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1 Introduction

Are exogenous changes in agents’ expectations a significant cause of observed economic

fluctuations? A positive answer to this question requires two necessary ingredients. First,

belief-driven fluctuations must be a plausible outcome of realistic business cycle models,

occurring for realistic values for all structural parameters. Second, to the extent that

they exist, exogenous changes in expectations must generate endogenous dynamics for

macroeconomic variables consistent with observed patterns of economic fluctuations, in

particular in response to transitory shocks. The present paper addresses the first issue,

while a thorough assessment of the second issue is proposed in an accompanying paper

(Dufourt et al. [18]).

We analyze this question within two canonical models of the business cycle: the one-

sector Real Business Cycle (RBC) model of Kydland and Prescott [37], stripped down

to its essential ingredients by King, Plosser and Rebelo [36] and extended to consider

positive externalities with increasing returns to scale by Benhabib and Farmer [6] ; and

the two-sector version of the latter model proposed by Benhabib and Farmer [7]. The

main factor distinguishing our analysis from these previous papers is that we do not

restrict the specifications of individual preferences and of the production functions to

have particular forms, imposing instead minimal sets of assumptions on these functions.

A key novelty of our approach is that we show that the local stability conditions of the

steady state – influencing the possibility of emergence of belief-driven fluctuations – can

then be characterized in terms of five critical and economically interpretable parameters,

which we call critical elasticities. Two elasticities relate to the specification of the pro-

duction function: the elasticity of substitution between capital and labor and the degree

of increasing returns to scale. Three elasticities relate to the specification of individual

preferences: the elasticity of intertemporal substitution in consumption (EIS), the Frisch

elasticity of the labor supply curve with respect to the real wage and the Frisch elasticity

of the labor supply curve with respect to the marginal utility of wealth.

Regarding the latter three elasticities, we show that the standard strict quasi-concavity

and normality assumptions typically imposed on instantaneous utility functions naturally

translate into restrictions on these elasticities, so that considering these elasticities en-

ables to cover the whole set of admissible utility functions. Moreover, we argue that

the Frisch elasticity with respect to the marginal utility of wealth provides a relevant

measure of what is often called the degree of “wealth effect” on labor supply decisions,

which has recently been shown to play a major role in the local stability properties of

dynamic macroeconomic models (see Dufourt et al. [17, 19], Jaimovich [32]). We show

that our general formulation based on these critical elasticities encompasses as special

cases all the standard formulations for individual preferences proposed in the literature,

such as the Greenwood et al. (GHH) [24] formulation with no income effect, Hansen’s

[28] formulation with separable consumption and labor, and the King et al. (KPR) [36]

formulation with constant positive income effect. For each version of the model (one-

sector and two-sector), we can then derive the range of parameter values consistent with

belief-driven fluctuations and compare it with the range of available empirical estimates.

We derive two important conclusions. First, we prove that belief-driven fluctuations
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in one-sector RBC models can emerge with standard slopes for the labor demand and

labor supply curves but are ruled out for any empirically plausible calibrations for the

critical elasticities, regardless of the specifications for the individual utility function or

the production function. Second, in sharp contrast, we prove that the existence of belief-

driven fluctuations is a robust property of two-sector models, in the sense that they arise

for a wide range of empirically credible values for the critical elasticities. For example,

we show that sunspot fluctuations are compatible with any value for the wage elasticity

of labor supply provided the other critical elasticities are in an appropriate range. Like-

wise, sunspot fluctuations can occur for an arbitrarily small value for the elasticity of

intertemporal substitution (EIS) in consumption provided the degree of income effect is

not too small.

We provide an in-depth analysis explaining how and why belief-driven fluctuations

can emerge in each version of the model and we show that the main sources explaining

the drastically different results are, in the two-sector model, factor reallocation between

the consumption and the investment sector which, in the presence of externalities, affect

the relative price of the investment good. This creates potential capital gains from allo-

cating resources to the investment sector, which leaves the room for an investment boom

triggered by optimistic self-fulfilling expectations about the return on capital accumula-

tion.

These main results are derived from the canonical versions of the one-sector and two-

sector RBC models, in which preferences are defined over current private consumption and

leisure, and production functions are based on current capital and labor (with productive

externalities). Clearly, if belief-driven fluctuations easily emerge in the stripped down

version of the two-sector model, the scope for endogenous fluctuations is conceptually

greater in richer models for which our benchmark model can be obtained as a special

case. For example, models with variable capital utilization rate as in Wen [50], models

with different production functions in the consumption and the investment sectors as in

Benhabib and Nishimura [8] and Benhabib et al. [9], or models with static consumption

spillovers in the utility function as in Chen and Hsu [15] and Alonso-Carrera et al. [2]

should conceptually allow for an even greater scope for indeterminacy as long as our

canonical model can be obtained as a limit case.1’2 We conclude that far from being an

exotic feature or a theoretical curiosity arising under extreme parameter configurations,

1For example, in models with variable capital utilization, the limit case would be obtained as the one
for which the elasticity of the depreciation rate to capital utilization variations is zero. In models with
different sectoral production functions (e.g., in terms of their capital-labor intensity or their capital-labor
elasticity of substitution), the limit case would be the one for which these elasticities are the same in
both sectors. In models with static consumption spillovers, the limit case would the one for which the
effect of aggregate consumption on individual preferences is nullified, etc.

2On the other hand, the case of models involving additional state variables is trickier, because the limit
case enabling to recover our benchmark model may be associated with a change in the dimensionality of
the dynamic system. When this happens, a discontinuity in the local stability properties of the model
may (or may not) occur, so that a specific analysis for the larger model is required. This potentially
concerns, for example, models with habit formation in the utility function (see e.g. Boldrin et al. [12]
and Jaimovich and Rebelo [33]) for which past consumption is an additional state variable disappearing
from the dynamic system when the influence of past consumption is nullified, or New-Keynesian models
with sticky prices in which the past inflation rate is a state variable disappearing in the limit case of
flexible prices.
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belief-driven fluctuations should be considered as a central feature of standard dynamic

(multisector) macroeconomic models.

The rest of this paper is organized as follows. In Section 2, we present a short review

of the related literature. In Section 3, we analyze the aggregate (one-sector) model.

We define the general technology and the general utility function considered throughout

the paper. We present our new and innovative way of decomposing all the elasticities

that characterize preferences, focusing in particular on income effect. We then study the

existence and uniqueness of the steady state and we prove that belief-driven fluctuations

are not a realistic outcome of standard aggregate models for all income effects. In Section

4, we consider the two-sector model under the same general specification of preferences

and technologies as in Section 3. As a result the existence and uniqueness of the steady

state is derived under the same basic conditions as in the aggregate case. We show that

the existence of expectation-driven fluctuations is a generic property of two-sector models

and fully compatible with empirically relevant values for all the structural parameters.

Section 5 concludes. All the technical proofs are contained in the Appendix.

2 Literature review

The endogenous fluctuations and sunspot literature was initiated by the seminal contri-

butions of Azariadis [3], Cass and Shell [14], Grandmont [22], and Woodford [51]. Yet

Benhabib and Farmer (BF) [6] is the first paper to analyze these issues in the standard

infinite-horizon one-sector model with endogenous labor supply, the workhorse model of

the RBC literature. They show that in this model, indeterminacy occurs under the as-

sumption of a large amount of externalities leading to an upward-sloping labor demand

function. While this model subjected to sunspot shocks has been shown to account

for the main “stylized facts” of the business cycles at least as well as standard RBC

models (see Farmer and Guo [21]), the assumption of large aggregate IRS in production

was found to be inconsistent with the data.3 Since this seminal contribution, a major

challenge in the literature has been to find extensions of this benchmark model capable

of generating expectation-driven business-cycles under empirically realistic values for all

structural parameters. Two strands of the literature address this challenge. The first

seeks to determine how the local indeterminacy properties of the benchmark one-sector

model evolve when some assumptions on preferences or the production function are re-

laxed. The second adds new ingredients to the benchmark model and reconsiders the

issue of indeterminacy in the extended models. We briefly review some critical papers in

these two strands of the literature.

The BF one-sector model is based on an additively separable utility function and

a Cobb-Douglas technology. Many contributions have generalized this formulation to

show that the existence of sunspot fluctuations can be compatible with a downward-

sloping labor demand function. Pintus [43] introduced a general technology into the

3See e.g. Basu and Fernald [4] for empirical estimates of aggregate IRS in the US economy and
Aiyagari [1] for a critique of macroeconomic sunspot models relying on a upward sloping aggregate labor
demand curve.
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Benhabib-Farmer framework, while Bennett and Farmer [11] and Hintermaier [31] con-

sidered non-separable preferences as defined by King et al. (KPR) [36], still assuming a

Cobb-Douglas technology. Pintus [44] generalized their formulation to a general produc-

tion function. Lloyd-Braga et al. [40] considered general homogenous preferences and

a general technology. The overall message from this literature is that preference and

technology parameters, like the elasticity of intertemporal substitution in consumption,

the degree of income effect on labor supply, the degree of IRS in production, and the

elasticity of substitution between capital and labor, all interact to influence the local

stability properties of the model. Yet in all these models, the existence of expectation-

driven business cycles requires at least one structural parameter value which appears to

be outside the range of available empirical estimates.

In response to this critique of the sunspot literature, some authors have modified the

production structure of the model. Wen [50] proposes a simple extension consisting in

introducing a variable capital utilization rate into the Benhabib-Farmer setup, in the

spirit of Greenwood et al. [24], and proves that this extension is sufficient to allow for

the existence of sunspot fluctuations under empirically plausible values for the structural

parameters.4 However, unitary elasticities of intertemporal substitution in consumption

and of capital-labor substitution are assumed, which restricts the possibilities to success-

fully match the data in a data confrontation perspective. Considering a more general

utility function and a general production function, Dufourt et al. [20] show that the vari-

able capital utilization model allows for the emergence of belief-driven fluctuations under

a wider set of values for these elasticities if the elasticity of the labor supply curve is large

enough. Yet, they also show that the model still faces difficulties in accounting for some

crucial empirical facts associated with transitory shocks. Other authors have instead

modified the specification for individual preferences. For example, Alonso-Carrera et al.

[2] introduce consumption spillovers in the utility function and they show that this favors

the occurrence of indeterminacy even when the labor supply curve is positively sloped.

However, the extent to which such a model submitted to belief shocks can account for

the data is left unexplored.

Two-sector models have also been considered, again following the seminal contribu-

tion of Benhabib and Farmer [7]. In this paper, Benhabib and Farmer extend their initial

formulation to a two-sector economy producing differentiated consumption and invest-

ment goods but with the same Cobb-Douglas technology characterized by sector-specific

output externalities leading to increasing returns. Building on the fact that capital and

labor can be freely allocated between sectors, they prove that the existence of local inde-

terminacy becomes compatible with a downward-sloping labor demand function. Unlike

their one-sector contribution, it clearly appears that when external effects in each sector

depend on that sector’s aggregate output, factor reallocations across sectors can have

strong effects on marginal products and indeterminacy can occur with much smaller ex-

ternalities. Harrison [29] builds on these results to show that indeterminacy occurs for

a minimum value of the externality in the investment sector, even with no externality

in the consumption sector. All these conclusions have been recently confirmed by Du-

4See also Benhabib and Wen [10] for a discrete-time version of the same model.
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fourt et al. [17] considering GHH preferences instead of additively separable ones.5 Guo

and Harrison [26] also introduce a variable capital utilization rate into the Benhabib and

Farmer model and confirm that lower externalities are required.

Worthy of mention too is all the literature departing from the contribution of Benhabib

and Nishimura [8] and Benhabib et al. [9], in which sector-specific externalities are

introduced in two-sector models with differentiated private technologies and constant

social returns. In such a framework, the existence of local indeterminacy relies on a

capital-intensity reversal between the private and social levels and, as shown in Nishimura

and Venditti [41], requires extreme values for the elasticity of intertemporal substitution

in consumption (EIS) which are not in line with empirical estimates.

All in all, although sunspot fluctuations have been shown to arise more easily in

extended model formulations, there is still no general analysis in the literature.

3 A general aggregate model

We consider a closed economy framework in the spirit of Benhabib and Farmer [6] (BF).

The economy is composed of a large number of identical infinitely-lived agents and a large

number of identical producers. Agents consume, supply labor and accumulate capital.

Firms produce the unique final good which can be used either for consumption or invest-

ment. All markets are perfectly competitive, but there are externalities in production.

3.1 The representative firm: a general technological structure

The production sector is composed of a large number of identical firms which operate

under perfect competition. Output Yt is produced by combining labor Lt and capital Kt.

The technology of each firm exhibits constant returns to scale with respect to its own

inputs and we consider that each of the many firms benefits from positive externalities

due to the contribution of the average levels of labor L̄ and capital K̄. These external

effects are exogenous and not traded in markets. The production function is

Yt = f(Kt, Lt)e(K̄t, L̄t) (1)

with e(K̄t, L̄t) the externality variable. We follow BF by assuming that externalities

affect the technology in a multiplicative way but we depart from them by not requiring

the production function to be Cobb-Douglas. Rather, our production function is general

and satisfies:

Assumption 1. f(K,L) is C2 over R2
++, increasing in (K,L), concave over R2

++ and

homogeneous of degree one. e(K̄, L̄) is C1 over R++ and increasing in (K̄, L̄). Moreover,

for any given L > 0,

lim
K→0

f1(K,L)e(K,L) = +∞ and lim
K→+∞

f1(K,L)e(K,L) = 0

and, for any given K > 0,

lim
L→0

f2(K,L)e(K,L) = +∞ and lim
L→+∞

f2(K,L)e(K,L) = 0

5See also Guo and Harrison [27].
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Firms rent capital units at the real rental rate rt and hire labor at the unit real wage

wt. The profit maximization program of the representative firm,

max
{Yt,Lt,Kt}

Yt − wtLt − rtKt,

leads to the standard demand function for capital Kt and labor Lt:

rt = f1(Kt, Lt)e(K̄t, L̄t) (2)

wt = f2(Kt, Lt)e(K̄t, L̄t) (3)

As will become clear, the production function and the optimal decisions of firms in-

fluence the local dynamics of the model through four crucial elasticities: the elasticity of

output with respect to capital stock s(K,L) (which, at equilibrium, is also the share of

capital in total income), the elasticity of capital-labor substitution σ(K,L), and the elas-

ticities of the externality variable with respect to labor, εeL(K̄, L̄), and capital, εeK(K̄, L̄):

s(K,L) = Kf1(K,L)
f(K,L)

∈ (0, 1), σ(K,L) = − (1−s(K,L))f1(K,L)
Kf11(K,L)

> 0 (4)

εeK(K̄, L̄) = e1(K̄,L̄)K̄

e(K̄,L̄)
, εeL(K̄, L̄) = e2(K̄,L̄)L̄

e(K̄,L̄) (5)

Obviously, the choice of a Cobb-Douglas production function, as in BF, implies

σ(K,L) = 1, whereas the use of a general production function entails σ(K,L) ∈ (0,+∞).

To simplify notation, we will for now denote by s, σ, εeK and εeL the corresponding elas-

ticities evaluated at the steady state. In order to allow for a direct comparison with BF,

the externalities are also expressed as follows:

εeK = sΘk εeL = (1− s)Θl (6)

where Θk,Θl ≥ 0 are the degrees of increasing returns to scale in capital and labor.

BF assume output externalities, implying Θk = Θl = Θ. We allow for a more general

formulation in which external effects can be factor-specific and independent of each-other.

Finally, we make a standard assumption requiring that the aggregate (i.e., taking

external effects into account) labor demand and capital demand functions are decreasing

in the real wage and in the rental rate of capital, respectively:

Assumption 2. Θk < (1− s)/sσ ≡ Θ̄k and Θl < s/(1− s)σ ≡ Θ̄l

It is well known from BF analysis that when the slope of the aggregate labor demand

curve is positive and greater than the slope of the aggregate labor supply curve, inde-

terminacy and sunspot fluctuations can occur in the one-sector infinite-horizon model.

We rule out this possibility here because it entails extremely high degrees of increasing

returns to scale that are at odds with the data. We will be more specific about realistic

degrees of IRS later in the paper.

3.2 The representative household: a general utility function

The economy is composed of a continuum of mass 1 of identical households. In each

period, the representative household is endowed with ` units of time. Given the real

wage wt and the rental rate of capital rt, the household decides how much of its available

time to allocate to leisure time Lt and hours worked lt, and how much to consume ct.

