlw) such that:

- εHcc (εlw, εlλ) = 0 when εlλ = ε̄lλ (εlw) ,

- εFcc (εlw, εlλ) = 0 when εlλ = ε̃lλ (εlw) ,

- εHcc (εlw, εlλ) = εTcc (εlw, εlλ) when εlλ = ε̂lλ (εlw) ,

- εFcc (εlw, εlλ) = εTcc (εlw, εlλ) when εlλ = εlλ (εlw) .

The formal expressions of these bifurcation curves and critical bounds are given in Ap-

pendix 7.11.

Proof. See Appendix 7.11.

The critical bounds help us to define areas in the 3-dimensional plane where the

bifurcation curves exist (or not) when εcc is gradually increased from 0 to +∞. For

example, the flip bifurcation exists whenever εlλ ∈ (0, ε̃lλ).
11 The transcritical bifurcation

has a vertical asymptote at εlw = (σ̃ − σ)/s, so that the transcritical bifurcation exists

whenever εlw >εlw. Finally, if εlw ≤ εlw, the Hopf bifurcation exists whenever εlλ ∈ (0, ε̄lλ),

whereas if εlw >εlw, the Hopf bifurcation exists whenever εlλ ∈ (ε̂lλ, ε̄lλ).

It is also easy to show that whenever both curves exist, the flip and Hopf bifurcations

satisfy 0 < εFcc < εHcc <∞. Likewise, whenever both curves exist, the flip and transcritical

bifurcations satisfy 0 < εFcc < εTcc <∞ if εlλ < εlλ, and 0 < εTcc < εFcc <∞ if εlλ > εlλ.

We can now establish the following Theorem, providing a complete picture of the

stability properties of the 2-sector model.

Theorem 2. Under Assumptions 1, 3, 4, 5, and 6, let σ < σ̄ ≡ min{2, σ̃} with σ̃ =

(1− s)(1 + Θ)/Θ. Consider the bifurcation curves and critical curves defined by Lemma

4, and define by εlw = (σ̃−σ)/s and by εlw the unique solution of ε̃lλ (εlw) = ε̂lλ (εlw). We

have:

Case 1 - Low wage elasticity of labor supply: εlw ∈ (0, εlw).

11To simplify notations, from now on we no longer explicitly mention the dependence of the critical
bounds on εlw and the dependence of the bifurcation curves on εlw and εlλ.
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i) when εlλ ∈ [0, ε̃lλ), the steady state is

- a saddle-point for any εcc ∈ [0, εFcc),

- a sink for any εcc ∈ (εFcc, ε
H
cc),

- a source for any εcc > εHcc.

ii) when εlλ ∈ (ε̃lλ, ε̄lλ), the steady state is

- a sink for any εcc ∈ [0, εHcc),

- a source for any εcc > εHcc.

iii) when εlλ > ε̄lλ, the steady state is a source for any εcc ≥ 0.

Case 2 - Intermediate wage elasticity of labor supply: εlw ∈ (εlw, εlw).

i) when εlλ ∈ [0, εlλ), the steady state is

- a saddle-point for any εcc ∈ [0, εFcc),

- a source for any εcc ∈ (εFcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

ii) when εlλ ∈ (εlλ, ε̂lλ), the steady state is

- a saddle-point for any εcc ∈ [0, εFcc),

- a sink for any εcc ∈ (εFcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

iii) when εlλ ∈ (ε̂lλ, ε̃lλ), the steady state is

- a saddle-point for any εcc ∈ [0, εFcc),

- a sink for any εcc ∈ (εFcc, ε
H
cc),

- a source for any εcc ∈ (εHcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

iv) when εlλ ∈ (ε̃lλ, ε̄lλ), the steady state is

- a sink for any εcc ∈ (0, εHcc),

- a source for any εcc ∈ (εHcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

v) when εlλ > ε̄lλ, the steady state is

- a source for any εcc ∈ (0, εTcc),

- a saddle-point for any εcc > εTcc.

Case 3 - High wage elasticity of labor supply: εlw > εlw.

i) when εlλ ∈ [0, εlλ), the steady state is

- a saddle for any εcc ∈ (0, εFcc),
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- a source for any εcc ∈ (εFcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

ii) when εlλ ∈ (εlλ, ε̃lλ), the steady state is

- a saddle for any εcc ∈ (0, εFcc),

- a sink for any εcc ∈ (εFcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

iii) when εlλ ∈ (ε̃lλ, ε̂lλ), the steady state is

- a sink for any εcc ∈ (0, εTcc),

- a saddle-point for any εcc > εTcc.

iv) when εlλ ∈ (ε̂lλ, ε̄lλ), the steady state is

- a sink for any εcc ∈ (0, εHcc),

- a source for any εcc ∈ (εHcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

v) when εlλ > ε̄lλ, the steady state is

- a source for any εcc ∈ (0, εTcc),

- a saddle-point for any εcc > εTcc.

Proof. See Appendix 7.12.

4.3 Comments and interpretation

Theorem 2 is the second central result of our paper. To illustrate its practical importance,

Figure 1 displays the local stability properties of the two-sector model in the 3-dimensional

plane defined by (εlλ, εlw, εcc), when a benchmark calibration for the remaining parameters

is used : namely β = 0.99, δ = 0.025, s = 0.3, σ = 1 (Cobb-Douglas production function)

and Θ = 0.3, a value which is close to the point estimate obtained by Harrison [36] for the

degree of increasing returns to scale in the investment sector in the US economy (4-digit

data).12 We see that, in sharp contrast with the one-sector model, there now exists a

wide range of values for (εlw, εlλ, εcc) such that the steady state is locally indeterminate

and sunspot equilibria emerge. In fact, indeterminacy is only robustly excluded in the

following three cases: (i) when a large Frisch labor supply elasticity εlw is combined with

a small or a large wealth effect on labor supply εlλ (cases 2(i) and 3(i) and cases 2(v)

12As a robustness check, we also assess how these local stability properties vary when other calibrations
for σ and Θ are considered, and we show that our main conclusions hold. These last results are reported
in the separate appendix.
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and 3(v) in the Theorem, respectively), (ii) when a small labor supply elasticity εlw is

combined with a large wealth effect εlλ (case 1 in the theorem), and (iii) in all other cases,

when the EIS in consumption εcc is too large.
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Figure 1: Local stability properties of the two-sector model. Benchmark calibration with
σ = 1 and Θ = 0.3.

Clearly, the range of values associated with indeterminacy is entirely consistent with

empirical estimates: Indeterminacy robustly occurs for a large set of values of the EIS

in consumption in the range εcc ∈ (0, 2) and for various configurations for the wage and

wealth elasticities of the labor supply curve (εlw, εlλ). This includes very large values for

the latter two elasticities (as in Hansen’s type of preferences with infinitely elastic labor

supply, εlw = εlλ = +∞) or very small values for the wage-elasticity εlw consistent with

micro-level estimates.13 To further illustrate this point, Figure 2 displays the stability

property areas when the range of values considered for εlw and εlλ is restricted to (0,5).14

As can be seen, indeterminacy continues to arise in this configuration for a very wide

range of values for εcc in the realistic interval (0,2), including values that are arbitrarily

13As is well kown, a lengthy discussion exists in the literature about how to calibrate the Frisch wage-
elasticity of the aggregate labor supply curve. Both theoretical considerations and empirical evidence
point toward small values at the individual level but greater values at the aggregate level (see for example
Rogerson and Wallenius [58] for a discussion). Meanwhile, it is well known that standard RBC-DSGE
models do not perform well when the wage elasticity of the aggregate labor supply is too low, which
explains the popularity of the class of preferences suggested by Hansen [34].

On the other hand, there is very little empirical evidence on the wealth-elasticity εlλ. The main
difficulty is that this elasticity captures the effect of a marginal increase in intertemporal wealth on labor
supply, and that exogenous variations enabling this elasticity to be identified are very difficult to find
in the data (see the lengthy discussion and relevant references to the literature in Kimball and Shapiro,
[45]). Analyzing data from a thought-experiment survey conducted by the Health and Retirement Study
(HRS), Kimball and Shapiro [45] tend toward the conclusion that the elasticities εlw and εlλ are rather
small. Yet, their estimations assume an equality between both elasticities (as imposed by Hansen’s type
of preferences), while from a theoretical standpoint there is no reason to assume that they are equal.

14Rogerson and Wallenius [58], and Prescott and Wallenius [57] suggest benchmark values around 3
to calibrate the aggregate wage elasticity of labor supply.
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close to 0. This substantiates our conclusion that indeterminacy and the existence of

sunspot equilibria are very robust properties of the competitive two-sector model .
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Figure 2: Local stability properties for low labor supply elasticities (benchmark calibration
with σ = 1 and Θ = 0.3).

Another contribution of Theorem 2 lies in determining whether indeterminacy can

arise (or not) when particular specification of individual preference frequently are used.

To illustrate this, Figure 3 displays the area in the (εlw, εlλ) plane for which local in-

determinacy emerges for some values of εcc in the appropriate range (0, 2). The figure

also indicates the restrictions imposed by specific classes of utility functions: GHH utility

functions associated with εlλ = 0, KPR utility functions associated with εlλ = εccεlw, and

generalized Hansen preferences associated with εlλ = εlw.15
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Figure 3: Potential indeterminacy area and standard specification of individual prefer-
ences.

As can be seen, local indeterminacy and the existence of sunspot fluctuations can be

15Note that in the particular case of KPR preferences with εcc = 1, we obtain the same same restriction
εlλ = εlw as with Hansen preferences, even though their implications for εcc differ (see Proposition 2).
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obtained for all classes of preferences. In the case of GHH preferences, indeterminacy re-

quires that the wage elasticity εlw remains sufficiently small (less than 7 in our benchmark

calibration). In the case of KPR and generalized Hansen preferences, indeterminacy can

occur for a very wide set of values for εlw and εlλ, including very large ones. In our bench-

mark calibration, indeterminacy can even be obtained with an infinitely elastic aggregate

labor supply (εlw = εlλ = +∞)), which corresponds to the initial specification of Hansen

preferences.

5 Confronting the 2-sector model to the data

Is a standard stochastic growth model with random changes in agents’ expectations

(sunspot shocks) able to account for the bulk of observed business-cycles? So far, the

response to this question has been mostly negative. In a well-known contribution, using a

two-sector model very similar to ours but assuming KPR preferences and Cobb-Douglas

production functions, Schmitt-Grohé [61] concludes that such models are inconsistent

with several defining features of actual fluctuations. These include the positive autocor-

relation of output growth, the hump-shaped response of output to transitory shocks, and

the pattern of correlations between the forecastable components in output, consumption,

investment, and hours worked. On the other hand, Benhabib and Wen [11] show that

a standard one-sector model with a variable capital utilization rate is easily prone to

indeterminacy for very low degrees of IRS, and that their model subjected to exogenous

productivity and government spending shocks can explain many features of the business

cycle. However, in the case of sunspot shocks alone, the model cannot account for the

hump-shaped response of output to transitory shocks that is found in the data. Dufourt

et al. [22] show that this last deficiency can be overcome by considering a larger class of

additively separable utility functions and a general class of production functions. Yet the

paper also shows that the model’s impulse response functions fall very short of replicating

those obtained from the data in response to a transitory shock.

