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Abstract

We consider public goods games played on a potentially non-symmetric network
and provide comparative statics results on individual and aggregate contributions,
as well as on the effect of transfers between players. We show that, contrary to
the case of the complete and symmetric network, a positive shock on a player can
have adverse consequences. First, it could actually decrease this player’s contri-
bution, unless the interaction matrix is a P -matrix. Second, a positive shock on
a contributing player increases aggregate contributions, but a positive shock on a
non-contributing player will decrease aggregate contributions, even if the player who
benefited from the positive shock increases his own contribution. In each case we
provide simple conditions to determine whether a positive shock will have positive
or negative consequences on contributions, by looking at the unconstrained solution
of an alternative, associated game. The sign of the coordinates of this solution de-
termines the effect of a shock. With this in hand, we further show that the aggregate
neutrality result of Andreoni [1990] regarding transfers between players generally
does not hold on non-symmetric networks and provide conditions for it to hold.

Finally, as an application of previous results, we consider introducing agents that
follow Kantian moral principles and show that, depending on their position in the
network, the presence of Kantian agents can, counter-intuitively, lead to a decrease
in aggregate contributions.
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1 Introduction

The public goods provision game has been the subject of many papers in economics. In
particular, several papers have attempted to derive comparative statics results on the
equilibria of the game, seeking to clarify how individual and aggregate contributions
change when one or more parameters of the game change.

This is the case, inter alia, of Corchón [1994] or Cornes and Hartley [2007], who
show that a player undergoing a positive shock will increase his contribution and induce
an increase in the aggregate contribution in a context where the equilibrium is unique.
This work has been generalized by Acemoglu and Jensen [2013] to the case where there
are multiple equilibria, or even a continuum of equilibria. Another comparative statics
exercise is provided by Warr [1983], Bergstrom et al. [1986], and Andreoni [1990], who
analyze the effect of a transfer of income between agents on the equilibrium of the game.
The first two identify a neutrality property in a pure public good context, whereby a
small redistribution of income between agents will change their contribution by precisely
the amount of the transfer received, implying that the aggregate contribution will not
change after the transfer. The third looks at the same problem in a context where
individuals’ provisions are imperfect substitutes, with possibly heterogeneous substitution
rates, and shows that, while neutrality no longer holds, aggregate neutrality (i.e. the sum
of contributions remains the same) still holds, if and only if the agents involved in the
income transfer have the same substitution rates.

However, these comparative statics papers consider that the agents all interact with
each other, i.e. on a network that is complete. Recently though, Bramoullé and Kranton
[2007] introduced a model in which the provision of public goods is local instead of global,
i.e. players only benefit from the contributions of their neighbors in a network of relation-
ships. In that paper, the authors consider payoff functions with linear best-responses,
show the existence of Nash equilibria, and analyze the stability of these equilibria, an
analysis they extended in Bramoullé et al. [2014]. In parallel, Allouch [2015] considers
local public good games with possibly non-linear best-responses, identifies conditions for
the equilibrium to be unique, investigates whether the neutrality result found by Warr
[1983] and Bergstrom et al. [1986] holds, and finds that it does not hold except for very
specific network structures.

However, these papers restrict their attention to symmetric networks, and do not focus
on comparative statics. Our aim in this paper is to provide comparative static results in
the spirit of Corchón [1994] and Acemoglu and Jensen [2013], in a context where the public
good is local instead of global, the pattern of interactions could be asymmetric, and there
are possibly multiple equilibria. We also aim to verify whether Andreoni [1990]’s finding
on aggregate neutrality holds on a network after a transfer between agents. Finally, we
consider a third comparative statics exercise, which consists of replacing one player with
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a player of another type, who does not share the others’ objective in the game. The
general message being that results that hold on a complete network no longer hold on
an arbitrary network, and that results that hold on symmetric networks do not hold on
non-symmetric networks, we now detail each of them.

In section 2, we present a general public good model with linear best-response, al-
lowing for as many sources of heterogeneity as possible. In particular, we allow for two
unrelated sources of heterogeneity: in individual characteristics (benefit function, income,
marginal cost, etc.), as well as in the interaction patterns between agents (existence and
intensity of links, substitution rates). We then show (Proposition 1) that, although these
heterogenities are different in nature, comparative statics on any dimension of the model
can be captured through comparative statics on one parameter that we call the needs of
agents. Needs are the amount of resources that an agent, if isolated, would choose to
contribute to the public good. We also show (Proposition 2) that Nash equilibria of the
game are solutions to a Linear Complementary Problem (LCP), and we make use of this
LCP theory to provide an alternative proof of existence (Corollary 1) and a sufficient
condition for uniqueness (Corollary 2) in non-symmetric networks, that encompasses the
conditions in Bramoullé et al. [2014] and Allouch [2015] for symmetric network case. This
sufficient condition states that the game’s interaction matrix, which captures how players’
actions influence each others’ best-responses, should be a P -matrix1.

In section 3, our first comparative statics result (Theorem 1) shows that a positive
shock on a player will induce an increase in his contribution if the interaction matrix is
a P -matrix. Thus, results in Corchón [1994] and Acemoglu and Jensen [2013], restricted
to the linear case, are corollaries of this theorem since the complete network’s interaction
matrix, even with heterogeneous substitution rates, is a P -matrix (Proposition 3). More
importantly, we also show that a positive shock can in fact decrease a player’s contribution
if the interaction matrix is not a P -matrix.

In section 4, we investigate how aggregate contribution changes with a positive shock
on an agent. Here again, we show that aggregate contribution can increase as expected,
but does not always do so. In particular, when players are homogeneous in terms of
resources and substitution rates and interact on a undirected network, whether contribu-
tions increase or decrease depends on the status of the agent, i.e. contributor or free-rider,
who is subject to the shock. If this agent was active (contributor) before the shock, then
aggregate contributions will increase, even though his own contribution might decrease
as noted earlier (Proposition 4); while if the agent was strictly inactive (free-rider) before
the shock, then aggregate contributions will actually decrease (Proposition 5). This is
surprising, being counter-intuitive. A policy maker seeking to increase aggregate contri-

1A square matrix is a P -matrix if and only if its principal minors are strictly positive. When the
matrix is symmetric, this is equivalent to being positive definite.
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butions would, in principle, target free-riders rather than already contributing players.
However as we show, he will actually decrease aggregate contributions by doing so. The
intuition behind this result will become clear once we look into the case of heterogeneous
players.

Before stating the conditions that reveal whether a shock to a player will increase
or decrease aggregate contributions when players are heterogeneous, it is important to
note that the solution of an LCP problem, such as the one we analyze in this paper, is
a constrained solution of a linear system. This system admits a unique unconstrained
solution, but there is no known connection between this unconstrained solution (which
may therefore have negative coordinates) and the set of constrained solutions (which
have only positive coordinates) of this problem2. As we show, we can construct a problem
associated with every equilibrium of the initial game, search for the unconstrained solution
to this problem, and deduce from the sign of each coordinate of this solution the impact
that a shock on the corresponding player will have on aggregate contributions in the
initial game. If the player getting the shock has a positive coordinate, the aggregate
contribution will increase; if the coordinate is negative, it will decrease (Proposition 6).

To see this, we notice that the unconstrained solution of a player in the associated
problem represents the aggregate outgoing effect of this player. If a player has a positive
outgoing effect, increasing his needs will increase aggregate contributions, whereas a
player with negative outgoing effect will decrease aggregate contributions.

Coming back to the case of homogeneous players on an undirected network, we observe
that the outgoing effects and the incoming effects are the same for each player because of
the symmetry of the network. In addition, the incoming effect for a player is precisely the
difference between this player’s needs and how much public goods he receives from his
neighbors. This is positive if a player is active, and negative if a player is strictly inactive.
This is why we can identify active players as having positive outgoing effects (i.e. players
who increase aggregate contributions) and strictly inactive players as having negative
outgoing effects (i.e. players who decrease aggregate contributions) as in Propositions 4
and 5.

Incidentally, we notice that players whose coordinate in the unconstrained solution
is zero have no effect whatsoever on aggregate contributions, whatever the shock they
receive. To the best of our knowledge this is the first paper to identify these players, that
we call neutral players. They occupy a position in the network such that if they suffer
a shock (positive or negative), the contributions of all players including themselves will
change, but the sum of these contributions will remain constant. These players are placed

2It would be tempting to think that coordinates that are positive in the unconstrained solution
correspond to active players, while coordinates that are negative in the unconstrained solution correspond
to inactive players. However this is not true and there is no such identification rule regarding who is
active and who is not, based on these coordinates.
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in positions such that the positive effects precisely compensate for the negative effects.
Next, in sections 5 and 6 we apply these results to analyze respectively transfers

between players and replacement of standard maximizers by Kantian agents. These two
exercises are different in nature, but both can be analyzed through changes in needs.

In section 5 we look at transfers between agents. In the same way that Allouch [2015]
analyzed whether Bergstrom et al. [1986]’s results were true on a symmetric network
other than the complete one, we want to know whether Andreoni [1990]’s results are
true on an arbitrary non-symmetric network. A transfer between two players being an
increase of needs of one player and an equivalent decrease of needs of another player, we
can use results of section 4. We find that the original result on aggregate neutrality no
longer holds (Proposition 8), in two distinct senses. First, it is possible that the agents
involved in the income transfer have the same rates of substitution, but the aggregate
contribution changes; second, it is possible that the agents do not have the same rates
of substitution, yet the aggregate contribution remains constant before and after the
transfer. In particular, any transfer between neutral players, despite affecting the entire
equilibrium contributions, will leave the aggregate unchanged.

Finally, in section 6, we introduce Kantian agents into the local public good game,
by considering that society is formed of both Kantian agents and Nash maximizers3.
Following the literature and in particular Laffont [1975], we assume that “A typical agent
assumes (according to Kant’s moral) that the other agents will act as he does, and he
maximizes his utility function under this new constraint". This is also the definition
adopted in Alger and Weibull [2013], and the definition that we adopt here.

Kantian agents were introduced in economics as a way of considering that “in some
economic circumstances, agents are capable of behavior other than the selfish pattern
imputed to the "homo oeconomicus" by economic theory" (Laffont [1975]). It was argued
that the problem of under-provision of public goods is not as acute as suggested by the
theory, and one possible explanation is that agents do not behave as standard maximizers,
but adopt a Kantian morality when it comes to public goods. This view was later taken
up by Sugden [1984], Bilodeau and Gravel [2004], Roemer [2010], Roemer [2015] or Alger
and Weibull [2013], Alger and Weibull [2016].

3Other recent papers look at societies formed by both Kantian agents and Nash players, either on the
complete network or on specific networks. Van Long [2016] and Grafton et al. [2017] discuss definitions
of a Nash-Kant equilibrium and show that Kantian agents help decrease the inefficiency of Nash players
in a context of oligopoly for the first, and production of a public bad for the second. Pitsuwan [2017]
provides a uniqueness condition in the public good game played on the complete network, where players
act as Kantian only towards a subset of the population. Finally, the closest to our setting is Mohanty
et al. [2021], who investigate the same question but restrict the analysis to regular networks and perfect
substitutability. They show that free-riding decreases when Kantian agents are linked together in the
network, but this could come at the cost of a reduction in welfare.
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The fact that Kantian agents would reduce the under-provision problem seems intu-
itive: when a standard maximizer decides whether to increase his contribution, he ignores
the externalities he exerts on others by doing so. In contrast, when a Kantian agent in-
creases his contribution, he assumes that everyone else will also do so. He thus suffers a
direct increase in his cost, but benefits from all the positive externalities exerted by the
other agents.

This intuition, which is consistent with Bilodeau and Gravel [2004] for instance, is
actually confirmed on a complete network. In this section we check whether it still holds
on an arbitrary network. To do that, we replace a standard maximizer by a Kantian
agent, and compare aggregate contribution before and after replacement. As it turns
out, replacing a standard maximizer by a Kantian agent amounts to increasing this
player’s needs and removing all his incoming links at the same time. Again, we can
use results of section 4 and we show that the presence of one Kantian agent can in fact
be detrimental to the aggregate contribution, depending on which player is replaced by
a Kantian agent (Proposition 10). If this player was active, then the replacement will
increase contributions, while if this player was inactive, the replacement will decrease
contributions. Thus if a social planner wanted to replace one standard maximizer with
one Kantian agent, he would have to choose a player already contributing to the public
good, not a free-rider as intuition would recommend.

Finally, given that the presence of a Kantian agent could decrease contributions, we
analyze whether it is always possible to find a player to replace so as to guarantee that
contributions will increase, including if there are already other Kantian agents in the
network. We show (Proposition 11) the conditions to be checked at each replacement to
guarantee this increase. As in the previous sections, these conditions relate to the sign of
the coordinates of the solution to the unconstrained problem associated with the initial
equilibrium of the game.

2 Model, Existence, Multiplicity

2.1 Model

Consider a game G = (N, (Xi)i=1,...,n, u), where N = {1, . . . , n} is the set of players and
Xi = [0,+∞[ is the action space of player i, from which he chooses xi, his contribution
to the public good. We denote by X the sum of individual contributions to the public
good, i.e. X =

∑
i∈N xi. Finally u = (ui)i=1,...,n is the vector of payoff functions.