It also rents its capital stock kt to the representative firms, and accumulates capital

according to the following capital accumulation constraint:
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kt+1 = (1− δ + rt)kt + wtlt + dt − ct (7)

where δ ∈ (0, 1) is the capital depreciation rate, and dt are potential dividends redis-

tributed ex-post by firms.

In each period, the utility that the household derives from consumption and leisure

is described by a general instantaneous utility function u(c,L). As in the case of the

productive side of the economy, we want our analysis to be as general as possible. We

thus make the following minimum standard assumptions on the utility function:

Assumption 3. u(c,L) is C2 over R2
++ increasing in each argument, strictly quasi-

concave in (c,L), and satisfies the Inada conditions

lim
c→0

u1(c,L) = +∞, lim
c→+∞

u1(c,L) = 0, lim
L→0

u2(c,L) = +∞ and lim
L→+∞

u2(c,L) = 0.

The Inada conditions are introduced to ensure an interior optimum. Furthermore,

to avoid basing our analysis of the local stability conditions and of the occurrence of

sunspot fluctuations on exotic features regarding individual preferences, we introduce the

following standard assumption on consumption and leisure:

Assumption 4. Consumption c and leisure L are normal goods.

Assuming that the intertemporal utility function is additively separable over time,

the representative consumer solves the following lifetime utility maximization program

(where β ∈ (0, 1) is the subjective discount factor):

max
{ct, lt, kt+1}t=0...∞

+∞∑
t=0

βtu(ct, `− lt)

s.t. kt+1 = (1− δ + rt)kt + wtlt + dt − ct, t = 0...∞
k0 given

(8)

Denoting by λt the Lagrange multiplier on constraint (7) and Rt = 1 − δ + rt the net

return factor on capital, the first-order conditions can be written as

u1(ct, `− lt) = λt, (9)

u2(ct, `− lt)
u1(ct, `− lt)

= wt (10)

λt = βRt+1λt+1 (11)

Equation (10) describes the optimal consumption-leisure trade-off, while equations (9)

and (11) jointly describe the optimal arbitrage between consumption and saving (i.e., the

Euler equation). An optimal path must also satisfy the transversality condition:

lim
t→+∞

βtλtkt+1 = 0 (12)

Following Rotemberg and Woodford [47], we can rewrite the optimality conditions

(9-10) in terms of time-invariant Frisch consumption-demand and labor-supply curves

involving the real wage wt and the marginal utility of wealth λt :
ct = c(wt, λt), lt = l(wt, λt) (13)

As was the case for the productive size of the economy, we show later that the local

dynamics of the model around the steady state is determined by a limited number of

critical elasticities. Denote by
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εcw = c1(w,λ)w
c

, εcλ = c2(w,λ)λ
c

, εlw = l1(w,λ)w
l

, εlλ = l2(w,λ)λ
l

, (14)

the Frisch elasticities of the demand and supply functions (13), and by

εcc = − u1(c,L)
u11(c,L)c

, (15)

the elasticity of intertemporal substitution in consumption. We can easily prove the

following Lemma:

Lemma 1. The three critical elasticities εcc, εlw and εlλ are related to the individual

utility function by

εcc = − u1

u11c
, εlw = 1

l

(
−u11u2

u11u22−u12u21

)
, εlλ = 1

l

(
u21u1−u11u2

u11u22−u12u21

)
(16)

Moreover, the remaining two elasticities εcw and εcλ are related to εcc, εlw, and εlλ through

the following equations

εcw = C (εlw − εlλ) , εcλ = −εcc + C
(

1− εlλ
εlw

)
εlλ (17)

where C = θ(1−s)/(θ−sβδ) < 1 is the steady state ratio of wage income over consumption

(wl/c), which is independent of the specification of the individual utility function, and

θ = 1− β(1− δ).

Proof. See Appendix 6.1.

An implication of this Lemma is that, as far as the representative consumer’s decision

is concerned, the dynamic properties of the model are completely determined by the three

elasticities εlw, εlλ, and εcc, in addition to the parameter C, which is independent of the

specification of individual preferences.

Using this Lemma, we can immediately derive the following Proposition:

Proposition 1. Under Assumption 3, εcc > 0 and εlw > 0. Moreover, under Assump-

tion 4, εlλ ≥ 0, εcλ ≤ 0, and thus

εcc ≥ Cεlλ(εlw−εlλ)
εlw

≡ εNcc. (18)

Proof. See Appendix 6.2.

The importance of this Proposition is that it shows how assumptions on preferences

(namely Assumptions 3 and 4) naturally translate into restrictions on the critical elas-

ticities εcc, εlw, and εlλ. Note that these restrictions (εcc > 0, εlw > 0, εlλ ≥ 0, and

εcc ≥ εNcc) are actually much simpler than working directly with the standard concavity

and normality assumptions based on the utility function.

Another nice feature of considering these elasticities, instead of considering the first-

order and second-order derivatives of u(·), is that the former have a clear economic

interpretation. The EIS in consumption εcc and the Frisch elasticity of labor supply

εlw have a well-known interpretation that requires no further discussion. On the other

hand, since λt is the marginal utility of wealth, the elasticity εlλ captures the extent

to which a change in the household’s expected wealth over its entire lifetime affects the

current labor supply decision. Indeed, when, for any reason, lifetime income decreases, the

intertemporal budget constraint obtained from aggregating (7) over time becomes more

restrictive, and λt increases as the household’s consumption choices are more constrained.
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As implied by the normality assumption, it follows that consumption and leisure decrease

while hours worked increase. The elasticity εlλ captures the extent to which such a change

in lifetime income affects the current labor supply decision.

In short, εlλ is a properly defined measure of the wealth effect on labor supply. This

elasticity is particularly important because the recent literature has shown that the inten-

sity of this wealth effect plays a significant role in the local stability properties of many

dynamic macroeconomic models (see Dufourt et al. [17, 19], Jaimovich [32]). However,

this literature only addressed particular utility functions in which the wealth effect is

known to be either “positive” (but not precisely defined) or zero. Moreover, these spe-

cific utility functions also require the introduction of other cross-restrictions on the three

critical elasticities defined above. With our analysis, however, the intensity of the wealth

effect on labor supply can be chosen independently of the values given to the other two

elasticities (εlw and εcc).

To better illustrate these points, the following Proposition clarifies the restrictions

implied by some of the most widely used classes of utility functions:

Proposition 2. Under KPR preferences,

u(c,L) =

{
c1−γ

1−γ v(L), with γ > 0, γ 6= 1

log(c) + log(v(L)), with γ = 1

with L = ` − l and v(L) increasing and concave (if γ ≤ 1) or decreasing and convex (if

γ > 1), the critical elasticities satisfy:

εcc = 1
γ
, εlw = L

l
1

(1−εcc)v′(L)L/v(L)−v′′(L)L/v′(L)
> 0, εlλ = εccεlw.

Under generalized GHH preferences,

u(c, l) = 1
1−γ

(
c− l1+χ

1+χ

)1−γ
,

with γ > 0 and χ ≥ 0, the critical elasticities satisfy:

εcc = 1
γ

(
1− C

1+χ

)
, εlw = 1

χ
, εlλ = 0.

Under Generalized Hansen [28] preferences,

u(c, l) = c1−γ

1−γ −
l1+χ

1+χ
,

with γ > 0 and χ ≥ 0, the critical elasticities satisfy:

εcc = 1
γ
, εlw = εlλ = 1

χ
. (19)

According to Proposition 2, in the case of KPR preferences, only two of the three

critical elasticities εcc, εlw, and εlλ are independent since they are related through the

equation εlλ = εccεlw. In the case of generalized GHH preferences, the restriction εlλ = 0

is well-known, having been introduced on purpose to eliminate the wealth effect on labor

supply. However, there is often far less awareness that, with this class of preferences,

changing the calibration of the preference parameter χ to change the value of the wage

elasticity of the labor supply, εlw = 1/χ, meanwhile generates a change in the EIS in

consumption, εcc. In fact, Proposition 2 implies that changing the calibration of χ to

χ′ 6= χ also requires adjusting the calibration of γ to γ′ = (1− C/(1 + χ′)) εcc if one

wants to keep the initial value of the EIS unchanged. Finally, under generalized Hansen

preferences, a strong restriction relating the two Frisch elasticities of the labor supply

curve is introduced, since we have in this case: εlw = εlλ.
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The particular case of the Jaimovich-Rebelo formulation

Jaimovich and Rebelo (JR) [33] were the first to discuss the importance of the income

effect on the occurrence of indeterminacy and sunspot fluctuations. Their discussion is

based on the following specification of the instantaneous utility function:

u(ct, lt, Xt) =

[
ct−

l
1+χ
t
1+χ

Xt

]1−γ
−1

1−γ
(20)

with Xt = cφtX
1−φ
t−1 and φ ∈ [0, 1]. As they state, this specification nests as polar cases

the GHH utility function (when φ = 0) and the KPR utility function (when φ = 1)

formulations. The magnitude of the income effect is therefore controlled by varying the

value of γ between these two extremes.

Assuming γ = 1 and Θk = Θl = Θ, Jaimovich [32] shows that, for some values of

Θ compatible with a negatively-slopped labor demand function, there exist two bounds

0 < φ < φ < 1 such that when φ ∈ (φ, φ) local indeterminacy and sunspot fluctuations

occur under realistic values for all the structural parameters. The conclusion is that the

income effect has a non-linear effect on the range of values consistent with indeterminacy,

which appears to arise under intermediate amounts of income effect, and to be ruled out

with either low or high amounts.

A difference between the JR specification and our specification is that, except for the

two polar cases φ = 0 and φ = 1, the JR utility function assumes that an additional state

variable Xt enters the utility function:

Xt =
t−1∏
s=0

c
φ(1−φ)s

t−s X
(1−φ)s

0

It follows that the utility function at time t depends on the whole history of past consump-

tion decisions. The result is that the consumption demand and labor supply decisions no

longer write c(wt, λt) and l(wt, λt) but c(wt, λt, Xt) and l(wt, λt, Xt). In short, compared

to our specification, such a formulation introduces two additional elasticities εcX and εlX
associated with consumption habits which generate a dynamic link between current and

future consumption and labor supply decisions – what Jaimovich refers to as a form of

“dynamic” income effects.6

To avoid the complexities of introducing additional state variables, Nourry et al.

[42] and Dufourt et al. [19] consider a modified JR utility function which only involves

current-period variables, namely

u(ct, lt) =

[
ct−

l
1+χ
t
1+χ

cφt

]1−γ
−1

1−γ
(21)

We recover the two polar cases of a GHH and a KPR utility function associated with

φ = 0 and φ = 1, respectively. Moreover, it is now possible to vary the values of the

three critical elasticities εcc, εlw, and εlλ by considering alternative calibrations for the

three parameters γ, χ, and φ. However, the critical elasticities are very cumbersome

combinations of these parameters, and when one parameter is adjusted so as to change

the value of one elasticity, the other parameters also have to be adjusted to maintain the

6As we will show later on, absent these additional ingredients, sunspot fluctuations cannot occur
under empirically relevant calibrations for any size of income effect.
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value of the other elasticities constant. It is therefore much better to work with a general

utility function and calibrate the three critical elasticities directly, as we do in this paper.

3.3 Intertemporal equilibrium and steady state

At a symmetric general equilibrium of the economy, prices {wt, rt, λt} adjust so that all

markets clear at any date t, with the externality variables satisfying (kt, lt) = (kt, lt)

for any t. Imposing the latter equalities in the set of physical constraints and optimality

conditions (1)-(3), (11), and (13), we obtain that a symmetric general equilibrium satisfies

in any t,
λt = β(1− δ + rt+1)λt+1

kt+1 = (1− δ)kt + yt − ct
rt = f1(kt, lt)e(kt, lt)

wt = f2(kt, lt)e(kt, lt) (22)

ct = c(wt, λt)

lt = l(wt, λt)

yt = f(kt, lt)e(kt, lt)

together with the initial condition k0 given and the transversality condition (12).

From these dynamic equations, we immediately derive that if a steady state exists,

the rental rate of capital at the steady state is

r∗ = 1−β(1−δ)
β

≡ θ
β

In order to study the existence and uniqueness of a steady state, we analyze the existence

of a 6-uple (k∗, y∗, l∗, c∗, w∗, λ∗) solution to the set of equations

f1(k∗, l∗)e(k∗, l∗) = θ
β
, f2(k∗, l∗)e(k∗, l∗) = u2(c∗,`−l∗)

u1(c∗,`−l∗)

c∗ = f(k∗, l∗)e(k∗, l∗)− δk∗, w∗ = f2(k∗, l∗)e(k∗, l∗)

y∗ = f(k∗, l∗)e(k∗, l∗), c∗ = c(w∗, λ∗)

(23)

Note that, for analytical convenience, instead of considering the Frisch labor supply

equation l∗ = l(w∗, λ∗), we reintroduce the initial optimality condition involving the

marginal rate of substitution between consumption and labor.

We first prove the following Lemma:

Lemma 2. At the steady state, the ratios y∗/k∗, c∗/k∗ and w∗l∗/c∗ satisfy
y∗

k∗
= θ

sβ
, c∗

k∗
= θ−sβδ

sβ
, and w∗l∗

c∗
= θ(1−s)

θ−sβδ ≡ C

Proof. See Appendix 6.3.

Using this Lemma, we derive the following Proposition:

Proposition 3. Under Assumptions 1-4, a unique steady state generically exists. More-

over, for any given calibration of structural parameters, there always exists a value `∗ > 0

such that when ` = `∗, the steady state is constant across calibrations with l∗ = l̄∗ < `∗.

Proof. See Appendix 6.4.
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An implication of Proposition 3 is that, when analyzing how alternative calibrations

for the structural parameters affect the stability properties of the model, it is possible to

maintain the steady state (k∗, y∗, l∗, c∗, w∗, λ∗) unchanged by adjusting the value for `∗

accordingly. In other words, we can follow the usual practice of “calibrating” the level of

hours worked at the steady state without difficulty.

3.4 Local stability analysis

We now carry out a thorough analysis of the local stability properties of the steady state

when the dynamics is defined by (22). In order to do so, we log-linearize the set of

equations in (22) around the unique steady state. Using Lemmata 1 and 2, we obtain

(where hatted variables denote percentage deviations from the steady state):

λ̂t = λ̂t+1 + θr̂t+1

k̂t+1 = (1− δ)k̂t + θ
sβ
ŷt −

(
θ−sβδ
sβ

)
ĉt

r̂t =
(
−1−s

σ
+ sΘk

)
k̂t +

(
1−s
σ

+ (1− s)Θl

)
l̂t

ŵt =
(
s
σ

+ sΘk

)
k̂t +

(
− s
σ

+ (1− s)Θl

)
l̂t

ĉt = C (εlw − εlλ) ŵt +
(
C
(

1− εlλ
εlw

)
εlλ − εcc

)
λ̂t

l̂t = εlwŵt + εlλλ̂t

ŷt = s(1 + Θk)k̂t + (1− s) (1 + Θl) l̂t

This is a system of seven equations in seven variables, only two of these equations

being dynamic. To analyze the local stability properties of the model, we first reduce the

system by using the five static equations to eliminate five variables, ŷt, ĉt, l̂t, ŵt, and r̂t,

from the dynamic equations. The obtained system of minimal dimension – two dynamic

equations in two variables, k̂t and λ̂t − can be expressed as:(
k̂t+1

λ̂t+1

)
=

[
J11 J12

J21 J22

](
k̂t
λ̂t

)
≡ J

(
k̂t
λ̂t

)
where J is the Jacobian matrix of the underlying non-linear 2-dimensional system eval-

uated at the steady state, which is given in the following Proposition:

Proposition 4. The elements of the Jacobian matrix J are:

J11 = 1
β

{
1 + θΘk +

θ(1−s)( 1
σ

+Θk)(εlwΘl+εlλ)

1+εlw[ sσ−Θl(1−s)]

}
, J12 = 1

sβ

{
θ(1−s) εlλ

εlw
(εlwΘl+εlλ)

1+εlw[ sσ−Θl(1−s)]
+ (θ − sβδ)εcc

}
J21 = θ

1−s
σ
−sΘk−

εlw
σ

[Θl(1−s)+sΘk]

1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1
σ

+Θl)
J11, J22 =

1+εlw[ sσ−Θl(1−s)]+θ{ 1−s
σ
−sΘk−

εlw
σ

[Θl(1−s)+sΘk]}J12

1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1
σ

+Θl)

Proof. See Appendix 6.5.

The local dynamics of the model is thus determined by the nine structural parameters

constituting the matrix J : four of them concern the productive side of the economy,
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namely s, σ, Θk, and Θl, four of them concern individual preferences, namely β, εcc, εlw,

εlλ, and finally there is the depreciation rate of capital δ.