In this section, we reconsider this issue in the light of our results. As in Dufourt et

al. [22] , we concentrate our analysis on what are considered the most challenging tests

among those in Schmitt-Grohé [61], namely the ability to replicate the empirical impulse

response functions (IRF) to shocks on both the permanent and the transitory components

of output obtained from an identified structural VAR model.
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5.1 An estimated bivariate VAR model

We follow the approach of Schmitt-Grohé [61] and estimate a bivariate VAR model involv-

ing output and a second macroeconomic variable. One minor difference from Schmitt-

Grohé [61] is that we include the consumption-output ratio, instead of hours worked,

as the second variable in the VAR. This avoids the debate in the literature on whether

hours worked should be considered a stationary or a first-order integrated variable, the

results of the identified VAR being somewhat sensitive to this assumption (Gali [27]). By

contrast, as amply demonstrated in the literature, consumption and output are typically

best described as first-order cointegrated variables with a cointegrating vector equal to

(1,−1), implying that the consumption-output ratio is stationary. King et al. [47] show

that this feature of the data is consistent with the predictions of standard stochastic

growth models (like those considered in this paper) when the TFP level is subject to

permanent productivity shocks.

We thus estimate a bivariate model involving output in first-difference and the

consumption-output ratio, using quarterly US data over the period 1948:1 - 2019:4 (all

variables are expressed in log).16 As shown in Figure 4, the data suggests that the

consumption-output ratio remained stationary until the beginning of the 90s but that

since then it has been increasing at a roughly constant pace. In our benchmark estima-

tion, we thus include a linear trend in the consumption-output ratio starting in 1990:Q1 to

take this fact into account.17 However, our results are only marginally affected when this

deterministic trend is not introduced. Our choice of two lags is based on the BIC criterion.

Following Blanchard and Quah [13], we then identify two kinds of shocks in the data:

permanent shocks and transitory shocks. Permanent shocks are the only ones having a

permanent effect on the level of output, while leaving the long-run consumption-output

ratio unaffected. By contrast, transitory shocks are the only ones leaving output and the

consumption-output ratio unaffected in the long-run. In our model, a permanent shock

is interpreted as a permanent technological shock affecting the TFP level. A transitory

shock is interpreted as a sunspot shock resulting from an exogenous (and self-fulfilling)

shift in agents’ expectations. As explained below, we allow changes in expectations to be

16We use the Federal Reserve Economic Data (FRED) database. Consumption is defined as the sum
of personal consumption expenditures on nondurable goods and services. Investment is the sum of gross
private domestic investment and personal consumption expenditures on durable goods, all variables
divided by the GDP deflator. To obtain per capita variables, we divided the obtained series by the
population aged 16 and over. Output is defined as the sum of per capita consumption and investment.

17As shown in Forrester [25], a simple way to explain a deterministic trend in the consumption-output
ratio is to assume that the long-run growth rate of TFP in the market sector exceeds the long-run growth
rate of TFP in the home sector, a quite realistic assumption.
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correlated with technological shocks, but we define the sunspot shock as the component

in agents’ expectations which is uncorrelated with the fundamental TFP shock.

1950 1960 1970 1980 1990 2000 2010 2020

-0.5

-0.45
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-0.35

-0.3

-0.25

Figure 4: US postwar consumption-output ratio (in log), with y = c+ i.

Figure 5 displays the impulse response functions of output and consumption to one-

standard-deviation permanent and transitory shocks, as identified from our bivariate VAR

model. The figure also displays 90% bootstrapped confidence intervals. The results are

similar to those obtained in the literature. Following a positive permanent shock, output

jumps and gradually increases over time to reach a peak after 5 quarters, then gradually

converges to its new long-run level. According to our estimation, output “overshoots” its

new long-run level during the transition. Consumption also jumps when the shock occurs

and then quickly converges to its new long-run level. Figure 5 also shows that following a

one-standard-deviation transitory shock, the response of output is hump-shaped: output

jumps when the shock occurs, reaches a peak after three quarters, and then slowly returns

to its initial level. Meanwhile, consumption reacts very little when the shock occurs and

then gradually increases over time before returning to its initial level. The response

of consumption is much smoother than the response of output, in accordance with the

predictions of the permanent income theory following transitory income shocks.

This pattern of output fluctuations in response to permanent and transitory distur-

bances was found in numerous papers and proves to be robust to various changes in the

VAR specification, including changing the number of lags, changing the second variable

(for example, taking investment, hours worked or the unemployment rate as the second

variable), or considering more than two variables in the VAR. For the interested reader,

some alternative specifications are presented in a separate appendix. For this reason,

the ability to reproduce the “hump-shaped” response of output to a transitory shock is

considered one of the criteria defining appropriate business cycle models. In line with this

approach, we therefore investigate the ability of our two-sector model to account for these
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Figure 5: Empirical impulse response functions to 1-std-deviation supply (permanent)
and demand (transitory) shocks.

empirically estimated IRFs when the aggregate TFP level is subject to permanent pro-

ductivity shocks and agents’ expectations shift randomly in response to non-fundamental

sunspot shocks.

5.2 Estimation method

We use a Simulated Method of Moments – Minimum Distance (SMM–MD) approach

to estimate our model and assess its ability to account for the data. More precisely, we

define by Ω = (Ω1,Ω2) the vector of structural parameters and let Ω1 be the vector of

calibrated parameters and Ω2 the vector of estimated parameters. For each candidate

value of Ω, we repeat Nsim = 300 times the following procedure : we draw a set of

T = 287 (the length of our dataset) vectors of shocks εt = (εzt , ε
s
t), t = 1, ..., T, where

εzt is the technological shock and εst is the sunspot shock at period t, and we compute

the equilibrium trajectory (yt, ct, it, ...) , t = 1, ..., T, obtained from the model.18 We then

apply to these simulated time series the same bivariate estimation that we applied to

the data, collecting the obtained impulse response functions to permanent and transitory

disturbances. We obtain a set of Nsim simulated IRFs, and compute their median by

collecting the median value at each lag. We compare this median IRF Ψm(Ω2) to the one

estimated from the data, Ψ. The vector of estimated parameters Ω̂2 is obtained as that

minimizing the distance between the simulated and the empirical IRFs, according to the

following criterion:

Ω̂2 = arg max
Ω2

(Ψm(Ω2)−Ψ)′W (Ψm(Ω2)−Ψ) (51)

18We actually draw T ′ = 307 shocks and remove the first 20 observations to eliminate the influence of
initial conditions.
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where W is a weighting matrix. Following common practice in the literature (see e.g.

Rotemberg and Woodford, [60], Amato and Laubach, [2]), we set W as the identity

matrix, implying that the weights associated with each period in the IRFs are the same.

5.3 Stochastic version of the model and estimated parameters

To obtain some randomness in our model, shocks are introduced. In accordance with the

RBC-DSGE literature, we assume that the production functions in the consumption and

the investment sectors are:
Yct = f(Kct, ztLct) (52)

YIt = f(KIt, ztLIt)e(K̄It/zt, L̄It) (53)

where zt is a labor-augmenting technical progress, assumed to follow a logarithmic random

walk:
ln zt = ln zt−1 + σzε

z
t

with εzt ∼ N(0, 1) and σz > 0 is a variance parameter. With such a specification for TFP,

a general specification for individual preferences consistent with balanced growth is

u
(
ct
zt
, `− lt

)
i.e., preferences are based on the “productivity-adjusted” consumption level. In our view,

using this specification for individual preferences, rather than the standard specification

u (ct, `− lt) usually considered in the literature, has two main advantages. First, from

a theoretical point of view, this specification allows us to preserve the balanced-growth

property while considering a much larger set of individual preferences than those defined

in King et al. [46] – in particular, all the utility functions satisfying Assumptions 3

and 4 above. Notably, the balanced growth property is preserved even under the GHH

and Hansen utility functions frequently considered in the literature. Second, from en

empirical point of view, this specification is consistent with the well-known “Easterlin

paradox” (Easterlin [23]) that happiness or individual lifetime satisfaction levels are not

increasing over time in spite of long-run growth.

Under this specification, it is easy to show that the set of dynamic equations (22) in

the one-sector model and the set of dynamic equations (39)-(50) in the two-sector model

are the same, with all variables except hours worked expressed in their productivity-

adjusted form, i.e. for any variable xt, we define x̃t ≡ xt
zt
. Therefore, the steady state and

the local stability properties of the steady state are also the same (with all the variables

expressed in their productivity-adjusted form), and all the propositions and Theorems
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previously derived remain valid.

Denote by ̂̃xt the productivity-adjusted variable x̃t expressed in percentage devia-

tion points from the steady state. Under local indeterminacy, the reduced (minimum

dimension) log-linearized stochastic model can be expressed as ̂̃
kt+1̂̃
λt+1

 = J

 ̂̃
kt̂̃
λt

+R

 εzt

εst


with

R =

 σz 0

ρ σs


the matrix formed with the variances σz and σs of the productivity and sunspot shocks,

respectively, with the shocks (εzt , ε
s
t) drawn is the standard normal distribution. In ma-

trix R, the parameter ρ captures how the marginal utility of consumption (and thus

consumption itself) reacts to a technological innovation. Equivalently, ρ captures the

extent to which agents’ expectations adjust to a positive or negative productivity shock.

In the literature, this parameter is often arbitrarily set to 0 – implying that the matrix

R is diagonal –, but there is actually no reason why this should be the case. We choose

instead to estimate this parameter. Thus, the sunspot shock εst truly captures the notion

of a sunspot shock, i.e. a change in agents’ expectations which is unrelated to economic

fundamentals but which, under local indeterminacy, turns out to be self-fulfilling and

thus consistent with rational expectations.

Of course, once a dynamic trajectory for
(
k̃t, λ̃t

)
, t = 1, ..., T, is computed, we

can easily recover the corresponding dynamics for all the other endogenous variables

(ỹt, c̃t, ĩt, ...) using the static equations of the model. This allows us to apply to these

simulated data the same structural VAR estimation that we used with actual US data.

In the stochastic version of the two-sector model, the vector of structural parameters is

Ω = (β, δ, s, σ,Θ, εcc, εlw, εlλ, ρ, σz, σs). As in the previous section, we set Ω1 = (β, δ, s) the

vector of calibrated parameters and we use the same benchmark calibration as before (see

Assumption 5). We estimate the remaining eight structural parameters, which include the

“critical parameters” crucial for the emergence of sunspot fluctuations and the three pa-

rameters governing the stochastic processes. This gives Ω2 = (σ,Θ, εcc, εlw, εlλ, ρ, σz, σs).

