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Abstract

We show that least squares cross-validation (CV) methods share a
common structure which has an explicit asymptotic solution, when the
chosen kernel is asymptotically separable in bandwidth and data. For
density estimation with a multivariate Student t(ν) kernel, the CV cri-
terion becomes asymptotically equivalent to a polynomial of only three
terms. Our bandwidth formulae are simple and non-iterative (leading
to very fast computations), their integrated squared-error dominates
traditional CV implementations, they alleviate the notorious sample
variability of CV, and overcome its breakdown in the case of repeated
observations. We illustrate with univariate and bivariate applications,
of density estimation and nonparametric regressions, to a large dataset
of Michigan State University academic wages and experience.
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1 Introduction

Let {xi}ni=1 be an i.i.d. sequence of the unvariate r.v. x, drawn from a density
f that is a continuous function. The kernel density estimator introduced by
Rosenblatt (1956) is

f̂(u) =
1

nh

n∑

i=1

K

(
u− xi
h

)
,

where h is the bandwidth and K is the kernel, and we can use the scaled ker-
nelsKh(u−x) = h−1K(h−1 (u− xi)) to rewrite f̂(u) = n−1

∑n
i=1Kh(u−xi).

The asymptotic expectation and variance of this estimator can be calculated,
under the usual regularity conditions, leading to the asymptotic mean inte-
grated squared error (AMISE)

AMISE =
h4

4
k221I2 +

1

nh
k02, (1)

where

kij =

∫ ∞

−∞
tiK(t)j dt, Ij =

∫ ∞

−∞
f (j)(u)2 du,

the superscript (j) denoting the j-th derivative of the function. Minimizing
the AMISE leads to

h0 = k
1/5
02 (nk221I2)

−1/5 (2)

and to the Epanechnikov kernel Kh(t) = 1|t|<h
√
53(h

2 − t2/5)/
(
4
√
5h3
)
, the

indicator function 1K returning 1 if condition K is satisfied and 0 otherwise.
The multivariate generalization of the above results is in Subsection 4.2.
These solutions are deterministic, but contain the unknown I2.

It is widely recognized that a variety of kernels have good asymptotic
efficiencies compared to the Epanechnikov kernel, whereas the choice of
the bandwidth is crucial. For example, using the Gaussian instead of the
Epanechnikov, the AMISE is multiplied by a factor of (6

√
(π/125))−4/5 ≈

1.04, implying a relative loss of only 4% and an absolute loss that vanishes at
the rate of n−4/5. Moreover, this asymptotic optimality of the Epanechnikov
kernel need not hold in finite samples and when the optimal h0 is replaced
by an estimate.

Plug-in methods substitute estimates for the remaining unknown quan-
tity I2 of (2) by using a nonparametric estimate, as in Hall and Marron
(1987) or Jones and Sheather (1991); but they can go as far as replacing f
in I2 by a Gaussian density, a method commonly referred to as the rule of
Silverman (1986). Instead, Rudemo (1982) and Bowman (1984) introduced
the least squares cross-validation (CV) method to determine the bandwidth
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that minimizes the integrated squared error (ISE) asymptotically. The for-
mula for the ISE is

ISE =

∫ ∞

−∞
(f̂(u)−f(u))2du =

∫ ∞

−∞
f(u)2du+

∫ ∞

−∞
f̂(u)2du−2

∫ ∞

−∞
f̂(u)f(u)du,

(3)
where all three components are assumed finite with probability 1. The first
integral in (3) does not affect the procedure and can be omitted from the
optimization. The second integral is in terms of the data (known) and the
h over which the optimization is conducted. However, the last one contains
both the unknown density and h. CV overcomes this problem by considering
an alternative criterion that has the same expectation as the ISE and is based
on a resampling scheme. The validity of this method relies on a strong result
by Stone (1984) which shows that the ISE with its optimal h (unknown in
practice) and the ISE with h obtained by CV coincide asymptotically. But
the speed of convergence is rather slow. The method is said to suffer from a
great deal of sample variability, and it is costly to compute for large samples.

This CV criterion is an unbiased estimator of the mean integrated squared
error (MISE), and we shall refer to it as unbiased CV (UCV) to stress this.
The biased CV (BCV) criterion proposed by Scott and Terrell (1987) is a
biased estimator of the MISE, but it reduces the sample variability of the
UCV criterion. It was derived as a method of estimating the unknown in-
tegral I2 in (2), and it leads to a minimum of the same AMISE objective
function. However, Scott (2015, p. 179) noted that “BCV performed poorly
for several difficult densities without a very large dataset.”

The BCV of Scott and Terrell (1987) was followed by a number of al-
ternative BCVs; including the modified CV of Stute (1992), the smoothed
CV (SCV) of Hall et al. (1992) and its extension in Jones et al. (1991). The
latter is particularly interesting because it derives the functional form of an
additional bandwidth that helps CV achieve the fastest rate of convergence
relative to h0, a rate that was established by Hall and Marron (1991) as
n1/2. SCV was extensively studied for multivariate density estimation in
Duong (2004).

The CV method was applied to contexts other than density estima-
tion. It is the main method for determining h in kernel regression models
as illustrated in Muller (1987) and Li and Racine (2006, pp. 66–72). (The
Nadaraya-Watson nonparametric regression formula is an estimate of the
conditional expectation obtainable from joint densities.) Robinson and Moyeed
(1989) have investigated the efficiency of various CV methods for spline
smoothing regression with the objective to get a better trade-off between fit
and smoothness. Other applications cover the determination of bandwidths
in the estimation of spectra (such as in Velasco (2000)), the widespread
Newey and West (1987) method that requires the estimation of spectra at
the origin, as well as the more recent one by Robinson (2005).
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None of the three CV methods introduced above give an explicit solution
for their optimal h. We shall show that there is a common structure to all
these CV methods, and we will use this to provide an explicit solution for
their bandwidths. Furthermore, we conjecture that this structure extends
to other CV problems where the objective functions can be written, locally
to the optimum, as polynomial approximations in terms of h and h−1 upon
choosing kernels from the class of “separable” kernels that we will define in
the next section. The solutions we obtain are explicit (hence much quicker,
by a factor of 20 in the univariate case), are more ISE-efficient than existing
solutions, and solve two of the recognized problems of CV methods: their
excess variability and their failure in the case of repeated observations.