Agents are placed on a network represented by a graph G. By convention, we also
denote by G = {gij, i ∈ N, j ∈ N} the adjacency matrix of the graph with elements gij.
We assume that gii = 0 for all i.
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We say that the network is unweighted and undirected when gij = gji ∈ {0, 1}. We
say that the network is weighted if gij ∈ R∗+ if i is linked to j and gij = 0 otherwise.
We say it is directed if gij can be different from gji. The set of neighbors of player i is
Ni(G) := {j ∈ N, gij > 0}. When positive, we refer to gij as an incoming link for player i
and an outgoing link of player j. We also call gij the incoming link intensity of i from j.

We will sometimes only consider incoming links of a subset S of players, and delete the
incoming links of players in N \ S. We denote that network by GS, which is constructed
from G, where for player i ∈ S, we set gSij = gij for all j, while gSij = 0 for all i /∈ S.
Notice that this network is in general non-symmetric.

Best-responses

We consider games with payoff functions u(.) that have unique best-responses of the
following form

∀i ∈ N, Bri(x−i) = max

{
qi − δi

n∑
j=1

gijxj, 0

}
. (1)

where δi ∈ [0, 1] represents the rate of substitutability between agent i’s neighbors’ actions
and agent i’s action, and qi ∈ R+ represents player i’s demand for the public good. It is
the level of contribution that player i would provide if he was isolated. In the remainder
of this paper, we call qi the needs of player i. Substitution rates are collected into the
matrix ∆ = diag(δi)i∈N and needs are collected into vector q.

A prominent example of such a game is provided in Bramoullé and Kranton [2007],
where the payoff function is

ui(x) = b

xi +
∑

j∈Ni(G)

xj

− cxi (2)

where c > 0 is the marginal cost of effort and b(.) is a differentiable, strictly increasing
concave function normalized so that b′(1) = c. In that case, the best-response is given by

∀i ∈ N, Bri(x−i) = max

{
1−

n∑
j=1

gijxj, 0

}
. (3)

where δi = 1 and qi = 1 for all i.
Another prominent example is the quasi-linear version of the game of private provision

of a public good from Bergstrom et al. [1986], adapted to networks in Allouch [2015] and
with potentially imperfect substitutes: Assume player i has wealth wi ∈ R+ that he
allocates to the consumption of a private good and a public good, with payoff function

ui = log

(
xi + δi

n∑
j=1

gi,jxj

)
+ log(wi − xi)
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This game produces the best-response (1) by setting qi = 1
2
wi and gij = 1

2
if i and j are

linked and 0 otherwise.

2.2 Needs

In this paper, we are interested in the effects of changes in the parameters (q,∆, G) - and,
when relevant, of changes in wealth w - on equilibrium actions x∗i and on X∗ =

∑
i∈N x

∗
i ,

the aggregate contribution level of players at equilibrium x∗.
Changes in q capture changes in individual characteristics of the players. Indeed, note

that qi is the contribution that a player i would choose if he were in autarky (i.e. linked to
no-one). Thus changes in q can result from changes in costs, in wealth, in the concavity
of the benefit function (b(.) or log(.) in the above examples), or from any change that
would modify the preferred level of public good consumption of that player.

In turn, changes in ∆ or in G capture changes in the way individuals interact together.
These changes result from modifications of the network such as cutting out some links or
changing link intensities, from changes in levels of substitution, or from the modification
of player’s type, as will be illustrated in section 6 where some players will follow a Kantian
morality instead of being standard maximizers. We consider the following changes:

• changes in needs, with player 1’s needs increasing from q1 to q′1
• changes in the substitution rate of player 1, due to change δ1 to δ′1
• changes in the incoming link intensity of player 1, due to changing g1j to g′1j, with
potentially different changes for neighbors j1 and j2. This includes cutting all the
incoming links of player 1, cutting just one link, decreasing the weight of every link
by the same factor, or decreasing each weight by a different factor.

Although each parameter plays a different role in the model, we show that the effects of
changes in ∆ and G can be captured by equivalent changes in needs. First, a change from
δ1 to δ′1 is observed to be equivalent to a change from g1j to g′1j =

δ′1
δ1
g1j, so that changes

in substitution rates can be expressed as changes in incoming link intensities. Next, we
show that decreasing incoming link intensities can be captured as an increase of needs.

Proposition 1. Assume we start with the game with parameters (q,∆, G). Let xε be
an equilibrium of the game with modified parameters (q,∆, Gε), where gε1j = (1 − εj)g1j
for j ∈ N1(G), with εj ∈ [0, 1] for all j. Then, there exists β > 0 such that xε is an
equilibrium of the game (qβ,∆, G) where qβ = (q1 + β, q2, . . . , qn)T .

All the proofs are relegated to the Appendix. Since all changes in individual charac-
teristics or in the way players interact can be subsumed under changes in needs4, we will

4In a recent paper, Sun et al. [2023] show the same kind of equivalence result between changes in the
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only focus on changes in q in what follows.

2.3 Nash equilibria: Existence

Given a vector of needs q, and ∆ = diag(δi)i∈N , we call the matrix (I+∆G) the interaction
matrix, and we denote by xunc(∆G, q) the (unique) unconstrained solution to the system5

(I + ∆G)x = q,

that is
xunc(∆G, q) = (I + ∆G)−1.q

Of course, if xunci (∆G, q) ≥ 0 for all i, then xunc(∆G, q) is an interior Nash equilibrium
of the game. However this will not generally be the case.

The set of Nash equilibria of games with best-responses (1) is described by the set of
all profiles x∗ such that:

(A) qi − δi
∑

j∈N gijx
∗
j ≥ 0 =⇒ x∗i = qi − δi

∑
j∈N gijx

∗
j

(SI) qi − δi
∑

j∈N gijx
∗
j < 0 =⇒ x∗i = 0

Players of type (A) are active players, while players of type (SI) are strictly inactive
players, or free-riders. The set of players of type (A) at equilibrium x∗ is denoted by
A(x∗) ⊆ N , while the set of (SI) players at x∗ is denoted by SI(x∗) ⊂ N . It might
be tempting to think that active players are those whose unconstrained solution compo-
nents are positive, while the strictly inactive players are those with negative components.
However, this is not true, as the many examples provided below will make clear6.

Note that players such that qi − δi
∑

j∈N gijx
∗
j = 0 are considered active players.

Finally, for SI players, we call the quantity δi
∑

j∈N gijx
∗
j − qi > 0 the excess public good

of player i.
Existence of a Nash equilibrium is guaranteed by Brouwer’s fixed point theorem, for

any vector of needs q, any vector δ, and any network G. However, we present another
proof of existence which uses results from the Linear Complementarity Problem (LCP)
theory.7

network structure and changes in individual characteristics, in a setting with linear best-response and
strategic complements.

5Throughout the paper we assume that the matrix (I + ∆G) is non-degenerate, i.e. 0 is not an
eigenvalue.

6A recent paper by Zheng et al. [2016], adapted to our framework, proves the following: if (I + ∆G)

is positive definite, then xunci > 0 =⇒ i ∈ A(x∗) and i ∈ SI(x∗) =⇒ xunci < 0. This is, to the best of our
knowledge, the only established relationship between xunc and an equilibrium x∗.

7See for instance Murty and Yu [1988] for an overview of the literature.
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Problem LCP (b, A) consists of finding vectors x ∈ Rn and w ∈ Rn such that

Ax+ b = w,

w ≥ 0, x ≥ 0, wTx = 0

where A ∈ Rn×n and b ∈ Rn are given. This class of linear problems are called comple-
mentary because of the constraint wTx = 0, which implies that if one of the variables
is strictly positive then the other is necessarily 0. As we show now, finding the Nash
equilibria of games with best-responses (1) amounts to finding solutions to a linear com-
plementary problem.

Proposition 2. Let A = I+∆G and b = −q. Then x is a solution to LCP (−q, I+∆G) if
and only if x is a Nash equilibrium of games with best-responses (1). Vector w represents
the excess public good of players.

The proof of this proposition is immediate. It relies on the fact that for every player
i at a Nash equilibrium, either the excess public good wi is 0 (and i ∈ A(x) since i is
active iff wi = 0), or wi > 0 and xi = 0 (and i ∈ SI(x)).

Matrices that guarantee existence of at least one solution for each q are calledQ−matrices.

Theorem 5.2 (Murty [1972]). Let A ≥ 0. A is a Q-matrix if and only if aii > 0 for each
i = 1, .., n

Corollary 1. Games with best-responses (1) have at least one Nash equilibrium.

This corollary is straightforward, since all terms of (I + ∆G) are positive and the
diagonal terms are all equal to 1.

Now that existence is established, we define the equilibrium interaction matrix, noting
the following: if x∗ is a Nash equilibrium with sets A(x∗) and SI(x∗), and if (I+∆GA(x∗))

is non-degenerate, then x∗ is the unique equilibrium with sets A(x∗) and SI(x∗). This
equilibrium x∗ is the (unique) unconstrained solution to

(I + ∆GA(x∗))x = qA(x∗) (4)

where qi,A(x∗) = qi if i ∈ A(x∗), and qi,A(x∗) = 0 is i ∈ N \ A(x∗). In other words, this
solution is found by deleting incoming links of SI players and by setting their needs to 0.
Of course the set A(x∗) is usually not known when searching for x∗, which is why solving
an LCP is difficult.

Definition 1. Let x∗ be a Nash equilibrium of the game with interaction matrix (I +

∆G), with sets of active and strictly inactive players A(x∗) and SI(x∗). We call matrix
(I + ∆GA(x∗)) the equilibrium interaction matrix of x∗.
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2.4 Nash equilibrium: Condition for Uniqueness

Although our comparative static results do not rely on uniqueness of the equilibrium,
the conditions for uniqueness have so far only been established for symmetric interaction
matrices. Here we extend these conditions to the case of non-symmetric matrices.

When network G is symmetric and when δi = δ for all players, a sufficient condition
for uniqueness is presented in Bramoullé et al. [2014]. It requires that |λmin(G)| < 1/δ

where λmin denotes the lowest eigenvalue of the matrix8. However, this condition is not
sufficient in the general non-symmetric case with potentially different substitution rates
across players. Here again we take the LCP theory approach to provide a sufficient
condition for uniqueness, which encompasses the condition for the symmetric case.

Definition 2. A square matrix is a P -matrix if all its principal minors are strictly posi-
tive.

Theorem 4.2 (Murty [1972]). Let A be a square matrix of order n. The LCP (b, A) has
a unique solution for each b ∈ Rn if and only if A is a P -matrix.

Corollary 2. All games with best-responses (1) have a unique Nash equilibrium for each
needs vector q if and only if (I + ∆G) is a P -matrix.

A symmetric matrix is a P -matrix if and only if it is positive definite9. A symmetric
matrix is positive definite if and only if all its eigenvalues are strictly positive. We thus
recover the result in Bramoullé et al. [2014]:

Corollary 3. If the interaction matrix (I + ∆G) is symmetric with δi = δ for all i, then
there is a unique Nash equilibrium for each needs vector q if and only if |λmin(G)| < 1/δ.

Remark 1. Note that even if matrix G is symmetric, this does not imply that (I + ∆G)

is symmetric. For that to happen, it must be that δigij = δjgji for every pair of players
(i, j). In that case, the corresponding uniqueness condition is λmin(I + ∆G) > 0. Except
for section 4.1, we will be dealing with non-symmetric interaction matrices.

Three remarks are in order. First, we do not need positive definiteness to guarantee
uniqueness. It is necessary and sufficient in the symmetric case, but not necessary in the
non-symmetric case. When the matrix is non-symmetric, as in most of this paper, the
lowest eigenvalue condition does not necessarily work. A non-symmetric matrix can have

8This condition also coincides with the condition in Allouch [2015] for linear best-responses.
9A real matrix F , whether symmetric or not, is positive definite if yTFy > 0 for all y ∈ Rn, y 6= 0.

If F is symmetric - and only then - it is positive definite if and only if all its eigenvalues are strictly
positive. Most matrices we consider in this paper will not be symmetric.
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only positive eigenvalues and yet not be positive definite10, as illustrated in example 1.
However, although even non-symmetric positive definite matrices are always P -matrices,
some non-positive definite matrices are also P -matrices. This is true of the interaction
matrix in example 1, which is not positive definite but is a P -matrix.

Example 1. Consider the following non-symmetric interaction matrix (I + ∆G) where
G is the complete network, δ1 = 1 and δi = 0.1 otherwise.

(I + ∆G) =



1 1 1 1 1 1

0.1 1 0.1 0.1 0.1 0.1

0.1 0.1 1 0.1 0.1 0.1

0.1 0.1 0.1 1 0.1 0.1

0.1 0.1 0.1 0.1 1 0.1

0.1 0.1 0.1 0.1 0.1 1


Matrix (I + ∆G) has only positive eigenvalues. Yet, it is not positive definite. To see

that, notice that xT (I+∆G)x = xT 1
2

[
(I + ∆G) + (I + ∆G)T

]
x, and 1

2

[
(I + ∆G) + (I + ∆G)T

]
is symmetric but has a negative eigenvalue λmin = −0.046, associated with the eigenvec-
tor xmin. Therefore xTmin(I + ∆G)xmin = λmin < 0. However, (I + ∆G) is a P -matrix,
as will be proved in Proposition 3.