The range of admissible values for Ω2 – over which estimation is performed – is the range of

empirically credible values as defined in Assumption 5, namely : σ ∈ (0, 2), Θ ∈ (0, 0.43)

and εcc ∈ (0, 2), where Θ now represents the degree of IRS in the investment sector only.
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5.4 Estimation results

In Figure 6 we report the median IRF obtained from the model at the solution of the

minimization problem above. The model comes incredibly close to replicating the empir-

ical IRF for both consumption and output in response to both permanent and transitory

disturbances. Notably, the model perfectly replicates the hump-shaped response of out-

put to a transitory shock even though in the model, this shock (the sunspot shock) is

white noise. This implies among other things that the model generates significant en-

dogenous persistence, in sharp contrast with standard RBC models. The model also very

closely replicates the IRF of output to the permanent shock, as well as the response of

consumption to both shocks. The only noticeable difference between the empirical and

the model-implied IRFs concerns the instantaneous response of consumption to the per-

manent income shock, which is slightly too small in the model when compared to the

data. Overall, the estimation results show that a standard two-sector model with pro-

ductivity and sunspot shocks does an excellent job of replicating the empirical IRFs to

both demand and supply shocks, in sharp contrast to previous models in the literature

(Schmitt-Grohé [61], Benhabib and Wen [11], Dufourt et al. [22]).
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Figure 6: Model versus empirical impulse response functions. Red curve: data, blue curve:
model.

Table 1 reports the parameter estimates obtained from our SMM-MD procedure.

The estimated value for the EIS in consumption εcc is smaller than 1, consistent with the

majority of estimates in the empirical literature.19 The degree of IRS in the investment

sector is roughly 11%, showing that the model can closely mimic the data even for very

moderate levels of increasing returns to scale. The estimated value for the capital-labor

19See discussion above. In a meta-analysis of 2375 estimates of the EIS in consumption, Havranek [38]
concludes that the mean value of micro estimates is around 0.4 and that most estimates are equal or less
than 0.8.
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elasticity of substitution is equal to 1.83. Finally, estimation results confirm that, like

most RBC-DSGE models, our two-sector model performs better when the Frisch labor

supply elasticities εlw and εlλ are ”both large”, in the spirit of Hansen-type preferences,

but with εlw > εlλ in our case. The variance of the TFP shock is 1%, and the variance of

the sunspot shock is 0.6%, which both seem reasonable.

εcc Θ σ εlw εlλ ρ σz σs

0.83 0.11 1.83 1948 1145 0.64 0.01 0.006

Table 1: Estimated parameters

Of course, it would be problematic if the model succeeded in replicating the IRFs

to permanent and transitory disturbances but failed in other important areas, e.g. if it

failed to replicate the business cycle properties of other variables. To complete our model

evaluation, we thus consider other statistics emphasized in the RBC literature. We start

with standard second-order moments regarding the cyclical components of macroeco-

nomic variables, updating the data set constructed in Dufourt et al. [20] to build not

only empirical series for output, consumption, investment, aggregate hours worked, la-

bor productivity, etc., but also series for labor in the consumption and the investment

sectors. All series are then detrended using the HP filter. The model-implied statistics

are computed following an approach similar to our SMM detailed above, i.e., we use the

Nsim model-generated series, we apply the HP filter to these series, and we compute

standard business cycle statistics. The figures presented in Table 2 are the average of the

second-order moments thus obtained.

Overall, the model does an excellent job of accounting for these standard “stylized

facts” of the business cycle, even though these statistics were not the target of our SMM-

MD approach. The relative standard deviations are of the right magnitude, except for a

slight underestimation of the volatility of labor productivity and some overestimation of

the variance of labor in the investment sector. The first-order autocorrelation coefficients

are also all correctly accounted for, as are the contemporaneous correlation coefficients

with output. It is noteworthy that the model is also able to explain the low correlation

coefficient between output and labor productivity (0.16 in the data versus -0.17 in the

model), whereas standard RBC models are recognized to fail dramatically in this respect

(tending to generate a very large positive correlation coefficient). Thus, the sunspot-

driven model appears able to closely reproduce not only the empirical impulse response

functions to both permanent and transitory disturbances, but also the business cycle

dynamics regarding the other common macroeconomic variables.
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I. Volatility
(relative standard deviations: σx/σy)

(x) y c pi l LC LI y/l

Data 1 0.39 2.53 1.05 0.69 1.61 0.52

Model 1 0.45 3.13 1.07 0.49 3.22 0.26

II. Persistence
(first-order autocorrelation: ρx)

(x) y c pi l LC LI y/l

Data 0.89 0.85 0.87 0.93 0.92 0.93 0.84

Model 0.83 0.78 0.85 0.85 0.85 0.85 0.84

III. Covariations
(correlations with output: corr(x, y))

(x) y c pi l LC LI y/l

Data 1 0.80 0.98 0.87 0.87 0.86 0.16

Model 1 0.95 0.99 0.97 0.97 0.97 -0.17

Table 2: Standard additional statistics

As a final informal test, we consider the autocorrelation function of output growth.

As first documented by Nelson and Plosser [52] and Cochrane [16], output dynamics

is positively autocorrelated over short horizons and has weak negative autocorrelation

over longer horizons. Cogley and Nason [17] show that, in addition to being unable

to reproduce the hump-shaped dynamics of output to transitory disturbances, standard

RBC models subjected to random-walk TFP shocks are unable to reproduce this auto-

correlation function of output growth, which indicates that these models crucially fail to

create endogenous persistence. It is thus interesting to assess how our sunspot-driven

two-sector model performs in this respect Table 3 shows that the model performs very

well in this area too, very accurately reproducing both the large positive autocorrelation

coefficients over the first two quarters and the smaller negative autocorrelation coefficient

over a longer horizon. This proves that, in contrast to the standard RBC model, our

model has sufficiently strong propagation mechanisms to generate significant endogenous

persistence.

Autocorrelation of output growth

ρy(1) ρy(2) ρy(3) ρy(4) ρy(5)

Data 0.44 0.23 -0.01 -0.16 -0.24

Model 0.44 0.25 0.10 -0.01 -0.09

Table 3: Autocorrelation function of output growth
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6 Concluding comments

We have proved that two-sector infinite-horizon models with productive externalities and

IRS provide a strong theoretical basis to explain business-cycle fluctuations driven by

self-fulfilling prophecies when appropriate restrictions of the EIS in consumption, the

wage elasticity of labor supply, and the elasticity of labor with respect to the marginal

utility of wealth are considered. We have shown in particular that the existence a Hopf

bifurcation allows to calibrate the economy with empirically relevant values for all the

structural parameters and to provide enough persistence to replicate all the most salient

features of the business cycles.

Our conclusions are in line with a recent trend of the literature, mainly driven by

Beaudry et al. [5, 6], focusing on the fact that fluctuations can be the result of internal

forces of the economy generating alternate periods of boom and bust. Indeed, Beaudry

et al. [5] introduce simple nonlinearities in estimation of macroecomic aggregates and

show that the local properties of the system switch from being locally stable when the

nonlinear terms are excluded to being locally unstable when they are included. Beaudry

et al. [6] then show the existence of recurrent peaks in several spectral densities in

many US trendless macroeconomic data suggesting the presence of fluctuations of various

periodicities. Moreover, they prove that the existence of a limit cycle through a Hopf

bifurcation provides an appropriate theoretical support for these empirical conclusions.

References

[1] Aiyagari, R. (1995): “The Econometrics of Indeterminacy: An Applied Study - A

Comment,” Carnegie-Rochester Conference Series on Public Policy 43, 273-284.

[2] Amato, J., and T. Laubach (2003): “Estimation and Control of an Optimization-

Based Model with Sticky Prices and Wages,” Journal of Economic Dynamics and

Control 27, 1181-1215.

[3] Azariadis, C. (1981): “Self-Fulfilling Prophecies”, Journal of Economic Theory 25,

380-396.

[4] Basu, S., and J. Fernald (1997): “Returns to Scale in US Production: Estimates and

Implications,” Journal of Political Economy 105, 249-283.

39



[5] Beaudry, P., Galizia, D. and F. Portier (2017): “Is the Macroeconomy Locally Un-

stable and Why Should We Care?,” In: NBER Macroeconomics Annual, Vol. 31, ed:

M. Eichenbaum and J. A. Parker, 479–530. University of Chicago Press.

[6] Beaudry, P., Galizia, D. and F. Portier (2020): “Putting the Cycle Back into Business

Cycle Analysis,” American Economic Review, 110 1-47.

[7] Benhabib, J., and R. Farmer (1994): “Indeterminacy and Increasing Returns,” Jour-

nal of Economic Theory 63, 19-41.

[8] Benhabib, J., and R. Farmer (1996): “Indeterminacy and Sector Specific Externali-

ties,” Journal of Monetary Economics 37, 397-419.

[9] Benhabib, J., and K. Nishimura (1998): “Indeterminacy and Sunspots with Constant

Returns,” Journal of Economic Theory 81, 58-96.

[10] Benhabib, J., K. Nishimura and A. Venditti (2002): “Indeterminacy and Cycles in

Two-Sector Discrete-Time Models,” Economic Theory 20, 217-235.

[11] Benhabib, J., and Y. Wen (2004): “Indeterminacy, Aggregate Demand, and the Real

Business Cycle,” Journal of Monetary Economics 51, 503-530.

[12] Bennett, R, and R. Farmer (2000): “Indeterminacy with Non-Separable Utility,”

Journal of Economic Theory 93, 118-143.

[13] Blanchard, O., and D. Quah (1989): “The Dynamic Effects of Aggregate Demand

and Supply Disturbances,” American Economic Review 79, 655-673.

[14] Campbell, J. (1999): “Asset Prices, Consumption and the Business Cycle,” J.B. Tay-

lor and M. Woodford, eds, Handbook of Macroeconomics, 1231-1303, North-Holland,

Amsterdam.

[15] Cass, D. and K. Shell (1983): “Do Sunspots Matter?”, Journal of Political Economy

91, 193-22.

[16] Cochrane, J. (1988): “How Big is the Random Walk in GNP?,” Journal of Political

Economy 96, 893-920.

[17] Cogley, T., and J. Nason (1995): “Output Dynamics in Real-Business-Cycle Mod-

els,” American Economic Review 85, 492-511.

40



[18] Dos Santos Ferreira, R., and F. Dufourt (2006): “Free Entry and Business Cycles

under the Influence of Animal Spirits,” Journal of Monetary Economics 53, 311-328.

[19] Duffy, J., and C. Papageorgiou (2000): “A Cross-Country Empirical Investigation

of the Aggregate Production Function Specification,” Journal of Economic Growth

5, 87-120.

[20] Dufourt, F., K. Nishimura, and A. Venditti (2015): “Indeterminacy and Sunspots in

Two-Sector RBC Models with Generalized No-Income-Effect Preferences,” Journal

of Economic Theory 157, 1056-1080.

[21] Dufourt, F., K. Nishimura, C. Nourry, and A. Venditti (2017): “Sunspot Fluc-

tuations in Two-Sector Models with Variable Income Effects”, in Nishimura, K.,

Venditti, A. and N. Yannelis (Eds.), Sunspots and Non-Linear Dynamics: Essays in

honor of Jean-Michel Grandmont, Springer-Verlag, 71-96.