2 Method for explicit solution of bandwidths

CV criteria necessitate the calculation of the
∫∞
−∞ f̂(u)2du seen in (3), which

can be problematic if done numerically. The calculation involves a convolu-
tion that we solve explicitly here as a first step of our approach. The second
step is to optimize the resulting criterion, and an explicit solution is allowed
by a class of kernels that we introduce. These explicit analytical formulae
will provide the speed, ISE efficiency and stability, and robustness to ties
discussed earlier.

Let ∗ denote the convolution symbol. UCV, BCV, and their variants
require the calculation of

K(q) ∗K(r), (4)

where q, r ∈ Z0,+, the nonnegative integers. Define Dh = Kh −K0, where
K0 is the Dirac delta function. SCV and its variants introduce an additional
kernel L with bandwidth g, now requiring

Dh ∗Dh ∗ Lg ∗ Lg, (5)

where Lg is the scaled version of kernel L such that Lg(t) = g−1L(g−1t),

the SCV-optimal g taking the form ĝ ∼ Cnp/ĥ2 with C constant as n→ ∞
and p a constant to be detailed in Section 4. The notation an ∼ bn means
that limn→∞ an/bn = 1, while ĥ and ĝ denote bandwidths that solve the
optimization of a CV method. They are stochastic (unlike h0), hence the
hat.

There are two components to the solution. The first one is straightfor-
ward once we recall that the choice of a Gaussian kernel function φ has little
effect on asymptotic efficiency while allowing simple explicit solutions, in
which case we take K = L = φ to work out (4) and (5). To do so will
require the Hermite polynomials

Hem(t) =
(−1)m φ(m) (t)

φ (t)
= tm

1+⌊m/2⌋∑

j=0

(−m)2j
j!(−2t2)j

, (6)
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where m ∈ Z0,+, ⌊m/2⌋ denotes the integer part of m/2, and (−m)2j =∏2j
i=1 (−m+ i− 1) is Pochhammer’s symbol; see Abadir (1999) for more

details on Hem polynomials and their relation to the other type of Hermite
polynomials denoted by Hm. See also Aldershof et al. (1995) for uses of
these polynomials.

Lemma 1 For K = L = φ, (4) and (5) become, respectively,

(K(q) ∗K(r))(a) = (−1)q+rK√
2(a)Heq+r(a/

√
2)/

√
2q+r, (7)

(Dh ∗Dh ∗ Lg ∗ Lg)(a) = K√
(2h2+2g2)(a)− 2K√

(h2+2g2)(a) +Kg
√
2(a), (8)

where a is the argument of the convolution, Kb(t) = b−1K(b−1t) and Lb =
b−1L(b−1t).

The second component of the solution is to find a way to achieve asymp-
totic separability (in h and t) for a scaled kernel Kh(t). This will allow a
factorization of first-order conditions for h.

Definition 1 A scaled kernel Kh(t) is said to be asymptotically separable
in h and t if its expansion around h = 0

Kh(t) = hp2
∑

j≥m
(hp1)jψj(t) (0 < p1 <∞, |p2| <∞)

has a finite m ∈ Z. This is a Laurent series, which generalizes Taylor series
to allow for negative values of m and p2.

This condition of a finite m ∈ Z does not hold for φ, but it holds for
another kernel that can be made arbitrarily close to φ and that can be used
instead of φ now that the convolutions have been worked out. Consider a
Student t(ν) kernel, K(t) = cν/(1 + t2/ν)(ν+1)/2 with

cν =
Γ(ν+1

2 )√
(πν)Γ(ν2 )

, k21 =
ν

ν − 2
, k02 =

Γ
(
ν
2 + 1

2

)
Γ
(
ν
2 + 1

4

)
Γ
(
ν
2 + 3

4

)√
2

ν
3
2Γ
(
ν
2

)3√
π

from Lemma 2 of the Supplementary Material. The Gaussian is the limiting
t(∞) case, but ν = 30 makes the two virtually indistinguishable in practice.
The scaled version of t(ν) is

Kh(t) =
cν

h(1 + t2/(νh2))(ν+1)/2
=

cν
(h2 + t2/ν)(ν+1)/2

hν . (9)

As ĥ = Op(n
−1/5)

p−→ 0, (9) becomes asymptotically separable in t and h

since Kh(t) = cν
(
t2/ν

)−(ν+1)/2
hν
(
1 +O(h2)

)
as h → 0 with t 6= 0 and ν

finite, as implied by the binomial expansion. This asymptotic separability
for small h does not hold in the Gaussian ν = ∞ case, but it nevertheless
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holds for any fixed large ν. This will allow subsequent derivations to give an
explicit asymptotic formula for CV’s solutions ĥ. The only available expan-
sion for the Gaussian kernel is exp(−t2/(2h2)) = 1 − t2/(2h2) + . . . , which
has m = −∞ in Definition 1 above, thus failing the required separability
criterion on m. To use the terminology of complex analysis, h = 0 is an “es-
sential singularity” of the function. The binomial expansion of the Student
t(ν) kernel does not suffer this drawback, even for any arbitrarily large but
finite ν.