Using the geometrical methodology of Grandmont et al. [23] as presented in Appendix

6.6, we prove that there exist two bifurcation loci in the parameter space such that, when

εcc is increased from 0 to +∞, a change in the stability properties of the steady state

occurs when εcc crosses any of the two loci. These results are formally summarized in the

following Lemma:

Lemma 3. Under Assumptions 1-4, let Ω = (β, δ, s, σ,Θk,Θl) be the set of structural

parameters. For any ω ∈ Ω such that σ ≤ σ̄ ≡ θ/(1 − β), there exist two bifurcation

curves crossing the 3-dimensional plane (εlw, εlλ, εcc) and generating a change in the local

stability properties of the steady state:

– a flip bifurcation curve εFcc (εlw, εlλ) associated with one real eigenvalue of J cross-

ing -1,

– a (degenerate) transcritical bifurcation curve εTcc (εlw, εlλ) associated with one real

eigenvalue of J crossing 1.

These bifurcation curves appear for any εlw > εlw, with

εlw ≡ 1−s−σsΘk
(1−s)Θl+sΘk

.

There also exists one critical bound εlλ (εlw) such that D = 1 when εlλ = εlλ (εlw). This

critical bound exists for any (Θk,Θl) such that Θk ∈ [0,Θk) and Θl ∈ (Θl, Θ̄l), with

Θk ≡ sβ
(1−s)σ−(1−β)

, Θl ≡ 1−β+Θk
β

.

The formal expressions of the bifurcation curves and the critical bound are given in Ap-

pendix 6.6.

Proof. See Appendix 6.6.

The following Theorem now provides a complete picture of the local stability proper-

ties of the aggregate model.

Theorem 1. Under Assumptions 1-4, let σ ≤ σ̄ ≡ θ/(1−β) and consider the bifurcation

curves, critical bound, and thresholds defined in Lemma 3. Then the following results hold:

Case 1 - Low wage elasticity of labor supply: εlw ∈ (0, εlw).

The steady state is a saddle-point.

Case 2 - High wage elasticity of labor supply: εlw > εlw.

– Under low capital externalities Θk ∈ (0,Θk), the steady state is

i) for Θl ∈ [0,Θl),

- a saddle-point if εcc ∈ [0, εTcc) ∪ (εFcc,+∞),

- a source if εcc ∈ (εTcc, ε
F
cc).

ii) for Θl ∈ (Θl, Θ̄l),

- a saddle-point if εcc ∈ [0, εTcc) ∪ (εFcc,+∞),

- a source if εcc ∈ (εTcc, ε
F
cc) and εlλ < εlλ(εlw),

- a sink if εcc ∈ (εTcc, ε
F
cc) and εlλ > εlλ(εlw).
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– Under large capital externalities Θk ∈ (Θk, Θ̄k), the steady state is

- a saddle-point if εcc ∈ [0, εTcc) ∪ (εFcc,+∞),

- a source if εcc ∈ (εTcc, ε
F
cc).

Proof. See Appendix 6.7.

3.5 Discussion

Theorem 1 – characterizing the local stability properties of the one-sector model for any

specification of individual preferences, any specification for the production function, and

any degrees of IRS in capital and labor consistent with downward-sloping labor and cap-

ital demand curves – considerably generalizes existing results surveyed in the literature

review.7 Three main results can be drawn from this Theorem. First, from a theoretical

standpoint, it is possible to identify an area in the parameter space such that indeter-

minacy and sunspot fluctuations exist in the one-sector model, even though externalities

are mild enough to ensure downward-sloping capital demand and labor demand Yet,

this area of indeterminacy occurs for empirically implausible configurations of parameter

values (Result 1). Second, under various minor additional assumptions on parameters fre-

quently encountered in the literature, local indeterminacy is excluded (Result 2). Third,

for parameter values in the range of available empirical estimates, the steady-state is a

saddle path (Result 3). Before elaborating further on these conclusions, we first provide

an explanation as for why indeterminacy can occur in this standard model.

Interpretation for indeterminacy:

Case 2(ii) of Theorem 1 shows that indeterminacy and sunspot fluctuations can occur

in the one-sector model (with standard slopes on the labor supply and labor demand

curves) when the following necessary conditions are met: Θl ∈ (Θl, Θ̄l), εlw > εlw, εlλ >

εlλ(εlw) and εcc > εTcc (εlw, εlλ) . To understand why these conditions are needed, it is

simpler to start with a situation of fixed labor supply (εlw = εlλ = 0) and analyze

why indeterminacy and sunspot equilibria cannot occur in this case. Consider the Euler

equation λt = β(1 − δ + rt+1)λt+1 and assume that agents expect an increase in the

future return on capital accumulation, rt+1. Can such an expectation be self-fulfilling?

According to the Euler equation, an increase in rt+1 is associated with an increase in the

marginal utility of wealth λt and an incentive to substitute investment for consumption

(since εcλ < 0), leading to a lower consumption ct, a higher investment it and a higher

capital stock kt+1 at t + 1. With a fixed labor supply, the larger capital stock kt+1

generates a decrease in the marginal productivity of capital at t+ 1 and thus a decrease

in rt+1 = f1(kt+1, l)e(kt+1, l). The initial expectation cannot be self-fulfilling.

To make this expectation self-fulfilling, the negative influence of the larger capital

stock on the real return on capital must be more than compensated by a proportionately

7The literature shows that sunspot fluctuations require a sufficiently large (possibly larger than one)
elasticity of capital-labor substitution and/or a sufficiently large elasticity of intertemporal substitution
in consumption. Moreover, local indeterminacy is ruled out under GHH preferences with no-income
effect and KPR preferences (see Bennett and Farmer [11], Hintermaier [31], Lloyd-Braga et al. [40], and
Pintus [43, 44]).
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larger positive influence associated with an increase in labor at t+1. This is only possible

if both the labor demand curve and the labor supply curve are sufficiently elastic. Pos-

itives externalities in labor Θl ∈ (Θl, Θ̄l) make a step in that direction by rendering the

aggregate labor demand curve more elastic with respect to the real wage. Consider now

the log-linearized versions of the Frisch consumption-demand and labor-supply curves:

ĉt = C (εlw − εlλ)︸ ︷︷ ︸
εcw

ŵt +

(
C
(

1− εlλ
εlw

)
εlλ − εcc

)
︸ ︷︷ ︸

εcλ<0

λ̂t

l̂t = εlwŵt + εlλλ̂t

At period t, an increase in λt generates an increase in the labor supply curve due to the

positive income effect, εlλ > 0. Since the capital stock is predetermined at t, labor demand

is unchanged and the increase in labor supply generates a decrease in the equilibrium real

wage wt. At t + 1, the change in labor supply must be sufficiently large to compensate

the negative effect of capital accumulation on the real return on capital, which requires

εlλ to be very large, i.e. εlλ > εlλ(εlw) > εlw, as shown in Theorem 1. However, for the

story to remain fully consistent, one must also ensure that consumption still decreases

at t and investment still increases at t when λt increases. In the log-linearized version

of the Frisch consumption demand above, one easily observe that εcw = C (εlw − εlλ) < 0

when εlλ > εlw, so that the first component is positive (ŵt < 0 since wt decreases at

t). A decrease in consumption ct then requires εcλ to be sufficiently negative. This in

turn requires that the intertemporal substitution effect be sufficiently large, i.e. that

εcc > εTcc (εlw, εlλ) as shown in Theorem 1.

Result 1: Implausibility of indeterminacy in the one-sector model

Indeterminacy requires at the same time a sufficiently large degree of IRS in labor, a

sufficiently large wage elasticity of the labor supply curve, a sufficiently large degree of

income effect on labor supply, and a sufficiently large EIS in consumption: Θl ∈ (Θl, Θ̄l),

εlw > εlw, , εlλ > εlλ(εlw) and εcc > εTcc (εlw, εlλ). However, it is easy to verify that these four

conditions can only be simultaneously satisfied for extremely high (thus highly unrealistic)

values for several critical elasticities. To see this, consider that the wage elasticity of the

labor supply curve is close to the lower bound εlw required for indeterminacy. From

Appendix 6.6, we know that εTcc tends to +∞ when εlw tends to εlw, making the condition

εcc > εTcc (εlw, εlλ) impossible to satisfy for plausible EIS values. Conversely, consider

now that the aggregate labor supply curve is very elastic (due, for example, to labor

indivisibility at the individual level combined with perfect unemployment insurance, as

in Hansen [37] and Rogerson [88]). We know that εlλ(εlw) is an increasing function of εlw
so the condition εlλ > εlλ(εlw) required for indeterminacy now imposes very large degrees

of income effect on the labor supply. Moreover, εTcc (εlw, εlλ) is increasing in εlλ, so the

large degree of income effect has a retroactively large effect on the value for the EIS

in consumption required for indeterminacy (εcc > εTcc (εlw, εlλ)). No empirically realistic

calibration ensures this outcome.

To fix ideas, consider a simple calibration with σ = 1, Θk = 0.25, Θl set to its

upper bound Θl (the most favorable case for indeterminacy), and εlw = 3 (the value
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advocated by Rogerson and Wallenius [70] and Prescott and Wallenius [68] to calibrate

the wage elasticity of the aggregate labor supply curve in standard RBC/DSGE models).

Indeterminacy requires in this case εlλ > εlλ ' 55 and εcc > εTcc ' 1169. If, at the

other extreme, the wage elasticity of the labor supply curve is increased to 1000 for the

same other parameter values (approximating Hansen’s [37] type of preferences with an

infinitely elastic labor supply curve), indeterminacy now requires εlλ > εlλ ' 1259 and

εcc > εTcc ' 254. Clearly, no configuration is empirically realistic.8

Result 2: Impossibility of indeterminacy under additional assumptions

frequently made in the literature

Consider some various additional restrictions on structural parameters frequently im-

posed in the literature. We derive from Theorem 1 the following Proposition:

Proposition 5. Under Assumptions 1-4, for any σ > 0, local indeterminacy is ruled out

in the following cases: i) Θk = Θl, ii) εlw = 0, iii) εlλ = 0, iv) Θl = 0.

Proof. See Appendix 6.8.

Case i) of Proposition 5 corresponds to the case of output externalities considered in,

e.g., Benhabib and Farmer [6], and was initially proved by Hintermaier [31] in the case

of a Cobb-Douglas technology. Here, we extend this result to any production function.

Cases ii), iii), and iv) correspond, respectively, to the case of an inelastic labor supply,

to the case of GHH preferences with no-income effect on labor supply, and to the case in

which externalities occur solely through the aggregate capital stock. In all these cases,

indeterminacy is ruled out under otherwise standard assumptions regarding the utility

and production functions defined in Assumptions 1-4.

Result 3: Saddle-path stability for realistic calibrations

Finally, we can introduce some restrictions on the nine structural parameters (s, σ,

Θk, Θl, β, εcc, εlw, εlλ and δ) influencing the local stability properties of the steady state

based on empirical considerations. We take advantage of the fact that a narrow range

of empirical estimates exist for several of these parameters. In particular, it is widely

accepted in the literature that, at a quarterly frequency, the subjective discount factor is

close to β = 0.99, consistent with a long-run annual return on capital of around 4%. Like-

wise, empirical estimates for the annual depreciation rate of capital are typically around

10%, implying δ = 0.025. In the US, the share of capital income in total income is typi-

cally estimated around 30%, implying a capital elasticity in the production function close

to s = 0.3. Estimates for other critical elasticities are often more variables across empir-

ical studies, but a range including most available empirical estimates can nonetheless be

defined. For example, based on the recent empirical literature (see e.g. León-Ledesma

et al. [39], Klump et al. [38], Duffy and Papageorgiou [16] and Karagiannis et al. [34]),

a plausible range for the capital-labor elasticity of substitution is σ ∈ (0, 2). Likewise,

using the various empirical estimates provided by Campbell [13], Vissing-Jorgensen [49],

8Similar unrealistic values appear for the whole range of potential calibrations regarding σ, Θk and
Θl.
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and Gruber [25], a plausible range for the EIS in consumption is εcc ∈ (0, 2). Finally,

estimates of increasing returns to scale by Basu and Fernald [4] for US manufacturing

industry provide a value of around 10% with standard deviation 0.33, which enables us

to define a range of empirically credible values for the aggregate degree of IRS in the

model, Θ = (1 − s)Θl + sΘk, of Θ ∈ (0, 0.43). Regarding the Frisch wage-elasticity of

the labor supply curve, it is well known from the literature that for various reasons this

elasticity can be large at the aggregate level even though it is small at the individual level

(see e.g. Rogerson and Wallenius [46], and Prescott and Wallenius [45] for a discussion).

Our choice here is to not restrict this elasticity a priori in order to include Hansen’s [28]

specification of individual preferences – associated with an infinitely elastic aggregate la-

bor supply curve – into the analysis, since these preferences are widely used in the DSGE

literature. This leads us to introduce the following Assumption:

Assumption 5. Realistic structural parameters: β = 0.99, δ = 0.025, s = 0.3,

σ ∈ (0, 2), εcc ∈ (0, 2) and Θ ∈ (0, 0.43) with Θ = (1− s)Θl + sΘk.

We then obtain the following Proposition which follows directly from Theorem 1:

Proposition 6. Under Assumptions 1-5, the steady state is a saddle-point.

Proof. See Appendix 6.9.

Proposition 6 generalizes a well-known property of the RBC model with constant

returns to scale to the case of increasing returns to scale associated with positive exter-

nalities: for any empirically plausible calibration of structural parameters, the steady-

state is a saddle path, regardless of the specification of individual preferences and the

specification of the production function.

4 A general two-sector model

As emphasized by Jaimovich and Rebelo [33], aggregate and sectoral comovement are

central features of business-cycles. We now assess whether indeterminacy and sunspot

fluctuations are a more likely outcome of multisector infinite horizon models. There

are of course many possible ways of constructing multisector economies. To facilitate

comparison with the existing literature, we choose to focus our analysis on a two-sector

model similar to the one analyzed by Benhabib and Farmer [7], except that we do not

restrict the specifications of the utility and the production functions.9

Thus, we consider a two-sector economy in which firms produce differentiated con-

sumption and investment goods using capital and labor. As in Benhabib and Farmer

[7], we assume that capital and labor are perfectly mobile across sectors, and that both

sectors produce their goods with the same technology at the private level. However, we

assume, as in Dufourt et al. [17], that only the firms in the investment good sector are

9In Benhabib and Farmer [7], consumers have Hansen’s type of individual preferences and the pro-
duction functions are Cobb-Douglas.
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affected by productive externalities. This choice is based on the fact that empirical esti-

mates for the degree of IRS in the consumption sector are close to zero, while they are

positive and significant in the investment sector (see e.g. Harrison [30]).

Given these assumptions, firms in the consumption sector produce output Yct accord-

ing to the production function:
Yct = f(Kct, Lct) (24)

where Kct and Lct are capital and labor allocated to the consumption sector.

In the investment sector, output YIt is also produced according to the same production

function, but is affected by a productive externality

YIt = f(KIt, LIt)e(K̄It, L̄It) (25)

where KIt and LIt are the numbers of capital and labor units used in the production of

the investment good, and e(K̄It, L̄It) is the externality variable. The functions f(., .) and

e(., .) of course satisfy Assumption 1. Following Benhabib and Farmer [7], we also restrict

the specifications of externalities to consider output externalities, satisfying Θk = Θl =

Θ ≥ 0.10 Recall from Proposition 5 that under such a restriction, local indeterminacy is

completely ruled out in the aggregate model.

Assuming that factor markets are perfectly competitive and that capital and labor

inputs are perfectly mobile across the two-sectors, the first-order conditions for profit

maximization of the representative firm in each sector are:

rt = f1(Kct, Lct) = ptf1(KIt, LIt)e(K̄It, L̄It), (26)

wt = f2(Kct, Lct) = ptf2(KIt, LIt)e(K̄It, L̄It) (27)

where rt, pt, and wt are respectively the rental rate of capital, the price of the investment

good, and the real wage rate at time t, all in terms of the price of the consumption good,

which is chosen here as the numeraire.