[22] Dufourt, F., A. Venditti, and R. Vivès (2017): “On Sunspot Fluctuations in Variable

Capacity Utilization Models”, Journal of Mathematical Economics 76, 80-94.

[23] Easterlin, R. (1974): “Does Economic Growth Improve the Human Lot? Some

Empirical Evidence,” in P. David and M. Reder (Eds.), Nations and Households in

Economic Growth: Essays in Honor of Moses Abramovitz, Academic Press, 89-125.

[24] Farmer, R. and J.-T. Guo (1994): “Real Business Cycles and the Animal Spirits

Hypothesis,” Journal of Economic Theory 63, 42-72.

[25] Forrester, K. (2019): “Home to Market: Implications for the Consumption to Output

Ratio,” Macroeconomic Dynamics 23, 448-478.

[26] Gali, J. (1994): “Monopolistic Competition, Business Cycles and the Composition

of Aggregate Demand,” Journal of Economic Theory 63, 73-96.

[27] Gali, J. (1999): “Technology, Employment and the Business Cycle: Do Technology

Shocks Explain Aggregate Fluctuations?,” American Economic Review 89, 249-271.

[28] Grandmont, J.-M. (1985): “On Endogenous Competitive Business Cycles,” Econo-

metrica 53, 995-1045.

[29] Grandmont, J.-M., P. Pintus, and R. De Vilder (1997): “Capital-Labor Substitu-

tion and Competitive Nonlinear Endogenous Business Cycles,” Journal of Economic

Theory 80, 14-59.

41



[30] Greenwood, J., Z. Hercovitz, and G. Huffman (1988): “Investment, Capacity Uti-

lization and the Real Business Cycle,” American Economic Review 78, 402-417.

[31] Gruber, J. (2013): “A Tax-Based Estimate of the Elasticity of Intertemporal Sub-

stitution,” Quarterly Journal of Finance 3, 1-20.

[32] Guo, J.T., and S. Harrison (2010): “Indeterminacy with Capital Utilization and

Sector-Specific Externalities,” Economics Letters 72, 355-360.

[33] Guo, J.T., and S. Harrison (2010): “Indeterminacy with No-Income Effect Prefer-

ences and Sector-Specific Externalities,” Journal of Economic Theory 145, 287-300.

[34] Hansen, G. (1985): “Indivisible Labor and the Business Cycle,” Journal of Monetary

Economics 16, 309-327.

[35] Harrison, S. (2001): “Indeterminacy in a Model with Sector Specific Externalities,”

Journal of Economic Dynamics and Control 25, 747-764.

[36] Harrison, S. (2003): “Returns to scale and Externalities in the Consumption and

Investment Sectors,” Review of Economic Dynamics 6, 963-976.

[37] Harrison, S. and M. Weder (2006): “Did Sunspot Forces Cause the Great Depres-

sion?,” Journal of Monetary Economics 53, 1327-1339.

[38] Havranek, T. (2015): ”Measuring Intertemporal Substitution: The Importance of

Method Choices and Selective Reporting.” Journal of the European Economic As-

sociation 13, 1180-1204.

[39] Hintermaier, T. (2003): “On the Minimum Degree of Returns to Scale in Sunspot

Models of Business Cycles,” Journal of Economic Theory 110, 400-409.

[40] Jaimovich, N. (2007): “Firm Dynamics and Markup Variations: Implications for

Sunspot Equilibria and Endogenous economic Fluctuations,” Journal of Economic

Theory 137, 300-325.

[41] Jaimovich, N. (2008): “Income Effects and Indeterminacy in a Calibrated One-Sector

Growth Model,” Journal of Economic Theory 143, 610-623.

[42] Jaimovich, N., and S. Rebelo (2009): “Can News About the Future Drive the Busi-

ness Cycles?,” American Economic Review 99, 1097-1118.

42



[43] Karabarbounis, L., and B. Neiman (2014): “The Global Decline of the Labor Share,”

Quarterly Journal of Economics 129, 61-103.

[44] Karagiannis, G., T. Palivos, and C. Papageorgiou (2005): “Variable Elasticity of

Substitution and Economic Growth: Theory and Evidence,” in Diebold, C. and C.

Kyrtsou (Eds.), New Trends in Macroeconomics, Springer, Heidelberg, 21-37.

[45] Kimball, M. and M. Shapiro (2008): “Labor Supply: Are Income and Substitution

Effects Both Large or Both Small?,” NBER Working Paper 14208.

[46] King, R., C. Plosser, and S. Rebelo (1988): “Production, Growth and Business

Cycles,” Journal of Monetary Economics 21, 191-232.

[47] King, R., C. Plosser, J. Stock, and M. Watson (1991): “Stochastic Trends and

Economic Fluctuations,” American Economic Review 81, 819-840.

[48] Klump, R., P. McAdam, and A. Willman (2012): “The Normalized CES Production

Function - Theory and Empirics,” Journal of Economic Surveys 26, 769-799.

[49] León-Ledesma, M., P. McAdam, and A. Willman (2010): “Identifying the Elasticity

of Substitution with Biased Technical Change”, American Economic Review 100,

1330-1357.

[50] Lloyd-Braga, T., L. Modesto, and T. Seegmuller (2014): “Market Distortions and

Local Indeterminacy: A General Approach,” Journal of Economic Theory 151, 216-

247.

[51] Lloyd-Braga, T., C. Nourry, and A. Venditti (2006): “Indeterminacy with Small

Externalities: The Role of Non-Separable Preferences,” International Journal of

Economic Theory 2, 217-239.

[52] Nelson, C., and C. Plosser (1982): “Trends and Random Walks in Macroeconomic

Time Series : Some Evidence and Implications,” Journal of Monetary Economics

10, 139-162.

[53] Nishimura, K., and A. Venditti (2007): “Indeterminacy in Discrete-Time Infinite-

Horizon Models with Non-Linear Utility and Endogenous Labor,” Journal of Math-

ematical Economics 43, 446-476.

43



[54] Nourry, C., T. Seegmuller, and A. Venditti (2013): “Aggregate Instability under

Balanced-Budget Consumption Taxes: A Re-examination,” Journal of Economic

Theory 148, 1977-2006.

[55] Pintus, P. (2006): “Indeterminacy with Almost Constant Returns to Scale: Capital-

Labor Substitution Matters,” Economic Theory 28, 633-649.

[56] Pintus, P. (2007): “Local Determinacy with Non-Separable Utility,” Journal of Eco-

nomic Dynamics and Control 31, 669-682.

[57] Prescott, E., and J. Wallenius (2011): “Aggregate Labor Supply,” Federal Reserve

Bank of Minneapolis, Research Department Staff Report 457.

[58] Rogerson, R., and J. Wallenius (2009): “Micro and Macro Elasticities in a Life Cycle

Model with Taxes”, Journal of Economic Theory 144, 2277-2292.

[59] Rotemberg, J., and M. Woodford (1992): “Oligopolistic Pricing and the Effects

of Aggregate Demand on Economic Activity”, Journal of Political Economy 100,

1153-1207.

[60] Rotemberg, J., and M. Woodford (1996): “Real-Business-Cycle Models and the

Forecastable Movements in Output, Hours, and Consumption,” American Economic

Review 86, 71-89.
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7 Appendix

7.1 Proof of Lemma 1

From the definition of εlw and εlλ as given by (15)-(16), a total differentiation of the

optimality conditions (9)-(10) gives

u11dct − u12dlt = dλt

u21dct − u22dlt = dλtwt + λtdwt

Solving this system with respect to dlt yields to the expressions (19) and (20). We also

derive
εcw = − u12u1

u11u22−u12u21

w
c

= wl
c

(εlw − εlλ)

εcλ = u1

u11c
− u12

u11c
u11u2−u21u1

u11u22−u12u21
= −εcc + wl

c

(
1− εlλ

εlw

)
εlλ

We show in Appendix 7.3 below that at the steady state

wl
c

= θ(1−s)
θ−sβδ ≡ C < 1 (57)

The result follows.

7.2 Proof of Proposition 1

By Assumption 3, u is an increasing function over R2
++, implying (c, l, u1, u2) > 0. More-

over, the strict quasi-concavity of u implies u11 < 0 and u11u22 − u12u21 > 0. Using

Lemma 1, we straightforwardly obtain εcc > 0 and εlw > 0. By Assumption 4, c and L
are normal goods. The normality of L requires u21u1 − u11u2 ≥ 0. Combined with the

strict quasi-concavity of u, we straightforwardly obtain εlλ ≥ 0. Using a similar reason-

ing, we obtain that the normality of c requires εcλ ≤ 0 and therefore, using Lemma 1,

εcc ≥ Cεlλ(εlw − εlλ)/εlw ≡ εNcc.

7.3 Proof of Lemma 2

We know from constant-returns-scale of the technology at the private level that

rk
y

= s and wl
y

= 1− s

Considering that at the steady state we have R∗ = 1/β with R∗ = r∗+1−δ = sy∗/k∗+1−δ
we get

1



y∗

k∗
= θ

sβ

with θ = 1−β(1− δ). It follows from the capital accumulation equation evaluated at the

steady state that c = y − k and thus

c∗

k∗
= θ−sβδ

sβ

We conclude from this
w∗l∗

c∗
= θ(1−s)

θ−sβδ ≡ C < 1 (58)

7.4 Proof of Proposition 3

Considering again that R∗ = r∗ + 1− δ = 1/β, we get

f1(k∗, l∗)e(k∗, l∗) ≡ g(k∗, l∗) = θ
β

(59)

It is then easy to compute under Assumption 2

g1(k∗,l∗)k∗

g(k∗,l∗)
= sΘk − 1−s

σ
< 0

Therefore, applying the implicit function theorem, we conclude that there exists a unique

function k(.) such that k∗ = k(l∗). Considering that

g2(k∗,l∗)l∗

g(k∗,l∗)
= (1− s)Θl + 1−s

σ

we conclude that
k′(l∗)l∗

k(l∗)
= − (1−s)Θl+ 1−s

σ

sΘk− 1−s
σ

> 0

Recalling now that
y∗

k∗
= θ

sβ
and c∗ = θ−sβδ

sβ
k∗ (60)

we derive

c∗ = c(l∗) = θ−s(k(l∗),l∗)βδ
s(k(l∗),l∗)β

k(l∗) ≡ h(l∗)k(l∗)

Straightforward computations give

h′(l∗)l∗

h(l∗)
= θ(1−s)

θ−sβδ

(
1− 1

σ

) (1−s)Θl+sΘk
sΘk− 1−s

σ

and we easily conclude under Assumption 2

c′(l∗)l∗

c(l∗)
= −

(1−s)
{

Θl[s(1−β)+
θ(1−s)
σ ]+ θsΘk

σ
+ θ−sβδ

σ
−θsΘk

}
(θ−sβδ)(sΘk− 1−s

σ )
> 0
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Moreover we also get from (25)

w∗ = w(l∗) = f2(k(l∗), l∗)e(k(l∗), l∗)

and thus
w′(l∗)l∗

w(l∗)
= −

1−s
σ

Θl+
s
σ

Θk

sΘk− 1−s
σ

> 0

Consider then the third equation of (26) which becomes

u2(c(l∗),`−l∗)
u1(c(l∗),`−l∗) ≡ ψ(l∗) = w(l∗) (61)

Under Assumptions 2, 3 and 4, we get

ψ′∗)l∗

ψ(l∗)
= c′(l∗)l∗

c(l∗)
εlλ

εccεlw
+ 1

εccεlw

[
εcc − Cεlλ

(
1− εlλ

εlw

)]
≥ 0 (62)

It follows that the existence of a unique steady state value l∗ is obtained if g′(l∗) 6= w′(l∗).

