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1 Introduction

The Balassa-Samuelson effect (BS effect, hereafter) is still an important phenomenon in the

theory of economic development, as Balassa [2] states, “As economic development is accom-

panied by greater inter-country differences in the productivity of tradable goods, differences

in wages and service prices increase, and correspondingly so do differences in purchasing

power parity and exchange rates.” Formally it can be expressed as the following BS effect

equation.

˙̃pN
p̃N

=
(
1−β
1−α

)
ȦT
AT
− ȦN

AN
(1)

where ẋ indicates a time derivative dx/dt, p̃N is the relative price of non-tradable goods,

where the price of tradable goods is numéraire, α is the capital share of the tradable goods

output, β is the capital share of the non-tradable output, and Ai is the TFP of the sector

i = N,T .1

If α > β and ȦT /AT > ȦN/AN hold, then according to (1), it implies ˙̃pN/p̃N > 0. In

other words, the relative price of non-tradable goods increases. If the perfect purchasing

parity (PPP) holds only for tradable goods, it implies that the real exchange rate will appre-

ciate. Valentinyi and Herrendorf [10] report that α = 0.37 and β = 0.32 in the US economy.

It implies that (1 − β)/(1 − α) ≈ 1.08 > 1. Furthermore, pN grows in such an economy

because the TFP growth rate in the tradable goods sector is expected to be greater than

that in the non-tradable goods sector.

Another important property is as follows.

Wages are determined entirely by the factor productivity of the tradable goods sector. (2)

Let us call these two properties (1) and (2) collectively the Balassa-Samuelson property. In

short, the BS property hereafter.

The Japanese economy has stagnated for the past 30 years, especially the real effective

exchange rate index (2010=100), which has been declining since 1995 as shown in Figure 1.

1For the standard derivation of the equation (1) and (2), please refer to Asea et al. [1] and Couharde et
al. [4] for comprehensive explanations.
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Figure 1: Japan’s real effective exchange rate index

Source: Real effective exchange rate index (2010 = 100) – Japan — Data (worldbank.org).

BS property was often applied to explain Japan’s real exchange rate depreciation and

economic stagnation problems. In other words, as a result of globalization, major Japanese

manufacturers in the tradable goods sector moved their main production facilities to China,

Thailand, and other countries, and the remaining production facilities in Japan became less

efficient. In addition, deregulation implemented in the service sector increased productivity

in the non-tradable goods sector. This fact can be confirmed by the Balassa-Samuelson (BS)

effect measures reported in the RPROD database.2 Figure 2 exhibits five different BS effect

indicators. Since 1995, three of the five series have sharply declined.

Figure 2: Japan’s BS effect measures

Source: CEPII - RPROD.

The rate of TFP growth in the tradable goods sector, as indicated by relative GDP per

capita or per worker in Figure 2 above, has declined sharply since 1995, while the relative

prices of non-tradable goods, as indicated by the CPI/PPI ratio and the three- and six-

sector deflators in Figure 2, especially the three-sector deflator, has declined substantially

as expected by the BS property (1) described above. As a result, the real effective exchange

rate declined as shown in Figure 1.

Japan’s per capita wages have also stagnated due to BS characteristics (2), and as Figure 3

below shows, per capita wages have remained nearly constant during the 1991-2020 reporting

2In detail on the RPROD data base, see C. Couharde et al. [4].
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period.

As a result, the BS property would seem to fully explain the stagnation of the Japanese

economy and the depreciation of the real effective exchange rate. However, there is a major

theoretical problem with applying the BS property to a large country like Japan. This is

because the BS property was originally proven for small developing countries that are given

interest rates in the world market. Therefore, it is important to show that the BS property

holds for large countries. This issue is addressed in the framework of optimal growth theory.

Figure 3: Real per-capita wages (1991:100)

Source: https : //www5.cao.go.jp/j − j/wp/wp− je22/h06hz020105.html.