Separability applies to many other kernels, including the AMISE-optimal
Epanechnikov

Kh(t) = 1|t|<h
√
5

3

4
√
5

(
1

h
− t2

5h3

)
.

It is not only asymptotically separable as h→ 0, but also exactly separable:
no series expansion of a function is needed to separate h and t in h−1 −
h−3t2/5. However, it is not regular because the support depends on h, but
the assumption of continuity of the variate will get around the regularity
issue. The case of the Epanechnikov kernel is treated in the Supplementary
Material.

3 Univariate setup and illustration of simplified

solution

3.1 UCV criterion

The first step of the UCV procedure is to delete one observation at a time,
say xj (j = 1, . . . , n), then calculate the usual kernel estimator based on the

remaining n − 1 data points as f̂−j(u) = (n − 1)−1
∑

i 6=jKh(u − xi). The
last integral in the ISE in (3) is an expectation which can be estimated by
f̂n−1(x;h) = n−1

∑n
j=1 f̂−j (xj) = n−1(n − 1)−1

∑n
j=1

∑
i 6=jKh(zij), where

x = (x1, . . . , xn)
⊤ and zij = xj −xi. UCV minimizes, with respect to h, the

sum S = S1 + S2 + S3, where

S1 =

∫ ∞

−∞
f(u)2du, S2 =

∫ ∞

−∞
f̂(u)2du, S3 = −2f̂n−1(x;h).

This procedure is justified by the fact that E(S) = E(ISE), the latter being
the definition of the MISE. Since S1 > 0 and does not depend on n, it does
not tend to 0 as n→ ∞ and

S2 + S3
p−→ −S1 < 0 (10)

by the consistency of f̂ .
Using Lemma 1, we can work out S2 = n−1Kh

√
2(0) +

2n−2
∑n

j=1

∑
i>j Kh

√
2(zij), where we separated out the term having i = j
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and used the fact that K is an even function of zij to rewrite the range of
the inner summation (

∑
i 6=j = 2

∑
i>j). Using n/(n− 1) = 1 +O(1/n),

S2 + S3 =
Kh

√
2(0)

n
+

2 +O(1/n)

n2

n∑

j=1

∑

i>j

[
Kh

√
2(zij)− 2Kh(zij)

]
, (11)

where the first fraction is deterministic and of order 1/(nh). We now apply
the second idea of the previous section, separable kernels, in order to tackle
the optimization.

3.2 Limiting solution for simplified UCV

From (9), Kh
√
2(0) = cν/(h

√
2). Applying (10) to (11), and since the UCV-

optimal h is ĥ = Op(n
−1/5), it follows that the first term of (11) drops

out asymptotically and the second term has a strictly negative and finite
probability limit. This term that we drop (in this subsection only) is often
called “diagonal” (i = j) or “nonstochastic”. In this subsection, we will
therefore minimize

R = 2
n∑

j=1

∑

i>j

Kh
√
2(zij)− 4

n∑

j=1

∑

i>j

Kh(zij), (12)

where R/n2
p−→ −S1 < 0. The objective function (12) with a t(ν) kernel

becomes

R = 2cνh
ν

n∑

j=1

∑

i>j

[
2ν/2

(
2h2 + z2ij/ν

)−(ν+1)/2 − 2
(
h2 + z2ij/ν

)−(ν+1)/2
]
.

(13)
A substitution inside this double sum leads to the same UCV-optimal
asymptotic solution:

Proposition 1 For Student t(ν) kernels and q ∈ R0,+, define the function

yn(q; ĥ) =

n∑

j=1

∑

i>j

(ĥ2 + z2ij/ν)
−q−(ν+1)/2. (14)

If a plug-in bandwidth, denoted by ĥp and satisfying ĥp = Op(n
−1/5), is used

in yn(q; ĥp) only, then we get consistency of f̂ at the same rate achieved by
the UCV bandwidth.

Exploiting the asymptotic invariance of the yn(q; ·) function, we can
rewrite the solution of optimizing R (see the first-order condition in the
proof of Proposition 1) as

ĥ =




ν
[
2ν/2yn(0; ĥp

√
2)− 2yn(0; ĥp)

]

2 (ν + 1)
[
2ν/2yn(1; ĥp

√
2)− yn(1; ĥp)

]




1/2

, (15)
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where the RHS makes use of plug-ins ĥp satisfying ĥp = Op(n
−1/5). By the

formulation of R in (13) and the asymptotic invariance of yn(q; ·), we can
verify that ĥ of (15) is of the same order as

√
(h−ν/h−ν−2), i.e., same order

as h to be optimized. For UCV, this is Op(n
−1/5).

Our method of solution can therefore be viewed as combining plug-in and
CV approaches to get an explicit closed-form solution for the CV optimiza-
tion problem. As our Proposition 1 shows, this entails no loss of asymptotic
efficiency, and this will be seen to hold very well also for finite samples in
the simulations of the Supplementary Material. Furthermore, as we will see
with other more sophisticated CV methods below, our approach will enable
us to achieve good performance that is theoretically attainable but has been
elusive in practice so far because of the need to estimate unknown constants.

We now derive a plug-in to use as ĥp. We could substitute the rule of

thumb ĥ = 1.06σ̂n−1/5 of Silverman (1986) mentioned before (3), with σ̂2

denoting the sample variance of {xi}ni=1. A more elaborate version would use
again (2) but with f replaced by a Student density instead of the Gaussian.
The ingredients for this are in Lemma 2 of the Supplementary Material,
giving for ν > 2

ĥS =

(
4 (1− 2/ν)9/2 (ν − 3/16)2 (ν + 17/8) (ν + 5/2) (ν + 7/2)

3 (ν − 1/4) (ν + 1)2 (ν + 3)2

)1/5

σ̂n−1/5

(16)

with limν→∞ ĥS/
(
σ̂n−1/5

)
= (4/3)1/5 ≈ 1. 06 implying Silverman’s rule as

a special case.
By R/n2

p−→ −S1 < 0, the numerator and denominator in (15) should
both be negative at the optimum, thus restricting the allowable solutions for
h. Note also that z2ij/ν = (xj − xi)

2 /ν, appearing in yn(q; ĥ) of (14), is a
measure of distance between the data points. It is quadratic because of the
adoption of a spherical p.d.f. as a kernel, and this applies more generally
to other spherical kernels. In particular, the Epanechnikov kernel which is
both spherical and separable leads to similar derivations whose results are
in the Supplementary Material.