Second, corollary 2 guarantees that comparative statics on q can be performed without
losing the uniqueness of the Nash equilibrium. Indeed, if (I+∆G) is a P -matrix, then the
vector of needs q can be changed without altering the number of equilibria. Also, if some
players are eliminated from the game, then the P -matrix property carries through to the
resulting principal submatrix and uniqueness is preserved (every principal submatrix P ′

of a P -matrix is also a P -matrix, since all the principal minors of P ′ are principal minors
of the original matrix11). This will be particularly useful in section 6.

Third, the necessary part does not rule out the possibility that a given LCP (−q, I +

∆G) will have a unique solution even though the matrix (I + ∆G) is not a P -matrix.
Indeed, the necessary condition states that the solution should be unique for each q.
This is illustrated in Figure 1, where G represents a star network and the game is played
with δi = 1

2
for all i, and qi = 1

2
for all i. Then the equilibrium is unique, given by

x∗ = (0, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
), although (I + 1

2
G) is not a P -matrix (the interaction matrix is

symmetric and λmin ≈ −0.118 < 0). However, Theorem 4.2 (Murty [1972]) tells us that
10A non-symmetric positive definite matrix has every real eigenvalue strictly positive, and every com-

plex eigenvalue has a strictly positive real part. This is necessary but not sufficient, unlike the symmetric
case, where all eigenvalues are real and the positivity condition is necessary and sufficient.

11This property carries through to positive definite matrices, since they are special instances of P -
matrices.
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for at least some vectors of needs q there will be more than one solution12. Take for
instance needs such that qi = 1

2
for all peripherals and qj = 1 for the center. Then there

are two Nash equilibria: x∗1 = (0, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
) and x∗2 = (1, 0, 0, 0, 0, 0). To the best of

our knowledge, no one has identified a sufficient condition to guarantee uniqueness for a
given q when the interaction matrix is not a P -matrix.

Incidentally, note that in the previous example, increasing a player’s needs increases
the number of equilibria. The reverse can also happen. Returning to the star network,
consider qi = 1

2
for all peripherals and qj = 3 for the center. Then the number of Nash

equilibrium goes back down to 1: x∗ = (3, 0, 0, 0, 0, 0).

Figure 1: In the star with five peripherals, there is a unique equilibrium when δi = 0.5 and
qi = 0.5 for all i, although the interaction matrix (I+∆G) has a negative eigenvalue.
This equilibrium is represented on the left panel. When the needs of the center are
increased to qc = 1, the profile on he left panel is still an equilibrium. However, a
new equilibrium appears, represented on the right.

Remark 2. The case of the complete network has been extensively analyzed, as pointed
out in the introduction. In what follows, we will often refer to the complete network to
derive previously established results as corollaries of our results. The complete network
is defined as gij = 1 for all pairs of players (i, j), and gii = 0 for all i. In this case,
the matrix (I + ∆G) is degenerate if (and only if) there are at least two players i and j
such that δi = δj = 1. Then the two players are perfectly substitutable for all others and
between themselves, inducing a continuum of Nash equilibria13. Therefore, when we refer
to the complete network in what follows, we always assume that at most one player has
δi = 1.

12We can actually go farther than that: if the number of solutions is a constant for every q, then this
constant is 1 and I + ∆G is a P -matrix (Murty [1972], 7.2). Otherwise, even though there is a unique
solution for some q, there is always some q′ for which there is more than one solution.

13This actually happens often, even if the network is not complete, when δ = 1 for several players. See
for instance Bervoets and Faure [2019].
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Proposition 3. Let G be the complete network, and let ∆ = diag(δi)i=1,...,n with δi ∈]0, 1]

for all i, and δi = 1 for at most one player i. Then (I + ∆G) is a P -matrix.

The proof, which is not straightforward, relies on proving that the determinant of
any possibly non-symmetric interaction matrix associated with the complete network is
strictly positive. This is done by using the matrix determinant lemma.

This proposition yields the following:

Corollary 4. If network G is complete, there is a unique Nash equilibrium for each needs
vector q whether the interaction matrix is symmetric or not.

3 Effect of needs on own contribution

Here we analyze how a player’s contribution is affected by an increase in his needs. We
emphasize the following counter-intuitive observation: in the public good game with
global and symmetric interactions (i.e. played on a complete network with the same
substitution rates), it was established earlier that increasing the needs of one player
always induces an increase in this player’s contribution. However, this ceases to be true
once a network structure is introduced, as illustrated in Figure 2, where an increase in
player 1’s needs induces a decrease in his contribution. This may seem counter-intuitive,
but it is due to the complex pattern of interactions and substitutions between players.

Figure 2: In the left panel, a Nash equilibrium x∗ with homogeneous needs and substitution
rates (qi = 0.5 and δi = 0.5 for all i). In the right panel, the needs of player 1 are
increased to 0.5125 and in the new equilibrium the contribution of player 1 decreases
from 4

13 to 0.3

However, once the matrix (I + ∆G) is a P -matrix, we can guarantee that a player’s
contribution will increase when his needs increase:

14



Theorem 1. Let (I+∆G) be a P -matrix, and let x be the unique Nash equilibrium when
needs are q. Consider q′ = (q1 + β, q2, ..., qn)T , the vector of needs where the needs of
player 1 are increased by any amount β > 0, and let x′ be the unique Nash equilibrium
with needs q′. Then

x′1 ≥ x1 if x1 = 0

x′1 > x1 if x1 > 0

If in addition (I + ∆G) is symmetric, then

x′1 − x1 > β when x1 > 0

Remark 3. The set of active and strictly inactive players at equilibrium might change
after an increase in needs of a player. Theorem 1 holds regardless of these changes.

We detail here the main steps of the proof of Theorem 1, since several ideas from the
paper are used to prove it. Obviously, if x1 = 0 then x′1 ≥ x1. Now assume that x1 > 0.
The easy case is the following: Assume the two equilibria, before and after the increase
in needs, are interior, i.e. everyone is active. Then the solutions are given by

(I + ∆G)x = q and (I + ∆G)x′ = q′

Letting M denote (I + ∆G)−1, we have

x = Mq and x′ = Mq′

and since qj = q′j for all j 6= 1 and q′1 = q1 + β, we get

x′ − x = M(q′ − q) = M(β, 0, ..., 0)T = β(m11, ...,mn1)
T

Hence x′1 − x1 = βm11. In the appendix, we show - lemma 1 - that the inverse of a
P -matrix is also a P -matrix. Therefore M is a P -matrix. Since all principal minors of
a P -matrix are strictly positive, it follows that m11 > 0. Therefore x′1 > x1

14. For the
second part of the theorem, notice that if (I+∆G) is symmetric then it is positive definite.
This implies that mii > 1 for all i 15. Thus, we have x′1 > x1 + β, and any increase in a
player’s needs will be amplified through the network structure and will result in an even
larger increase in action.

This specific case is easy to deal with, for two reasons: there are no SI players in x,
and sets A and SI remain unchanged between x and x′. In the general case, SI(x) could
be non-empty, and SI(x′) could be different from SI(x), so that some active players in x
become strictly inactive in x′ and conversely, some strictly inactive players become active
in x′. This is illustrated in Figure 3.
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Figure 3: Upper panel: The unique Nash equilibrium x with homogeneous needs (qi = 0.5

for all i) and δi = 0.5 for all i, in a network such that the interaction matrix is a
P -matrix. Here A(x) = N \ {4} and SI(x) = {4}. Lower panels: On the left panel,
the unique equilibrium where the needs of player 4 have been increased to 0.65 and
to 0.7 on the right panel. On the left panel every player is active, while player 3 has
become strictly inactive on the right panel. Despite both changes in the composition
of types of players, the contribution of player 4 always increases (from 0 to 0.2 and
0.4) as his needs increase.
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Here we illustrate why these situations are complex to deal with. Assume SI(x) = ∅
while SI(x′) = {2}, i.e. player 2 becomes strictly inactive after the needs of player 1

increase. Then x = Mq is still true, however, x′ 6= Mq′ since, by equation (4), x′ =

(I + ∆GN\{2})
−1qN\{2}, and thus operations like the above with only active players can

no longer be performed.
However, we can write GN\{2} = G − A, where A is a matrix of 0’s except for row

2. Then, (I + ∆GN\{2})x
′ = qN\{2} =⇒ (I + ∆G)x′ = qN\{2} + δ2Ax

′ and therefore x′ =

MqN\{2}+δ2MAx′. By developing, we finally get x′1−x1 = βm11+(δ2
∑

i∈N g2ix
′
i−q2)m12.

It can be seen that the appearance of a new strictly inactive player adds the term
(δ2
∑

i∈N g2ix
′
i− q2)m12 to the previous interior situation. We know that (δ2

∑
i∈N g2ix

′
i−

q2) > 0 since player 2 is strictly inactive in x′, but the sign of m12 depends on the specific
structure of the network and cannot be predicted by simple network statistics16.

In the same way, the appearance of new active players will add other terms to the
difference x′1 − x1. It is not possible, in general, to sign each of these terms, even less
possible to sign the sum of these terms. However, when the interaction matrix is a P -
matrix, we can show that the difference x′1 − x1 is always positive (see the details in the
proof).

As a consequence of Theorem 1 and Proposition 3, we retrieve the standard result for
the complete network, which we extend to the non-symmetric case:

Corollary 5. If (I + ∆G) is the interaction matrix associated with the complete net-
work, whether symmetric or not, increasing a player’s needs results in an increase in his
contribution.

4 Effect of Needs on Aggregate Contributions

Here we analyze how the change in needs of one player affects aggregate contributions.
We first present the case of identical players on a symmetric network because it lends
itself to a nice interpretation of the results, which we then generalize.

14This simple case illustrates why the interaction matrix needs to be a P −matrix for this monotony
result to hold. Otherwise the term m11 could be negative, in which case x′1 < x1, as in Figure 2.

15See for instance Fiedler [1964], where it is shown that the product of a diagonal term of a positive
definite matrix and the diagonal term of its inverse is greater than 1.

16The only networks for which the signs of the terms of the inverse of the interaction matrix are
predetermined are the tree networks (see Roy and Xue [2021]).
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4.1 Identical Players in Symmetric Networks

We start by analyzing the case of identical players, i.e. qi = 1 for all i, who interact in
an undirected and unweighted network G with identical substitution rates, i.e. gij = gji,
gij ∈ {0, 1} and δi = δ for all pairs (ij). This is the most standard setting found in the
literature on public good games played on networks. The best-response of any player i is
thus:

Bri(x−i) = max
{

1− δ
∑

gijxj, 0
}

(5)

We let x be a Nash equilibrium when needs are q = (1, ..., 1)T and consider q′ =

(1 + β, 1, ..., 1)T , the vector of needs where the needs of player 1 are increased by an
amount β > 0, and we call x′ a Nash equilibrium with needs q′.

Although we can only guarantee that an increase in player 1’s needs will increase
his own contribution if the interaction matrix is a P -matrix, we prove that aggregate
contributions will always increase if player 1 is active in x, even if the interaction matrix
is not a P -matrix. This holds even if the set of active players changes after the increase.

Proposition 4. Assume 1 ∈ A(x), and let x′ be any equilibrium with needs q′. Then, if
A(x′) ⊆ A(x), we have

x1 > 0 =⇒ X ′ > X

If in addition A(x′) = A(x) or A(x′) = A(x) \ {1}, then

x1 = 0 =⇒ X ′ = X

When x and x′ are interior, the intuition is the following: increasing player 1’s needs
by β changes every player’s contribution by an amount βmi1 (see the sketch of proof of
theorem 1). When every player is active, the inverse matrix M is symmetric, guarantee-
ing that mi1 = m1i.17 Although these terms cannot be signed individually, the aggregate
change is β

∑
imi1, and because needs are the same for every player, the interior equilib-

rium is xi =
∑

jmij =
∑

jmji. Therefore
∑

imi1 = x1 > 0, so the change in aggregate
contributions is proportional to x1, which is positive.

Of course, the initial equilibrium is not always interior, but the result still holds.
Also, if strictly inactive players appear after the increase in player 1’s needs, we can show
that aggregate contributions increase. Note that the result also holds if player 1 himself
becomes strictly inactive after his needs increase.

The second point of the proposition says that if we increase the needs of an active
player currently playing 0, the aggregate contribution will not change, whether he becomes
strictly inactive or not. The fact that the aggregate contribution is preserved is surprising,

17This line of reasoning cannot be followed when some players are strictly inactive, since the matrix
of interest is no longer the interaction matrix, but the equilibrium interaction matrix, which is not
symmetric.
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since all players’ contributions will change, but these changes will somehow balance and
cancel each other out. We discuss this further in section 4.3.

Corollary 6. If G is the complete network and players are homogeneous, then increasing
the needs of any player will increase aggregate contributions.

This corollary holds since in the complete network with homogeneous players, every
player is active and contributes the same amount. Therefore the set of active players can
only shrink following an increase in needs.

Although Proposition 4 is not immediate, the result is in line with our intuition. The
following proposition is more surprising:

Proposition 5. Assume 1 ∈ SI(x), and let x′ be any equilibrium with needs q′. Then if
SI(x′) ⊆ SI(x), we have

x′1 > 0 =⇒ X ′ < X

x′1 = 0 =⇒ X ′ ≤ X

Although intuition suggests that free-riders are those driving contributions down and
that these are the players that should be incited to contribute, Proposition 5 tells us
precisely the opposite. Increasing the needs of a strictly inactive player until he becomes
active will have a negative effect on aggregate contributions, despite the fact that this
player is now contributing a positive amount.