To our knowledge, the BS property has never been formally tested in the framework of

two-sector optimal growth theory. Consider two cases. One is the case of a large country

that can control interest rates internally, and the other is the case of a small country that

cannot set interest rates but can provide access to world capital markets. In a small country,

Takahashi and Venditti [9] proved that the exact same equation as the BS effect equation

(1) holds. In contrast, this paper proves that the following different BS effect equation (3)

holds as a property of the long-run optimal steady state in a large country.

˙̃pN
p̃N

= ȦT
AT
− ȦN

AN
(3)

This is in contrast to the equation for the BS effect for small countries shown in (1).

Since (3) does not depend on the capital intensity ratio term as in equation (1), the BS effect

shows a more direct relationship with the difference in TFP growth rates. It is important to

note that this difference is due to different optimal steady-state conditions, as will be shown

below.

The remainder of this paper is organized as follows. Section 2 provides and analyzes

the model: Section 2.1 presents a two-sector model comprising tradable and non-tradable

goods. Then, in Sections 2.2 and 2.3, we analyze the uniqueness and saddle point stability
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of the optimal steady state. In Section 3, we discuss the Balassa-Samuelson property in

the optimal steady state based on the discussion in Section 2. In Section 4, we provide

concluding comments. All the proofs are gathered in a final Appendix.

2 The model

This section first describes the production structure and the preferences of our 2-sector model.

Then we discuss the intertemporal equilibrium and the steady state. Finally we derive the

characteristic polynomial associated with linearization around the steady state.

2.1 The 2-sector economy

We consider an economy producing a non-tradable (N) good ỹN , and a tradable (T) good

ỹT . Each good is assumed to be produced by using capital kj and labor lj , j = N,T in

different proportions via Cobb-Douglas production functions:

ỹN = ANk
β
N l

1−β
N ,

ỹT = ATk
α
T l

1−α
T ,

(4)

where Ai denotes the total factor productivity of sector i = N,T . Total labor is given

by 1 = lN + lT , and total stock of capital is given by k = kN + kT . Let us then denote

yN = ỹN/AN and yT = ỹT /AT . We can then rewrite (4) as

yN = kβN l
1−β
N ,

yT = kαT l
1−α
T .

(5)

A firm in each industry maximizes its profit under productivity-normalized output prices

pN and pT , rental rate of capital r, and wage rate w. Choosing the tradable good as the

numéraire, i.e. pT = 1, we define from the technologies (5) the following Lagrangian

L = kαT l
1−α
T + pN

[
kβN l

1−β
N − yN

]
+ r [k − kN − kT ] + w [1− lN − lT ]

with pN , r and w the price of the non-tradable good, the interest rate and the wage rate, all

in terms of the price of tradable good. The first-order conditions give

r = αkα−1T l1−αT = pNβk
β−1
N l1−βN

w = (1− α)kαT l
−α
T = pN (1− β)kβN l

−β
N

(6)

and we thus derive the following input coefficients:

a00(w, pN ) = lN
yN

= pN (1−β)
w , a10(r, pN ) = kN

yN
= pNβ

r ,

a01(w) = lT
yT

= 1−α
w , a11(r) = kT

yT
= α

r .

(7)
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Each coefficient aij represents the amount of “good” i, that is, labor or intermediate capital

good, that it takes to produce one unit of good j - in other words, the non-tradable or tradable

good output. Denoting p = (pN , 1)′ and ω = (w, r)′, we can then define the following matrix

of input coefficients

A(ω, p) =

 a00(w, pN ) a01(w)

a10(r, pN ) a11(r)


which can basically be obtained from input-output tables available in national accounting

data.

Using the results of Benhabib and Nishimura [3], and as stated in Lemma 1 and Lemma

2, the factor-price frontier and the factor market-clearing equations depend on this matrix.

Lemma 1. p = A′(ω, p)ω and dp = A′(ω, p)dω.

Lemma 2. Denote x = (1, k)′ and y = (yN , yT )′. Then A(ω, p)y = x and

A(w, p)dy +


(
∂a00
∂w yN + ∂a01

∂w yT

)
dw + ∂a01

∂pN
yNdpN(

∂a10
∂r yN + ∂a11

∂r yT

)
dr + ∂a11

∂pN
yNdpN

 = dx.