The combination between plug-in and CV approaches has been used
also in Mammen et al. (2011). They introduce a bandwidth based on
the weighted average of a plug-in method and a fully iterated CV, using
Epanechnikov, quartic, and Gaussian kernels. The empirical intuition is
that plug-in methods oversmooth while cross-validation ones undersmooth,
and their argument for considering their combination is the important ob-
servation that practical implementation is crucial in achieving the theoret-
ical potential of a method. However, they show that their asymptotic best
weighted-average solution does not perform as well as hoped in small sam-
ples, both in term of average ISE and variability. In the Supplementary
Material, our simulations show that both our Student plug-in ĥS and our
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CV solution manage to beat usual methods available in standard packages
both in term of ISE and of variability. Our Proposition 1 assessed the non-
linear combination of plug-in and CV, where the asymptotic optimality of
our combination is now proved for UCV (albeit at UCV’s suboptimal rate
of convergence) and will similarly be established for SCV below (at the best
rate of n−1/2).

Other attempts have been made to improve the slow convergence rate of
cross-validation methods. Using a kernel made of the linear combination of
two Gaussian kernels, Savchuk et al. (2010) manage to reach the improved
speed of n−1/4. Their kernel is robust to rounding (ties in the data), but this
implies a constrained choice for the two parameters necessary to calibrate
their kernel. Our Student kernel can also be seen as a mixture (a Student
density is obtained as an infinite mixture of Gaussians by a χ2 mixing den-
sity), but with only one parameter ν to determine. Our kernel is also usable
for SCV with its optimal n−1/2 rate of convergence, as we shall see. In ad-
dition, the applications in Section 5 will show that our method is robust to
rounding.

3.3 SCV criterion

Having analyzed UCV, we now introduce SCV. Jones et al. (1991) estimate
the integrated squared bias

∫
(Kh ∗ f − f)2 (or equivalently

∫
(Dh ∗ f)2) by

smoothing this particular appearance of f , effectively a plug-in that uses a
second kernel L and bandwidth g. They also combine this with the option
of using the idea of Jones and Sheather (1991), in which case they set an
indicator function δ = 1 below (δ = 0 otherwise). The result is the SCV
objective function

Ss =
k02
nh

+
δ

n
(Dh ∗Dh ∗ Lg ∗ Lg) (0) +

1

n2

n∑

j=1

∑

i 6=j

(Dh ∗Dh ∗ Lg ∗ Lg) (zij) ,

(17)
where 0 and zij are the arguments of the respective convolutions. They show
that the asymptotically-optimal p in g ∼ Cnp/h2 is p̂ = −23/45 if δ = 1 or
p̂ = −44/85 if δ = 0, but the constant C depends on the unknown f again.
They experiment with a couple of plug-in methods to estimate C, but they
do not work well and they will not be necessary in the case of our method
where we optimize with respect to both h and g.

The case of δ = 1 achieves the best n−1/2 rate for the relative distance
between the values of h minimizing MISE and Ss, while it is the slightly
slower rate of n−8/17 that is obtained if δ = 0. Note that ĝs dominates ĥs,
where these are the optimizers of Ss; e.g., if we take p̂ to be −1

2 henceforth,

then ĝs = Op(n
−1/10) dominates ĥs = Op(n

−1/5). Nevertheless, the argu-

ment used for ĥ in connection with the Student kernel in Section 2 applies
to ĝs as well.

9



Although the n−1/2 rate is achieved by SCV, the best possible multiplica-
tive constant established in Fan and Marron (1992) is not quite reached by
the limiting variance of the normalized ĥs. Kim et al. (1994) modify the
method to achieve this lower bound, but their results show that samples as
big as n = 1, 000 are not big enough to reach these asymptotics and they say
(p.120) that their method is “mostly of theoretical interest”. We therefore
do not include their extension.

4 General solution for UCV and SCV

In the first subsection, we introduce the multivariate setup and give the
resulting bandwidths that optimize the UCV and SCV criteria. They require
a generalization of the plug-ins seen earlier to the multivariate case, which
is done in the second subsection.

4.1 Solution of UCV and SCV bandwidths for multivariate

kernels

Let the bandwidth matrix be H = h2I, where I is the identity matrix.
We do not tackle directly the case of H positive definite in full generality,
which would require an additional 1

2d (d+ 1)− 1 bandwidths to be derived.
However, we will do so indirectly: we recommend orthogonalizing and nor-
malizing the data first, then estimating the bandwidth as in this section, and
finally reversing the orthonormalization. We did this in the applications of
Section 5, and we will discuss both there and here below the generalization
that it implies for H. In this section, x now refers to the d×1 variate, rather
than its n × d sample matrix which is X = (x1, . . . ,xn)