The intuition for the first implication is the following. Suppose that player 1’s needs
are increased so that he contributes a positive amount ε at the new equilibrium. This
is the same equilibrium as the one where player 1 is withdrawn from the game and the
needs of all of player 1’s neighbors have decreased by an amount δε. We show that when
all neighbors of a player change their needs by the same amount δε, the aggregate effect
is equal to δεx̄1, where x̄1 is the sum of contributions of player 1’s neighbors in the initial
equilibrium. If player 1 was SI, it must be that δx̄1 > 1. Therefore, the decrease in the
aggregate contributions of the neighbors of player 1 is larger than ε. So an increase of
ε for player 1 and an aggregate decrease larger than ε for other players result in a net
decrease in aggregate contributions.

Remark 4. As illustrated in Figure 1, increasing the needs of player 1 can either decrease
or increase the number of equilibria. Propositions 4 and 5 hold true for every equilibrium.

Propositions 4 and 5 are illustrated in Figures 4 and 5. We present an example with
multiple equilibria to illustrate both the propositions and remark 4. In this network, with
δi = 0.5 and qi = 0.5 for all i, there are three equilibria, an interior one and two with a
strictly inactive player (only one is represented since the other is a permutation of the
first). In the interior equilibrium, no player can become active by increasing anyone’s
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needs, since everyone is already active. Thus Proposition 4 applies and aggregate contri-
butions increase regardless of which player’s needs are increased, and whether there is a
new strictly inactive player or not. Notice that, in accordance with Figure 2, the contri-
bution of player 1 decreases when his needs are increased; yet, aggregate contributions
increase.

In the second equilibrium, an increase in the needs of active players still increases
aggregate contributions; however, when the needs of the strictly inactive player are in-
creased, this results in a decrease in aggregate contributions.

Figure 4: The upper left panel shows the interior equilibrium when δi = 0.5 and qi = 0.5 for
all i. In the upper right panel, the equilibrium where needs of player 1 are increased
to 41

80 ; in the lower left panel, the equilibrium where needs of player 4 are increased
to 11

20 ; in the lower right panel, the equilibrium where needs of player 6 are increased
to 61

120 . In all three cases, the aggregate contribution has risen from 22
13 to 1.7.

4.2 Heterogeneous players in Non-Symmetric Networks

Here we relax the assumptions that gij ∈ {0, 1}, qi = 1 and δi = δ for all i. We let gij = 0

if player i is not connected to j, and gij > 0 otherwise, with possibly gij 6= gji. We also

20



Figure 5: The upper left panel shows the corner equilibrium when δi = 0.5 and qi = 0.5 for all
i. In the upper right panel, the equilibrium where needs of player 1 are increased to
11
20 ; in the lower left panel, the equilibrium where needs of player 3 are increased to
11
20 ; in the lower right panel, the equilibrium where needs of player 4 are increased
to 12

20 (he only becomes active when his needs are above 11
20). In the first two cases,

the aggregate contribution rises from 1.7 to 1.74 and 1.72, while in the third case,
contributions decrease to 1.69375.
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allow for qi 6= qj and δi 6= δj. Recall, from Proposition 1, that changes in ∆ or G are
captured by changes in q. Therefore, here again, we focus on changes in q.

We start from an equilibrium x and we increase the needs of player 1 by an amount
β > 0. We call x′ an equilibrium with the new vector of needs. In the previous section, the
determining factor in whether contributions increase or decrease was the status (active
or strictly inactive) of player 1. In the general case, this is no longer true. What matters
is whether player 1 plays a positive or a negative action in the unconstrained solution
of an associated game: assume x is a Nash equilibrium of the game played on network
G with needs q = (q1, ..., qn)T , with set of active players A(x). Recall that the vector
xunc((∆GA(x))

T , 1) denotes the unique unconstrained solution to the system with the
transpose of the equilibrium interaction matrix, and homogeneous needs. It is the matrix
in which players in SI(x) have no outgoing links (instead of no incoming links). This
solution being unconstrained, some coordinates will be positive, while others could be
negative. The following result states that the effect of increasing needs depends on the
sign of these coordinates, in particular of those of player 1, and of the players who change
status before and after the increase.

We thus define the sets of players who change status after needs are increased. Let
a(x, x′) := {i ∈ N ; i ∈ A(x) ∩ SI(x′)} and si(x, x′) := {i ∈ N ; i ∈ SI(x) ∩ A(x′)}.

Proposition 6. Let x be an equilibrium when needs are q. Let q′ = (q1 + β, q2, ..., qn)T

with β > 0 and x′ be any equilibrium with needs q′. Let xunc = xunc((∆GA(x))
T , 1). Then,{

xunc1 ≥ 0, xunci ≥ 0 for all i ∈ a(x, x′) ∪ si(x, x′) =⇒ X ′ ≥ X

xunc1 ≤ 0, xunci ≤ 0 for all i ∈ a(x, x′) ∪ si(x, x′) =⇒ X ′ ≤ X

Note that the sets a(x, x′) and si(x, x′) can be empty, covering the case in which
A(x) = A(x′). Note also that while Propositions 4 and 5 differed depending on the status
of player 1 (active or not), this is no longer relevant in Proposition 6, which applies to
both cases.

This provides a simple way to check whether contributions will increase or decrease,
as illustrated in example 2. One noteworthy point is that there is no immediate rela-
tion between xunc((∆GA(x))

T , 1) and x or x′. Both x and x′ are constrained solutions
to a problem with heterogeneous needs, while xunc((∆GA(x))

T , 1) is the unconstrained
solution to another problem with homogeneous needs. Moreover, the fact that i ∈ A(x)

(resp i ∈ SI(x)) in a Nash equilibrium x of the game with homogeneous needs does not
guarantee that player i will be active (resp. strictly inactive) in the same game with
heterogeneous needs. In the following example, we illustrate how Proposition 6 works on
an arbitrary network.

Example 2. Consider the network of Figure 3, with δi = 0.5 for all i. Since the matrix
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(I + ∆G) is positive definite, and thus a P -matrix, there is a unique Nash equilibrium
for any vector of needs. Take needs q = (0.55, 0.25, 0.45, 0.65, 0.6, 0.4)T . The unique
equilibrium x is (0.5, 0, 0.1, 0.2, 0.5, 0.3)T , where SI(x) = {2}. To know whether increas-
ing the needs of some players will increase or decrease aggregate contributions, we need
to construct the interaction matrix (I + (∆GA(x))

T ) from (I + ∆G) by taking out the
incoming links of player 2 and transposing it:

(I+∆G) =



1 0.5 0.5 0 0 0

0.5 1 0.5 0 0 0

0.5 0.5 1 0.5 0 0

0 0 0.5 1 0.5 0.5

0 0 0 0.5 1 0

0 0 0 0.5 0 1


(I+(∆GA(x))

T ) =



1 0 0.5 0 0 0

0.5 1 0.5 0 0 0

0.5 0 1 0.5 0 0

0 0 0.5 1 0.5 0.5

0 0 0 0.5 1 0

0 0 0 0.5 0 1


We now solve for (I + (∆GA(x))

T )x = 1 and find xunc = (0, 0, 2,−2, 2, 2)T . This
implies that increasing the needs of players 3, 5 or 6 of any amount β > 0 will increase
the aggregate contribution (since xunc3 = xunc5 = xunc6 = +2), while increasing the needs
of player 4 will decrease it (since xunc4 = −2), as long as the set of strictly inactive players
remains the same. Figure 6 illustrates several possibilities covered by Proposition 6.

The relation between Proposition 6 and Propositions 4 and 5 is the following: although
there is no clear link between solution xunc((∆GA(x))

T , 1) and the equilibrium of the
game with heterogeneous agents in a non-symmetric network, there is one with the equi-
librium of the game with identical players in a symmetric network. First, when players
are identical, their needs are homogeneous, as in the unconstrained solution. Secondly,
when the network is symmetric, the adjacency matrix is by definition equal to its trans-
pose. Thus, we can show that i ∈ A(x) ⇐⇒ xunci ((∆GA(x))

T , 1) ≥ 0, and therefore
i ∈ SI(x) ⇐⇒ xunci ((∆GA(x))

T , 1) < 0. This is why the condition on xunc((∆GA(x))
T , 1)

can be expressed in terms of being active or strictly inactive in Propositions 4 and 5.

When the network is complete, we show that xunc((∆GA(x))
T , 1) is positive for all

players (Lemma 3 in the appendix). This yields the following:

Corollary 7. If G is a complete network, then any increase in the needs of any player
induces an increase in aggregate contribution.

This corollary corresponds to the standard results obtained in the literature. It il-
lustrates how the complete network is in fact a special case that does not generalize to
arbitrary networks.
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Figure 6: First panel, initial equilibrium with needs q = (0.55, 0.25, 0.45, 0.65, 0.6, 0.4)T and
δi = 0.5 for all i. The sum of contributions is equal to 1.6. In the second panel on
the left, needs of player 3 are increased to 0.48 and since xunc3 ((∆GA(x))

T , 1) > 0, the
sum of contributions increases (to 1.66). On the right, needs of player 4 are increased
to 0.66 and since xunc4 ((∆GA(x))

T , 1) < 0, aggregate contributions decrease (to 1.58).
Finally, in the third panel, needs of player 2 are increased to 0.4, and player 3 becomes
strictly inactive. Still, since both xunc2 ((∆GA(x))

T , 1) ≥ 0 and xunc3 ((∆GA(x))
T , 1) ≥

0, contributions increase (to 1.6333), as suggested by Proposition 6.
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4.3 Neutral players

As a consequence of Propositions 4 and 6, changing the needs of an active player who plays
0 in the unconstrained solution of the transposed game played with homogeneous needs,
will change the equilibrium contributions of potentially all players, including himself,
but will leave the sum of contributions unchanged. These players can be called neutral
players. They are special in that any change in their needs inducing a change in their
contribution will be compensated for exactly by the adjustments in the network. We
show examples in Figure 7.

Figure 7: First panel, initial equilibrium with needs q = (0.55, 0.25, 0.45, 0.65, 0.6, 0.4)T and
δi = 0.5 for all i, where the sum of contributions is equal to 1.6. Recall, from example
2, that xunc((∆GA(x))T , 1) = (0, 0, 2,−2, 2, 2)T . Therefore, when needs of player 1

are increased to 0.575 the sum of contributions remains equal to 1.6 (second panel
on the left). Second panel on the right, needs of player 2 are increased to 0.325,
player 2 becomes active and since xunc2 ((∆GA(x))

T , 1) = 0, the sum of contributions
remains equal to 1.6. Both players are neutral.

Remark 5. In the proof of lemma 2, we show that in a complete network with δ1 = 1,
we have xunci = 0 for all i 6= 1. Thus every player except player 1 is neutral, as illustrated
in Figure 8.

Notice that whether a player is neutral or not depends both on the network and on the
substitution rates of other players. However, neutrality does not depend on the neutral
player’s substitution rate, as we show here:
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(a) Unconstrained solution (b) q = (4, 1.5, 1, 1, 1, 1)

(c) q = (4, 1.7, 1, 1, 1, 1) (d) q = (4, 1.5, 1.5, 1, 1, 1)

Figure 8: Substitution rates have been set to δ = (1, 0.3, 0.1, 0.1, 0.1, 0.1). Panel (a) is the
solution of the unconstrained problem. We see that xi = 0 for all i 6= 1, which
implies that all players except player 1 are neutral. For panels (b)-(d), needs and
equilibrium profiles are changed, but the aggregate contribution remains constant.
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Proposition 7. Assume player 1 is neutral with interaction matrix (I + ∆G). Consider
∆′ = diag(δ′i)i∈N such that δ′i = δi for all i 6= 1 and δ′1 6= δ1, i.e. substitution rate of
player 1 is changed. Then

xunc((∆G)T , 1) = xunc((∆′G)T , 1) (6)

In particular, player 1 remains neutral when his substitution rate changes.

This proposition implies that a neutral player remains neutral if his substitution rate
changes, but it also implies that the effect of a shock on any player will always have
the same effect (positive or negative) when the substitution rate of the neutral player
changes, since xunc does not change.

5 Transfers and Neutrality

An important literature has emerged on redistribution of wealth among individuals and
the private provision of public goods since the work of Warr [1983], followed by i.a.
Bergstrom et al. [1986] and Andreoni [1990]. The first two papers look at pure global
public goods (i.e. the substitution rate δi is 1 for all i, and interactions take place on a
complete network) , and obtain a neutrality result saying that small income redistribution
among active players will change their contribution by exactly the amount of the transfer
received, i.e. yi = xi + εi, where x is a Nash equilibrium with the initial endowments
and y is the Nash equilibrium after any small redistribution ε among players in A(x),
such that A(y) = A(x). This implies that every player will consume exactly the same
amount of private good and will enjoy the same amount of public good, since the network
is complete and substitution is perfect.