We derive that, at equilibrium, wage rate and rental rate are functions of the non-tradable

output price only, that is, w = w(pN ) and r = r(pN ), while the outputs are functions both

of the capital stock and the non-tradable output price, yj = yj(k, pN ), j = N,T .

As can be expected in multi-sector optimal growth models, there is a duality between

the Rybczinski and Stolper-Samuelson effects, i.e.

∂yN
∂k = ∂r

∂pN
. (8)

2.2 Intertemporal equilibrium and steady state

The economy is populated by a large number of identical infinitely-lived agents. Without loss

of generality, we assume that the total population is constant and normalized to one. At each

period, a representative agent inelastically supplies one unit of labor. Furthermore, utility

is derived from consuming the non-tradable good c̃N and the tradable good c̃T according to

the following Cobb-Douglas specification:

u(cN , cT ) = cθNc
1−θ
T

with cN = c̃N/AN , cT = c̃T /AT and θ ∈ (0, 1]. Parameter θ measures the share of the non-

tradable good cN within total utility. The agent’s preferences imply properties of interest

regarding the (pure) elasticities of intertemporal substitution in consumption goods cN and
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cT , ε00 and ε11, and the (cross-) elasticities of intertemporal substitution between the two

goods, ε01 and ε10:

ε00 = − u1
u11cN

= 1
1−θ , ε01 = − u1

u12cT
= − 1

1−θ ,

ε10 = − u2
u21cN

= −1
θ , ε11 = − u2

u22cT
= 1

θ .

(9)

Profit maximization in both sectors described in Section 2.1 yields the demands for capital

and labor as functions of the capital stock and the production levels of the non-tradable good,

namely lj = lj(k, yN ) and kj = kj(k, yN ), j = N,T . Considering that at the equilibrium

cN = yN , the optimal amount of the non-tradable good is then defined by:

yT = kT (k, yN )αlT (k, yN )1−α = T (k, cN ).

From the envelope theorem, we get: r = Tk(k, cN ) and pT = −TcN (k, cN ). The intertemporal

optimization problem of the representative agent is then given by:

max
{cN (t),cT (t),k(t)}

∫ +∞

0
cN (t)θcT (t)1−θe−δtdt

s.t. k̇(t) = T (k(t), cN (t))− gk(t)− cT (t)

k(0) given,

(10)

where δ ≥ 0 is the discount rate and g > 0 is the depreciation rate of the capital stock. We

can write the modified Hamiltonian in current value as:

H = cN (t)θcT (t)1−θ + q(t) [T (k, cN (t))− gk(t)− cT (t)] .

The necessary conditions, which describe the solution to problem (10), are therefore given

by the following equations:

q(t) =
θcN (t)θ−1cT (t)1−θ

pN (t)
(11)

q(t) = (1− θ)cN (t)θcT (t)−θ (12)

k̇(t) = T (k(t), cN (t))− gk(t)− cT (t) (13)

q̇(t) = (δ + g − Tk(k(t), cN (t)))q(t) = (δ + g − r(t))q(t) (14)

Taking equations (11) to (14), we are now in a position to characterize an equilibrium path

{k(t), pN (t), }t≥0 and to prove the existence of a unique steady state. Indeed, as shown

in Section 2.1, we have r = r(pN ) and cN = yN = kN (k, cN )βlN (k, cN )1−β which gives

cN = cN (k), and thus yT = T (k, cN (k)) = yT (k). Using (11), (12), we derive:

cT (t) = cT (k(t), pN (t)) = cN (k(t))pN (t)(1−θ)
θ . (15)

Straightforward computations then yield:

∂cT
∂k = pN (1−θ)

θ
∂cN
∂k and ∂cT

∂pN
= pN (1−θ)

θ
∂cN
∂pN
− cN

pN
. (16)
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Considering (11)-(14) and (16), the motion equations write:

k̇ = yT (k)− gk − cT (k, pN )

ṗN = pN (t)
θ

[
δ + g − r(pN )

]
.