As in the previous section, we restrict the degree of IRS to ensure that the capital and

labor demand functions are negatively sloped. Under output externalities, this is ensured

by the following Assumption, replacing Assumption 2 above:

Assumption 6. Θ < s/(1− s)σ

Denoting by it the investment, the budget constraint faced by the representative

household is
ct + ptit = rtkt + wtlt + dt, (28)

where again dividends dt are zero at equilibrium. The law of motion of the capital stock

is:
kt+1 = (1− δ)kt + it (29)

The household then maximizes its present discounted lifetime utility

max
{kt+1,ct,lt,it}∞t=0

+∞∑
t=0

βtu(ct, `− lt) (30)

subject to (28), (29), and k0 given. The first-order conditions and the transversality

condition are the same as (9)-(12), with the return factor now defined as:

Rt+1 = (1−δ)pt+1+rt+1

pt
(31)

10This assumption allows us to avoid having to consider a much larger number of cases.
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4.1 Intertemporal equilibrium and steady state

We consider symmetric rational expectation equilibria which consist of prices

{rt, pt, wt}t≥0 and quantities {ct, lt, it, kt, Yct, YIt, Kct, KIt, Lct, LIt}t≥0, with the external-

ity variables satisfying (KIt, LIt) = (KIt, LIt) for any t, thereby satisfying the household’s

and the firms’ first-order conditions as given by (9)-(11) and (26)-(27), the technological

and budget constraints (24)-(25) and (28)-(29), the market equilibrium conditions for the

consumption and investment goods
ct = Yct, it = YIt, (32)

with GDP defined as yt = ct + ptit, the market equilibrium conditions for capital and

labor
Kct +KIt = kt, Lct + LIt = lt, (33)

and the transversality condition (12).

Combining (24)-(25) and firms’ first-order conditions (26)-(27), we derive

pte(KIt, LIt) = 1 and that the equilibrium capital-labor ratios in the consumption

and the investment sectors are identical and equal to kt/lt = Kct/Lct = KIt/LIt =

swt/ ((1− s)rt). Combining this with Assumption 1, aggregate output yt can be rewrit-

ten as yt = f(kt, lt), and the first-order conditions with respect to capital and labor in the

consumption and investment sectors can be expressed as rt = f1(kt, lt) and wt = f2(kt, lt).

It follows that a symmetric general equilibrium satisfies in any t,

λt = βλt+1

[
(1− δ)pt+1 + rt+1

pt

]
(34)

kt+1 = (1− δ)kt +
yt − ct
pt

(35)

rt = f1(kt, lt) (36)

wt = f2(kt, lt) (37)

pt =
1

e(KIt, LIt)
(38)

ct = c(wt, λt) (39)

lt = l(wt, λt) (40)

yt = f(kt, lt) (41)

Kct =
sct
rt

(42)

Lct =
(1− s)rtKct

swt
(43)

kt = KIt +Kct (44)

lt = LIt + Lct (45)

together with the initial condition k0 given and the transversality condition (12).

It is easy to show that the same conclusion as in Proposition 3 applies here: under

Assumptions 1, 3, 4, and 6, there exists a unique steady state. Moreover, this steady state

can be maintained constant across calibrations by adjusting the value of ` accordingly.11

11A proof of this statement can be provided upon request.
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4.2 Local stability analysis

As in the former Section, we log-linearize the system of equations (34)-(45) around the

steady state. Once again, this system contains only two dynamic equations, so that it

can be reduced to a system of minimal dimension, i.e. a system involving two dynamic

equations in two variables k̂t and λ̂t. This reduced system can be expressed as:(
k̂t+1

λ̂t+1

)
=

[
J11 J12

J21 J22

](
k̂t
λ̂t

)
≡ J

(
k̂t
λ̂t

)
where the Jacobian matrix J is given in the following Proposition:

Proposition 7. The elements of the Jacobian matrix J are:

J11 = A22B11+B21

A21
, J12 = A22B12−B22

A21
, J21 = B11, J22 = −B22

with

A21 = 1 +
θ(1−s)
σ

εlλ

1+
sεlw
σ

− (1−δ)Θ
sδ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]
, A22 =

θ(1−s)
σ

1+
sεlw
σ

+ θ(1−δ)Θ
δ

1+
sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

B11 = 1+Θ
sβ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]
, B12 = 1

β

[
1 +

θ(1−s)
σ

εlλ

1+
sεlw
σ

+ θΘ
1+

sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

]

B21 = 1− Θ
sβδ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]
, B22 = θΘ

βδ

1+
sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

Proof. See Appendix 6.10.

We can thus carry out the same kind of analysis as in Section 2 and provide a detailed

local stability analysis of the steady state, considering a family of economies parameter-

ized by the three elasticities (εcc, εlw, and εlλ) that govern the EIS in consumption, the

wage elasticity, and the income effect, and by the technological parameters σ and Θ gov-

erning the elasticity of capital-labor substitution and the degree of increasing returns to

scale (IRS) in the investment sector.

Similar to the previous Section, we prove in Appendix 6.11 that there exist three

bifurcation loci in the parameter space such that, when εcc is increased from 0 to +∞, a

change in the stability properties of the steady state occurs when εcc crosses any of the

three loci. We establish the following Lemma:

Lemma 4. Under Assumptions 1, 3, 4 and 6, let Ω = (β, δ, s, σ,Θ) be the set of struc-

tural parameters. For any ω ∈ Ω, there exist three bifurcation curves crossing the 3-

dimensional plane (εlw, εlλ, εcc) and generating a change in the local stability properties of

the steady state:

- a flip bifurcation curve εFcc (εlw, εlλ) combined with one real eigenvalue of J

crossing -1,

- a Hopf bifurcation curve εHcc (εlw, εlλ) combined with two complex conjugate

eigenvalues of J crossing the unit circle,
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- a (degenerate) transcritical bifurcation curve εTcc (εlw, εlλ) combined with one real

eigenvalue of J crossing 1.

There also exist four critical bounds ε̄lλ (εlw) , ε̃lλ (εlw) , ε̂lλ (εlw) and εlλ (εlw) such that:

- εHcc (εlw, εlλ) = 0 when εlλ = ε̄lλ (εlw) ,

- εFcc (εlw, εlλ) = 0 when εlλ = ε̃lλ (εlw) ,

- εHcc (εlw, εlλ) = εTcc (εlw, εlλ) when εlλ = ε̂lλ (εlw) ,

- εFcc (εlw, εlλ) = εTcc (εlw, εlλ) when εlλ = εlλ (εlw) .

The formal expressions of these bifurcation curves and critical bounds are given in Ap-

pendix 6.11.

Proof. See Appendix 6.11.

The critical bounds help us to define areas in the 3-dimensional plane where the

bifurcation curves exist (or not) when εcc is gradually increased from 0 to +∞. For

example, the flip bifurcation exists whenever εlλ ∈ (0, ε̃lλ).
12 The transcritical bifurcation

has a vertical asymptote at εlw = (σsup− σ)/s, so that the transcritical bifurcation exists

whenever εlw >εlw. Finally, if εlw ≤ εlw, the Hopf bifurcation exists whenever εlλ ∈ (0, ε̄lλ),

whereas if εlw >εlw, the Hopf bifurcation exists whenever εlλ ∈ (ε̂lλ, ε̄lλ).

It is also easy to show that whenever both curves exist, the flip and Hopf bifurcations

satisfy 0 < εFcc < εHcc <∞. Likewise, whenever both curves exist, the flip and transcritical

bifurcations satisfy 0 < εFcc < εTcc <∞ if εlλ < εlλ, and 0 < εTcc < εFcc <∞ if εlλ > εlλ.

Following a similar discussion as in Section 3.4, we introduce the following Assump-

tion on the empirically relevant values of the structural parameters, excluding here the

elasticity of intertemporal substitution in consumption which is used as a bifurcation

parameter:

Assumption 7. β = 0.99, δ = 0.025, s = 0.3, σ ∈ (0, 2) and Θ ∈ (0, 0.43).

We can now establish the following Theorem, providing a complete picture of the

stability properties of the 2-sector model.

Theorem 2. Let Assumptions 1, 3, 4, 6 and 7 hold. Consider the bifurcation curves

and critical curves defined by Lemma 4, and define by εlw = (σsup − σ)/s, with σsup =

(1− s)(1 + Θ)/Θ, and by εlw the unique solution of ε̃lλ (εlw) = ε̂lλ (εlw). Then, if σ > σinf
with

σinf ≡ δθ(1−s)(1+Θ)
Θ[4β(1−δ)+δθ] (46)

we have:

Case 1 - Low wage elasticity of labor supply: εlw ∈ [0, εlw).

i) when εlλ ∈ [0, ε̃lλ), the steady state is

- a saddle-point for any εcc ∈ [0, εFcc),

12To simplify notations, from now on we no longer explicitly mention the dependence of the critical
bounds on εlw and the dependence of the bifurcation curves on εlw and εlλ.
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- a sink for any εcc ∈ (εFcc, ε
H
cc),

- a source for any εcc > εHcc.

ii) when εlλ ∈ (ε̃lλ, ε̄lλ), the steady state is

- a sink for any εcc ∈ [0, εHcc),

- a source for any εcc > εHcc.

iii) when εlλ > ε̄lλ, the steady state is a source for any εcc ≥ 0.

Case 2 - Intermediate wage elasticity of labor supply: εlw ∈ (εlw, εlw).

i) when εlλ ∈ [0, εlλ), the steady state is

- a saddle-point for any εcc ∈ [0, εFcc),

- a source for any εcc ∈ (εFcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

ii) when εlλ ∈ (εlλ, ε̂lλ), the steady state is

- a saddle-point for any εcc ∈ [0, εFcc),

- a sink for any εcc ∈ (εFcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

iii) when εlλ ∈ (ε̂lλ, ε̃lλ), the steady state is

- a saddle-point for any εcc ∈ [0, εFcc),

- a sink for any εcc ∈ (εFcc, ε
H
cc),

- a source for any εcc ∈ (εHcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

iv) when εlλ ∈ (ε̃lλ, ε̄lλ), the steady state is

- a sink for any εcc ∈ [0, εHcc),

- a source for any εcc ∈ (εHcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

v) when εlλ > ε̄lλ, the steady state is

- a source for any εcc ∈ [0, εTcc),

- a saddle-point for any εcc > εTcc.

Case 3 - High wage elasticity of labor supply: εlw > εlw.

i) when εlλ ∈ [0, εlλ), the steady state is

- a saddle for any εcc ∈ [0, εFcc),

- a source for any εcc ∈ (εFcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

ii) when εlλ ∈ (εlλ, ε̃lλ), the steady state is

- a saddle for any εcc ∈ [0, εFcc),

- a sink for any εcc ∈ (εFcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

iii) when εlλ ∈ (ε̃lλ, ε̂lλ), the steady state is

- a sink for any εcc ∈ [0, εTcc),

- a saddle-point for any εcc > εTcc.
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iv) when εlλ ∈ (ε̂lλ, ε̄lλ), the steady state is

- a sink for any εcc ∈ [0, εHcc),

- a source for any εcc ∈ (εHcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

v) when εlλ > ε̄lλ, the steady state is

- a source for any εcc ∈ [0, εTcc),

- a saddle-point for any εcc > εTcc.

Proof. See Appendix 6.12.

It is worth noticing that the lower bound σinf on the capital-labor elasticity of sub-

stitution as given by (46) implies that local indeterminacy requires a strictly positive

amount of externalities. However, the lower bounds is extremely close to zero even for

very low values of Θ, i.e. for instance σinf = 0.016 when Θ = 0.01.

4.3 Discussion

Theorem 2 enables us to derive the fourth and most central result of our paper:

Result 4: plausibility of indeterminacy in the two-sector model

Indeterminacy and belief-driven fluctuations are robust properties of the standard two-

sector model of the business cycle, emerging for a large range of empirically-consistent

values for all the critical elasticities considered: εlλ, εlw, εcc, Θ and σ.

Before providing numerical examples supporting this claim, we first provide a concep-

tual explanation as for why indeterminacy easily emerges in the two-sector model.

Interpretation for indeterminacy

What makes indeterminacy much easier to obtain in the two-sector model compared

to it’s one-sector counterpart? The key answer lies on the Euler equation, which is now

expressed as λt = βλt+1Rt+1, with Rt+1 = ((1 − δ)pt+1 + rt+1)/pt the real return on

capital accumulation. The latter no longer exclusively depends on the capital rental

rate at t + 1, rt+1, as in the one-sector model, but also on the evolution of the relative

price of the investment good between t and t + 1. For example, an increase in pt+1/pt
generates a capital gain which must be taken into account in the decision of how much to

consume and invest. Consider now as before that agents expect an increase in this real

return on capital accumulation, with Rt+1 replacing rt+1 in the 2-sector model. As in

the one-sector model, this leads to an increase in the marginal utility of wealth λt which,

since εcλ < 0, creates an incentive to substitute investment for consumption, leading

to a higher investment it and a higher capital stock kt+1 at t + 1. When εlw ∈ [0, εlw)

and the labor supply is almost fixed with respect to the wage rate, the larger capital

stock generates a decrease in the capital rental rate rt+1. However, at t, the increase

in the demand for investment also creates an incentive to reallocate capital and labor

from the consumption to the investment sector: Both KIt and LIt increase, while Kct
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and Lct decrease. With positive externalities e(KIt, LIt) > 0 in the investment sector,

this reallocation of inputs increases the supply of the investment good which more than

compensates the increase in demand. As a result, the equilibrium price pt = 1/e(KIt, LIt)

decreases, which generates an expected capital gain from investing in the investment good

(with pt+1 > pt). When this expected capital gain is large enough, the expected rate of

return on capital accumulation Rt+1 = ((1−δ)pt+1+rt+1)/pt can increase even though the

expected rental rate of capital rt+1 decreases. This makes the initial expectation that Rt+1

will increase self-fulfilling. This situation is depicted in case 1(i) of Theorem 2, covering

the almost fixed labor supply case with εlw ∈ [0, εlw), where indeterminacy emerges under

positive externalities Θ > 0 in the investment sector for any positive εcc ∈ (εFcc, ε
H
cc) which

guarantees a large enough substitution between investment and consumption. In this case

indeed, εlλ ∈ [0, ε̃lλ) is also small, the labor supply is also almost fixed with respect to the

marginal utility of wealth, so that εcλ can be sufficiently negative if εcc is large enough. In

case 1(ii) however, since εlλ ∈ (ε̃lλ, ε̄lλ) is larger and the labor supply is more affected by

the marginal utility of wealth, εcλ can be sufficiently negative even for arbitrarily small

EIS εcc ∈ [0, εHcc).

This complex mechanism associated with factor reallocation and variations in the

relative price of the investment good in the presence of positive externalities is what

makes the two-sector model much more prone to endogenous fluctuations triggered by

exogenous changes in beliefs. Obviously, if indeterminacy is possible in the version with

fixed labor supply, the scope for indeterminacy is even larger when the labor supply

curve is allowed to vary. Indeed, in this case, the increase in equilibrium labor reduces

the extent to which the capital rental rate rt+1 decreases when capital accumulates, which

in turn reduces the extent to which the relative price of the investment good pt has to

decrease to generate the requested increase in the expected return factor Rt+1. Clearly,

it is no longer required to have a sufficiently large variations in equilibrium labor for

indeterminacy to emerge (i.e.,. εlw, εlλ and εcc no longer have to be very large, as in the

one sector model).

Graphical illustrations

To illustrate our claim in Result 4, we represent in the 3-dimensional plane of Figure

1 the local stability properties of the two-sector model for economies displaying different

degrees of Frisch labor supply elasticities and different EIS in consumption (εlλ, εlw and

εcc), while the other parameters are fixed and calibrated according to the benchmark

calibration β = 0.99, δ = 0.025, s = 0.3, σ = 1 and Θ = 0.3.13 The value σ = 1

corresponds to a Cobb-Douglas production function while the value Θ = 0.3 for the

13As implied by Proposition 1, there always exist admissible utility functions u(c, `− l) such that εlλ,
εlw and εcc reach their targeted value at the steady-state. It should then be emphasized that Figure 1
(and related figures below) do not represent what happens when one structural parameter of a specific
utility function changes, but rather represents how economies differing in terms of their critical elasticities
εlλ, εlw and εcc have similar or different local stability properties, independently of the implicit utility
function considered. This is, in our view, the relevant approach to take since deep preference parameters
of specific utility functions are never observed while estimates for the critical elasticities can be obtained
from the data.
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degree of IRS in the investment sector is close to the point estimate obtained by Harrison

[30] for the US economy (4-digit data).
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Figure 1: Local stability properties of the two sector model. Benchmark calibration with
σ = 1 and Θ = 0.3.

We see that, unlike with the one-sector model, there now exists a wide range of

values for (εlw, εlλ, εcc) such that the steady state is locally indeterminate and belief-

driven fluctuations emerge. Indeterminacy occurs for a large set of values of the EIS in

consumption in the range εcc ∈ (0, 2) and for various configurations for the wage and

wealth elasticities of the labor supply curve (εlw, εlλ). This includes very large values for

the latter two elasticities (as in Hansen’s type of preferences with infinitely elastic labor

supply, εlw = εlλ = +∞) or very small values for the wage-elasticity εlw consistent with

micro-level estimates (also covering the fixed labor supply case).14 Clearly, the range

of values associated with indeterminacy is entirely consistent with the range of credible

empirical estimates defined in Assumption 5.