⊤, and we define
zij = xj − xi (whose elements are denoted by zij,m). The scaled kernel de-

fined as Kh(t) = h−dK(h−1t) is used to write f̂(u) = n−1
∑n

i=1Kh(u−xi).
The procedure for orthonormalization is as follows. Since the sample

variance matrix S is positive definite, S = QΛQ⊤ and the square root of
the matrix is the symmetric S1/2 = QΛ1/2Q⊤, with Λ the diagonal matrix
of positive eigenvalues of S, the columns ofQ contain the orthonormal eigen-
vectors of S, and QQ⊤ = I. The orthonormalization is then y = S−1/2x

which has v̂ar(y) = S−1/2v̂ar(x)S−1/2 = I, where S−1/2 = QΛ−1/2Q⊤; see
Abadir and Magnus (2005) for matrix functions. (In general, the compo-
nents of y are uncorrelated but mutually dependent.) Under general condi-
tions, the sample variance is a consistent estimator of var(x) when it exists.
Our paper is about asymptotically-optimal bandwidth formulae. These can
no doubt be refined, but further support for our approach can be seen in the
convergence results cited in the multivariate section of the Supplementary
Material where we also have bandwidth formulae for the case of product
kernels, in addition to the ones below which are for multivariate kernels.
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The scaled multivariate t(ν) kernel is

Kh(t) = cν,d |H|−1/2

(
1 +

1

ν
t⊤H−1t

)−(ν+d)/2

= cν,dh
ν

(
h2 +

1

ν

d∑

m=1

t2m

)−(ν+d)/2

,

where cν,d = (πν)−d/2 Γ
(
ν+d
2

)
/Γ
(
ν
2

)
generalizes the univariate cν = cν,1.

In the case of a spherical multivariate kernel, such as here, the quadratic
form in t shows that our procedure (orthonormalizing the data first) could
be alternatively interpreted as having H proportional to the sample’s vari-
ance matrix S, since y⊤y = x⊤S−1x in terms of the original data x. This
equivalence will not hold for the product kernels in the Supplementary Ma-
terial, hence the general setup (of orthonormalizing the data first then using
H = h2I) introduced in this section.

Theorem 2 Let ĥ denote the solution of a CV-optimal bandwidth, then
we use ĥa to denote our asymptotic solution satisfying limn→∞ ĥa/ĥ = 1
and ĥaa the leading term of its asymptotic expansion. Take plug-ins ĥp, ĝp
satisfying ĥp = O(n−1/(4+d)) and ĝp = O(n−1/(6+d)).
(a) For UCV, with yn(q;h) =

∑n
j=1

∑
i>j(h

2 + 1
νz

⊤
ijzij)

−q−(ν+d)/2, letting

α1 = 2−1−d/2dn,

α2 = ν
[
2ν/2yn(0; ĥp

√
2)− 2yn(0; ĥp)

]
, α3 = −2 (ν + d)

[
2ν/2yn(1; ĥp

√
2)− yn(1; ĥp)

]
,

we have

ĥa =

(
α1

α2 + α3ĥ2p

)1/(ν+d)

and ĥaa = (−α2/α3)
1/2 . (18)

(b) For SCV, with yn(q;h, g) =
∑n

j=1

∑
i>j(h

2 + 2g2 + 1
νz

⊤
ijzij)

−q−(ν+d)/2,
letting

k02,d =

(
ν

2ν + d

)d/2

(
(πν)−d/2 Γ

(
ν+d
2

)
/Γ
(
ν
2

))2

(π (2ν + d))−d/2 Γ (ν + d) /Γ
(
ν + d

2

) , (19)

α1 =
k02,ddn

4cν,d
+
δdn

2

(
(2 + 2n1/5)−1−d/2 − (1 + 2n1/5)−1−d/2

)
,

α2 = ν
[
(2 + 2n1/5)(ν−2)/2yn(0; ĥp

√
2, ĝp)− (1 + 2n1/5)(ν−2)/2yn(0; ĥp, ĝp)

]
,

α3 = − (ν + d)
[
(2 + 2n1/5)ν/2yn(1; ĥp

√
2, ĝp)− (1 + 2n1/5)ν/2yn(1; ĥp, ĝp)

]
,

we have

ĥa =

(
α1

α2 + α3ĥ2p

)1/(ν+d)

and ĥaa =


 yn(0; ĥp

√
2, ĝp)− yn(0; ĥp, ĝp)(

1 + d
ν

) [
yn(1; ĥp

√
2, ĝp)− yn(1; ĥp, ĝp)

] − 2ĝ2aa




1/2

(20)
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with

ĝaa =


 yn(0; ĥp, ĝp)− yn(0; 0, ĝp)

2
(
1 + d

ν

) [
yn(1; ĥp, ĝp)− yn(1; 0, ĝp)

]




1/2

. (21)

The solutions ĥa require α2 + α3ĥ
2
p > 0, which is guaranteed in large

samples but might fail in small samples. If so, then the simpler asymptotic
approximations ĥaa should be used instead. As for the plug-ins, in the
univariate case we can use ĥp of (16), with ν > 2, and the simple

ĝp =
ĥp

n−1/5
n−1/10 = ĥpn

1/10 (22)

from the discussion following (17); but the multivariate case requires the
next subsection.

4.2 Multivariate plug-ins

Multivariate plug-in ĥp. We consider the multivariate version of h0 =

k
1/5
02 (nk221I2)

−1/5 of (2) and recalculate its components to get ĥp in the case of
a multivariate Student t(ν). Silverman’s rule for variates with unit variance
matrix is (

4

(2 + d)n

)1/(4+d)

(23)

which is approximated by Scott (2015) as n−1/(4+d) since the constant ratio

is always between 0.92 and 1.06 with limd→∞ (4/(2 + d))1/(4+d) = 1.
The multivariate AMISE generalizing (1) is

AMISE =
h4

4
k221I2 +

1

nhd
k02,d (24)

leading to the generalization of (2) as

h0 =

(
k02,dd

nk221I2

)1/(4+d)

, (25)

where k21 = ν/ (ν − 2) as before, k02,d is in (19), and I2 =∫
Rd(
∑d

j=1 ∂
2f(u)/∂u2j )