(17)

Any solution {k(t), pN (t)}t≥0 that also satisfies the transversality condition:3

lim
t→+∞

e−δtq(t)k(t) = 0

with q(t) as given by (11), is called an equilibrium path. A steady state is defined by a vector

(c∗N , k
∗, p∗N ) solution of

yT (k) = gk + cT = gk + cN (k)pN (1−θ)
θ

r(pN ) = δ + g.
(18)

We get the following result:

Proposition 1. There exists a unique steady state (c∗N , k
∗, p∗N , ) > 0 solution of the system

of nonlinear equations (18) with c∗N = cN (k∗) and c∗T = cN (k∗)
p∗N (1−θ)

θ .

Proof. See Appendix 5.1

2.3 Characteristic polynomial

Linearizing the dynamical system around (c∗N , k
∗, p∗N ) gives a 2×2 Jacobian matrix J which

is provided in Appendix 5.2. Let us denote T the trace and Dθ the determinant of J .

Proposition 2 displays some properties of the eigenvalues of J and the expression of the

characteristic polynomial.

Proposition 2. If λ is an eigenvalue of the Jacobian matrix J , then δ − λ is also an

eigenvalue and thus T = δ. The degree-2 characteristic polynomial is given by:

Pθ(λ) = λ2 − λδ +Dθ (19)

where

Dθ =

(
∂yT
∂k
−g− ∂cT

∂k

)
∂r
∂pN

θ
(20)

Moreover, the two roots are real and distinct.

Proof. See Appendix 5.2.

The results on the structure of the characteristic roots are in line with the conclusions of

Kurz [6] and Levhari and Liviatan [7]. Based on Proposition 2, we can further prove the

saddle-point stability of the stationary steady state as exhibited in Proposition 1.

Proposition 3. For any α, β ∈ (0, 1) and any δ ≥ 0, the unique steady state (c∗N , k
∗, p∗N ) is

saddle-point stable

Proof. See Appendix 5.3.

3See Michel [8] and Kamihigashi [5] for some proof of the necessity of the transversality condition.
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3 The Balassa-Samuelson effect

We focus in this Section on the Balassa-Samuelson effect. The first question to answer is

to check whether such a property is satisfied along the optimal steady state. Indeed, we

have solved the model through a stationary version of the dynamical equations based on

the considerations of the variables yN = ỹN/AN , yT = ỹT /AT , cN = c̃N/AN and cT =

c̃T /AT . We need now to consider the real variables that are affected by the growth rates of

productivities AN and AT . More precisely we need to consider the price of the non-tradable

good p̃N which is linked to the stationary price pN as follows: pN = p̃NAN/AT . The following

Proposition establish that in the optimal growth framework, the BS property is modified as

formulated by equation (3).

Proposition 4. At the unique steady state, the Balassa-Samuelson property holds, i.e.

˙̃p∗N
p̃∗N

= ȦT
AT
− ȦN

AN

Proof. See Appendix 5.4.

Building on Proposition 2 showing the saddle-point property of the steady state, we can

also conclude that the Balassa-Samuelson property holds not only at the optimal steady

state but also along the optimal path.

The BS effect equation derived in Proposition 4 indicates a sharp contrast to that of the

BS effect equation (1) presented in the Introduction. Note that this equation does not rely

on a capital intensity term as indicated in the equation (1). That is, it shows that the rate of

change in non-tradable relative prices is exclusively related to the difference in TFP growth

rates between the two sectors.

It is interesting to consider why the formulas are different for large and small countries. In

the small countries, the interest rate is given in the world market and the wage is determined

only in the tradable goods sector. Thus, the allocation of capital goods between sectors is

determined by the capital intensity of each sector. Under the standard assumption that

the capital intensity of the non-tradable goods sector is lower than that of the tradable

goods sector, an increase in capital will increase the output of the tradable goods sector and

decrease that of the non-tradable goods sector due to the Rybczynski theorem. This change

in output affects relative output prices, which appear as the capital intensity ratio in the BS

formula, as shown in (1). In contrast, in the case of large countries, since the interest rate is

determined domestically based on the productivity of the sectors, the capital intensities of

the two sectors do not work directly to determine output prices. Thus, the relative intensity

term is removed from the formula in the large country case, as shown in Proposition 4.