For better clarity, Figure 2 displays the stability property areas when the range of val-

ues considered for εlw and εlλ is restricted to (0,5), close to the value of εlw = 3 advocated

by Rogerson and Wallenius [46] and Prescott and Wallenius [45] to calibrate dynamic

macroeconomic models. As can be seen, indeterminacy arises in this configuration for a

very wide range of values for εcc in the realistic interval (0,2), including values that are

arbitrarily close to 0.

14As is well kown, a lengthy discussion exists in the literature about how to calibrate the Frisch wage-
elasticity of the aggregate labor supply curve. Both theoretical considerations and empirical evidence
point toward small values at the individual level but greater values at the aggregate level (see for example
Rogerson and Wallenius [46] for a discussion). Meanwhile, it is well known that standard RBC-DSGE
models do not perform well when the wage elasticity of the aggregate labor supply is too low, which
explains the popularity of the class of preferences suggested by Hansen [28].

On the other hand, there is very little empirical evidence on the wealth-elasticity εlλ. The main
difficulty is that this elasticity captures the effect of a marginal increase in intertemporal wealth on labor
supply, and that exogenous variations enabling this elasticity to be identified are very difficult to find
in the data (see the lengthy discussion and relevant references to the literature in Kimball and Shapiro,
[35]). Analyzing data from a thought-experiment survey conducted by the Health and Retirement Study
(HRS), Kimball and Shapiro [35] tend toward the conclusion that the elasticities εlw and εlλ are rather
small. Yet, their estimations assume an equality between both elasticities (as imposed by Hansen’s type
of preferences), while from a theoretical standpoint there is no reason to assume that they are equal.
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Figure 2: Local stability properties for low labor suply elasticities (benchmark calibration
with σ = 1 and Θ = 0.3).

4.4 Robustness

Since we emphasized that five critical elasticities have a strong influence on the local

stability properties of the 2-sector model , it is worthwhile to analyze how the elasticities

related to the productive side of the economy influence the local stability properties of the

two-sector model displayed in Figures 1 and 2 in the case of a Cobb-Douglas production

function (σ = 1) and Θ = 0.3. In Figure 3, we display how these stability properties vary

when we consider four different values for Θ, namely Θ ∈ (0.1, 0.2, 0.3, 0.4). We see that

increasing the degree of increasing returns to scale has the effect of shifting down the flip

of Hopf bifurcation curves, so that indeterminacy is easier to obtain for larger degrees of

IRS. Note however that in all cases there exist a range of values εcc ∈ (0, 2) such that

indeterminacy prevails, including values arbitrarily close to 0

Θ = 0.1 Θ = 0.2

Θ = 0.3 Θ = 0.4

Figure 3: Effects of varying Θ on the indeterminacy area

In Figure 4, we display the local stability properties for four different values for the

elasticity of substitution between capital and labor σ, namely σ ∈ (0.5, 1, 1.5, 2).
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σ = 0.5 σ = 1

σ = 1.5 σ = 2

Figure 4: Effects of varying σ on the indeterminacy area

We see that the area for which the steady-state is a sink tends to shrink when larger

values for σ are considered, especially for larger intensities of the wealth effect εlλ. More-

over, the transcritical bifurcation curve shifts to the right when σ increases, implying that

indeterminacy is also harder to obtain for large wage elasticities of the labor supply curve

εlw. However, in all cases, a significant range of parameter configurations in the set of

empirically plausible values (as defined in Assumption 7) are consistent with an indeter-

minate steady-state, in particular for the EIS in consumption εcc ∈ (0, 2). This reinforces

our claim that indeterminacy and the emergence of expectation-driven fluctuations are

robust properties of the standard two-sector model.

4.5 Specific utility functions

Since Theorem 2 applies to any form of instantaneous utility functions satisfying the usual

assumptions, results regarding any particular utility function can be derived as a direct

application of this Theorem. We consider here the three most popular utility functions

used in the macroeconomic literature, namely the KPR, generalized Hansen and GHH

utility functions, with cross restrictions on the three critical elasticities εcc, εlw, and εlλ
summarized in Proposition 2. Using these cross restrictions enables us to obtain a slightly

modified lower bound σ̃inf compared to the one, σinf , introduced in the general case (see

Theorem 2), which is slightly larger:

Assumption 8. σ > σ̃inf ≡ (1−β+Θθ)δ(1−s)(1+Θ)
Θ[4(1−δ)Θβ+δ(1−β+Θθ)]

We then obtain for the KPR case:

Corollary 1. Under Assumptions 1, 3, 4, 6, 7 and 8, consider a KPR utility function

such that εlλ = εccεlw. Then there exist bifurcation curves 0 < εFcc < εHcc such that the

steady state is:
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- a saddle-point for any εcc ∈ [0, εFcc),

- a sink for any εcc ∈ (εFcc, ε
H
cc),

- a source for any εcc > εHcc,

The formal expressions for the flip and Hopf bifurcation curves (εFcc and εHcc) are given in

Appendix 6.13.

Proof. See Appendix 6.13.

Figure 5: Local stability properties with KPR utility function (σ = 1).

Notice that with a KPR utility function there is no transcritical bifurcation. Moreover, the

existence of local indeterminacy is compatible with an arbitrarily large wage-elasticity of

the labor supply curve. As an illustration, Figure 5 displays the local stability properties

of the steady state in the KPR case as a function of εlw, εcc and Θ when the production

function is Cobb-Douglas (σ = 1).We see that with a KPR utility function, indeterminacy

can easily be obtained for moderate values for the EIS in consumption εcc ∈ (0, 2) and

an arbitrarily large elasticity of the labor supply curve, provided that the degree of IRS

is large enough.

With GHH preferences, we obtain:

Corollary 2. Under Assumptions 1, 3, 4, 6, 7 and 8, consider a GHH utility function

such that εlλ = 0. Then there exist a critical bound εlw ≡ (σsup − σ)/s, with σsup =

(1− s)(1 + Θ)/Θ, and bifurcation curves 0 < εFcc < εHcc such that the following cases hold:

i) when εlw ∈ (0, εlw), then the steady state is:

- a saddle-point for any εcc ∈ [0, εFcc),

- a sink for any εcc ∈ (εFcc, ε
H
cc),

- a source for any εcc > εHcc.

ii) when εlw > εlw, the steady state is unstable for any εcc ∈ [0, εFcc) and saddle-point

stable for any εcc > εFcc.

The formal expressions for the flip and Hopf bifurcation curves (εFcc and εHcc) are given in

Appendix 6.14.

Proof. See Appendix 6.14.

28



Figure 6: Local stability properties with GHH utility function (σ = 1).

A graphical illustration of this case in the 3-dimensional plane defined by (εlw,Θ, εcc)

is displayed in Figure 6, again in the case σ = 1. Notice that with a GHH utility function,

the critical bound εlw actually corresponds to a transcritical bifurcation curve when εlw
is taken as bifurcation parameter. However, this critical bound is independent of the

elasticity of intertemporal substitution in consumption εcc, implying that the locus is

vertical with respect to εcc. As can be seen, compared to the KPR case, the existence of

local indeterminacy for realistic εcc ∈ (0, 2) is somewhat more difficult to obtain, as the

range of parameter values consistent with a sink equilibrium is shrunk by this transcritical

bifurcation curve, implying that indeterminacy is ruled out for large elasticities of the

labor supply curve.

With generalized Hansen preferences, we obtain:

Corollary 3. Under Assumptions 1, 3, 4, 6, 7 and 8, consider a generalized Hansen

utility function such that εlλ = εlw. Then there exist critical bounds εFlw <εlw = (σsup −
σ)/s < εHlw, σ̃inf < σF < σH < σsup and bifurcation curves 0 ≤ εFcc ≤ εHcc ≤ εTcc ≤ +∞ such

that the steady state is:

- a saddle-point for any εcc ∈ [0, εFcc),

- a sink for any εcc ∈ (εFcc, ε
H
cc),

- a source for any εcc ∈ (εHcc, ε
T
cc),

- a saddle-point for any εcc > εTcc.

. Moreover:

- εFcc = 0 if σ > σF and εlw > εFlw,

- εHcc = 0 if σ > σH and εlw > εHlw,

- εTcc = +∞ if εlw < εlw.

The formal expressions for the flip, Hopf and transcritical bifurcation curves (εFcc, ε
H
cc and

εTcc), as well as those of all critical bounds (εFlw, ε
H
lw, σ

F and σH), are given in Appendix

6.15.

Proof. See Appendix 6.15.

Figure 7 displays again the corresponding stability properties associated with a Cobb-

Douglas technology (σ = 1). We see that with generalized Hansen preferences, indeter-

minacy is very easy to obtain since a large range of values εcc ∈ (0, 2) exists such that
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Figure 7: Local stability properties with generalized Hansen utility function (σ = 1).

the steady-state is a sink, including values arbitrarily close to 0. This is true for a large

set of values for the wage labor supply elasticity, including values that are either small

or arbitrarily large.

5 Concluding comments

This paper established two main results: First, the existence of belief-driven fluctuations

in the standard one-sector RBC model with increasing returns to scale is ruled out for

any empirically plausible calibration regarding the critical elasticities defining the utility

function and the production function. Second, on the contrary, the existence of such

fluctuations is a very likely outcome of the standard two-sector version of the model, in the

sense that they now arise for a large set of empirically plausible values for these elasticities.

While this latter result is true in general, it also holds when some of the most frequently

used utility function in the macroeconomic literature are considered (KPR, generalized

Hansen and GHH utility functions) even though the model is restricted in this case by

cross-restrictions on the critical elasticities. Hence, far from being an exotic feature

emerging under extreme assumptions, the possibility of expectation-driven fluctuations

is a likely outcome of workhorse models in the macroeconomic literature, provided they

are at least bisectoral (arguably a reasonable assumption).

At this stage, a critical issue remains. Are business cycles triggered by exogenous

changes in expectations important quantitatively? So far, the literature has been largely

negative. In a well-known paper, Schmitt-Grohé [48] showed that a standard two-sector

model submitted to beliefs shocks is unable to account for several defining features of ob-

served business cycle, in particular in response to transitory shocks. However, the model

and its extensions are evaluated under the maintained assumptions of KPR preferences.

Whether the same negative outcome prevails for a larger set of preferences is an open

question. In Dufourt et al. [18], we address this issue and we show that the belief-driven

two-sector model can actually account for all the dimensions of observed business cycles

emphasized by Schmitt-Grohé [48], as well as other dimensions of the data underlined in

the recent literature (see e.g. Beaudry et al., [5]). We refer the reader to this paper for

a thorough discussion.
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6 Appendix

6.1 Proof of Lemma 1

From the definition of εlw and εlλ as given by (15)-(16), a total differentiation of the

optimality conditions (9)-(10) gives

u11dct − u12dlt = dλt

u21dct − u22dlt = dλtwt + λtdwt

Solving this system with respect to dlt yields to the expressions (19) and (20). We also

derive
εcw = − u12u1

u11u22−u12u21

w
c

= wl
c

(εlw − εlλ)

εcλ = u1

u11c
− u12

u11c
u11u2−u21u1

u11u22−u12u21
= −εcc + wl

c

(
1− εlλ

εlw

)
εlλ

We show in Appendix 6.3 below that at the steady state

wl
c

= θ(1−s)
θ−sβδ ≡ C < 1 (47)

The result follows.

6.2 Proof of Proposition 1

By Assumption 3, u is an increasing function over R2
++, implying (c, l, u1, u2) > 0. More-

over, the strict quasi-concavity of u implies u11 < 0 and u11u22 − u12u21 > 0. Using

Lemma 1, we straightforwardly obtain εcc > 0 and εlw > 0. By Assumption 4, c and L
are normal goods. The normality of L requires u21u1 − u11u2 ≥ 0. Combined with the

strict quasi-concavity of u, we straightforwardly obtain εlλ ≥ 0. Using a similar reason-

ing, we obtain that the normality of c requires εcλ ≤ 0 and therefore, using Lemma 1,

εcc ≥ Cεlλ(εlw − εlλ)/εlw ≡ εNcc.

6.3 Proof of Lemma 2

We know from constant-returns-scale of the technology at the private level that

rk
y

= s and wl
y

= 1− s

Considering that at the steady state we have R∗ = 1/β with R∗ = r∗+1−δ = sy∗/k∗+1−δ
we get

y∗

k∗
= θ

sβ

with θ = 1−β(1− δ). It follows from the capital accumulation equation evaluated at the

steady state that c = y − k and thus

c∗

k∗
= θ−sβδ

sβ

We conclude from this
w∗l∗

c∗
= θ(1−s)

θ−sβδ ≡ C < 1 (48)
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6.4 Proof of Proposition 3

Considering again that R∗ = r∗ + 1− δ = 1/β, we get

f1(k∗, l∗)e(k∗, l∗) ≡ g(k∗, l∗) = θ
β (49)

It is then easy to compute under Assumption 2

g1(k∗,l∗)k∗

g(k∗,l∗)
= sΘk − 1−s

σ
< 0

Therefore, applying the implicit function theorem, we conclude that there exists a unique

function k(.) such that k∗ = k(l∗). Considering that

g2(k∗,l∗)l∗

g(k∗,l∗)
= (1− s)Θl + 1−s

σ

we conclude that
k′(l∗)l∗

k(l∗)
= − (1−s)Θl+ 1−s

σ

sΘk− 1−s
σ

> 0

Recalling now that
y∗

k∗
= θ

sβ
and c∗ = θ−sβδ

sβ
k∗ (50)

we derive

c∗ = c(l∗) = θ−s(k(l∗),l∗)βδ
s(k(l∗),l∗)β

k(l∗) ≡ h(l∗)k(l∗)

Straightforward computations give

h′(l∗)l∗

h(l∗)
= θ(1−s)

θ−sβδ

(
1− 1

σ

)
(1−s)Θl+sΘk
sΘk− 1−s

σ

and we easily conclude under Assumption 2

c′(l∗)l∗

c(l∗)
= −

(1−s)
{

Θl[s(1−β)+
θ(1−s)
σ ]+ θsΘk

σ
+ θ−sβδ

σ
−θsΘk

}
(θ−sβδ)(sΘk− 1−s

σ )
> 0

Moreover we also get from (25)

w∗ = w(l∗) = f2(k(l∗), l∗)e(k(l∗), l∗)

and thus
w′(l∗)l∗

w(l∗)
= −

1−s
σ

Θl+
s
σ

Θk

sΘk− 1−s
σ

> 0

Consider then the third equation of (26) which becomes

u2(c(l∗),`−l∗)
u1(c(l∗),`−l∗) ≡ ψ(l∗) = w(l∗) (51)

Under Assumptions 2, 3 and 4, we get

ψ′∗)l∗

ψ(l∗)
= c′(l∗)l∗

c(l∗)
εlλ

εccεlw
+ 1

εccεlw

[
εcc − Cεlλ

(
1− εlλ

εlw

)]
≥ 0 (52)

It follows that the existence of a unique steady state value l∗ is obtained if g′(l∗) 6= w′(l∗).

Straightforward computations show that this condition is satisfied if

c′(l∗)l∗

c(l∗)
εlλ

εccεlw
+ 1

εccεlw

[
εcc − Cεlλ

(
1− εlλ

εlw

)]
− w′(l∗)l∗

w(l∗)
6= 0 (53)

Such a condition is generically satisfied so that the existence and uniqueness of a steady

state is generically ensured.
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Now let us normalize the steady state considering the value l̄∗ corresponding to the

average amount of working hours relative to the total amount of time `. Substituting

l∗ = l̄∗ into equation (51), we get

u2(c(l̄∗),`−l̄∗)
u1(c(l̄∗),`−l̄∗) ≡ φ(`) = w(l̄∗) (54)

Straightforward computations give

φ′(`)`
φ(`)

= − `
l̄∗

1
εccεlw

[
εcc − Cεlλ

(
1− εlλ

εlw

)]
It follows under Assumptions 3 and 4 that φ′(`)`/φ(`) ≤ 0 and there exists a unique value

`∗ > l̄∗ solution of equation (54). We conclude finally that if ` = `∗, then the unique

steady state (k∗, l∗, c∗) is such that l∗ = l̄∗.