2 du now; e.g., see Hardle and Muller (2000). It re-
mains for us to work out I2 for a multivariate Student t(ν) plug-in density,
that is, our generalized Silverman’s rule now multivariate. From Lemma
2(iv),

I2 =
d (2 + d)

2ν+d+1π(d−1)/2bd+4ν2+d/2

Γ
(
ν+d
2 + 2

)
Γ
(
ν + d

2 + 2
)

(
Γ
(
ν
2

))2
Γ
(
ν+d+5

2

) (26)

∼ d (2 + d)

2d+2πd/2bd+4

(
1 +

(d+ 4) (d+ 2)

4ν

)(
1 +

d (d+ 4)

16ν

)(
1− (d+ 4) (3d+ 12)

16ν

)
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giving

lim
ν→∞

I2 =
d (2 + d)

2d+2πd/2σd+4
, lim

ν→∞
h0 =

(
4

(2 + d)n

)1/(4+d)

σ

which is Silverman’s multivariate rule (23) when the scalar variance matrix
is set to unity. Our extension of his rule for general ν follows from now
having all the ingredients for (25) as

ĥS =

(
k02,dd

n (1− 2/ν)2 Î2

)1/(4+d)

, (27)

where we use b̂ =
√
(1− 2/ν) in Î2 (with unit variance).

Multivariate plug-in ĝp. Theorem 3 of Duong and Hazelton (2005)
implies a ĝp for SCV, which is denoted there by g1. Its formula is quite
elaborate and requires combinations of sixth-order partial derivatives to be
evaluated, but Duong (2007) gives a numerical way to compute these, which
yields a ĝp that we can use here. Alternatively, a rough approximation can
be obtained by comparing their theorem’s g1 with (23) to get the relation

ĝp

ĥp
∼ n−1/(6+d)

n−1/(4+d)
= n

2
(6+d)(4+d) ,

as we had for the univariate case of (22), and we get

ĝp = ĥpn
2

(6+d)(4+d) . (28)

However, d = 1 here would give ĝp = ĥpn
2/35, an overestimate (by n3/70) of

ĝp compared to ĝp = ĥpn
1/10 of (22). Since the notation for orders of mag-

nitude is an inequality relation, we adopt the larger order ĝp = O(n−1/(6+d))
used in the optimality derivations of Duong and Hazelton (2005). For d = 1
in typical samples like 100 to 1000, the difference is 22% to 34%. Such dif-
ferences do not have a large impact in practice, as will be seen in the next
section, but much larger samples could require the calculations of Duong
(2007) instead of the rough (28).

5 Academic wages at Michigan State University

We provide an empirical application on the distribution of academic wages
and experience in the Michigan State University large database for 2012.
An additional practical advantage of our explicit formulae is to avoid the
troubles faced by existing CV approaches when there are some ties in the
data, in this case some equal salaries and/or experience.
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The database contains 6,402 entries (after deleting 22 lines which corre-
sponded to a null wage). Deleting duplicate names, as the same person can
be appointed by several departments, we were left with n = 5, 050 distinct
individuals earning 4,070 different salaries. The minimum yearly wage is
$3,600 (due to part time). The first quartile is $52,070. The mean wage
is $90,380. The 0.995 quantile is $298,832. The maximum yearly wage is
$952,400 and corresponds to a fixed-term contract on an endowed Chair of
the chemistry department. We want to make inference on the wage distri-
bution and then on the bivariate relation between wages and experience.

Table 1: Bandwidths for the wage dataset of Michigan State University
Student kernel Gaussian kernel

ν ĥS UCV ĥa SCV ĥa SCV ĥaa Silverman UCV SCV

4 5.513 2.84 5.828 5.353 8.95 1.17 4.15
6 7.182 4.204 7.485 6.970

This very asymmetric wage distribution has a Kolmogorov-Smirnov mea-
sured complexity equal to dn(x) = 0.120, as per the implementation details
in the Supplementary Material, which would suggest choosing between ν = 4
and ν = 6. In Table 1, we present our various implied choices for a band-
width and the alternative answers of the literature. They illustrate the
usual breakdown of standard UCV in the presence of repeated observations.
One of the assumptions needed for using a cross-validation method is that
the observations are draws from a continuous random variable. Otherwise,
the presence of a point mass piling up is detected by least squares cross-
validation, which then chooses a small bandwidth to deal with these point
masses. Wage datasets typically contain point mass piling up as several
individuals (those with the same qualification and experience) tend to have
similar wages. The value obtained for standard UCV corresponds to the
lower bound of the grid search of the Brent algorithm of bw.ucv in R. At
the other extreme, the Silverman rule bw.nrd in R gives the highest value.
(The plug in was obtained as bw.nrd(x) in R. The unmodified traditional
formula ĥ = 1.06σ̂n−1/5 produces an even larger value of 10.41.) Both rep-
resent unreliable window sizes, the effect of which is depicted on the second
panel of Figure 1, over-smoothing and under-smoothing.

None of our formulae suffer these drawbacks. Our UCV’s ĥa helps to
identify small details of the wage distribution, while our two integral-free
SCV ĥa and ĥaa (and also our generalized rule of Silverman ĥS) give a
smoother density. We use ν = 6 in the left panel of Figure 1 and see the
following features. The wage density presents several bumps that are well
identified when using SCV ĥaa which we find here to be the best method,
also because of the recommendation to use it for asymmetric densities (see
our simulations in Table 8 of the Supplementary Material). The two main
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Figure 1: Wage density estimation for Michigan State University in 2012

modes of the distribution are well identified with all our methods. Our
UCV’s ĥa, even if it provides slightly more variability than our other band-
widths, helps to identify the first very small mode of the distribution which
corresponds to 49 Teachers with a fixed-term contract and who are all paid
$22,870 a year. The second and main mode is at $43,374. It corresponds
mainly to Research Associates with a fixed-term contract. The third mode
is at $64,868. Around this mode, most wages correspond either to Special-
ists or to Assistant Professors with a labour contract which is either Not
Tenured/Continuing System or Tenure System Probationary. Around these
last two modes, there are several identical wages.