Straightforward computations show that this condition is satisfied if

c′(l∗)l∗

c(l∗)
εlλ

εccεlw
+ 1

εccεlw

[
εcc − Cεlλ

(
1− εlλ

εlw

)]
− w′(l∗)l∗

w(l∗)
6= 0 (63)

Such a condition is generically satisfied so that the existence and uniqueness of a steady

state is generically ensured.

Now let us normalize the steady state considering the value l̄∗ corresponding to the

average amount of working hours relative to the total amount of time `. Substituting

l∗ = l̄∗ into equation (61), we get

u2(c(l̄∗),`−l̄∗)
u1(c(l̄∗),`−l̄∗) ≡ φ(`) = w(l̄∗) (64)

Straightforward computations give

φ′(`)`
φ(`)

= − `
l̄∗

1
εccεlw

[
εcc − Cεlλ

(
1− εlλ

εlw

)]
It follows under Assumptions 3 and 4 that φ′(`)`/φ(`) ≤ 0 and there exists a unique value

`∗ > l̄∗ solution of equation (64). We conclude finally that if ` = `∗, then the unique

steady state (k∗, l∗, c∗) is such that l∗ = l̄∗.

7.5 Proof of Proposition 4

From the optimality conditions (9)-(10) and Lemma 1, we derive
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l̂t = εlwŵt + εlλλ̂t (65)

ĉt = C
(

1− εlλ
εlw

)
l̂t − εccλ̂t (66)

and (25) implies

ŵt =
(
sΘk + s

σ

)
k̂t +

[
(1− s)Θl − s

σ

]
l̂t

Using this expression in (65) yields

l̂t =
εlws( 1

σ
+Θk)

1+εlw[ sσ−Θl(1−s)]
k̂t + εlλ

1+εlw[ sσ−Θl(1−s)]
λ̂t (67)

Using (67) into (66) gives

ĉt =
Cs( 1

σ
+Θk)(εlw−εlλ)

1+εlw[ sσ−Θl(1−s)]
k̂t −

(
εcc −

εlλC
(

1− εlλ
εlw

)
1+εlw[ sσ−Θl(1−s)]

)
λ̂t (68)

Using (25), the system of difference equations describing the intertemporal equilibrium

can be stated as follows

f(kt, l(kt, λt))e(kt, l(kt, λt)) + (1− δt)kt − c(kt, λt)− kt+1 = 0

β [1− δ + f1(kt+1, l(kt+1, λt+1))e(kt+1, l(kt+1, λt+1))]λt+1 − λt = 0
(69)

Linearizing the first equation around the steady state using (60), (67) and (68) gives after

simplifications

k̂t+1 = k̂t
1
β

{
1 + θΘk +

θ(1−s)( 1
σ

+Θk)(εlwΘl+εlλ)

1+εlw[ sσ−Θl(1−s)]

}
+ λ̂t

1
sβ

{
εlλθ(1−s)

(
Θl+

εlλ
εlw

)
1+εlw[ sσ−Θl(1−s)]

+ (θ − sβδ)εcc
} (70)

Linearizing the second equation of (69) around the steady state gives

λ̂t+1 = λ̂t + k̂t+1

[
sΘk − 1−s

σ

]
θ − l̂t+1

[
Θl + 1

σ

]
θ(1− s) (71)

Using (67) finally gives

λ̂t+1

{
1 +

εlλθ(1−s)( 1
σ

+Θl)
1+εlw[ sσ−Θl(1−s)]

}
− k̂t+1θ

1−s
σ
−sΘk−

εlw
σ

[s(Θk−Θl)+Θl]

1+εlw[ sσ−Θl(1−s)]
= λ̂t (72)

Equations (70) and (72) can be expressed as follows 1 0

−A21 A22

 k̂t+1

λ̂t+1

 =

 B11 B12

0 1

 k̂t

λ̂t
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with

A21 = θ
1−s
σ
−sΘk−

εlw
σ

[s(Θk−Θl)+Θl]

1+εlw[ sσ−Θl(1−s)]

A22 = 1 +
εlλθ(1−s)( 1

σ
+Θl)

1+εlw[ sσ−Θl(1−s)]

B11 = 1
β

{
1 + θΘk +

θ(1−s)( 1
σ

+Θk)(εlwΘl+εlλ)

1+εlw[ sσ−Θl(1−s)]

}
B12 = 1

βs

{
εlλ
εlw

θ(1−s)(εlwΘl+εlλ)

1+εlw[ sσ−Θl(1−s)]
+ (θ − sβδ)εcc

}
The Jacobian matrix J follows after straightforward computations and simplifications.

7.6 Proof of Lemma 3

We easily derive from Proposition 4 the following characteristic polynomial

P(λ) = λ2 − λT (εcc) +D (73)

with

D = 1
β

{
1 + θ

Θk[1+s
εlw
σ

+(1−s)εlλ]+(1−s)Θl(
εlw
σ
−εlλ)

1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1
σ

+Θl)

}
T (εcc) = 1 +D + θ(θ−sβδ)(1−s)

βs

εcc
[

1
σ
− sΘk

1−s−
εlw
σ

(
Θl+

sΘk
1−s

)]
+εlλ

[
1
σ

(
s(1−β)
θ−sβδ +

CsΘk
1−s

)
+Θl( s(1−β)

θ−sβδ + C
σ )+C εlλ

εlw

(
1
σ
− sΘk

1−s

)]
1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1

σ
+Θl)

The analysis of the local stability properties of the model is based on the geometrical

methodology of Grandmont et al. [30]. In Figure 1, we draw a graph in the trace-

determinant (T ,D) space where three relevant lines are considered: line AC (D = T −1)

along which one eigenvalue of D is equal to 1, line AB (D = −T − 1) along which one

eigenvalue of D is equal to −1 and segment BC (D = 1, |T | < 2) along which the two

eigenvalues of D are complex conjugates with modulus equal to 1. These three lines

divide the space (T ,D) into three different types of regions according to the number of

eigenvalues with modulus smaller than, equal to, and greater than 1. This determines

whether the steady state is a sink (locally indeterminate), a source (locally unstable) or

a saddle-point (see the corresponding areas in Figure 1).

Then, for any particular calibration of structural parameters, we can compute the

trace and determinant using the expression for the Jacobian matrix obtained in Proposi-

tion 4 and assess in which area the model is located. We can also assess how these local

stability properties change when the calibration of any particular parameter is varied over

its admissible range.
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Figure 1: Area of local indeterminacy.

In the one-sector stochastic growth model considered so far, the analysis is greatly

simplified by observing that D does not depend on εcc, implying that the pair (T (εcc),D)

describes an horizontal line in the (T ,D) space when εcc increases from 0 to +∞. As a

result, any Hopf bifurcation related to a Determinant equal to 1 is generically ruled out.

To prove the possible existence of local indeterminacy we need to show that there

exist some parameters’ configurations such that D < 1 and 1−T (εcc) +D > 0. It is easy

to show from the expression of T (εcc) that a necessary condition to get 1−T (εcc)+D > 0

is
εlw >

1−σsΘk
1−s

Θl+
sΘk
1−s
≡ εlw

Let us now write the determinant as

D = 1
β

1+εlw[ sσ−Θl(1−s)(1− θ
σ )]+εlλ θ(1−s)σ

+θΘk[1+s
εlw
σ

+(1−s)εlλ]
1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1

σ
+Θl)

Since under Assumption 2 the expression s
σ
−Θl(1− s)

(
1− θ

σ

)
is necessarily positive for

any σ > 0, we get D > 0 for any σ > 0. Moreover, D ≤ 1 if and only if Θl > Θl and

εlλ ≥ εlλ(εlw) with

Θl ≡ 1−β
β

+ Θk
β
, εlλ(εlw) ≡

1−β+θΘk+εlw

[
s(1−β+θΘk)

σ
−Θl(1−s)(1−β− θ

σ )
]

θ(1−s)(1−β+Θk)(Θl−Θl)
(74)

Under σ ≤ σ̄ ≡ θ/(1− β) we get 1− β − θ
σ
≤ 0 so that εlλ(εlw) > 0 for any Θl > Θl and

εlw ≥ 0. We need therefore to show that Θl < Θ̄l which is obtained if and only if

Θk < Θk ≡ sβ
(1−s)σ − (1− β)

with Θk ∈ (0, Θ̄k) under Assumption 5 and σ ≤ σ̄.

Obviously, we conclude that D > 1 when Θl < Θl for any εlλ ≥ 0, or when Θk ∈
[0,Θk), Θl ∈ (Θl, Θ̄l) and εlλ < εlλ(εlw).

Let us compute the critical values εFcc(εlw, εlλ) and εTcc(εlw, εlλ) respectively associated

with flip and transcritical bifurcations. The first one is obtained as the solution of 1 −
T (εcc) +D = 0, namely

6



εTcc ≡ εlλ
1
σ

(
s(1−β)
θ−sβδ +

CsΘk
1−s

)
+Θl( s(1−β)

θ−sβδ + C
σ )+C εlλ

εlw

(
1
σ
− sΘk

1−s

)
εlw
σ

(
Θl+

sΘk
1−s

)
−
(

1
σ
− sΘk

1−s

) (75)

while the second one is obtained as the solution of 1 + T (εcc) +D = 0, namely

εFcc ≡
2
{

1+β+θΘk+εlw

[
(1+β)( sσ−Θl(1−s))+

θΘl(1−s)
σ

]
+εlλθ(1−s)[ 1+β

σ
+βΘl+Θk]

}
θ(θ−sβδ)(1−s)

sσ

(
Θl+

sΘk
1−s

)
(εlw−εlw)

+
εlλ

θ(1−s)(θ−sβδ)
s

[
1
σ

(
s(1−β)
θ−sβδ +

CsΘk
1−s

)
+Θl( s(1−β)

θ−sβδ + C
σ )+C εlλ

εlw

(
1
σ
− sΘk

1−s

)]
θ(θ−sβδ)(1−s)

sσ

(
Θl+

sΘk
1−s

)
(εlw−εlw)

(76)

7.7 Proof of Theorem 1

We immediately derive for any Θl:

1− T (0) +D < 0 and lim
εcc→+∞

T (εcc) = ±∞ when εlw ≶ εlw

Case 1 - Let us consider first the case with a low wage elasticity for the labor supply,

i.e. εlw < εlw. We get the following two graphical configurations depending on the values

of Θl, Θk and εlλ:
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Figure 2: εlw < εlw

As D does not depend on εcc and, when εlw < εlw, the determinant D satisfies D > 1

or D ∈ (0, 1) depending on the values of Θl and εlλ, and we get an horizontal line

characterizing the variation of T (εcc) when εcc is varied over [0,+∞). Obviously, this line

cannot cross the line BC. Moreover, as 1−T (0)+D < 0, the starting point when εcc = 0

is located below the line AC and we have limεcc→+∞ T (εcc) = +∞. The steady state is

then a saddle-point for any εcc ≥ 0.