6.5 Proof of Proposition 4

From the optimality conditions (9)-(10) and Lemma 1, we derive

l̂t = εlwŵt + εlλλ̂t (55)

ĉt = C
(

1− εlλ
εlw

)
l̂t − εccλ̂t (56)

and (25) implies
ŵt =

(
sΘk + s

σ

)
k̂t +

[
(1− s)Θl − s

σ

]
l̂t

Using this expression in (55) yields

l̂t =
εlws( 1

σ
+Θk)

1+εlw[ sσ−Θl(1−s)]
k̂t + εlλ

1+εlw[ sσ−Θl(1−s)]
λ̂t (57)

Using (57) into (56) gives

ĉt =
Cs( 1

σ
+Θk)(εlw−εlλ)

1+εlw[ sσ−Θl(1−s)]
k̂t −

(
εcc −

εlλC
(

1− εlλ
εlw

)
1+εlw[ sσ−Θl(1−s)]

)
λ̂t (58)

Using (25), the system of difference equations describing the intertemporal equilibrium

can be stated as follows

f(kt, l(kt, λt))e(kt, l(kt, λt)) + (1− δt)kt − c(kt, λt)− kt+1 = 0

β [1− δ + f1(kt+1, l(kt+1, λt+1))e(kt+1, l(kt+1, λt+1))]λt+1 − λt = 0
(59)

Linearizing the first equation around the steady state using (50), (57) and (58) gives after

simplifications

k̂t+1 = k̂t
1
β

{
1 + θΘk +

θ(1−s)( 1
σ

+Θk)(εlwΘl+εlλ)

1+εlw[ sσ−Θl(1−s)]

}
+ λ̂t

1
sβ

{
εlλθ(1−s)

(
Θl+

εlλ
εlw

)
1+εlw[ sσ−Θl(1−s)]

+ (θ − sβδ)εcc
} (60)

Linearizing the second equation of (59) around the steady state gives

λ̂t+1 = λ̂t + k̂t+1

[
sΘk − 1−s

σ

]
θ − l̂t+1

[
Θl + 1

σ

]
θ(1− s) (61)

Using (57) finally gives
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λ̂t+1

{
1 +

εlλθ(1−s)( 1
σ

+Θl)
1+εlw[ sσ−Θl(1−s)]

}
− k̂t+1θ

1−s
σ
−sΘk−

εlw
σ

[s(Θk−Θl)+Θl]

1+εlw[ sσ−Θl(1−s)]
= λ̂t (62)

Equations (60) and (62) can be expressed as follows(
1 0

−A21 A22

)(
k̂t+1

λ̂t+1

)
=

(
B11 B12

0 1

)(
k̂t

λ̂t

)
with

A21 = θ
1−s
σ
−sΘk−

εlw
σ

[s(Θk−Θl)+Θl]

1+εlw[ sσ−Θl(1−s)]

A22 = 1 +
εlλθ(1−s)( 1

σ
+Θl)

1+εlw[ sσ−Θl(1−s)]

B11 = 1
β

{
1 + θΘk +

θ(1−s)( 1
σ

+Θk)(εlwΘl+εlλ)

1+εlw[ sσ−Θl(1−s)]

}
B12 = 1

βs

{
εlλ
εlw

θ(1−s)(εlwΘl+εlλ)

1+εlw[ sσ−Θl(1−s)]
+ (θ − sβδ)εcc

}
The Jacobian matrix J follows after straightforward computations and simplifications.

6.6 Proof of Lemma 3

We easily derive from Proposition 4 the following characteristic polynomial

P(λ) = λ2 − λT (εcc) +D (63)

with

D = 1
β

{
1 + θ

Θk[1+s
εlw
σ

+(1−s)εlλ]+(1−s)Θl(
εlw
σ
−εlλ)

1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1
σ

+Θl)

}
T (εcc) = 1 +D + θ(θ−sβδ)(1−s)

βs

εcc
[

1
σ
− sΘk

1−s−
εlw
σ

(
Θl+

sΘk
1−s

)]
+εlλ

[
1
σ

(
s(1−β)
θ−sβδ +

CsΘk
1−s

)
+Θl( s(1−β)

θ−sβδ + C
σ )+C εlλ

εlw

(
1
σ
− sΘk

1−s

)]
1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1

σ
+Θl)

The analysis of the local stability properties of the model is based on the geometrical

methodology of Grandmont et al. [30]. In Figure 8, we draw a graph in the trace-

determinant (T ,D) space where three relevant lines are considered: line AC (D = T −1)

along which one eigenvalue of D is equal to 1, line AB (D = −T − 1) along which one

eigenvalue of D is equal to −1 and segment BC (D = 1, |T | < 2) along which the two

eigenvalues of D are complex conjugates with modulus equal to 1. These three lines

divide the space (T ,D) into three different types of regions according to the number of

eigenvalues with modulus smaller than, equal to, and greater than 1. This determines

whether the steady state is a sink (locally indeterminate), a source (locally unstable) or

a saddle-point (see the corresponding areas in Figure 8).

Then, for any particular calibration of structural parameters, we can compute the

trace and determinant using the expression for the Jacobian matrix obtained in Proposi-

tion 4 and assess in which area the model is located. We can also assess how these local

stability properties change when the calibration of any particular parameter is varied over

its admissible range.
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Figure 8: Area of local indeterminacy.

In the one-sector stochastic growth model considered so far, the analysis is greatly

simplified by observing that D does not depend on εcc, implying that the pair (T (εcc),D)

describes an horizontal line in the (T ,D) space when εcc increases from 0 to +∞. As a

result, any Hopf bifurcation related to a Determinant equal to 1 is generically ruled out.

To prove the possible existence of local indeterminacy we need to show that there

exist some parameters’ configurations such that D < 1 and 1−T (εcc) +D > 0. It is easy

to show from the expression of T (εcc) that a necessary condition to get 1−T (εcc)+D > 0

is
εlw >

1−σsΘk
1−s

Θl+
sΘk
1−s
≡ εlw

Let us now write the determinant as

D = 1
β

1+εlw[ sσ−Θl(1−s)(1− θ
σ )]+εlλ θ(1−s)σ

+θΘk[1+s
εlw
σ

+(1−s)εlλ]
1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1

σ
+Θl)

Since under Assumption 2 the expression s
σ
−Θl(1− s)

(
1− θ

σ

)
is necessarily positive for

any σ > 0, we get D > 0 for any σ > 0. Moreover, D ≤ 1 if and only if Θl > Θl and

εlλ ≥ εlλ(εlw) with

Θl ≡ 1−β
β

+ Θk
β
, εlλ(εlw) ≡

1−β+θΘk+εlw

[
s(1−β+θΘk)

σ
−Θl(1−s)(1−β− θ

σ )
]

θ(1−s)(1−β+Θk)(Θl−Θl)
(64)

Under σ ≤ σ̄ ≡ θ/(1− β) we get 1− β − θ
σ
≤ 0 so that εlλ(εlw) > 0 for any Θl > Θl and

εlw ≥ 0. We need therefore to show that Θl < Θ̄l which is obtained if and only if

Θk < Θk ≡ sβ
(1−s)σ − (1− β)

with Θk ∈ (0, Θ̄k) under Assumption 5 and σ ≤ σ̄.

Obviously, we conclude that D > 1 when Θl < Θl for any εlλ ≥ 0, or when Θk ∈
[0,Θk), Θl ∈ (Θl, Θ̄l) and εlλ < εlλ(εlw).

Let us compute the critical values εFcc(εlw, εlλ) and εTcc(εlw, εlλ) respectively associated

with flip and transcritical bifurcations. The first one is obtained as the solution of 1 −
T (εcc) +D = 0, namely

εTcc ≡ εlλ
1
σ

(
s(1−β)
θ−sβδ +

CsΘk
1−s

)
+Θl( s(1−β)

θ−sβδ + C
σ )+C εlλ

εlw

(
1
σ
− sΘk

1−s

)
εlw
σ

(
Θl+

sΘk
1−s

)
−
(

1
σ
− sΘk

1−s

) (65)

while the second one is obtained as the solution of 1 + T (εcc) +D = 0, namely
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εFcc ≡
2
{

1+β+θΘk+εlw

[
(1+β)( sσ−Θl(1−s))+

θΘl(1−s)
σ

]
+εlλθ(1−s)[ 1+β

σ
+βΘl+Θk]

}
θ(θ−sβδ)(1−s)

sσ

(
Θl+

sΘk
1−s

)
(εlw−εlw)

+
εlλ

θ(1−s)(θ−sβδ)
s

[
1
σ

(
s(1−β)
θ−sβδ +

CsΘk
1−s

)
+Θl( s(1−β)

θ−sβδ + C
σ )+C εlλ

εlw

(
1
σ
− sΘk

1−s

)]
θ(θ−sβδ)(1−s)

sσ

(
Θl+

sΘk
1−s

)
(εlw−εlw)

(66)

6.7 Proof of Theorem 1

We immediately derive for any Θl:

1− T (0) +D < 0 and lim
εcc→+∞

T (εcc) = ±∞ when εlw ≶ εlw

Case 1 - Let us consider first the case with a low wage elasticity for the labor supply,

i.e. εlw < εlw. We get the following two graphical configurations depending on the values

of Θl, Θk and εlλ:
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Figure 9: εlw < εlw

As D does not depend on εcc and, when εlw < εlw, the determinant D satisfies D > 1

or D ∈ (0, 1) depending on the values of Θl and εlλ, and we get an horizontal line

characterizing the variation of T (εcc) when εcc is varied over [0,+∞). Obviously, this line

cannot cross the line BC. Moreover, as 1−T (0)+D < 0, the starting point when εcc = 0

is located below the line AC and we have limεcc→+∞ T (εcc) = +∞. The steady state is

then a saddle-point for any εcc ≥ 0.

Case 2 - Let us consider now the case with a high wage elasticity for the labor supply,

i.e. εlw > εlw, and low capital externalities, i.e. Θk ∈ [0,Θk). We get the following

graphical configuration:
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Figure 10: εlw > εlw and Θk ∈ [0,Θk), with Θl < Θl or Θl ∈ (Θl, Θ̄l) and εlλ < εlλ(εlw)

When Θl < Θl or Θl ∈ (Θl, Θ̄l) and εlλ < εlλ(εlw), we have D > 1 but now

limεcc→+∞ T (εcc) = −∞. Local indeterminacy cannot arise but the steady state is not
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always a saddle-point and can be a source. Indeed, the steady state is saddle-point stable

for any εcc ∈ [0, εTcc) ∪ (εFcc,+∞) and locally unstable when εcc ∈ (εTcc, ε
F
cc).

When Θl ∈ (Θl, Θ̄l) and εlλ > εlλ(εlw), we get D ∈ (0, 1) with limεcc→+∞ T (εcc) = −∞.

It follows that the line now crosses the triangle ABC and we get indeterminacy:
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Figure 11: εlw > εlw and Θk ∈ [0,Θk), with Θl ∈ (Θl, Θ̄l) and εlλ > εlλ(εlw).

As 1 − T (0) + D < 0, the starting point when εcc = 0 is located below the line AC and

the steady state is saddle-point stable. As εcc increases, T (εcc) will cross the line AC

when εcc = εTcc, implying the existence of a degenerate transcritical bifurcation since the

steady state is unique. When εcc ∈ (εTcc, ε
F
cc), the steady state is locally indeterminate.

When εcc = εFcc, a flip bifurcation generically occurs leading to the existence of period-two

cycles in a right or left neighborhood of εFcc. Finally, when εcc > εFcc, the steady state is

again saddle-point stable.

Case 3 - Let us finally consider the case with a high wage elasticity for the labor

supply, i.e. εlw > εlw, and large capital externalities, i.e. Θk ∈ (Θk, Θ̄k). Since in

this case Θl > Θ̄l, we have necessarily Θl ∈ (0,Θl) and thus D > 1. We then get

the same configuration as Figure 10. The steady state is saddle-point stable for any

εcc ∈ [0, εTcc) ∪ (εFcc,+∞) and locally unstable when εcc ∈ (εTcc, ε
F
cc).

6.8 Proof of Proposition 5

We easily conclude that under Assumptions 1-4, local indeterminacy is ruled out for any

σ > 0 in the following cases:

i) when Θk = Θl = Θ, we get

D = 1
β

{
1 + θ

Θ(1+
εlw
σ )

1+εlw[ sσ−Θl(1−s)]+εlλθ(1−s)( 1
σ

+Θl)

}
> 1

β

ii) when εlw = 0 we get

lim
εlw→0

1− T (εcc) +D = −∞

iii) when εlλ = 0 we get

D = 1
β

{
1 + θ

Θk+
εlw
σ

[sΘk+(1−s)Θl]
1+εlw[ sσ−Θl(1−s)]

}
> 1

β

iv) when Θl = 0 we get
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D = 1
β

{
1 + θ

Θk[1+
sεlw
σ

+(1−s)εlλ]
1+

sεlw
σ

+
εlλθ(1−s)

σ

}
> 1

β

6.9 Proof of Proposition 6

The critical value εTcc given in Lemma 3 provides a lower bound on εcc to get local inde-

terminacy. Since εlλ > εlλ(εlw), we can derive the following lower bound for εTcc:

εTcc > εlλ(εlw)
1
σ

(
s(1−β)
θ−sβδ +

CsΘk
1−s

)
+Θl( s(1−β)

θ−sβδ + C
σ )+C εlλ(εlw)

εlw

(
1
σ
− sΘk

1−s

)
εlw
σ

(
Θl+

sΘk
1−s

)
−
(

1
σ
− sΘk

1−s

) ≡ εTcc(εlw)

εTcc(εlw) is a decreasing function of εlw over (εlw,+∞) with limεlw→εlw = +∞. Straightfor-

ward computations then show that under Assumption 5, εTcc > 2 when εlλ > εlλ(εlw). As

a result local indeterminacy is ruled out and the steady state is always a saddle-point.

6.10 Proof of Proposition 7

From (45) we derive
ŵt = s

σ

(
k̂t − l̂t

)
(67)

Using this into (55) and (56) then gives

l̂t = εlλ
1+

sεlw
σ

λ̂t + sεlw
1+

sεlw
σ

k̂t

ĉt =
[
C
(

1− εlλ
εlw

)
εlλ

1+
sεlw
σ

− εcc
]
λ̂t +

C s
σ

(εlw−εlλ)

1+
sεlw
σ

k̂t
(68)

Equation (67) then becomes

ŵt = s
σ

[
1

1+
sεlw
σ

k̂t − εlλ
1+

sεlw
σ

λ̂t

]
(69)

From the prices rt and pt as given by (44) and (46) we finally derive:

r̂t = (1−s)
σ

[
εlλ

1+
sεlw
σ

λ̂t − 1
1+

sεlw
σ

k̂t

]
p̂t = − Θ

sβδ

{
sθ
[
1+

sεlw
σ

+
(1−s)εlλ

σ

]
1+

sεlw
σ

k̂t +
[
θ(1−s)ε2lλ
1+

sεlw
σ

+ (θ − sβδ)εcc)
]
λ̂t

}
Tedious computations based on these results allow to get from the system of difference

equations (42)-(43):(
0 1

A21 −A22

)(
k̂t+1

λ̂t+1

)
=

(
B11 B12

B21 −B22

)(
k̂t

λ̂t

)
with
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A21 = 1 +
θ(1−s)
σ

εlλ

1+
sεlw
σ

− (1−δ)Θ
sδ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]

A22 =
θ(1−s)
σ

1+
sεlw
σ

+ θ(1−δ)Θ
δ

1+
sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

B11 = 1+Θ
sβ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]

B12 = 1
β

[
1 +

θ(1−s)
σ

εlλ

1+
sεlw
σ

+ θΘ
1+

sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

]
B21 = 1− Θ

sβδ

[
θ(1−s) ε

2
lλ
εlw

1+
sεlw
σ

+ (θ − sβδ)εcc

]

B22 = θΘ
βδ

1+
sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

The Proposition follows.