Observing that empirical evidence seems to contradict neutrality, Andreoni [1990]
considers possibly impure public goods (i.e. possibly δi 6= δj), still on complete networks,
and shows that the previous neutrality result holds if and only if δi = 1 ∀i. However,
he also shows that if δi = δj, not necessarily equal to 1, then we have an aggregate
neutrality result telling us that the sum of contributions will remain constant if player i
transfers wealth to player j. Of course, aggregate neutrality is weaker than neutrality.
Nevertheless, it is still a strong result.

Allouch [2015] takes Bergstrom et al. [1986] to networks to check whether neutrality
still holds on non-complete networks18, and proves that it only holds on specific networks
where all active players are linked together and where strictly inactive players are either

18Transposed into our setting, Allouch [2015] restricts the analysis to networks such that the interaction
matrix is positive definite, thereby guaranteeing uniqueness of the solution, in a class of games that
include some linear best-response games. Our analysis does not restrict to situations where equilibrium
is unique, it also applies to all games with linear best-responses, but to those alone.
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linked to every active player or to none. The general message is that neutrality tends to
fail once some heterogeneity is introduced into the pattern of interactions. Allouch [2015]
draws a parallel with Andreoni [1990], since Andreoni also explains failure of neutrality
by (another sort of) heterogeneity. However, as for neutrality, aggregate neutrality results
hold on a complete network. Here, we take Andreoni [1990] to networks to check under
which conditions aggregate neutrality holds19.

For ease of exposition, we assume that transfers only take place between two players,
player 1 and player 2. Like other authors on this topic, we restrict to transfers small
enough that the set of active players does not change after the transfer.

Let x be an equilibrium of the game played on G with needs q. As mentioned earlier,
changing players’ wealth is equivalent to changing their needs in terms of comparative
statics on equilibria. Thus, considering transfers of wealth between players is equivalent
to considering transfers of needs between players. Let t = (−ε,+ε, 0, ..., 0)T be a vector
of transfers of needs between players 1 and 2, and let x′ be an equilibrium of the game
played on G with needs q + t.

Let ∆ = diag(δi)i∈N be the diagonal matrix of the substitution terms. Now let δ′2 = δ1

and δ′i = δi otherwise, and ∆′ = diag(δ′i)i∈N . Then (I + ∆′G) is the interaction matrix in
the game where player 2 has the same substitution rate as player 1. Finally, we denote
xunc = xunc((∆′G)T , 1) the unconstrained solution to the homogeneous needs transposed
problem:

(I + (∆′G)T )x = 1

We have the following result:

Proposition 8. Let x be an equilibrium of the game played on G with needs q and let x′

be an equilibrium of the game played on G with needs q + t. Then

X ′ −X = ε(xunc2 − xunc1 ) + (δ1 − δ2)xunc2

∑
j

g2j(x
′
j − xj) (7)

In the Appendix we prove that on the complete network, xunc2 = xunc1 , and xunc2

∑
j g2j(x

′
j−

xj) < 0, so we have the following:
19In Allouch [2015], the class of games under consideration includes some games with linear best-

responses and heterogeneous substitution rates, as illustrated in Corollary 2. Note, however, that in
order to exhibit such best-responses, it is necessary to relate players’ wealth to substitution rates in a
specific way. In Andreoni [1990]’s setting, all the games in the class of Allouch [2015] are such that
players are pure altruists, which implies that the altruism coefficients αi defined in Andreoni [1990] are
all equal to 1.
In turn, in our setting where there is no a priori relation between wealth and substitution rates, we

can easily check that the altruism coefficients αi in Andreoni [1990] are related to our substitution rates
δi, according to the relation αi = 1

2−δi . Thus α1 > α2 ⇐⇒ δ1 > δ2.
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Corollary 8 (Andreoni (1990)). When network G is complete, then

Sign(X ′ −X) = Sign(δ2 − δ1)

When δ1 = δ2, X ′ = X and aggregate neutrality holds. When δ1 6= δ2, then trans-
ferring wealth from player 1 to player 2 increases aggregate contributions if and only if
player 2’s rate of substitution is greater than player 1’s, when the network is complete.
This is the main result in Andreoni [1990]. To see why it holds on the complete network
but not on arbitrary networks, let us focus on the case where the equilibrium interaction
matrix is of spectral radius smaller than 1. In that case, we can use the power series
development:

(I + ∆G)−1 =
∞∑
k=0

(−1)k(∆G)k,

where the term (∆G)kij is the number of paths of length k going from player i to player
j, where each link between any player l and any other player is discounted by δl. When
a transfer takes place between player 1 and 2, it is easy to show that the net effect only
depends on paths leaving from player 1 and player 2, the former being discounted by
δ1, while the latter are discounted by δ2. Since the network is complete, to each path
leaving from 1 and reaching any other player i in k steps, we can associate a path leaving
from 2, reaching i in k steps, and going through the same set of players20. The aggregate
effect of the transfer will thus be captured by the different effects of all these paths in the
network. Therefore, the (positive) effect stemming from player 2 getting richer will be
discounted by δ2, while the (negative) effect stemming from player 1 getting poorer will
be discounted by δ1. Hence the proportionality with (δ2 − δ1) of the aggregate effect.

However, once the network is not complete, paths leaving from 1 and reaching any
other player i in k steps cannot be associated to an equivalent path leaving from 2 and
reaching i in k steps. This asymmetry in the network explains why aggregate effects
cannot be captured as simply as with the complete network.

Besides its corollary, Proposition 8 tells us on the one hand that aggregate neutrality
can hold even though substitution rates among players involved in the transfer differ, and
on the other hand that it can fail even though substitution rates among players involved
in the transfer are equal. This is illustrated in Figure 9, where these two types of failure
of Andreoni’s result on non-complete networks are illustrated.

Remark 6. As explained in section 4.3, changing needs of neutral players keeps the
aggregate constant. Since a transfer is a positive change in needs for one player and a
corresponding negative change in needs for another player, any transfer between neutral
players will also leave the aggregate constant, as it is shown in figure 9c.

20It is in fact a bit more subtle, since player 1 can reach player 2 in one step while player 2 cannot.
We leave these subtleties out since they do not change the intuition.
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(a) Unconstrained solution (b) Before transfer

(c) transfer between player 1 and 2 (d) transfer between player 4 and 5

Figure 9: Substitution rates have been set to δ = (0.6, 13 , 0.5, 0.5, 0.5, 0.5). The uncon-
strained solution is given in panel (a). We observe that xunc1 ((∆GA(x))

T , 1) =

xunc2 ((∆GA(x))
T , 1) = 0, implying that player 1 and 2 are neutral. In panel (b),

the needs of players are qi = 0.5 for all players except q4 = 0.625. The sum of
contributions is 1.75. In panel (c), a transfer has been made between players 1 and
2, the needs of player 1 have increased to 0.55 while those of player 2 have decreased
to 0.45. We observe that the sum of contributions remains constant, equal to 1.75,
despite the fact that δ1 6= δ2, and every player has changed his contribution after the
transfer. In panel (d), a transfer has been made between players 4 and 5, the needs
of player 4 have increased to 0.635 while those of player 5 have decreased to 0.44.
This time the sum of contributions has decreased to 1.71, although δ4 = δ5.
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6 Introducing Kantian agents: an application

In this section we introduce Kantian agents into the local public good game, considering
that society is formed of both Kantian agents and Nash maximizers. As mentioned in
the introduction, the observed over-provision of public goods with respect to theoretical
predictions is sometimes explained by the fact that agents might show other kinds of
behavior than simply maximizing their own payoff.

Definition 3. A Kantian agent is an agent maximizing ui(xi, x−i) with xj = xi for all j

As mentioned in the introduction, the literature suggests that considering Kantian
agents could reduce the under-provision of public goods. However, these papers assume
that the entire population is formed of Kantian agents, and that all these agents interact
with everyone else. The main difference from our analysis is that we allow Nash players
and Kantian agents to coexist, and to interact on an incomplete network. We ask the
following question: under what conditions does the introduction of Kantian agents reduce
the under-provision of public goods? As it turns out, we can answer this by applying the
results of the previous sections.

Contrary to Nash players, the action chosen by a Kantian agent does not depend only
on the best-response function, it depends on the payoff function itself. For instance, if
payoffs are given by

ui(xi, x−i) = log

(
xi + δ

n∑
j=1

gi,jxj

)
+ log(wi − xi) (8)

then Kantian agents are maximizing21

uKi (xi) = log

(
xi + δ

n∑
j=1

gi,jxi

)
+ log(wi − xi)

which results in setting
xKi =

wi
2

for all Kantian agents.
If payoffs are now given by

ui(xi, x−i) = b(xi + δ

n∑
j=1

gi,jxj)− cxi

as in Bramoullé and Kranton [2007], then Kantian agents are maximizing

uKi (xi) = b(xi + δi

n∑
j=1

gi,jxi)− cxi = b(xi(1 + δini))− cxi

21In what follows, variables with superscript K designate variables related to Kantian agents, while
those without superscript designate variables related to Nash players.

31



where ni is the number of neighbors of player i. This results in setting

xKi =
ai

1 + δini

where ai = b
′−1( c

1+δini
).

In the first case, the action chosen by the Kantian agents is independent of the network,
while in the second, it depends on the number of neighbors. In what follows, we consider
general payoff functions with linear best-responses (1), and we thus allow for Kantian
agents whose actions might depend on the network structure.

Remember that needs qi are player i’s autarkic contribution. Our results hold under
the following (mild) condition:

Assumption 1. The payoff functions giving best-responses (1) are such that a Kantian
agent contributes at least his autarkic contribution: xKi ≥ qi

This condition is satisfied by many standard payoff functions. In particular, with the
log-log payoff function, a Kantian agent contributes wi

2
, which is equal to his needs. In the

setting of Bramoullé and Kranton [2007], the condition holds as long as b′−1(c)(1+δini) ≤
b
′−1
(

c
1+δini

)
, which is usually satisfied if b(.) is not too concave22.

In what follows, our aim is to examine the effect of Kantian behavior on aggregate
contributions. We can do that either by directly replacing a Nash maximizer by a Kantian
agent, or by raising the "kantianness" of players:

Definition 4. An α-Nash-Kant player is a player playing action

αBR(x−i) + (1− α)xKi

for some α ∈ [0, 1]

Nash players and Kantian agents are special cases with α = 1 or α = 0. In fact, in
the analysis that follows, the effects of replacing a Nash player by a Kantian agent (i.e.
increasing αi from 0 to 1) are qualitatively equivalent to the effects of raising αi to αi + ε

(as long as αi + ε ≤ 1). For clarity of exposition, we will only consider replacements of
Nash players by Kantian agents, but the reader should keep in mind that the results hold
for arbitrary increases in the kantianness of agents.

We denote by GK = ((N \ K,K), (Xi)i=1,...,n, (ui)i∈N\K , (u
K
i )i∈K) the game in which

players in the set N \K are Nash maximizers, while agents in K are Kantian agents.
22For instance, with a CRRA benefit function b(x) = 1

1−αx
1−α with α > 0 and α 6= 1, our assumption

is satisfied as long as 0 < α < 1.
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Definition 5 (Nash-Kant equilibrium). A profile x is a Nash-Kant equilibrium of the
game GK if:
• for any player i ∈ N \K, xi ∈ BR(x−i)

• for any player i ∈ K, xi = xKi

Proposition 9. For any K ⊆ N , a Nash-Kant equilibrium of GK exists. Furthermore,
if (I + ∆G) is a P -matrix, then this equilibrium is unique.

Existence relies on the same argument as for when there are only Nash players. For
uniqueness, the proof works as follows: once the action of all Kantian agents is fixed,
the action of all Nash players is the same as the action they would choose if the Kantian
agents were removed from the network, and the needs of the Nash players were reduced
by the amount of the Kantian agent’s contribution. Also, a submatrix of a P -matrix is
a P -matrix. Thus, uniqueness will be preserved when removing players from the game.
This is illustrated in Figure 10. In that figure, as well as the next ones in this section,
we assume that Nash players have a payoff function as in (8), with wi = 1 and δi = 0.5,
so that needs are 1

2
and Kantian agents play 1

2
.

Figure 10: In the initial network, a triangle where two agents are Nash players while the third -
in red - is Kantian. The Kantian agent plays 1

2 and the other two play their mutual
best-responses, 1

6 . This equilibrium can also be found by removing the Kantian
agent from the network as in the lower panel, decreasing the needs of the Nash
players who are connected to the Kantian agent by an amount of δi × 1

2 = 1
4 , and

looking for a Nash equilibrium of this game.

Surprisingly however, note that replacing a Nash player by a Kantian agent does not
necessarily reduce the multiplicity problem. This is illustrated in Figure 11.

One Kantian agent
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(a) 2 Nash equilibria

(b) 3 Nash equilibria

Figure 11: In this network with needs equal to 0.5 and δi = 0.5 for all i, there are two Nash
equilibria. However, when Nash player 1 is replaced by a Kantian agent, there are
three Nash-Kant equilibria

34



Intuitively, contributions should increase once one Nash player is replaced by a Kan-
tian agent, since Kantian agents produce a large quantity of public goods regardless of
strategic considerations. This intuition is consistent with Bilodeau and Gravel [2004]
for instance, who show that, in their context and on a complete network, the Kantian
equilibrium is in fact a Lindahl equilibrium. Thus Kantian agents enhance aggregate
contributions with respect to the Nash equilibrium.

However, we show that this is not always true. Replacing a Nash maximizer by a
Kantian agent in order to reduce the inefficiencies due to free-riding could turn out to be
detrimental to aggregate contributions.