Case 2 - Let us consider now the case with a high wage elasticity for the labor supply,

i.e. εlw > εlw, and low capital externalities, i.e. Θk ∈ [0,Θk). We get the following

graphical configuration:

When Θl < Θl or Θl ∈ (Θl, Θ̄l) and εlλ < εlλ(εlw), we have D > 1 but now

limεcc→+∞ T (εcc) = −∞. Local indeterminacy cannot arise but the steady state is not
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Figure 3: εlw > εlw and Θk ∈ [0,Θk), with Θl < Θl or Θl ∈ (Θl, Θ̄l) and εlλ < εlλ(εlw)

always a saddle-point and can be a source. Indeed, the steady state is saddle-point stable

for any εcc ∈ [0, εTcc) ∪ (εFcc,+∞) and locally unstable when εcc ∈ (εTcc, ε
F
cc).

When Θl ∈ (Θl, Θ̄l) and εlλ > εlλ(εlw), we get D ∈ (0, 1) with limεcc→+∞ T (εcc) = −∞.

It follows that the line now crosses the triangle ABC and we get indeterminacy:
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Figure 4: εlw > εlw and Θk ∈ [0,Θk), with Θl ∈ (Θl, Θ̄l) and εlλ > εlλ(εlw).

As 1 − T (0) + D < 0, the starting point when εcc = 0 is located below the line AC and

the steady state is saddle-point stable. As εcc increases, T (εcc) will cross the line AC

when εcc = εTcc, implying the existence of a degenerate transcritical bifurcation since the

steady state is unique. When εcc ∈ (εTcc, ε
F
cc), the steady state is locally indeterminate.

When εcc = εFcc, a flip bifurcation generically occurs leading to the existence of period-two

cycles in a right or left neighborhood of εFcc. Finally, when εcc > εFcc, the steady state is

again saddle-point stable.

Case 3 - Let us finally consider the case with a high wage elasticity for the labor

supply, i.e. εlw > εlw, and large capital externalities, i.e. Θk ∈ (Θk, Θ̄k). Since in

this case Θl > Θ̄l, we have necessarily Θl ∈ (0,Θl) and thus D > 1. We then get

the same configuration as Figure 3. The steady state is saddle-point stable for any

εcc ∈ [0, εTcc) ∪ (εFcc,+∞) and locally unstable when εcc ∈ (εTcc, ε
F
cc).

Implausibility of indeterminacy:

Consider the necessary conditions required for indeterminacy underlined in Theorem

1: εlw > εlw, Θl ∈ (Θl, Θ̄l), εlλ > εlλ(εlw) and εcc > εTcc (εlw, εlλ) . Indeterminacy requires
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at the same time a sufficiently large wage elasticity of the labor supply curve, a suffi-

ciently large degree of IRS in labor, a sufficiently large degree of income effect on labor

supply, and a sufficiently large EIS in consumption. These four conditions can only be

simultaneously satisfied for extremely high values of the last two elasticities. To see this,

consider that the wage elasticity of the labor supply curve is close to the lower bound

εlw required for indeterminacy. From Appendix 7.6, we know that εTcc tends to +∞ when

εlw tends to εlw, making the condition εcc > εTcc (εlw, εlλ) impossible to satisfy for plausible

EIS values. Conversely, consider that the aggregate labor supply curve is very elastic

due, for example, to labor indivisibility at the individual level combined with perfect un-

employment insurance, as in Hansen [37] and Rogerson [88]. We know that εlλ(εlw) is an

increasing function of εlw so the condition εlλ > εlλ(εlw) required for indeterminacy now

imposes very large degrees of income effect on the labor supply. Moreover, εTcc (εlw, εlλ)

is increasing in εlλ, so the large degree of income effect has a retroactive large effect on

the value for the EIS in consumption required for indeterminacy (εcc > εTcc (εlw, εlλ)). No

empirically realistic calibration ensures this outcome.

To fix ideas, consider a simple calibration with σ = 1, Θk = 0.25, Θl set to its

upper bound Θl (the most favorable case for indeterminacy), and εlw = 3 (the value

advocated by Rogerson and Wallenius [70] and Prescott and Wallenius [68] to calibrate

the wage elasticity of the aggregate labor supply curve in standard RBC/DSGE models).

Indeterminacy requires in this case εlλ > εlλ ' 55 and εcc > εTcc ' 1169. If, at the

other extreme, the wage elasticity of the labor supply curve is increased to 1000 for the

same other parameter values (approximating Hansen’s [37] type of preferences with an

infinitely elastic labor supply curve), indeterminacy now requires εlλ > εlλ ' 1259 and

εcc > εTcc ' 254. Clearly, no configuration is empirically realistic.1

7.8 Proof of Proposition 5

The critical value εTcc given in Lemma 3 provides a lower bound on εcc to get local inde-

terminacy. Since εlλ > εlλ(εlw), we can derive the following lower bound for εTcc:

εTcc > εlλ(εlw)
1
σ

(
s(1−β)
θ−sβδ +

CsΘk
1−s

)
+Θl( s(1−β)

θ−sβδ + C
σ )+C εlλ(εlw)

εlw

(
1
σ
− sΘk

1−s

)
εlw
σ

(
Θl+

sΘk
1−s

)
−
(

1
σ
− sΘk

1−s

) ≡ εTcc(εlw)

1Similar unrealistic values appear for the whole range of potential calibrations regarding σ, Θk and
Θl.
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εTcc(εlw) is a decreasing function of εlw over (εlw,+∞) with limεlw→εlw = +∞. Straightfor-

ward computations then show that under Assumption 5, εTcc > 2 when εlλ > εlλ(εlw). As

a result local indeterminacy is ruled out and the steady state is always a saddle-point.

7.9 Proof of Proposition 6

We easily conclude that under Assumptions 1-4, local indeterminacy is ruled out for any

σ > 0 in the following cases:

i) when Θk = Θl = Θ, we get

D = 1
β

{
1 + θ

Θ(1+
εlw
σ )

1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1
σ

+Θl)

}
> 1

β

ii) when εlw = 0 we get

lim
εlw→0

1− T (εcc) +D = −∞

iii) when εlλ = 0 we get

D = 1
β

{
1 + θ

Θk+
εlw
σ

[sΘk+(1−s)Θl]
1+εlw[ sσ−Θl(1−s)]

}
> 1

β

iv) when Θl = 0 we get

D = 1
β

{
1 + θ

Θk[1+
sεlw
σ

+(1−s)εlλ]
1+

sεlw
σ

+
εlλθ(1−s)

σ

}
> 1

β

7.10 Proof of Proposition 7

From (45) we derive

ŵt = s
σ

(
k̂t − l̂t

)
(77)

Using this into (65) and (66) then gives

l̂t = εlλ
1+

sεlw
σ

λ̂t + sεlw
1+

sεlw
σ

k̂t

ĉt =
[
C
(

1− εlλ
εlw

)
εlλ

1+
sεlw
σ

− εcc
]
λ̂t +

C s
σ

(εlw−εlλ)

1+
sεlw
σ

k̂t

(78)

Equation (77) then becomes

ŵt = s
σ

[
1

1+
sεlw
σ

k̂t − εlλ
1+

sεlw
σ

λ̂t

]
(79)
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From the prices rt and pt as given by (44) and (46) we finally derive:

r̂t = (1−s)
σ

[
εlλ

1+
sεlw
σ

λ̂t − 1
1+

sεlw
σ

k̂t

]
p̂t = − Θ

sβδ

{
sθ
[
1+

sεlw
σ

+
(1−s)εlλ

σ

]
1+

sεlw
σ

k̂t +
[
θ(1−s)ε2lλ
1+

sεlw
σ

+ (θ − sβδ)εcc)
]
λ̂t

}
Tedious computations based on these results allow to get from the system of difference

equations (42)-(43):

 0 1

A21 −A22

 k̂t+1

λ̂t+1

 =

 B11 B12

B21 −B22

 k̂t

λ̂t


with

A21 = 1 +
θ(1−s)
σ

εlλ

1+
sεlw
σ

− (1−δ)Θ
sδ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]

A22 =
θ(1−s)
σ

1+
sεlw
σ

+ θ(1−δ)Θ
δ

1+
sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

B11 = 1+Θ
sβ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]

B12 = 1
β

[
1 +

θ(1−s)
σ

εlλ

1+
sεlw
σ

+ θΘ
1+

sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

]
B21 = 1− Θ

sβδ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]

B22 = θΘ
βδ

1+
sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

The Proposition follows.

7.11 Proof of Lemma 4

We easily derive from Proposition 5 the Determinant and Trace:

D = B11B22+B12B21

A21

T = 1 +D + (B21−A21)(1−B12)+B11(A22−B22)
A21

The characteristic polynomial is then

P(λ) = λ2 − λT (εcc, εlw, εlλ, σ,Θ) +D(εcc, εlw, εlλ, σ,Θ) (80)
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with

D(εcc, εlw, εlλ, σ,Θ) = 1
β

1 + Θθ
1+

sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

+
θ(1−s)εlλ

σ
−Θ(1−δ)(θ−sβδ)

sδ

[
Cε2
lλ

εlw
+εcc(1+

sεlw
σ

)

]


T (εcc, εlw, εlλ, σ,Θ) = 1 +D(εcc, εlw, εlλ, σ,Θ)

+

θ(θ−sβδ)
sβ

{
εlλ[ (1−s)(1−C)+ΘsC

σ ]+
Cε2lλ
εlw

[ 1−s
σ
−Θ(1− 1−s

σ )]+εcc[ 1−s
σ
−Θ(1− 1−s

σ )−Θ s
σ
εlw]

}
1+

sεlw
σ

+
θ(1−s)εlλ

σ
−Θ(1−δ)(θ−sβδ)

sδ

[
Cε2
lλ

εlw
+εcc(1+

sεlw
σ

)

]

≡ 1 +D(εcc, εlw, εlλ, σ,Θ) + X (εcc, εlw, εlλ, σ,Θ)

It is easy to derive that as the parameter εcc is varied over the interval (0,+∞),

D(εcc, εlw, εlλ, σ,Θ) and T (εcc, εlw, εlλ, σ,Θ) are linked through a linear relationship ∆(T )

such that
D = ∆(T ) = S(εlw, εlλ, σ,Θ)T +M

with

S(εlw, εlλ, σ,Θ) = ∂D(εcc,εlw,εlλ,Θ)/∂εcc
∂T (εcc,εlw,εlλ,Θ)/∂εcc

which does not depend on εcc.