A Mincer equation explains log(wages) as a function of years of experi-
ence, with the idea that the yield of experience should decrease when ap-
proaching retirement. This relation is well depicted by a bivariate contour
for those who are tenured, which concerns 1,545 members of the university.
In Table 2, we present in a first block the H matrices obtained using the R
package ks of Duong (2022). It yielded unusual values for UCV because of
the presence of repeated observations. In a second block of Table 2, we pro-
vide the same quantities for our formulae based on ĥaa with a multivariate
Student kernel having ν = 6. The results are more in accordance with what
one would expect, unaffected by repeated observations. UCV corresponds
to some under-smoothing, while SCV is between the Student-generalized
plug-in and UCV.

The four plots reported in Figure 2 illustrate this relation between log-
wages and experience, as the contours are pointing up but flattening when
experience increases. This nonlinear relation is also seen from three non-
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Table 2: Bandwidth 2× 2 matrices for the tenured subsample
Plug-in UCV SCV

Duong ks

2.600 0.035 0.000 0.000 3.050 0.045
0.035 0.009 0.000 0.034 0.045 0.011

Student kernel ν = 6
4.280 0.024 2.880 0.016 3.518 0.020
0.024 0.006 0.016 0.004 0.020 0.005

Duong full H plug−in
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Figure 2: Bivariate density of log-wages and experience, using various meth-
ods and a multivariate kernel

parametric regressions for each plot, by taking a sequence of experience
levels (vertical lines) and calculating the mean, median (which is less sensi-
tive to outliers than the mean), and peak mode of the conditional densities
at each of these experience levels. The Nadaraya-Watson regression with
Silverman’s bandwidth turns out to be almost the same as the mean regres-
sion in the second plot in Figure 2, as expected from it being a conditional
expectation. The curves we get from our formulae are less volatile than
those obtained by other CV estimates, as indicated earlier, and we can see
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this here when we compare them with the standard SCV reported in the
first plot in Figure 2. Note that some of the crossovers of curves in Figure
2 can provide counterexamples to the mean-median-mode inequality, in the
case of a unimodal (or nearly so) conditional distribution, in addition to the
ones in Abadir (2005). We conclude by cautioning that this regression is
incomplete because other variables also determine log-wages in academia.
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Technical appendix

A Solution to univariate UCV, BCV, SCV

The solution details to the UCV, BCV, and SCV bandwidths are given in
three subsections.

A.1 UCV

Omitting only the term denoted by O(1/n) in (11), but not the first de-
terministic term which is now cν/(nh

√
2), similar derivations lead to the

first-order condition

n

2
√
2

= νĥν+1
u

[
2ν/2yn(0; ĥu

√
2)− 2yn(0; ĥu)

]
(29)

−2 (ν + 1) ĥν+3
u

[
2ν/2yn(1; ĥu

√
2)− yn(1; ĥu)

]
,

where ĥu is the UCV solution. As before, the content of the square brackets
can be approximated asymptotically by using ĥp. This makes (29) an equa-

tion of the form α1 = α2ĥ
ν+1 + α3ĥ

ν+3, which is easy to solve numerically.
An alternative form of writing α1 = α2ĥ

ν+1 + α3ĥ
ν+3 is

ĥ =

(
α1

α2 + α3ĥ2

)1/(ν+1)

, (30)

which can be approximated for ν > 2 by applying ĥ2p of (16) to the RHS of

(30), giving an explicit asymptotic formula for ĥ which we will call ĥa:

ĥa =

(
α1

α2 + α3ĥ2p

)1/(ν+1)

. (31)

This solution requires α2 + α3ĥ
2
p > 0, which is guaranteed in large sam-

ples but might fail in small samples. If so, then the simpler asymptotic
approximation (15), reexpressed as

ĥaa = (−α2/α3)
1/2 , (32)

should be used instead. Iterating (30), instead of using ĥ2p in (31), would
give the exact UCV solution except for the inconsequential approximation
of 1/ (n− 1) by 1/n in the objective function (11).
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A.2 BCV

Scott and Terrell (1987) optimize the AMISE and eventually arrive at their
BCV objective function (their equation (3.17)). In our notation,

Sb =
k02
nh

+
k221
4n2h

n∑

j=1

∑

i 6=j

(∫ ∞

−∞
K(2) (u)K(2) (u+ zij/h) du

)
,

where k02/ (nh) is a good estimator of the integrated variance in the MISE,
while the second part is the modified estimator of integrated squared bias
which achieves the stability of the BCV criterion relative to UCV. Using
Lemma 1 and He4(a) = a4 − 6a2 + 3 which is calculated from formula (6)
for Hermite polynomials, we get

Sb =
k02
nh

+
k221
8n2

n∑

j=1

∑

i>j

(
z4ij
4h4

−
3z2ij
h2

+ 3

)
Kh

√
2(zij), (33)

where K is an even function of zij , hence the range of the inner summation.
As before, using the Student t(ν) kernel (9) with h

√
2 instead of h, as

required for (33), we get

Sb =
k02
nh

+
cνk

2
21

8
√
2n2

n∑

j=1

∑

i>j

(
z4ij
4
hν−4 − 3z2ijh

ν−2 + 3hν

)
(h2+z2ij/(2ν))

−(ν+1)/2

(34)
and the exact first-order solution for ν > 4 is

8
√
2k02n

cνk
2
21

(35)