Proposition 10 (One Kantian agent). Consider any network G and assume x is a Nash
equilibrium on G with all players having the same needs. Let K = {1} and consider the
game G{1}, i.e. agent 1 is the only Kantian agent. Then,
• if 1 ∈ A(x) and if A(x{1}) ⊆ A(x), we have

x1 > 0 =⇒ X{1} > X

• if 1 ∈ A(x) and if A(x{1}) = A(x), we have

x1 = 0 =⇒ X{1} = X

• if 1 ∈ SI(x) and if SI(x{1}) ⊆ SI(x), we have

X{1} < X

We see that, surprisingly, the replacement of a free-rider by a high contributor does
not increase aggregate contributions, it actually decreases them. In fact, if we wish to
increase aggregate contributions, it is an already active agent that should be replaced.
This proposition can be derived from propositions 4 and 5, changing the status of the
agent to Kantian. Figure 12 illustrates proposition 10.

Several Kantian agents

Of all the Nash-Kant equilibria, the one with the largest aggregate contributions is
the one associated with GN , where every agent is Kantian. Therefore going from playing
G to playing GN necessarily increases contributions, but as we have just seen, replacing
one Nash player by a Kantian agent might decrease contributions. We are thus interested
in whether there is always an improving sequence of single replacements (of Nash players
by Kantian agents) such that contributions increase along that sequence. Here again, it
is the unconstrained solution to a modified problem that provides the answer.
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Figure 12: In the top panel, the unique Nash equilibrium of the game with δi = 0.5 and qi = 0.5

for all i. All players are active except the player playing 0, who is strictly inactive.
The sum of contributions is 1.666. In the middle panel, an active player playing
1/3 is replaced by a Kantian agent playing 1/2. This increases total contributions,
reaching 1.75. In the lower panel, the strictly inactive player is replaced by a
Kantian agent playing 1/2. This decreases total contributions, down to 1.5.



Given a network G, a set of Kantian agents K, and a Nash-Kant equilibrium xK ,
we denote by

(
I + ∆GA(xK)

)
N\K the submatrix of the equilibrium interaction matrix(

I +GA(xK)

)
obtained by removing Kantian agents from the game, and we call xK,unc the

unconstrained solution to the transposed homogeneous problem (I+∆GA(xK))
T
N\K .x = 1.

Note that xK,unc is an (#N −#K)-size vector.
As in proposition 6, let a(xK , xK∪{1}) := {i ∈ N ; i ∈ A(xK) ∩ SI(xK∪{1})} and

si(xK , xK∪{1}) := {i ∈ N ; i ∈ SI(xK) ∩ A(xK∪{1})}.

Proposition 11. Consider any network G and assume xK is a Kant-Nash equilibrium
on G with K the set of Kantian agents. Assume that we replace player 1 ∈ N \ K by
a Kantian agent. Let xK∪{1} be a Kant-Nash equilibrium on G with K ∪ {1} the set of
Kantian agents. Then,{

xK,unc1 ≥ 0, xK,unci ≥ 0 for all i ∈ a(xK , xK∪{1}) ∪ si(xK , xK∪{1}) =⇒ X ′ ≥ X

xK,unc1 ≤ 0, xKunci ≤ 0 for all i ∈ a(xK , xK∪{1}) ∪ si(xK , xK∪{1}) =⇒ X ′ ≤ X

Proposition 11 provides an algorithm to identify whether the replacement of a specific
Nash player by a Kantian agent will increase or decrease this sum and therefore to find a
path of replacements such that contributions increase along the path. We illustrate how
to implement this algorithm in the following example.

Example 3. Consider the network represented on Figure 13 and payoff function (8) with
δ = 1

2
and wi = 1 for all i. In the first graph, we represent the unique Nash equilibrium

of the game with only Nash players. All players are active and the sum of contributions
is 1.875. In the second graph, an active player is replaced by a Kantian and, as predicted
by proposition 10, contributions increase to 1.9285. For the next replacement, we look
at the unconstrained solution of the homogeneous problem where the Kantian agent is
removed. This solution is represented in the third graph.

In the fourth graph, we replace the player playing −1/7 in the unconstrained solution
by a Kantian agent, and the sum of contributions goes down to 1.9166, as predicted
by proposition 11. Now we replace instead the player at the extreme left of the network
playing 3/7 in the unconstrained solution and, as expected, the sum of contributions goes
up to 2. We then remove the second Kantian agent to proceed with the next replacement.

In the seventh graph, we replace a player playing 0 in the unconstrained problem (i.e.
a neutral player), and as predicted, the sum of contributions does not change although
the contribution of every remaining Nash player has changed. This sum is 2. We then
take out the third Kantian agent and show the unconstrained solution of this further
reduced problem. We see that an isolated player appears, his unconstrained solution is
therefore positive, and when we replace him by a Kantian agent the sum of contributions
increases to 2.5. The algorithm continues until we reach the profile with only Kantian
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agents, where the sum of contributions reaches a maximum of 3.5.

Note that Proposition 10 is a special case of Proposition 11, where K = ∅. Its
statement is neater though, and this comes from the fact that when there are only Nash
players, i ∈ A(x) ⇒ xunci ((GA(x))

T , 1) ≥ 0. This is no longer true once there is at least
one Kantian agent in the game.
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(a) Sum = 1.875

(b) Sum = 1.9285

(c) Unconstrained solution without the first Kantian
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(d) Sum = 1.9166

(e) Sum = 2

(f) Unconstrained solution without the first and the second Kantian
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(g) Sum = 2

(h) unconstrained solution without the 1st, 2nd and 3rd Kantian

(i) Sum = 2.5

Figure 13: An example of successive replacements guaranteeing that aggregate contributions
increase at each step.
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A Appendix: Proofs

Proof of Proposition 1: The equilibrium profile xε of the game with parameters
(q,∆, Gε) satisfies the following conditions.{

qi − δi
∑

j∈N g
ε
ijx

ε
j ≥ 0 =⇒ xεi = qi − δi

∑
j∈N g

ε
ijx

ε
j

qi − δi
∑

j∈N g
ε
ijx

ε
j < 0 =⇒ xεi = 0

By definition of Gε, we obtain

q1 − δ1
∑
j∈N

gε1jx
ε
j = (q1 + δ1

∑
j∈N

εjg1jx
ε
j)− δ1

∑
j∈N

g1jx
ε
j

Let qβ1 = q1 + β = q1 + δ1
∑

j∈N εjg1jx
ε
j, then we have{

qβi − δi
∑

j∈N gijx
ε
j ≥ 0 =⇒ xεi = qβi − δi

∑
j∈N gijx

ε
j

qβi − δi
∑

j∈N gijx
ε
j < 0 =⇒ xεi = 0

which are the conditions for xε to be an equilibrium profile of the game with parameters
(qβ,∆, G).

Proof of Proposition 3: When G is the complete network, the interaction matrix is

I + ∆G =


1 δ1 . . . δ1

δ2 1 . . . δ2
... . . . . . . ...
δn . . . δn 1


To show this is a P -matrix we need to show that every principal minor is strictly

positive. It is sufficient to prove that det(I + ∆G) > 0, since any principal minor can be
seen as the determinant of a smaller complete network. Let us then prove that det(I +

∆G) > 0.
This matrix can be decomposed as

I + ∆G =


1− δ1 0 . . . 0

0 1− δ2 . . . 0
... . . . . . . ...
0 . . . 0 1− δn

+


δ1 δ1 . . . δ1

δ2 δ2 . . . δ2
... . . . . . . ...
δn . . . δn δn


which is equal to I −∆ + u.vT , where u = (δ1, ..., δn)T and vT = (1, ..., 1) and u.vT is the
outer product of u and v. By calling A = I −∆, we have I + ∆G = A + u.vT , and we
can use the matrix determinant lemma, which states the following:
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- If A is an invertible n × n matrix, and u and v are two n-dimensional column vec-
tors, then det(A+ uvT ) = (1 + vTA−1u)det(A).
- Whether A is invertible or not, det(A+uvT ) = vTadj(A)u, where adj(A) is the adjugate
matrix of A.

Let us start with case δi ∈ (0, 1) for all i. Then A is diagonal and invertible, we thus
use the first statement of the matrix determinant lemma, with det(A) the product of all
diagonal terms. This leads to

det(A+ uvT ) =

(
1 +

n∑
i

δi
1− δi

)
n∏
i

(1− δi)

which is strictly positive.
Now assume that δ1 = 1 while δi ∈ (0, 1) for all i 6= 1. Then A is no longer invertible

since the first row is a row vector of 0’s. We therefore use the second statement of the
matrix determinant lemma. We get

adj(A) =


∏

i 6=1(1− δi) 0 . . . 0

0 0 . . . 0
...

...
...

0 0 . . . 0


from which we get

det(A+ uvT ) =
∏
i 6=1

(1− δi)

which is strictly positive.

Proof of Theorem 1: It is straightforward for the case where x1 = 0. If agent 1 is
inactive, then he either remains inactive or become active in x′. Thus x′1 ≥ x1 if x1 = 0.
Now assume x1 > 0. We first prove the following lemma:

Lemma 1. Let M be a P-matrix. Then, M−1 is also a P-matrix.

Proof. We show that all principal minors of M−1 are positive. The Jacobi identity (Miao
and Ben-Israel [1993]) relates the minors ofM−1 to those ofM . Let α ⊆ N and α′ = N\α,
and let M [α] be the principal submatrix of M with rows and columns indexed by α. The
Jacobi identity states that, for all α

detM−1[α] = (−1)2
∑
i∈α i

detM [α′]

detM

Since M is a P-Matrix, detM [α′] and detM are both strictly positive, and (−1)2
∑
i∈α i =

1. Therefore, detM−1[α] > 0, which proves the lemma.

45



Let us define a(x, x′) = {i ∈ N : i ∈ A(x) ∩ SI(x′)}, and si(x, x′) = {i ∈ N : i ∈
SI(x) ∩ A(x′)}.
By definition of the equilibrium interaction matrix, we have (I + ∆GA(x))x = qA(x) and
(I + ∆GA(x′))x

′ = q′A(x′). From the first equation, we obtain

(I + ∆GA(x)) =
(
I + ∆

(
GA(x)∪si(x,x′) −B

))
x = qA(x)

where B is such that bij = gij for i ∈ si(x, x′) and j ∈ N , and bij = 0 otherwise. B is
a matrix obtained by setting the elements to gij on the rows which correspond to those
who change from SI to active, and zero otherwise.
By doing so, we can rewrite the system as(

I + ∆GA(x)∪si(x,x′)
)
x = qA(x) + b (9)

where b = ∆Bx, with bi = δi
∑

j∈N gijxj if i ∈ si(x, x′) and bi = 0 otherwise. From the
second equation, we obtain (I+∆GA(x)∪si(x,x′))x

′ = q′A(x′)+b
′, where b′i = δi

∑
j∈N gijx

′
j if i ∈

a(x, x′) and b′i = 0 otherwise.
Let M = (I + ∆GA(x)∪si(x,x′))

−1.
Then, we have x = M(qA(x) + b) and x′ = M(q′A(x′) + b′). Therefore, we obtain

x′ − x = M(q′A(x′) − qA(x) + b′ − b).

From this equation, we obtain

x′i − xi = βmi1 +
∑

j∈si(x,x′)

[(
δj
∑
k∈N

gjkx
′
k − qj

)
mij

]
+

∑
j∈a(x,x′)

[(
qj − δj

∑
k∈N

gjkxk

)
mjk

]

Let βj = δj
∑

k∈N gjkx
′
k − qj for j ∈ si(x, x′) and βj = qj − δj

∑
k∈N gjkxk for j ∈ a(x, x′),

so that
x′i − xi = βmi1 +

∑
j∈si(x,x′)

βjmij +
∑

j∈a(x,x′)

βjmij.

Notice that βj > 0 for j ∈ a(x, x′), βk < 0 for j ∈ si(x, x′) by the fact that a(x, x′) ⊆
SI(x′) and si(x, x′) ⊆ SI(x). Since x′j = 0 for j ∈ a(x, x′) and xj = 0 for j ∈ a(x, x′), we
have

x′1 − x1 = βm11 +
∑

j∈si(x,x′) βjm1j +
∑

j∈a(x,x′) βjm1j

x′i − xi = βm1i +
∑

j∈si(x,x′) βjmij +
∑

j∈a(x,x′) βjmij ≤ 0 for i ∈ a(x, x′)

x′i − xi = βm1i +
∑

j∈si(x,x′) βjmij +
∑

j∈a(x,x′) βjmij ≥ 0 for i ∈ si(x, x′)

Let M [{1} ∪ a(x, x′)∪ si(x, x′)] be the submatrix of M constituted by rows and columns
indexed by the elements of {1} ∪ a(x, x′) ∪ si(x, x′). Since (I + ∆G) is a P-matrix, by
lemma 1, its inverse M is also a P -matrix, and any submatrix is also, implying that
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M [{1} ∪ a(x, x′) ∪ si(x, x′)] is a P -matrix.
Finally, we use Theorem 2 of Gale and Nikaido [1965], which states that a matrix M is
a P -matrix if and only if it reverses the sign of no vector except 0, i.e. [ Mx = y with
xiyi ≤ 0 for all i ] is true only for x = y = 0. By calling β∗ = (β, (βi)i∈a(x,x′)∪si(x,x′))

T , we
can rewrite the 3 equations above as the following linear system.