Finally, even for the large countries, Property (2) still holds from the following first-order

conditions on the wage rate at the optimal steady state,

w̃∗ = (1− α)ATk
α
T l
−α
T (21)

This relation clearly indicates that only labor productivity in the tradable goods sector

determines the wage rate.
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4 Concluding comments

The BS effect in large countries provided in Proposition 4 is shown to be in contrast to the

equation for the BS effect in small countries as indicated in (1). For large countries such as

Japan and the United States, the BS effect was found not to depend on the capital intensity

ratio of the non-tradable and tradable sectors, but more directly only on the difference in

TFP growth rates of the sectors. Thus, the results more directly support the stagnation

theory of Japan based on the properties of the BS effect described in the introduction. An

open question remains to study whether our conclusions are related to the fact that we

consider specific Cobb-Douglas utility and production functions. The next step will then be

to extend our model to general utility and production functions in order to provide a general

formulation of the Balassa-Samuelson effect.

5 Appendix

5.1 Proof of Proposition 1

From the first-order conditions (6) and using the steady state equation r = δ + g we get:

ω10 = r
w = β

1−β
lN
kN

= α
1−α

lT
kT

r = βpN

(
lN
kN

)1−β
= βpN

(
1−β
β ω10

)1−β
= δ + g

(22)

We then derive

ω10 = β
1−β

(
δ+g
βpN

) 1
1−β (23)

Consider again the first-order conditions (6), we get

α
(
lT
kT

)1−α
= βpN

(
lN
kN

)1−β
⇔ α

(
1−α
α ω10

)1−α
= βpN

(
1−β
β ω10

)1−β
(24)

Solving for pN using (23) then yields

p∗N = δ+g
β

(
α
δ+g

) 1−β
1−α

[
β(1−α)
α(1−β)

]1−β
(25)

Consider now Lemma 2, solving A(ω, p)y = x with respect to k using yT = gk + cT with

cT = (1− θ)pNcN/θ gives

k =
a10+

(1−θ)pNcN
θ

(a11a00−a10a01)
a00(1−ga11)+ga10a01

(26)

with

a00 = (1−β)pNω10

δ+g , a10 = pNβ
δ+g ,

a01 = (1−α)ω10

δ+g , a11 = α
δ+g .

(27)

Solving A(ω, p)y = x with respect to yN using cN = yN gives:

cN =
1−a01

(
gk+

(1−θ)pNcN
θ

)
a00

(28)
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Using (26) into (28) we find

c∗N = 1−ga11
a00(1−ga11)+ga10a01+

(1−θ)p∗
N
a01

θ

with p∗N as given by (25). We then derive c∗T and k∗.

5.2 Proof of Proposition 2

Linearizing the dynamical system around (c∗N , k
∗, p∗N ) gives the Jacobian matrix J :

J =

 ∂yT
∂k − g −

∂cT
∂k

∂yT
∂pN
− ∂cT

∂pN

0 1
θpN

∂r
∂pN

 ≡ ( J1 J2
J3 J4

)
(29)

with ∂yN
∂k = ∂r

∂pN
.

Since the optimization program (10) has an Hamiltonian structure, and as initially proved

by Kurz [6] and Levhari and Liviatan [7], if λ is a characteristic root then δ − λ is also a

characteristic root. This is confirmed by showing that T = δ.

Note that from Lemma 1 we can also derive the sectoral demands for capital and labor

as functions of the capital stock and the production of the non-tradable good, namely lj =

lj(k, yN ), kj = kj(k, yN ), j = N,T , with cN = yN . The optimal amount of the tradable good

can be also expressed as:

yT = T (k, yN ) = kT (k, yN )αlT (k, yN )1−α

and from the envelope theorem, we get: r = Tk(k, yN ) and pN = −TyN (k, yN ). From Lemmas

1 and 2, we obtain the following derivatives:

∂r
∂pN

= ∂yN
∂k = ∂cN

∂k = − a01
a11a00−a10a01 ,

∂yT
∂k = a00

a11a00−a10a01

Using the input coefficients (7) then yields at the steady state

∂r
∂pN

= ∂yN
∂k = ∂cN

∂k = (δ+g)(1−α)
pN (β−α) ,

∂yT
∂k = − (δ+g)(1−β)

β−α (30)

Morever, using cT = (1− θ)pNcN/θ we have

∂cT
∂k = 1−θ

θ pN
∂cN
∂k

(31)

From the Jacobian matrix (29), we then derive

T = δ + ∂yT
∂k − (δ + g) + pN

∂cN
∂k

and we conclude from (30)

∂yT
∂k − (δ + g) + pN

∂cN
∂k = 0

It follows therefore that T = δ. We finally conclude that, because of the triangular structure

of the Jacobian matrix, the two characteristic roots are real and distincts.

10



5.3 Proof of Proposition 3

We have already proved that the Trace of the Jacobian matrix satisfies T = δ. Let us now

compute the Determinant. Using (30) we get

1
θpN

∂r
∂pN

= (δ+g)(1−α)
β−α

∂yT
∂k − g −

∂cT
∂k = 1

θ
(δ+g)(1−α)

α−β + δ
(32)

We then derive

Dθ = 1
θ
(δ+g)(1−α)

β−α

[
1
θ
(δ+g)(1−α)

α−β + δ
]

= − 1
θ2

(δ+g)(1−α)
(β−α)2 [(δ + g)(1− α) + θδ(α− β)]

(33)

We then derive that if α > β then Dθ < 0 for any δ. When β > α, Dθ < 0 if and only if

(δ + g)(1− α) + θδ(α− β) = δh(θ) + g(1− α) > 0 with h(θ) = 1− α(1− θ)− θβ (34)

Straightforward computations then show that if β > α, g(0) = 1 − α > g(1) = 1 − β > 0

with g′(θ) = α− β < 0 for all θ ∈ [0, 1]. It follows that g(θ) > 0 for all θ ∈ [0, 1] and Dθ < 0.

The steady state is therefore a saddle-point for any capital-intensity difference between the

tradable and non-tradable sectors and for any δ ≥ 0.

5.4 Proof of Proposition 4

Choosing again the tradable good as the numéraire, i.e. p̃T = 1, we define from the tech-

nologies (4) the following Lagrangian

L̃ = ATk
α
T l

1−α
T + p̃N

[
ANk

β
N l

1−β
N − ỹN

]
+ r̃ [k − kN − kT ] + w̃ [1− lN − lT ]

with p̃N , r̃ and w̃ the price of the tradable good, the interest rate and the wage rate, all in

terms of the price of tradable good. The first-order conditions give

r̃ = βp̃NANk
β−1
N l1−βN = αATk

α−1
T l1−αT

w̃ = (1− β)p̃NANk
β
N l
−β
N = (1− α)ATk

α
T l
−α
T

(35)

Compared to the expression of the Lagrangian L we clearly have the following relationships:

pN = p̃NAN
AT

, r = r̃
AT

and w = w̃
AT

with L = L̃/AT . Proceeding as in the proof of Proposition 1, we get:

ω̃10 = r̃
w̃ = β

1−β
lN
kN

= α
1−α

lT
kT

r̃ = βp̃NAN

(
1−β
β ω̃10

)1−β
= rAT = (δ + g)AT

(36)

which gives

ω̃10 = β
1−β

(
AT (δ+g)
βp̃NAN

) 1
1−β (37)

Considering the first-order conditions (35), we get

βp̃NAN

(
lN
kN

)1−β
= ATα

(
lT
kT

)1−α
⇔ βp̃NAN

(
1−β
β ω̃10

)1−β
= ATα

(
1−α
α ω̃10

)1−α (38)
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Solving for p̃N using (37) then yields

p̃∗N = AT (δ+g)
βAN

[
β(1−α)
α(1−β)

(
α
δ+g

) 1
1−α
]1−β

We then derive

˙̃p∗T
p̃∗T

= ȦN
AN
− ȦT

AT
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