6.11 Proof of Lemma 4

We easily derive from Proposition 5 the Determinant and Trace:

D = B11B22+B12B21

A21

T = 1 +D + (B21−A21)(1−B12)+B11(A22−B22)
A21

The characteristic polynomial is then

P(λ) = λ2 − λT (εcc, εlw, εlλ, σ,Θ) +D(εcc, εlw, εlλ, σ,Θ) (70)

with

D(εcc, εlw, εlλ, σ,Θ) = 1
β

1 + Θθ
1+

sεlw
σ

+
(1−s)εlλ

σ

1+
sεlw
σ

+
θ(1−s)εlλ

σ
−Θ(1−δ)(θ−sβδ)

sδ

[
Cε2
lλ

εlw
+εcc(1+

sεlw
σ

)

]


T (εcc, εlw, εlλ, σ,Θ) = 1 +D(εcc, εlw, εlλ, σ,Θ)

+

θ(θ−sβδ)
sβ

{
εlλ[ (1−s)(1−C)+ΘsC

σ ]+
Cε2lλ
εlw

[ 1−s
σ
−Θ(1− 1−s

σ )]+εcc[ 1−s
σ
−Θ(1− 1−s

σ )−Θ s
σ
εlw]

}
1+

sεlw
σ

+
θ(1−s)εlλ

σ
−Θ(1−δ)(θ−sβδ)

sδ

[
Cε2
lλ

εlw
+εcc(1+

sεlw
σ

)

]
≡ 1 +D(εcc, εlw, εlλ, σ,Θ) + X (εcc, εlw, εlλ, σ,Θ)

It is easy to derive that as the parameter εcc is varied over the interval (0,+∞),

D(εcc, εlw, εlλ, σ,Θ) and T (εcc, εlw, εlλ, σ,Θ) are linked through a linear relationship ∆(T )

such that
D = ∆(T ) = S(εlw, εlλ, σ,Θ)T +M

with
S(εlw, εlλ, σ,Θ) = ∂D(εcc,εlw,εlλ,Θ)/∂εcc

∂T (εcc,εlw,εlλ,Θ)/∂εcc

which does not depend on εcc.

Straightforward computations show that ∂D(εcc, εlw, εlλ, σ,Θ)/∂εcc > 0 and, un-
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der Assumptions 1, 3, 4, 6 and 7, ∂T (εcc, εlw, εlλ, σ,Θ)/∂εcc > 0. It follows that

S(εlw, εlλ, σ,Θ) > 0 and thus ∆(T ) is a line in the space (T ,D) with a positive

slope. In order to locate this line, we need to compute the starting and end points

(T (0, εlw, εlλ, σ,Θ),D(0, εlw, εlλ, σ,Θ)) and (T (+∞, εlw, εlλ, σ,Θ),D(+∞, εlw, εlλ, σ,Θ)).

We easily get

D(0, εlw, εlλ, σ,Θ) = 1
β

{
1 + Θθ

1+ s
σ
εlw+

(1−s)
σ

εlλ

1+ s
σ
εlw+

θ(1−s)
σ

εlλ−Θ(1−δ)θ(1−s)
sδ

ε2
lλ
εlw

}
≡ D0

X (0, εlw, εlλ, σ,Θ) =
θ(θ−sβδ)εlλ[(1−s)(1−C)+ΘsC](εlw−ε̂lw)

sβσεlw

1+ s
σ
εlw+

θ(1−s)
σ

εlλ−Θ(1−δ)θ(1−s)
sδ

ε2
lλ
εlw

with

ε̂lw ≡ ΘCεlλ(σ−σsup)

(1−s)(1−C)+ΘsC and σsup ≡ (1−s)(1+Θ)
Θ

Under Assumption 7, we obviously have σ < 2 < σsup so that the bound ε̂lw < 0 is no

longer relevant. It follows that D0 satisfies:

- D0 > 1/β if and only if εlλ < ε0lλ(εlw)(εlw) with

ε0lλ(εlw) ≡
θ(1−s)sδ

σ
εlw+

√
[ θ(1−s)sδσ

εlw]
2
+4Θ(1−δ)θ(1−s)(1+

sεlw
σ )sδεlw

2Θ(1−δ)θ(1−s)

- D0 ∈ (−∞, 1) if and only if εlλ ∈ (ε0lλ(εlw), ε̄lλ(εlw)) with

ε̄lλ(εlw) ≡
θ(1−s)sδεlw(1−β+Θ)

σ
+

√[
θ(1−s)sδεlw(1−β+Θ)

σ

]2
+4Θ(1−β)(1−δ)θ(1−s)(1+

sεlw
σ )sδεlw(1−β+Θθ)

2Θ(1−β)(1−δ)θ(1−s) > ε0lλ(εlw)

- D0 ∈ (1, 1/β) if and only if εlλ > ε̄lλ(εlw).

We also immediately conclude that

1− T (0, εlw, εlλ, σ,Θ) +D(0, εlw, εlλ, σ,Θ) = −X (0, εlw, εlλ, σ,Θ) < 0

if and only if εlλ < ε0lλ(εlw). Moreover, we easily derive that

1 + T (0, εlw, εlλ, σ,Θ) +D(0, εlw, εlλ, σ,Θ) > 0

if and only if εlλ ∈ (0, ε0lλ(εlw)) ∪ (ε̃lλ(εlw),+∞) with

ε̃lλ(εlw) ≡
θδεlw
σ

{
2(1−s)s(1+β+Θ)+(θ−sβδ)[(1−s)(1−C)+ΘsC]

}
+
√

∆

2Θθ(1−s)
[
2(1−δ)(1+β)+

θδ(σ−σsup)

σ

] ∈ (ε0lλ(εlw), ε̄lλ(εlw))

and

∆ =

(
θδεlw

{
2(1−s)s(1+β+Θ)+(θ−sβδ)[(1−s)(1−C)+ΘsC]

}
σ

)2

+ 8
(
1 + sεlw

σ

)
sδεlw(1 + β + Θθ)Θθ(1− s)

[
2(1− δ)(1 + β) + θδ(σ−σsup)

σ

] (71)

while
1 + T (0, εlw, εlλ, σ,Θ) +D(0, εlw, εlλ, σ,Θ) < 0

if and only if εlλ ∈ (ε0lλ(εlw), ε̃lλ(εlw)).

Finally, we have
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D(+∞, εlw, εlλ, σ,Θ) = 1
β
≡ D∞ ∈ (1,D0)

X (+∞, εlw, εlλ, σ,Θ) = θδ
σβ

s(εlw−εlw)

(1−δ)(1+ s
σ
εlw)

with
εlw ≡

σsup−σ
s

We conclude here that since σ < 2 < σsup, X (+∞, εlw, εlλ, σ,Θ) > 0 and thus

1− T (+∞, εlw, εlλ, σ,Θ) +D(+∞, εlw, εlλ, σ,Θ) = −X (+∞, εlw, εlλ,Θ) < 0

if and only if εlw > εlw.

We then get the following conclusions:

- if εlλ < ε0lλ(εlw) then 1 − T (0, εlw, εlλ, σ,Θ) + D(0, εlw, εlλ, σ,Θ) < 0 for any εlw ≥ 0

while 1− T (+∞, εlw, εlλ, σ,Θ) +D(+∞, εlw, εlλ, σ,Θ) > 0 if and only if εlw < εlw;

- if εlλ > ε0lλ(εlw) then 1 − T (0, εlw, εlλ, σ,Θ) + D(0, εlw, εlλ, σ,Θ) > 0 for any εlw ≥ 0

while 1− T (+∞, εlw, εlλ, σ,Θ) +D(+∞, εlw, εlλ, σ,Θ) > 0 if and only if εlw < εlw.

Let us compute the critical values εHcc(εlw, εlλ), ε
T
cc(εlw, εlλ) and εFcc(εlw, εlλ) respectively

associated with Hopf, transcritical and flip bifurcations. The first one εHcc(εlw, εlλ) is

obtained solving the equality D(εcc, εlw, εlλ, σ,Θ) = 1 with respect to εcc. Straightforward

computations yield the value

εHcc(εlw, εlλ) =
(1+ s

σ
εlw)(1−β+Θθ)+

θ(1−s)
σ

εlλ(1−β+Θ)−Θθ(1−β)(1−δ)(1−s) ε2lλ
sδεlw

Θ(1−β)
(1−δ)
sδ

(θ−sβδ)(1+ s
σ
εlw)

It follows obviously that for any given εlw, εHcc(εlw, εlλ) ≥ 0 if and only if εlλ ≤ ε̄lλ(εlw).

The critical value εTcc(εlw, εlλ) is obtained as the solution of the equality

X (εcc, εlw, εlλ, σ,Θ) = 0, namely

εTcc(εlw, εlλ) ≡
εlλ[(1−s)(1−C)+ΘsC](εlw−ε̂lw)

Θsεlw(εlw−εlw)

We have ε̂lw < 0 and thus εlw− ε̂lw > 0. So, obviously, εTcc(εlw, εlλ) > 0 if and only if εlw >

εlw. By convention, we will consider that εTcc(εlw, εlλ) = +∞ when εlw ∈ (0, εlw). Note

that since the steady state is generically unique, εTcc(εlw, εlλ) corresponds to a degenerate

transcritical bifurcation.

The critical value εFcc(εlw, εlλ) is finally obtained as the solution of the equality 1 +

T (εcc, εlw, εlλ, σ,Θ) +D(εcc, εlw, εlλ, σ,Θ) = 0, namely

εFcc(εlw, εlλ) =
θ(1−s)

[
2(1−δ)(1+β)+

θδ(σ−σsup)

σ

]
(ε−lλ(εlw)−εlλ)(εlλ−ε̃lλ(εlw))

(θ−sβδ)εlw[2(1+β)(1−δ)(1+ s
σ
εlw)+ θsδ

σ
(εlw−εlw)]

with

ε−lλ(εlw) =
θδεlw
σ

{
2(1−s)s(1+β+Θ)+(θ−sβδ)[(1−s)(1−C)+ΘsC]

}
−
√

∆

2Θθ(1−s)
[
2(1−δ)(1+β)+

θδ(σ−σsup)

σ

]
and ∆ as given by (71). Obviously, ε−lλ(εlw) < 0 and we conclude that εFcc(εlw, εlλ) ≥ 0 if

and only if εlλ ≤ ε̃lλ(εlw). This critical value corresponds to a flip bifurcation giving rise

to the existence of period-two cycles.

As this will become obvious later on, we need now to check that εHcc(εlw, εlλ) ≤
εTcc(εlw, εlλ). This inequality is satisfied if and only if εlλ ≥ ε̂lλ(εlw) with
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ε̂lλ(εlw) =
−σ(1−s)

{
(1−β+Θθ)(1−β)(1−δ)(1+ s

σ
εlw)− θσ (1−β+Θ)sδ(εlw−εlw)

}
+σ
√

∆̂

2Θθ(1−β)(1−δ)(1−s)σsup

and

∆̂ = (1− s)2
{

(1− β + Θθ)(1− β)(1− δ)
(
1 + s

σ
εlw
)
− θ

σ
(1− β + Θ)sδ(εlw − εlw)

}2

+ 4Θθ(1−β)(1−δ)(1−s)σsup
σ

(
1 + s

σ
εlw
)

(1− β + Θθ)sδ(εlw − εlw)

Note that ε̂lλ(εlw) > 0 if and only if εlw > εlw. By convention, we will consider that

ε̂lλ(εlw) = 0 when εlw ∈ (0, εlw).

When εlλ < ε̂lλ(εlw), the Hopf bifurcation is always ruled out. In order to locate the

∆(T ) line we need to check whether D = −1 can occur, and if yes, we need to know

the sign of T when D = −1. If the sign is positive then the ∆(T ) line is located below

the triangle ABC and local indeterminacy is ruled out. On the contrary, if the sign is

negative then the ∆(T ) line may cross the triangle ABC leading to the possible existence

of local indeterminacy. Solving D(εcc, εlw, εlλ, σ,Θ) = −1 with respect to εcc gives

ε̄cc(εlw, εlλ) =
(1+ s

σ
εlw)(1+β+Θθ)+

θ(1−s)
σ

εlλ(1+β+Θ)−Θθ(1+β)(1−δ)(1−s) ε2lλ
sδεlw

Θ(1+β)
(1−δ)
sδ

(θ−sβδ)(1+ s
σ
εlw)

Straightforward computations show that ε̄cc(εlw, εlλ) > 0 if and only if εlλ > ¯̄εlλ(εlw) with

¯̄εlλ(εlw) ≡
θ(1−s)sδεlw(1+β+Θ)

σ
+

√[
θ(1−s)sδεlw(1+β+Θ)

σ

]2
+4Θ(1+β)(1−δ)θ(1−s)(1+

sεlw
σ )sδεlw(1+β+Θθ)

2Θ(1+β)(1−δ)θ(1−s)

∈ (ε0lλ(εlw), ε̄lλ(εlw))

If εlλ > ¯̄εlλ(εlw) we derive that

T (ε̄cc, εlw, εlλ, σ,Θ) = χ(ε̄cc, εlw, εlλ, σ,Θ)

and straightforward computations yield T (ε̄cc, εlw, εlλ, σ,Θ) ≥ 0 if and only if εlλ ≥ εlλ(εlw)

with

εlλ(εlw) ≡
−(1−s)

{
(1−β+Θθ)(1+β)(1−δ)

δ
+
θ(1+β+Θ)(σsup−σ)

σ
+
sεlw
δσ

[
(1+β)[θ(1−δ)−δ]+Θθ[(1+β)(1−δ)−δ]

]}
+
√

∆

2Θ(1+β)(1−δ)θ(1−s)σsup
δσ

< ε0lλ(εlw)

and

∆ = (1− s)2
{

(1−β+Θθ)(1+β)(1−δ)
δ

+ θ(1+β+Θ)(σsup−σ)

σ
+ sεlw

δσ

[
(1 + β)[θ(1− δ)− δ]

+ Θθ[(1 + β)(1− δ)− δ]
]}2

+ 4
(
1 + s

σ
εlw
)

(1 + β + Θθ)s(εlw − εlw)Θ(1+β)(1−δ)θ(1−s)σsup
δσ

Note that εlλ(εlw) is obviously such that εFcc(εlw, εlλ) = εTcc(εlw, εlλ) when εlλ = εlλ(εlw).

6.12 Proof of Theorem 2

Under Assumptions 1, 3, 4, 6 and 7, straightforward computations show that if εlw > εlw,

ε̂lλ(εlw) < ε̄lλ(εlw). We need now to check whether ε̂lλ(εlw) ≷ ε̃lλ(εlw). Since ε̂lλ(εlw) = 0 <

ε̃lλ(εlw) when εlw = εlw, obvious computations then show that there exists a unique value
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ε̄lw > εlw such that ε̂lλ(εlw) < ε̃lλ(εlw) if and only if εlw ∈ (εlw, ε̄lw) and ε̂lλ(εlw) = ε̃lλ(εlw)

if and only if εlw = ε̄lw.

Let us consider now the value of the Trace when εcc = εHcc(εlw, εlλ). We get

T (εHcc(εlw, εlλ), εlw, εlλ,Θ) = 2 + X (εHcc(εlw, εlλ), εlw, εlλ,Θ)

with

X (εHcc(εlw, εlλ), εlw, εlλ, σ,Θ) = −
(1−β)(θ−sβδ)εlλ

sβ

[(1−s)(1−C)+ΘsC](εlw−ε̂lw)

εlw

{
1+

ΘsεHcc(εlw,εlλ)εlw(εlw−εlw)
εlλ[(1−s)(1−C)+ΘsC](εlw−ε̂lw)

}
Θθ[1+ s

σ
εlw+

(1−s)
σ

εlλ]

We easily derive that X (εHcc(εlw, εlλ), εlw, εlλ, σ,Θ) < 0 and thus T (εHcc(εlw, εlλ), εlw, εlλ,Θ) <

2 if and only if εlλ ∈ (ε̂lλ(εlw), ε̄lλ(εlw)).

We need now to provide a condition to get T (εHcc(εlw, εlλ), εlw, εlλ, σ,Θ) > −2 or equiv-

alently X (εHcc(εlw, εlλ), εlw, εlλ, σ,Θ) > −4 for any εlw ≥ 0. Straightforward computations

give

X (εHcc(εlw, εlλ), εlw, εlλ, σ,Θ) =

θ(θ−sβδ)
sβ

{
εlwεlλ[ (1−s)(1−C)+ΘsC

σ ]+
ΘCε2lλ
σ

(σsup−σ)+
Θsεlwε

H
cc

σ
(εlw−εlw)

}
εlw

(
1+

sεlw
σ

+
θ(1−s)εlλ

σ

)
−Θ(1−δ)(θ−sβδ)

sδ [Cε2lλ+(εlw−εlw)εHcc(1+
sεlw
σ

)]

and thus

X (εHcc(0, εlλ), 0, εlλ, σ,Θ) = − θδ(σsup−σ)

βσ(1−δ)

We then derive that if σ > σinf with

σinf = δθ(1−s)(1+Θ)
Θ[4β(1−δ)+δθ]

then X (εHcc(0, εlλ), 0, εlλ, σ,Θ) > −4 and X (εHcc(εlw, εlλ), εlw, εlλ, σ,Θ) > −4 for any εlw ≥ 0.