Straightforward computations show that ∂D(εcc, εlw, εlλ, σ,Θ)/∂εcc > 0 and, under

Assumptions 1, 3, 4, 5 and 6, with σ < σ̄, with σ̄ = min{3.3, σ̃} and σ̃ = (1−s)(1+Θ)/Θ

and Θ ∈ (0, 0.44), ∂T (εcc, εlw, εlλ, σ,Θ)/∂εcc > 0. It follows that S(εlw, εlλ, σ,Θ) > 0 and

thus ∆(T ) is a line in the space (T ,D) with a positive slope. In order to locate this line,

we need to compute the starting and end points (T (0, εlw, εlλ, σ,Θ),D(0, εlw, εlλ, σ,Θ))

and (T (+∞, εlw, εlλ, σ,Θ),D(+∞, εlw, εlλ, σ,Θ)). We easily get

D(0, εlw, εlλ, σ,Θ) = 1
β

{
1 + Θθ

1+ s
σ
εlw+

(1−s)
σ

εlλ

1+ s
σ
εlw+

θ(1−s)
σ

εlλ−Θ(1−δ)θ(1−s)
sδ

ε2
lλ
εlw

}
≡ D0

X (0, εlw, εlλ, σ,Θ) =
θ(θ−sβδ)εlλ[(1−s)(1−C)+ΘsC](εlw−ε̂lw)

sβσεlw

1+ s
σ
εlw+

θ(1−s)
σ

εlλ−Θ(1−δ)θ(1−s)
sδ

ε2
lλ
εlw

with

ε̂lw ≡ ΘCεlλ(σ−σ̃)
(1−s)(1−C)+ΘsC and σ̃ ≡ (1−s)(1+Θ)

Θ

In the rest of the proof we assume that σ < σ̃ so that the bound ε̂lw < 0 is no longer

relevant. It follows that D0 satisfies:

- D0 > 1/β if and only if εlλ < ε0lλ(εlw)(εlw) with

ε0lλ(εlw) ≡
θ(1−s)sδ

σ
εlw+

√
[ θ(1−s)sδσ

εlw]
2
+4Θ(1−δ)θ(1−s)(1+

sεlw
σ )sδεlw

2Θ(1−δ)θ(1−s)
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- D0 ∈ (−∞, 1) if and only if εlλ ∈ (ε0lλ(εlw), ε̄lλ(εlw)) with

ε̄lλ(εlw) ≡
θ(1−s)sδεlw(1−β+Θ)

σ
+

√[
θ(1−s)sδεlw(1−β+Θ)

σ

]2
+4Θ(1−β)(1−δ)θ(1−s)(1+

sεlw
σ )sδεlw(1−β+Θθ)

2Θ(1−β)(1−δ)θ(1−s) > ε0lλ(εlw)

- D0 ∈ (1, 1/β) if and only if εlλ > ε̄lλ(εlw).

Under σ < σ̃ we also immediately conclude that

1− T (0, εlw, εlλ, σ,Θ) +D(0, εlw, εlλ, σ,Θ) = −X (0, εlw, εlλ, σ,Θ) < 0

if and only if εlλ < ε0lλ(εlw). Moreover, we easily derive that

1 + T (0, εlw, εlλ, σ,Θ) +D(0, εlw, εlλ, σ,Θ) > 0

if and only if εlλ ∈ (0, ε0lλ(εlw)) ∪ (ε̃lλ(εlw),+∞) with

ε̃lλ(εlw) ≡
θδεlw
σ

{
2(1−s)s(1+β+Θ)+(θ−sβδ)[(1−s)(1−C)+ΘsC]

}
+
√

∆

2Θθ(1−s)[2(1−δ)(1+β)+
θδ(σ−σ̃)

σ ]
∈ (ε0lλ(εlw), ε̄lλ(εlw))

and

∆ =

(
θδεlw

{
2(1−s)s(1+β+Θ)+(θ−sβδ)[(1−s)(1−C)+ΘsC]

}
σ

)2

+ 8
(
1 + sεlw

σ

)
sδεlw(1 + β + Θθ)Θθ(1− s)

[
2(1− δ)(1 + β) + θδ(σ−σ̃)

σ

] (81)

while

1 + T (0, εlw, εlλ, σ,Θ) +D(0, εlw, εlλ, σ,Θ) < 0

if and only if εlλ ∈ (ε0lλ(εlw), ε̃lλ(εlw)).

Finally, we have

D(+∞, εlw, εlλ, σ,Θ) = 1
β
≡ D∞ ∈ (1,D0)

X (+∞, εlw, εlλ, σ,Θ) = θδ
σβ

s(εlw−εlw)

(1−δ)(1+ s
σ
εlw)

with

εlw ≡ σ̃−σ
s

We conclude here that under σ < σ̃, X (+∞, εlw, εlλ, σ,Θ) > 0 and thus

1− T (+∞, εlw, εlλ, σ,Θ) +D(+∞, εlw, εlλ, σ,Θ) = −X (+∞, εlw, εlλ,Θ) < 0

if and only if εlw > εlw.

Under σ < σ̃, we then get the following conclusions:

- if εlλ < ε0lλ(εlw) then 1 − T (0, εlw, εlλ, σ,Θ) + D(0, εlw, εlλ, σ,Θ) < 0 for any εlw ≥ 0

while 1− T (+∞, εlw, εlλ, σ,Θ) +D(+∞, εlw, εlλ, σ,Θ) > 0 if and only if εlw < εlw;

13



- if εlλ > ε0lλ(εlw) then 1 − T (0, εlw, εlλ, σ,Θ) + D(0, εlw, εlλ, σ,Θ) > 0 for any εlw ≥ 0

while 1− T (+∞, εlw, εlλ, σ,Θ) +D(+∞, εlw, εlλ, σ,Θ) > 0 if and only if εlw < εlw.

Let us compute the critical values εHcc(εlw, εlλ), ε
T
cc(εlw, εlλ) and εFcc(εlw, εlλ) respectively

associated with Hopf, transcritical and flip bifurcations. The first one εHcc(εlw, εlλ) is

obtained solving the equality D(εcc, εlw, εlλ, σ,Θ) = 1 with respect to εcc. Straightforward

computations yield the value

εHcc(εlw, εlλ) =
(1+ s

σ
εlw)(1−β+Θθ)+

θ(1−s)
σ

εlλ(1−β+Θ)−Θθ(1−β)(1−δ)(1−s) ε2lλ
sδεlw

Θ(1−β)
(1−δ)
sδ

(θ−sβδ)(1+ s
σ
εlw)

It follows obviously that for any given εlw, εHcc(εlw, εlλ) ≥ 0 if and only if εlλ ≤ ε̄lλ(εlw).

The critical value εTcc(εlw, εlλ) is obtained as the solution of the equality

X (εcc, εlw, εlλ, σ,Θ) = 0, namely

εTcc(εlw, εlλ) ≡
εlλ[(1−s)(1−C)+ΘsC](εlw−ε̂lw)

Θsεlw(εlw−εlw)

Under σ < σ̃, we have ε̂lw < 0 and thus εlw − ε̂lw > 0. So, obviously, εTcc(εlw, εlλ) > 0 if

and only if εlw > εlw. By convention, we will consider that εTcc(εlw, εlλ) = +∞ when εlw ∈
(0, εlw). Note that since the steady state is generically unique, εTcc(εlw, εlλ) corresponds to

a degenerate transcritical bifurcation.

The critical value εFcc(εlw, εlλ) is finally obtained as the solution of the equality 1 +

T (εcc, εlw, εlλ, σ,Θ) +D(εcc, εlw, εlλ, σ,Θ) = 0, namely

εFcc(εlw, εlλ) =
θ(1−s)[2(1−δ)(1+β)+

θδ(σ−σ̃)
σ ](ε−lλ(εlw)−εlλ)(εlλ−ε̃lλ(εlw))

(θ−sβδ)εlw[2(1+β)(1−δ)(1+ s
σ
εlw)+ θsδ

σ
(εlw−εlw)]

with

ε−lλ(εlw) =
θδεlw
σ

{
2(1−s)s(1+β+Θ)+(θ−sβδ)[(1−s)(1−C)+ΘsC]

}
−
√

∆

2Θθ(1−s)[2(1−δ)(1+β)+
θδ(σ−σ̃)

σ ]

and ∆ as given by (81). Obviously, ε−lλ(εlw) < 0 and we conclude that εFcc(εlw, εlλ) ≥ 0 if

and only if εlλ ≤ ε̃lλ(εlw). This critical value corresponds to a flip bifurcation giving rise

to the existence of period-two cycles.

As this will become obvious later on, we need now to check that εHcc(εlw, εlλ) ≤
εTcc(εlw, εlλ). This inequality is satisfied if and only if εlλ ≥ ε̂lλ(εlw) with

ε̂lλ(εlw) =
−σ(1−s)

{
(1−β+Θθ)(1−β)(1−δ)(1+ s

σ
εlw)− θσ (1−β+Θ)sδ(εlw−εlw)

}
+σ
√

∆̂

2Θθ(1−β)(1−δ)(1−s)σ̃

and
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∆̂ = (1− s)2
{

(1− β + Θθ)(1− β)(1− δ)
(
1 + s

σ
εlw
)
− θ

σ
(1− β + Θ)sδ(εlw − εlw)

}2

+ 4Θθ(1−β)(1−δ)(1−s)σ̃
σ

(
1 + s

σ
εlw
)

(1− β + Θθ)sδ(εlw − εlw)

Note that ε̂lλ(εlw) > 0 if and only if εlw > εlw. By convention, we will consider that

ε̂lλ(εlw) = 0 when εlw ∈ (0, εlw).