M [{1} ∪ a(x, x′) ∪ si(x, x′)]β∗ = x′ − x

Notice that for all i ∈ a(x, x′), βi > 0 and x′i − x′i ≤ 0 so that βi(x′i − x′i) ≤ 0. Moreover,
for all i ∈ si(x, x′), βi < 0 and x′i − x′i ≥ 0 so that βi(x′i − x′i) ≤ 0. Therefore, Theorem
2 of Gale and Nikaido [1965] implies that β(x′1 − x1) > 0 since β∗ 6= 0. Because β > 0,
necessarily x′1 − x1 > 0.

Proof of Proposition 4: Recall that a(x, x′) = {i ∈ N : i ∈ A(x) ∩ SI(x′)}.
By definition of the equilibrium interaction matrix, we have (I + ∆GA(x))x = qA(x) and
(I + ∆GA(x′))x

′ = q′A(x′). By the second equation, we obtain

(I + ∆GA(x))x
′ = q′A(x′) + b

where bi = δ
∑

j∈N gijx
′
j for i ∈ a(x, x′) and bi = 0 otherwise.

By denotingM = (I+∆GA(x))
−1, we write x = MqA(x) and x′ = M(q′A(x′)+b). Therefore,

we have
x′ − x = M(q′A(x′) − qA(x) + b).

Notice that (q′A(x′) − qA(x) + b)1 = β, (q′A(x′) − qA(x) + b)i = −1 + δ
∑

j∈N gijx
′
j > 0 for

i ∈ a(x, x′), (q′A(x′) − qA(x) + b)i = 0 otherwise. Thus,

X ′ −X = β
∑
j∈N

mj1 +
∑

i∈a(x,x′)

[(
−1 + δ

∑
j∈N

gijx
′
j

)∑
j∈N

mji

]

By rewriting (I + ∆GA(x)) in blocks, separating active and strictly inactive players, we
have

(I + ∆GA(x)) =

(
(I + ∆G)[A(x)] (I + ∆G)[A(x), SI(x)]

0SI(x),A(x) ISI(x)

)
Thus,

(I + ∆GA(x))M =

(
(I + ∆G)[A(x)] (I + ∆G)[A(x), SI(x)]

0SI(x),A(x) ISI(x)

)(
M1 M2

M3 M4

)
= I

whereM1 is |A(x)|×|A(x)|,M2 is |A(x)|×|SI(x)|,M3 is |SI(x)|×|A(x)|,M4 is |SI(x)|×
|SI(x)| matrix.
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Therefore, M1 = [(I + ∆G)[A(x)]]−1, M3 = 0, and M4 = ISI(x).
Thus, we have

∑
j∈N mji =

∑
j∈A(x)mji =

∑
j∈A(x)mij for all i ∈ A(x). The second

equality comes from the fact that M1 is symmetric. Moreover, by x = MqA(x), we have
xi =

∑
j∈A(x)mij since qi,A(x) = 0 for all i ∈ SI(x), so that

∑
j∈N mji =

∑
j∈A(x)mij =

xi ≥ 0 for all i ∈ A(x).
Finally,

X ′ −X = β
∑
j∈N

mj1 +
∑

i∈a(x,x′)

[(
−1 + δ

∑
j∈N

gijx
′
j

)∑
j∈N

mji

]

= β
∑
j∈A(x)

m1j +
∑

i∈a(x,x′)

(−1 + δ
∑
j∈N

gijx
′
j

) ∑
j∈A(x)

mij


= βx1 +

∑
i∈a(x,x′)

[(
−1 + δ

∑
j∈N

gijx
′
j

)
xi

]
≥ 0

For the second point of the proposition, notice that if x1 = 0, and if no player changes
status, except maybe player 1, then X ′ −X = 0.

Proof of Proposition 5: Assume that x′1 > 0, and recall that si(x, x′) = {i ∈ N : i ∈
SI(x) ∪ A(x′)}, so 1 ∈ si(a, a′).
We have (I + ∆GA(x))x = qA(x) and (I + ∆GA(x′))x

′ = q′A(x′). The second equation can
be written as

(I + ∆GA(x))x
′ = q′A(x′) + b

where bi = δ
∑

j∈N gijx
′
j for i ∈ si(x, x′) and bi = 0 otherwise.

Let M = (I + ∆GA(x))
−1, so that x′ − x = M(q′A(x′) − qA(x) + b), and thus

X ′ −X =
∑

j∈si(x,x′)

[(
q′j − δ

∑
i∈N

gjix
′
i

)∑
i∈N

mij

]
.

Notice that q′i −
∑

j∈N gijx
′
j ≥ 0 for j ∈ si(x, x′) since they are active in x′. Hence, it is

sufficient to prove that
∑

i∈N mij < 0 for j ∈ si(x, x′).

Using the same matrix decomposition as in Proposition 4, we have M1 = I, M2 =

0, and M4 = [(I + ∆G)[A(x)]]−1. By the fact that M(I + ∆GA(x)) = I, we obtain
mij +

∑
k∈A(x)mikδgkj = 0, for i ∈ A(x) and j 6= i. Summing up over all i ∈ A(x), we

get:

∑
i∈A(x)

mij + δ
∑
i∈A(x)

gij ∑
k∈A(x)

mki

 = 0
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Recall that x = MqA(x), and since M1 is symmetric,
∑

j∈A(x)mji =
∑

j∈A(x)mij = xi for
all i ∈ A(x). Therefore,

∑
i∈A(x)

mij + δ
∑
i∈A(x)

gij ∑
k∈A(x)

mki

 =
∑
i∈A(x)

mij + δ
∑
i∈A(x)

gijxi = 0.

Since j ∈ SI(x), we know that δ
∑

i∈A(x) gjixi > qj = 1. Therefore,
∑

i∈A(x)mij + 1 < 0.
Since M4 = I, mjj = 1 and mij = 0 for i ∈ SI(x). Hence, we have∑

i∈N

mij = mjj +
∑
i∈A(x)

mij = 1 +
∑
i∈A(x)

mij < 0

for all j ∈ si(x, x′). The statement is proven.

Proof of Proposition 6: We have (I + ∆GA(x))x = qA(x), and (I + ∆GA(x′))x
′ = q′A(x′).

Notice that A(x′) ∪ a(x, x′) \ si(x, x′) = A(x). Thus, the second equation can be written
as follows:

(I + ∆GA(x))x
′ = q′A(x′) + b

where bi = δi
∑

j∈N gijx
′
j for i ∈ a(x, x′), bi = −δi

∑
j∈N gijx

′
j for i ∈ si(x, x′) and bi = 0

otherwise.
LetM = (I+∆GA(x))

−1, so that we obtain x = MqA(x) and x′ = M(q′A(x′)+b). Therefore,
x′ − x = M(q′A(x′) − qA(x) + b) and thus

X ′−X = β
∑
j∈N

mj1+
∑

i∈a(x,x′)

[(
−qi + δi

∑
j∈N

gijx
′
j

)∑
j∈N

mji

]
+
∑

i∈si(x,x′)

[(
qi − δi

∑
j∈N

gijx
′
j

)∑
j∈N

mji

]

Note that −qi + δi
∑

j∈N gijx
′
j > 0 for i ∈ a(x, x′) since they are SI in x′, and qi −

δi
∑

j∈N gijx
′
j ≥ 0 for i ∈ si(x, x′) since they are active in x′.

Consider xunc = xunc((∆GA(x))
T , 1), the solution to the linear system (I+(∆GA(x))

T )x =

1. Then xunc = MT .1, and thus

xunci =
∑
j∈N

mT
i,j =

∑
j∈N

mj,i.

Therefore,

X ′ −X = β
∑
j∈N

mj1 +
∑

i∈a(x,x′)

[(
−qi + δi

∑
j∈N

gijx
′
j

)∑
j∈N

mji

]
+

∑
i∈si(x,x′)

[(
qi − δi

∑
j∈N

gijx
′
j

)∑
j∈N

mji

]

= βxunc1 +
∑

i∈a(x,x′)

[(
−qi + δi

∑
j∈N

gijx
′
j

)
xunci

]
+

∑
i∈si(x,x′)

[(
qi − δi

∑
j∈N

gijx
′
j

)
xunci

]
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Thus, if xunc1 ≥ 0 and xunci ≥ 0 for all i ∈ a(x, x′) ∪ si(x, x′) ⇒ X ′ − X ≥ 0. On the
contrary, xunc1 ≤ 0 and xunci ≤ 0 for all i ∈ a(x, x′) ∪ si(x, x′) ⇒ X ′ − X ≤ 0. We can
easily check that this also holds when 1 ∈ a(x, x′) ∪ si(x, x′).

Proof of Corollary 7: We first prove the following lemma.

Lemma 2. Let G be the adjacency matrix of the complete network, let ∆ = diag(δi)i=1,...,n

with δi ∈ (0, 1] for all i, and δi = 1 for at most one player i, and call M = (I + ∆G)−1.
Then mii > 1 for all i, mij ≤ 0 for j 6= i and mij < 0 for j 6= i for at least one i, and
xuncj =

∑
imij > 0 for all j.

Proof. Assume first that δi ∈ (0, 1) for all i.
First we prove that all non-diagonal terms are negative. Observe that M(I + ∆G) = I.
Thus, for i 6= j and i 6= k,

mij +
∑
l 6=j

δlmil = 0 (10)

mik +
∑
l 6=k

δlmil = 0 (11)

mii +
∑
l 6=i

δlmil = 1 (12)

By substracting (10) and (11), we get mij(1− δj) = mik(1− δk), from which we conclude
that Sign(mij) = Sign(mik), since (1 − δj) > 0 and (1 − δk) > 0. So, all non-diagonal
terms have the same sign. Let us show that this sign has to be negative. By substracting
(12) and (10), we get

mii(1− δi) = 1 +mij(1− δj)

Assuming mij > 0, then necessarily, mii > 0. Yet, if mii > 0 and all non-diagonal terms
mij are also positive, it is not possible that equation (10) holds. Thus necessarilymij < 0,
and by (10) we must have mii > 0.
Further, using equation (12), since

∑
l 6=i δlmil < 0, we obtain that mii > 1 for all i.

For the last claim of the lemma, summing terms of (10) over all i, and terms of (11)

over all i, we get ∑
i

mij +
∑
l 6=j

δl
∑
i

mil = 1 (13)∑
i

mik +
∑
l 6=k

δl
∑
i

mil = 1 (14)

and by subtracting (13) and (14), we get
∑

imij + δk
∑

imik =
∑

imik + δj
∑

imij,
resulting in

(1− δj)
∑
i

mij = (1− δk)
∑
i

mik
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from which Sign(
∑

imij) = Sign(
∑

imik). By plugging this into (13), necessarily∑
imij > 0 or one of the

∑
imil > 0 for some l. But they all have the same sign,

so that
∑

imij > 0 for all j. Thus xuncj > 0 for all j.

Now assume that δ1 = 1 and δi ∈ (0, 1) for all other i. Then, by taking i = 1 and
substracting (12) and (10) we get

m1j = − 1

1− δj
< 0, j 6= 1

Plugging back into (12), we also get

m11 = 1 +
δ2

1− δ2
+ ...+

δn
1− δn

> 1

By taking i 6= 1 and j = 1 and substracting (12) and (10) we get

mii =
1

1− δi
> 1, i 6= 1

Next, by taking i 6= 1 and k = 1 and by substracting (10) and (11) we get mij(1−δj) = 0

for all j 6= 1, i, thus
mij = 0, i, j 6= 1, i 6= j

Finally, by replacing this into (12) with i 6= 1, we get

mi1 = − δi
1− δi

< 0, i 6= 1

and the lemma is proven.

Lemma 3. Suppose that G is complete. Take any set A(x) ⊆ N . Then, for all i ∈ N ,
xunci = xunci ((∆GA(x))

T , 1) ≥ 0.

Proof. Let M := (I + ∆GA(x))
−1. By using the matrix decomposition in the proof of

proposition 4, we have

(I + ∆GA(x))M =

(
(I + ∆G)[A(x)] (I + ∆G)[A(x), SI(x)]

0SI(x),A(x) ISI(x)

)(
M1 M2

M3 M4

)
= I

We know from the proof of proposition 4, that M1 = [(I + ∆G)[A(x)]]−1, M3 = 0,
and M4 = ISI(x). With G being complete, lemma 2 tells us that for all i ∈ A(x),
xunci ((∆GA(x))

T , 1) = xunci ((∆G[A(x)])T , 1) ≥ 0 since G[A(x)] is complete.
Therefore, we need to prove that for all i ∈ SI(x), xunci ((∆GA(x))

T , 1) ≥ 0.
Notice that from the structure of M , we have for j ∈ SI(x), xuncj ((∆GA(x))

T , 1) = mjj +
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∑
k∈A(x)mkj.