Case 1 - Let us consider in a first step the case εlw ∈ (0, εlw) where ε̂lλ(εlw) = 0. We

get the following geometrical characterizations of the ∆(T ) line depending on the value

of εlλ. When εlλ < ε0lλ(εlw) or εlλ ∈ (ε0lλ(εlw), ε̃lλ(εlw)), we have:
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Figure 12: ∆(T ) line when εlw ∈ (0, εlw) and εlλ < ε0lλ(εlw).

As shown by these Figures, increasing εcc from 0, the steady state is first saddle-point

stable. Still increasing εcc leads to the existence of a flip bifurcation giving rise to the

existence of period-two cycles when εcc crosses εFcc(εlw, εlλ). Above εFcc(εlw, εlλ) the steady

state then becomes locally indeterminate and when εcc crosses the bound εHcc(εlw, εlλ), a

Hopf bifurcation occurs giving rise to the existence of periodic cycles. Above εHcc(εlw, εlλ),

the steady state is totally unstable for any εcc ∈ (εHcc(εlw, εlλ),+∞).

When εlλ ∈ (ε̃lλ(εlw), ε̄lλ(εlw)), we obviously get the following case where the flip
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Figure 13: ∆(T ) line when εlw ∈ (0, εlw) and εlλ ∈ (ε0lλ(εlw), ε̃lλ(εlw)).

bifurcation no longer exists, i.e. εFcc(εlw, εlλ) = 0:
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Figure 14: ∆(T ) line when εlw ∈ (0, εlw) and εlλ ∈ (ε̃lλ(εlw), ε̄lλ(εlw)).

Finally, when εlλ > ε̄lλ(εlw), we get the following case where the Hopf bifurcation no

longer exists, i.e. εHcc(εlw, εlλ) = 0:
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Figure 15: ∆(T ) line when εlw ∈ (0, εlw) and εlλ > ε̄lλ(εlw).

Case 2 - Let us consider now the case εlw ∈ (εlw, ε̄lw) where 0 < ε̂lλ(εlw) < ε̃lλ(εlw).

We get εlλ(εlw) < ε0lλ(εlw) < ¯̄εlλ(εlw) < ε̃lλ(εlw) < ε̄lλ(εlw) and εlλ(εlw) < ε̂lλ(εlw) < ε̃lλ(εlw).

However, the bounds ε0lλ(εlw) and ¯̄εlλ(εlw) may be lower or larger than ε̂lλ(εlw) but this

does not really impact the local stability results. It is worth noticing that when εlw = εlw,

εlλ(εlw) = ε̂lλ(εlw) = 0. We then obtain the following geometrical characterizations of the

∆(T ) line depending on the value of εlλ and εlw. Recall that εlw ∈ (εlw, ε̄lw) and consider

for now that ε0lλ(εlw) < ¯̄εlλ(εlw) < ε̂lλ(εlw). When εlλ < εlλ(εlw) we have

When εlλ ∈ (εlλ(εlw), ε̃lλ(εlw)) we get the following three cases:
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Figure 16: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ < εlλ(εlw).
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Figure 17: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ ∈ (εlλ(εlw), ε0lλ(εlw)).
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Figure 18: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ ∈ (ε0lλ(εlw), ε̂lλ(εlw)).

In these three cases, local indeterminacy arises if εcc ∈ (εFcc(εlw, εlλ), ε
T
cc(εlw, εlλ)) and

saddle-point stability holds outside this interval. The same conclusion would be obtained

is ε0lλ(εlw) and/or ¯̄εlλ(εlw) were larger than ε̂lλ(εlw).

When εlλ > ε̂lλ(εlw), the Hopf bifurcation may again occur as long as εlλ < ε̄lλ(εlw).

We get indeed:
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Figure 19: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ ∈ (¯̄εlλ(εlw), ε̂lλ(εlw)).
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Figure 20: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ ∈ (ε̂lλ(εlw), ε̃lλ(εlw)).
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Figure 21: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ ∈ (ε̃lλ(εlw), ε̄lλ(εlw)).

As shown by these Figures, when εlλ ∈ (ε̂lλ(εlw), ε̃lλ(εlw)), increasing εcc from 0,

the steady state is first saddle-point stable. Still increasing εcc leads to the existence

of a flip bifurcation giving rise to the existence of period-two cycles when εcc crosses

εFcc(εlw, εlλ). Above εFcc(εlw, εlλ) the steady state then becomes locally indeterminate and

when εcc crosses the bound εHcc(εlw, εlλ), a Hopf bifurcation occurs giving rise to the exis-

tence of periodic cycles. Above εHcc(εlw, εlλ), the steady state is locally unstable when

εcc ∈ (εHcc(εlw, εlλ), ε
T
cc(εlw, εlλ)) and saddle-point stable when εcc ∈ (εTcc(εlw, εlλ),+∞).

Since the steady state is generically unique, εTcc(εlw, εlλ) corresponds to a degenerate tran-

scritical bifurcation. When εlλ ∈ (ε̃lλ(εlw), ε̄lλ(εlw)), we get εTcc(εlw, εlλ) = 0 and when

εlλ > ε̄lλ(εlw) we get εHcc(εlw, εlλ) = 0.

Case 3 - Let us consider finally the case εlw > ε̄lw where ε̃lλ(εlw) < ε̂lλ(εlw) < ε̄lλ(εlw).

Therefore, using all our previous results, we get the following geometrical character-

izations of the ∆(T ) line depending on the value of εlλ. When εlλ < εlλ(εlw), local

indeterminacy is ruled out as the ∆(T ) does not cross the triangle ABC as in Figure 16.
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Figure 22: ∆(T ) line when εlw ∈ (εlw, ε̄lw) and εlλ > ε̄lλ(εlw).

On the contrary, when εlλ ∈ (εlλ(εlw), ε̃lλ(εlw)), local indeterminacy can arise as we

get the following three cases where the ∆(T ) crosses the triangle ABC as in Figures 17,

18 and 19.

When εlλ ∈ (ε̃lλ(εlw), ε̂lλ(εlw)) the flip bifurcation no longer exists.
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Figure 23: ∆(T ) line when εlw > ε̄lw and εlλ ∈ (ε̃lλ(εlw), ε̂lλ(εlw)).

When εlλ ∈ (ε̂lλ(εlw), ε̄lλ(εlw)), the Hopf bifurcation exists as the same configuration

as Figure 21 occurs. When εlλ > ε̄lλ(εlw), the Hopf bifurcation no longer exists and local

indeterminacy is again ruled out as the same configuration as Figure 22 occurs.

6.13 Proof of Corollary 1

With KPR preferences such that εlλ = εccεlw, we get

D(εcc, εlw, σ,Θ) = 1
β

{
1 + Θθ

1+
sεlw
σ

[s+(1−s)εcc]
1+

sεlw
σ

[s+θ(1−s)εcc]−Θ(1−δ)(θ−sβδ)εcc
sδ [Cεccεlw+1+

sεlw
σ ]

}
T (εcc, εlw, σ,Θ) = 1 +D(εcc, εlw, σ,Θ)

+
θ(θ−sβδ)εcc

sβ

{
εlw[ (1−s)(1−C)+ΘsC

σ ]+CεccεlwΘ(σsup−σ)

σ
+ sΘ

σ
(εlw−εlw)

}
1+

sεlw
σ

[s+θ(1−s)εcc]−Θ(1−δ)(θ−sβδ)εcc
sδ [Cεccεlw+1+

sεlw
σ ]

≡ 1 +D(εcc, εlw, σ,Θ) + X (εcc, εlw, σ,Θ)

with

σsup ≡ (1−s)(1+Θ)
Θ

and εlw ≡
σsup−σ

s
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Under Assumption 7 we obviously have σ < 2 < σsup. Applying the same technique as

in the Proof of Theorem 2 we can compute the Hopf bifurcation value

εHcc =
(1−s)εlw

Θσ
(1−β+Θ)− (1−β)(1−δ)(θ−sβδ)

θsδ (1+
sεlw
σ )+

√
∆H

2(1−β)(1−δ)(θ−sβδ)
θsδ

Cεlw

with

∆H =
[

(1−β)(1−δ)(θ−sβδ)
θsδ

(
1 + sεlw

σ

)
− (1−s)εlw

Θσ
(1− β + Θ)

]2

+ 4 (1−β)(1−δ)(θ−sβδ)
θsδ

Cεlw
(
1 + sεlw

σ

) (
1 + 1−β

Θθ

)
and the flip bifurcation value

εFcc =
2(1−s)θεlw

σ
(1+β+Θ)+

θ(θ−sβδ)
s

[
εlw(1−C)s

σ ( 1−s
s
−Θ)+ Θ

σ
(σsup−σ)

]
− 2(1+β)Θ(1−δ)(θ−sβδ)

sδ (1+
sεlw
σ )+

√
∆F

2Θ(θ−sβδ)Cεlw
s

2(1+β)(1−δ)+θδ
δσ

(σ−σF )

with

∆F =
{

2(1+β)Θ(1−δ)(θ−sβδ)
sδ

(
1 + sεlw

σ

)
− 2(1−s)θεlw

σ
(1 + β + Θ) + θ(θ−sβδ)

s

[
εlw(1−C)s

σ

(
1−s
s
−Θ

)
+ Θ

σ
(σsup − σ)

]}2

+ 8
(
1 + sεlw

σ

)
(1 + β + Θθ)Θ(θ−sβδ)Cεlw

s

[
2(1+β)(1−δ)

δ
− θ

σ
(σsup − σ)

]
and

σF ≡ δθ(1−s)(1+Θ)
Θ[2(1+β)(1−δ)+θδ]

We obviously need σ > σF to get εFcc > 0. We easily show that T (εHcc, εlw, σ,Θ) < 2 and

that solving εHcc = εFcc allows to prove the existence of σ̃inf > σF as given by

σ̃inf ≡ (1−β+Θθ)δ(1−s)(1+Θ)
Θ[4(1−δ)Θβ+δ(1−β+Θθ)]

such that T (εHcc, εlw, σ,Θ) > −2 if σ > σ̃inf . Notice that the bound obtained here is

different from the one derived in the Proof of Theorem 2 as we consider a specific value

εlλ = εccεlw which modifies the computations.

6.14 Proof of Corollary 2

With GHH preferences such that εlλ = 0, we get

D(εcc, εlw, σ,Θ) = 1
β

{
1 + Θθ

1− εccΘ(1−δ)(θ−sβδ)
sδ

}
T (εcc, εlw, σ,Θ) = 1 +D(εcc, εlw, σ,Θ) +

θ(θ−sβδ)
β

εcc
Θ
σ

(εlw−εlw)

(1+
εlw
σ )[1− εccΘ(1−δ)(θ−sβδ)

sδ ]

≡ 1 +D(εcc, εlw, σ,Θ) + X (εcc, εlw, σ,Θ)

with

σsup ≡ (1−s)(1+Θ)
Θ

and εlw ≡
σsup−σ

s
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Applying the same technique as in the Proof of Theorem 2 we can compute the Hopf

bifurcation value

εHcc = (1−β+Θθ)sδ
Θ(1−β)(1−δ)(θ−sβδ)

and the flip bifurcation value

εFcc =
2δσ(1+β+Θθ)(1+

sεlw
σ )

Θ(θ−sβδ)[2(1+β)(1−δ)+θδ](εlw−εFlw)

with
σF ≡ δθ(1−s)(1+Θ)

Θ[2(1+β)(1−δ)+θδ] and εFlw ≡ σF−σ
s

Assuming σ > σF implies that εFcc > 0 for any εlw > 0. However, we easily get

T (εHcc, εlw, σ,Θ) = 2 +
θ(θ−sβδ)

β
εHcc

Θ
σ

(εlw−εlw)

(1+
εlw
σ )Θθ

so that T (εHcc, εlw, σ,Θ) < 2 if and only if εlw < εlw. We need now to provide a condition

to get T (εHcc, εlw, σ,Θ) > −2 or equivalently X (εHcc, εlw, σ,Θ) > −4 for any εlw ≥ 0.

Straightforward computations give

X (εHcc, 0, εlλ, σ,Θ) = − δ(1−β+Θθ)(σsup−σ)

βσ(1−δ)Θ

We then derive that if σ > σ̃inf with

σ̃inf = (1−β+Θθ)δ(1−s)(1+Θ)
Θ[4(1−δ)Θβ+δ(1−β+Θθ)]

∈ (σF , 2)

then X (εHcc, 0, σ,Θ) > −4 and X (εHcc, εlw, σ,Θ) > −4 for any εlw ≥ 0. Notice that the

bound obtained here is different from the one derived in the Proof of Theorem 2 as we

consider a specific value εlλ = 0 which modifies the computations.

6.15 Proof of Corollary 3

Under generalized Hansen preferences such that εlλ = εlw, we get

D(εcc, εlw, σ,Θ) = 1
β

{
1 + Θθ

1+
εlw
σ

Θ(1−δ)θ(1−s)(σ−σ̄)(ε̄lw−εlw)

σsδ
−εcc Θ(1−δ)(θ−sβδ)

sδ (1+
sεlw
σ )

}
T (εcc, εlw, σ,Θ) = 1 +D(εcc, εlw, εlλ, σ,Θ)

+
θ(θ−sβδ)

sβ {εlw[ (1−s)(1−C)+ΘsC
σ

+CΘ
σ

(σsup−σ)]+εcc Θs
σ

(εlw−εlw)}
Θ(1−δ)θ(1−s)(σ−σ̄)(ε̄lw−εlw)

σsδ
−εcc Θ(1−δ)(θ−sβδ)

sδ (1+
sεlw
σ )

≡ 1 +D(εcc, εlw, σ,Θ) + X (εcc, εlw, σ,Θ)

with
σ̄ ≡ sδ[s+θ(1−s)]

Θ(1−δ)θ(1−s) , ε̄lw ≡ σsδ
Θ(1−δ)θ(1−s)(σ−σ̄)

σsup ≡ (1−s)(1+Θ)
Θ

, εlw ≡
σsup−σ

s

Applying the same technique as in the Proof of Theorem 2 we can compute the Hopf

bifurcation value
εHcc =

(1−β)(1−δ)(1−s)
σsδ

(σ−σH)(εHlw−εlw)
1−β
θ

(1−δ)(θ−sβδ)
sδ (1+

sεlw
σ )

the flip bifurcation value
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εFcc =
θ(1−s)(σ−σF )(εFlw−εlw)

s(θ−sβδ)(εlw−ε̂lw)

and the transcritical bifurcation value

εTcc = εlw[(1−s)(1−C)+ΘsC+CΘ(σsup−σ)]

sΘ(εlw−εlw)

with

σ̂ ≡ δθ(1−s)(1+Θ)
Θ[2(1+β)(1−δ)+θδ] , ε̂lw ≡ σ̂−σ

s

σH ≡ sδ[Θθ+(1−β)[s+θ(1−s)]]
Θ(1−β)(1−δ)θ(1−s) , εHlw ≡

(1+ 1−β
Θθ )σsδ

(1−β)(1−δ)(1−s)(σ−σH)

σF ≡ 2[(1+β)[s+θ(1−s)]+Θθ]+
θ(θ−sβδ)[(1−s)(1−C)+ΘsC+CΘσsup]

s

Θ
θ(1−s)
sδ

[2(1+β)(1−δ)+θδ]
, εFlw ≡

2(1+β+Θθ)σsδ
Θθ(1−s)[2(1+β)(1−δ)+θδ](σ−σF )

Assuming σ > σ̂ implies ε̂lw < 0 so that the existence of εFcc relies only on the bounds σF

and εFlw. Straightforward computations show that as long as σ < σH , X (εHcc, εlw, σ,Θ) < 0

and thus T (εHcc, εlw, σ,Θ) < 2 for any εlw ≥ 0. We need finally to provide a condition

to get T (εHcc, εlw, σ,Θ) > −2 or equivalently X (εHcc, εlw, σ,Θ) > −4 for any εlw ≥ 0.

Straightforward computations give

X (εHcc, 0, εlλ, σ,Θ) = − δ(1−β+Θθ)(σsup−σ)

βσ(1−δ)Θ

We then derive that if σ > σ̃inf with

σ̃inf = (1−β+Θθ)δ(1−s)(1+Θ)
Θ[4(1−δ)Θβ+δ(1−β+Θθ)]

∈ (σF , 2)

then X (εHcc, 0, σ,Θ) > −4 and X (εHcc, εlw, σ,Θ) > −4 for any εlw ≥ 0. Notice that the

bound obtained here is different from the one derived in the Proof of Theorem 2 as we

consider a specific value εlλ = εlw which modifies the computations.
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