When εlλ < ε̂lλ(εlw), the Hopf bifurcation is always ruled out. In order to locate the

∆(T ) line we need to check whether D = −1 can occur, and if yes, we need to know

the sign of T when D = −1. If the sign is positive then the ∆(T ) line is located below

the triangle ABC and local indeterminacy is ruled out. On the contrary, if the sign is

negative then the ∆(T ) line may cross the triangle ABC leading to the possible existence

of local indeterminacy. Solving D(εcc, εlw, εlλ, σ,Θ) = −1 with respect to εcc gives

ε̄cc(εlw, εlλ) =
(1+ s

σ
εlw)(1+β+Θθ)+

θ(1−s)
σ

εlλ(1+β+Θ)−Θθ(1+β)(1−δ)(1−s) ε2lλ
sδεlw

Θ(1+β)
(1−δ)
sδ

(θ−sβδ)(1+ s
σ
εlw)

Straightforward computations show that ε̄cc(εlw, εlλ) > 0 if and only if εlλ > ¯̄εlλ(εlw) with

¯̄εlλ(εlw) ≡
θ(1−s)sδεlw(1+β+Θ)

σ
+

√[
θ(1−s)sδεlw(1+β+Θ)

σ

]2
+4Θ(1+β)(1−δ)θ(1−s)(1+

sεlw
σ )sδεlw(1+β+Θθ)

2Θ(1+β)(1−δ)θ(1−s)

∈ (ε0lλ(εlw), ε̄lλ(εlw))

If εlλ > ¯̄εlλ(εlw) we derive that

T (ε̄cc, εlw, εlλ, σ,Θ) = χ(ε̄cc, εlw, εlλ, σ,Θ)

and straightforward computations yield T (ε̄cc, εlw, εlλ, σ,Θ) ≥ 0 if and only if εlλ ≥ εlλ(εlw)

with

εlλ(εlw) ≡
−(1−s)

{
(1−β+Θθ)(1+β)(1−δ)

δ
+
θ(1+β+Θ)(σ̃−σ)

σ
+
sεlw
δσ

[
(1+β)[θ(1−δ)−δ]+Θθ[(1+β)(1−δ)−δ]

]}
+
√

∆

2Θ(1+β)(1−δ)θ(1−s)σ̃
δσ

< ε0lλ(εlw)

and

∆ = (1− s)2
{

(1−β+Θθ)(1+β)(1−δ)
δ

+ θ(1+β+Θ)(σ̃−σ)
σ

+ sεlw
δσ

[
(1 + β)[θ(1− δ)− δ]

+ Θθ[(1 + β)(1− δ)− δ]
]}2

+ 4
(
1 + s

σ
εlw
)

(1 + β + Θθ)s(εlw − εlw)Θ(1+β)(1−δ)θ(1−s)σ̃
δσ

Note that εlλ(εlw) is obviously such that εFcc(εlw, εlλ) = εTcc(εlw, εlλ) when εlλ = εlλ(εlw).

15



7.12 Proof of Theorem 2

Under Assumptions 1, 3, 4, 5 and 6, let Θ ∈ (0, Θ̄) and σ < σ̄, with Θ̄ = min{s/(1 −
s)σ, 0.44}, σ̄ = min{2, σ̃} and σ̃ = (1− s)(1 + Θ)/Θ. Straightforward computations show

that if εlw > εlw, ε̂lλ(εlw) < ε̄lλ(εlw). We need now to check whether ε̂lλ(εlw) ≷ ε̃lλ(εlw).

Since ε̂lλ(εlw) = 0 < ε̃lλ(εlw) when εlw = εlw, obvious computations then show that there

exists a unique value ε̄lw > εlw such that ε̂lλ(εlw) < ε̃lλ(εlw) if and only if εlw ∈ (εlw, ε̄lw)

and ε̂lλ(εlw) = ε̃lλ(εlw) if and only if εlw = ε̄lw.

Let us consider now the value of the Trace when εcc = εHcc(εlw, εlλ). We get

T (εHcc(εlw, εlλ), εlw, εlλ,Θ) = 2 + X (εHcc(εlw, εlλ), εlw, εlλ,Θ)

with

X (εHcc(εlw, εlλ), εlw, εlλ, σ,Θ) = −
θ(1−β)(θ−sβδ)εlλ

σsβ

[(1−s)(1−C)+ΘsC](εlw−ε̂lw)

εlw

{
1+

ΘsεHcc(εlw,εlλ)εlw(εlw−εlw)
εlλ[(1−s)(1−C)+ΘsC](εlw−ε̂lw)

}
Θθ[1+sεlw+(1−s)εlλ]

We easily derive that under σ < σ̃, X (εHcc(εlw, εlλ), εlw, εlλ, σ,Θ) < 0 and thus

T (εHcc(εlw, εlλ), εlw, εlλ,Θ) < 2 if and only if εlλ ∈ (ε̂lλ(εlw), ε̄lλ(εlw)).

We need now to provide a condition to get T (εHcc(εlw, εlλ), εlw, εlλ, σ,Θ) > −2 or equiv-

alently X (εHcc(εlw, εlλ), εlw, εlλ, σ,Θ) > −4. We get

(1−β)(θ−sβδ)εlλ
εlw

[(1−s)(1−C)+ΘsC](εlw−ε̂lw)
σ

{
1 +

ΘsεHcc(εlw,εlλ)εlw(εlw−εlw)

σεlλ[(1−s)(1−C)+ΘsC](εlw−ε̂lw)

}
< 4βΘ

[
1 + s

σ
εlw + (1−s)

σ
εlλ

]
Tedious but straightforward computations show that if εlλ < ε̄lλ(εlw), the previous in-

equality is satisfied.

Case 1 - Let us consider in a first step the case εlw ∈ (0, εlw) where ε̂lλ(εlw) = 0. We

get the following geometrical characterizations of the ∆(T ) line depending on the value

of εlλ. When εlλ < ε0lλ(εlw) or εlλ ∈ (ε0lλ(εlw), ε̃lλ(εlw)), we have:
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Figure 5: ∆(T ) line when εlw ∈ (0, εlw) and εlλ < ε0lλ(εlw).

As shown by these Figures, increasing εcc from 0, the steady state is first saddle-point
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Figure 6: ∆(T ) line when εlw ∈ (0, εlw) and εlλ ∈ (ε0lλ(εlw), ε̃lλ(εlw)).

stable. Still increasing εcc leads to the existence of a flip bifurcation giving rise to the

existence of period-two cycles when εcc crosses εFcc(εlw, εlλ). Above εFcc(εlw, εlλ) the steady

state then becomes locally indeterminate and when εcc crosses the bound εHcc(εlw, εlλ), a

Hopf bifurcation occurs giving rise to the existence of periodic cycles. Above εHcc(εlw, εlλ),

the steady state is totally unstable for any εcc ∈ (εHcc(εlw, εlλ),+∞).

When εlλ ∈ (ε̃lλ(εlw), ε̄lλ(εlw)), we obviously get the following case where the flip

bifurcation no longer exists, i.e. εFcc(εlw, εlλ) = 0:
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Figure 7: ∆(T ) line when εlw ∈ (0, εlw) and εlλ ∈ (ε̃lλ(εlw), ε̄lλ(εlw)).

Finally, when εlλ > ε̄lλ(εlw), we get the following case where the Hopf bifurcation no

longer exists, i.e. εHcc(εlw, εlλ) = 0:
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Figure 8: ∆(T ) line when εlw ∈ (0, εlw) and εlλ > ε̄lλ(εlw).
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Case 2 - Let us consider now the case εlw ∈ (εlw, ε̄lw) where 0 < ε̂lλ(εlw) < ε̃lλ(εlw).

We get εlλ(εlw) < ε0lλ(εlw) < ¯̄εlλ(εlw) < ε̃lλ(εlw) < ε̄lλ(εlw) and εlλ(εlw) < ε̂lλ(εlw) < ε̃lλ(εlw).

However, the bounds ε0lλ(εlw) and ¯̄εlλ(εlw) may be lower or larger than ε̂lλ(εlw) but this

does not really impact the local stability results. It is worth noticing that when εlw = εlw,

εlλ(εlw) = ε̂lλ(εlw) = 0. We then obtain the following geometrical characterizations of the

∆(T ) line depending on the value of εlλ and εlw. Recall that εlw ∈ (εlw, ε̄lw) and consider

for now that ε0lλ(εlw) < ¯̄εlλ(εlw) < ε̂lλ(εlw). When εlλ < εlλ(εlw) we have
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Figure 9: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ < εlλ(εlw).

When εlλ ∈ (εlλ(εlw), ε̃lλ(εlw)) we get the following three cases:
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Figure 10: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ ∈ (εlλ(εlw), ε0lλ(εlw)).
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Figure 11: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ ∈ (ε0lλ(εlw), ε̂lλ(εlw)).

In these three cases, local indeterminacy arises if εcc ∈ (εFcc(εlw, εlλ), ε
T
cc(εlw, εlλ)) and

saddle-point stability holds outside this interval. The same conclusion would be obtained

is ε0lλ(εlw) and/or ¯̄εlλ(εlw) were larger than ε̂lλ(εlw).
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Figure 12: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ ∈ (¯̄εlλ(εlw), ε̂lλ(εlw)).

When εlλ > ε̂lλ(εlw), the Hopf bifurcation may again occur as long as εlλ < ε̄lλ(εlw).

We get indeed:
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Figure 13: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ ∈ (ε̂lλ(εlw), ε̃lλ(εlw)).

6

-

�
�
�
�
�
�
�
�
�
�
��

C

(T∞,D∞)

(T0,D0)

@
@
@
@
@
@
@
@
@
@
@@

0

A
T

D

B

����������

∆(T )
εTcc

εHcc

-1 1

1

-1

Figure 14: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ ∈ (ε̃lλ(εlw), ε̄lλ(εlw)).

As shown by these Figures, when εlλ ∈ (ε̂lλ(εlw), ε̃lλ(εlw)), increasing εcc from 0,

the steady state is first saddle-point stable. Still increasing εcc leads to the existence

of a flip bifurcation giving rise to the existence of period-two cycles when εcc crosses

εFcc(εlw, εlλ). Above εFcc(εlw, εlλ) the steady state then becomes locally indeterminate and

when εcc crosses the bound εHcc(εlw, εlλ), a Hopf bifurcation occurs giving rise to the exis-

tence of periodic cycles. Above εHcc(εlw, εlλ), the steady state is locally unstable when

εcc ∈ (εHcc(εlw, εlλ), ε
T
cc(εlw, εlλ)) and saddle-point stable when εcc ∈ (εTcc(εlw, εlλ),+∞).

Since the steady state is generically unique, εTcc(εlw, εlλ) corresponds to a degenerate tran-

scritical bifurcation. When εlλ ∈ (ε̃lλ(εlw), ε̄lλ(εlw)), we get εTcc(εlw, εlλ) = 0 and when

εlλ > ε̄lλ(εlw) we get εHcc(εlw, εlλ) = 0.
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Figure 15: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ > ε̄lλ(εlw).

Case 3 - Let us consider finally the case εlw > ε̄lw where ε̃lλ(εlw) < ε̂lλ(εlw) < ε̄lλ(εlw).

Therefore, using all our previous results, we get the following geometrical characteri-

zations of the ∆(T ) line depending on the value of εlλ. When εlλ < εlλ(εlw) , local

indeterminacy is ruled out as the ∆(T ) does not cross the triangle ABC as in Figure 9.

On the contrary, when εlλ ∈ (εlλ(εlw), ε̃lλ(εlw)), local indeterminacy can arise as we

get the following three cases where the ∆(T ) crosses the triangle ABC as in Figures 10,

11 and 12.

When εlλ ∈ (ε̃lλ(εlw), ε̂lλ(εlw)) the flip bifurcation no longer exists.
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Figure 16: ∆(T ) line when εlw > ε̄lw and εlλ ∈ (ε̃lλ(εlw), ε̂lλ(εlw)).

When εlλ ∈ (ε̂lλ(εlw), ε̄lλ(εlw)), the Hopf bifurcation exists as the same configuration

as Figure 14 occurs. When εlλ > ε̄lλ(εlw), the Hopf bifurcation no longer exists and local

indeterminacy is again ruled out as the same configuration as Figure 15 occurs.
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