By taking the (i, j)-th element of (I + ∆GA(x))M for i ∈ A(x) and j ∈ SI(x), we have

δimjj +mij + δi
∑

k∈A(x)\{i}

mkj = 0

δi

mjj +
∑
k∈A(x)

mkj

+ (1− δi)mij = 0

Since mjj is a diagonal element of M4, mjj = 1. Hence, we have

δi

1 +
∑
k∈A(x)

mkj

+ (1− δi)mij = 0 (15)

Suppose that for all l ∈ A(x),mlj ≥ 0. Then, if mij ≥ 0, (15) could not hold. Therefore,
for at least one i ∈ A(x), mij < 0. Take such i, and we have δi

(
mjj +

∑
k∈A(x)mkj

)
=

−(1− δi)mij > 0. This is true for all j ∈ SI(x). The lemma is proven.

With lemma 3, the proof of corollary 7 follows as a direct application of proposition
6.

Proof of Proposition 7: To ease notations, we write A = (I + ∆G) and B = A−1.
We want to show that if player 1 is neutral with ∆G he will also be neutral with ∆′G

where ∆′ = diag(δ′i)i∈N such that δ′i = δi for all i 6= 1 and δ′1 6= δ1. To do that, we change
element a12 of matrix A to a12 + ε and show that xunc((∆G)T , 1) = xunc((∆′G)T , 1).

Using Sherman Morrison formula with u = (1, 0, ..., 0)T and vT = (0, 1, 0, ..., 0) we get

(A+ uvT )−1 − A−1 = −A
−1uvTA−1

1 + vTA−1u

= − ε

1 + b21


b12b11 · · · bn2b11

b12b21 · · · bn2b21
... . . . ...

b12bn1 · · · bn2bn1


Therefore, the column sum vector is

1T
[
(A+ uvT )−1 − A−1

]
= − ε

1 + b21
(b12

∑
j

bj1, ..., bn2
∑
j

bj1)

= −xunc1 ((∆G)T , 1)
ε

1 + b21
(b12, ..., bn2)

Since xunc1 ((∆G)T , 1) = 0 because player 1 is neutral, we have

1T
[
(A+ uvT )−1 − A−1

]
= 0
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Proof of Proposition 8: Since the set of active players does not change before and after
the transfer, without loss of generality, we can assume that both equilibria are interior.
Therefore, the equilibrium before the transfer satisfies xi + δi

∑
j∈N gijxj = qi for all

i ∈ N . We can write this as follows:

xi + δ1
∑
j∈N

gijxj = qi + (δ1 − δi)
∑
j∈N

gijxj

Let ∆′ be such that δ′2 = δ1 and δ′i = δi otherwise, and ∆′ = diag(δ′i)i∈N . Moreover, let q′

be such that q′2 = q2 + (δ1 − δ2)
∑

j∈N g2jxj. The equilibrium before the transfer satisfies
(I + ∆′G)x = q′ so that x = Mq′ where M = (I + ∆′G)−1.

Accordingly, the equilibrium after the transfer satisfies (I + ∆′G)x′ = q′′ + t where
q′′2 = q2 + (δ1 − δ2)

∑
j∈N g2jx

′
j, so that x = M(q′′ + t). Thus,

x′ − x = M(q′′ − q′ + t)

Notice that

q′′1 − q′1 + t1 = −ε

q′′2 − q′2 + t2 = (δ1 − δ2)
∑
j∈N

g2j(x
′
j − xj) + ε

Therefore,

X ′ −X = ε

(∑
j∈N

mj2 −
∑
j∈N

mj1

)
+

(∑
j∈N

mj2

)
(δ1 − δ2)

∑
j∈N

g2j(x
′
j − xj)

Let us define xunc = xunc((∆′G)T , 1), the solution to the linear equation (I+ (∆′G)T )x =

1, so that xunc = MT .1, and

xunc1 =
∑
j∈N

mT
1j =

∑
j∈N

mj1

xunc2 =
∑
j∈N

mT
2j =

∑
j∈N

mj2

From which

X ′ −X = ε (xunc2 − xunc1 ) + xunc2 (δ1 − δ2)
∑
j∈N

g2j(x
′
j − xj)
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Proof of corollary 8: First notice that if G is complete and ∆′ is such that δ′1 = δ′2, then
xunc2 = xunc1 . Thus the first term in equation (7) is 0. Next we show that

∑
j g2j(x

′
j−xj) <

0 and xunc2 > 0.
Let x be the equilibrium before transfer and x′ the equilibrium after transfer, where

transfer vector t = (−ε,+ε, 0, ..., 0)T , and let M = (I + ∆G)−1. Since we restrict to
only active players, we have x = Mq and x′ = Mq′ where q′1 = q1 − ε, q′2 = q2 + ε and
q′i = qi otherwise. Thus x′2 − x2 = ε(m22 − m21). By lemma 2, m21 ≤ 0 and m22 > 1

so x′2 − x2 > ε. Since also x2 = q2 − δi
∑

j g2jxj and x′2 = q2 + ε − δi
∑

j g2jx
′
j, we get

x′2 − x2 = ε− δi
∑

j g2j(x
′
j − xj), implying

∑
j g2j(x

′
j − xj) < 0.

Also, xunc2 > 0 according to lemma 2, so that Sign(X ′ −X) = Sign(δ2 − δ1).

Proof of Proposition 9: Let K be the set of Kantian players. The Nash-Kant equi-
librium x of the game GK = ((N \ K,K), (Xi)i=1,··· ,n, (ui)i∈N\K , (u

K
i )i∈K) satisfies the

following conditions:
xi + δi

∑
j∈N gijxj = qi for all i ∈ (N \K) ∩ A(x)

δi
∑

j∈N gijxj ≤ qi for all i ∈ (N \K) ∩ SI(x)

xi = xKi for all i ∈ K

For Nash players it implies{
xi + δi

∑
j∈N\K gijxj = qi − δi

∑
j∈K gijxj for all i ∈ (N \K) ∩ A(x)

δi
∑

j∈N\K gijxj ≤ qi − δi
∑

j∈K gijxj for all i ∈ (N \K) ∩ SI(x)

By proposition 2, this is the solution of the LCP (−q′N\K , (I + ∆G)N\K), where q′N\K is a
vector of |N \K| dimensions such that q′N\K,i = qi − δi

∑
j∈K gijxj, and (I + ∆G)N\K is

the submatrix of (I + ∆G) constituted by the rows and columns indexed by the elements
in N \K. Since (I + ∆G) is a P -matrix, (I + ∆G)N\K is also. Therefore, this LCP has
a unique solution.

Proof of proposition 10: By assumption 1, we have xKi ≥ qi. Assume qi = q for all i.
Let a(x, x{1}) = {i ∈ N : i ∈ A(x) ∩ SI(x{1})}. Both x and x{1} satisfy

(I + ∆GA(x))x = qA(x)

(I + ∆G′A(x{1}))x
{1} = q′A(x{1})

where g′1j = 0 for all j and q′1 = xK1 , g′ij = gij and q′i = qi if i 6= 1. The second equation
can be rewritten as:

(I + ∆GA(x))x
{1} = qA(x{1}) + b

where b1 = δ
∑

j∈N g1jx
{1}
j and bi = δ

∑
j∈N gijx

{1}
j for i ∈ a(x, x{1}).

Let M = (I + ∆GA(x))
−1, so that x = MqA(x) and x{1} = M(q′

A(x{1})
+ b), and then
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x{1} − x = M(q′
A(x{1})

− qA(x) + b). Therefore,

X{1} −X =
(
xK1 − q

)∑
j∈N

mj1

∑
j∈N

g1jx
{1}
j +

∑
i∈a(x,x{1})

[∑
j∈N

mji

(
δ
∑
j∈N

gijx
{1}
j − q

)]

Notice that δ
∑

j∈N gijx
{1}
j − q > 0 for i ∈ a(x, x{1}) since they are SI in x{1}. Therefore,

it is sufficient to prove that
∑

j∈N mj1 > 0 and
∑

j∈N mji ≥ 0 for i ∈ a(x, x{1}) if x1 > 0.

Using the decomposition of M from the proof of the proposition 4, we have
∑

j∈N mji =∑
j∈A(x)mji =

∑
j∈A(x)mij for all i ∈ A(x). Since (I+∆GA(x))x = qA(x), xi =

∑
j∈A(x) qmij =

q
∑

j∈A(x)mij for all i ∈ A(x), and since x1 > 0, xi ≥ 0 for i ∈ a(x, x′), we have∑
j∈N

mj1 > 0∑
j∈N

mji ≥ 0 for i ∈ a(x, x{1})

which proves the first point.

For the second point, notice that a(x, x{1}) = ∅, and
∑

j∈N mj1 = 0 when x1 = 0 and
1 ∈ A(x).

For the third point, we replicate the same logic with the set si(x, x{1}) instead of a(x, x{1}).
We find

X{1} −X = xK1
∑
j∈N

mj1

∑
j∈N

g1jx
{1}
j +

∑
i∈si(x,x′)

[∑
j∈N

mjk

(
q − δ

∑
j∈N

g2jx
{1}
j

)]

Notice that q − δ
∑

j∈N gijx
{1}
j > 0 for i ∈ si(x, x′) since they are active in x{1}. There-

fore, it is sufficient to prove that
∑

j∈N mj1 < 0 and
∑

j∈N mji < 0 for i ∈ si(x, x′).
With the decomposition of M from the proof of the proposition 5, we have

∑
j∈N mj1 =

m11 +
∑

i∈A(x)mi1 = 1 +
∑

i∈A(x)mi1 < 0 and
∑

j∈N mji = mii +
∑

j∈A(x)mji = 1 +∑
j∈A(x)mji < 0 for i ∈ si(x, x′), which proves the statement.

Proof of Proposition 11: By assumption 1, we have xKi ≥ qi for all i ∈ K. Moreover,
let us define qK such that for all i ∈ N \K,

qKi =

{
qi − δ

∑
j∈K gijx

K
j if qi − δ

∑
j∈K gij ≥ 0

0 otherwise.

qK represents the needs of each player after taking into account the contributions of Kan-
tian neighbors which are fixed. qK is defined for i ∈ N \ K, so that this is a vector of
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|N\K| dimensions. To simplify the notations, we denote (I+∆GA(x)) := (I+∆GA(x))N\K ,
x := xKN\K , x

′ := x
K∪{1}
N\K .

We first prove (i). By the definition of an equilibrium interaction matrix, we have
(I + ∆GA(x))x = qKA(x). Recall that qKA(x) is such that qKi,A(x) = qKi if i ∈ A(x), qKi,A(x) = 0

otherwise. Moreover, let us define G′ such that g1j = 0 for all j ∈ N \ K, g′ij = gij

otherwise. We have (I + ∆G′A(x′))x
′ = qK

′

A(x′), where q
K′
1 = xK1 , qK

′
i = qKi otherwise.

By the second equation, we obtain (I + ∆GA(x))x
′ = q′A(x′) + b, where

b1 =

{
δ
∑

j∈N g1jx
′
j if 1 ∈ A(x)

0 if 1 /∈ A(x)

Moreover, bi = δ
∑

j∈N\K gijx
′
j for all i ∈ a(xK , xK∪{1}), bi = −δ

∑
j∈N\K gijx

′
j for all

i ∈ si(xK , xK∪{1}), and bi = 0 otherwise. Let M = (I + ∆GA(x))
−1, so that we obtain

x = MqA(x) and x′ = M
(
qK
′

A(x′) + b
)
. Therefore,

x′ − x = M
(
qK
′

A(x′) − qKA(x) + b
)
.

Note that(
qK
′

A(x′) − qKA(x) + b
)
i

=

{
−qKi + bi = −qKi + δ

∑
j∈N\K gijx

′
j ≥ 0 (i ∈ a(xK , xK∪{1}))

qK
′

i + bi = qKi − δ
∑

j∈N\K gijx
′
j ≥ 0 (i ∈ si(xK , xK∪{1}))

The first inequality comes from the fact that they are SI in xK∪{1}, and the second
inequality comes from the fact that they are active in xK∪{1}.
For player 1, we have(
qK
′

A(x′) − qKA(x) + b
)
1

=

{
x′1 − qK1 + b1 = x′1 − qK1 + δ

∑
j∈N\K g1jx

′
j ≥ 0 (1 ∈ A(x))

x′1 + b1 = x′1 ≥ 0 (1 /∈ A(x))

The first inequality comes from assumption 1 that x′1 − q1 ≥ 0. For all other players,(
qK
′

A(x′) − qKA(x) + b
)
i

= 0.

For the sake of simplicity, we let ai denote
(
qK
′

A(x′) − qKA(x) + b
)
i
. Therefore, we have

the following:

X ′ −X = a1
∑

j∈N\K

mj1 +
∑

i∈a(xK ,xK∪{1})∪si(xK ,xK∪{1})

ai ∑
j∈N\K

mji


Note that ai ≥ 0, as we confirmed. Thus, it is sufficient to prove that for all i ∈
a(xK , xK∪{1}) ∪ si(xK , xK∪{1}),{

xK,unc1 ≥ 0, xK,unci ≥ 0⇒
∑

j∈N mj1 ≥ 0,
∑

j∈N mji ≥ 0

xK,unc1 ≤ 0, xK,unci ≤ 0⇒
∑

j∈N mj1 ≤ 0,
∑

j∈N mji ≤ 0
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Take xK,unc as it is defined in the main text. This is the solution of the linear system
(I + (∆GA(x))

T )x = 1. By solving this, we obtain xK,unc = MT .1, and thus xK,unci =∑
j∈N\Km

T
i,j =

∑
j∈N\Kmji. This proves the statement.
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