= ĥν−3
b

n∑

j=1

∑

i>j

((ν
4
− 1
)
z4ij − 3(ν − 2)z2ij ĥ

2
b + 3νĥ4b

)(
ĥ2b + z2ij/(2ν)

)−(ν+1)/2

−(ν + 1)ĥν−1
b

n∑

j=1

∑

i>j

(
z4ij
4

− 3z2ij ĥ
2
b + 3ĥ4b

)(
ĥ2b + z2ij/(2ν)

)−(ν+3)/2
,

where ĥb is the BCV solution. The same approach used in Proposition 1
about ĥ = Op(n

−1/5) indicate that this is essentially an equation of the form

α1 = α2ĥ
ν−3 + α3ĥ

ν−1, which leads to

ĥa =

(
α1

α2 + α3ĥ2p

)1/(ν−3)

. (36)

We can make the same remark as before concerning the positivity of α2 +
α3ĥ

2
p, but this time we have a supplementary restriction on the value of ν
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which should be greater than 4. In addition, like (32) was a simplification
of (31), here we have the simplifying asymptotic approximation

ĥaa = (−α2/α3)
1/2 . (37)

We use it instead of (36) whenever α2 + α3ĥ
2
p < 0.

A.3 SCV

Using Lemma 1 and the symmetry of the Student t(ν) kernels (we use the
same ν for K and L), we can work out the criterion explicitly as

Ss =
k02
nh

+
δcν
n
√
2

(
1√

(h2 + g2)
− 23/2√

(h2 + 2g2)
+

1

g

)
(38)

+
2cν
n2

[(
2h2 + 2g2

)ν/2
yn(0;h

√
2, g) − 2

(
h2 + 2g2

)ν/2
yn(0;h, g) + 2ν/2gνyn(0; 0, g)

]
,

where

yn(q;h, g) =
n∑

j=1

∑

i>j

(
h2 + 2g2 + z2ij/ν

)−q−(ν+1)/2
. (39)

Since ∂yn(0;h
√
2, g)/∂h = (h/g) ∂yn(0;h

√
2, g)/∂g and

∂yn(0;h, g)

∂g
=

2g

h

∂yn(0;h, g)

∂h
= −2 (ν + 1) g yn(1;h, g),

defining y†n(q;h, g) =
(
h2 + 2g2

)q−1+ν/2
yn(q;h, g) allows us to write the

exact first-order conditions for g and h, respectively, as

δn

25/2

(
1

(ĥ2s + ĝ2s )
3/2

− 25/2

(ĥ2s + 2ĝ2s )
3/2

+
1

ĝ3s

)
(40)

= ν
[
y†n(0; ĥs

√
2, ĝs)− 2y†n(0; ĥs, ĝs) + y†n(0; 0, ĝs)

]

− (ν + 1)
[
y†n(1; ĥs

√
2, ĝs)− 2y†n(1; ĥs, ĝs) + y†n(1; 0, ĝs)

]

and

k02n

4cν ĥ3s
+

δn

25/2

(
1

(ĥ2s + ĝ2s )
3/2

− 23/2

(ĥ2s + 2ĝ2s )
3/2

)
(41)

= ν
[
y†n(0; ĥs

√
2, ĝs)− y†n(0; ĥs, ĝs)

]
− (ν + 1)

[
y†n(1; ĥs

√
2, ĝs)− y†n(1; ĥs, ĝs)

]
,

where the terms on the RHS of (41) have already been calculated in (40).
Also, (41) can be used to simplify (40) by subtraction as

k02n

4cν ĥ3s
+

δn

25/2

(
23/2

(ĥ2s + 2ĝ2s )
3/2

− 1

ĝ3s

)
(42)

= ν
[
y†n(0; ĥs, ĝs)− y†n(0; 0, ĝs)

]
− (ν + 1)

[
y†n(1; ĥs, ĝs)− y†n(1; 0, ĝs)

]
.
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We shall consider solutions of (41) and (42).
As in Proposition 1, the asymptotic invariance of the yn(q; ·, ·) function

here allows us to replace its arguments ĥs, ĝs by ĥp, ĝp, where ĥp is defined
in (16), and ĝp is defined as

ĝp =
ĥp

n−1/5
n−1/10 = ĥpn

1/10, (43)

hence replacing y†n(q; aĥs, ĝs) in (41) and (42) by (a2ĥ2s +
2ĝ2s )

q−1+ν/2yn(q; aĥp, ĝp) for all q and a here, leading to polynomial-
type first-order conditions, as we shall see by the end of this paragraph.
Furthermore, an asymptotic approximation for ĝs can be obtained from
(42) by dropping the LHS terms, and we get

ĝaa =


 yn(0; ĥp, ĝp)− yn(0; 0, ĝp)

2
(
1 + 1

ν

) [
yn(1; ĥp, ĝp)− yn(1; 0, ĝp)

]




1/2

, (44)

where we have used twice on the RHS (2+ ĥ2s/ĝ
2
s )

a = (2+Op

(
n−1/5

)
)a ∼ 2a,

a large-n asymptotic expansion that is more accurate for small a (i.e., small
ν). The corresponding asymptotic approximation for ĥs is obtained from
(41), where we apply the binomial expansion

(
2ĥ2s + 2ĝ2s

)a
=
(
ĥ2s + 2ĝ2s

)a
(
1 +

ĥ2s

ĥ2s + 2ĝ2s

)a

∼
(
ĥ2s + 2ĝ2s

)a
, (45)

yielding

ĥaa =


 yn(0; ĥp

√
2, ĝp)− yn(0; ĥp, ĝp)(

1 + 1
ν

) [
yn(1; ĥp

√
2, ĝp)− yn(1; ĥp, ĝp)

] − 2ĝ2aa




1/2

. (46)

An asymptotic solution that keeps the LHS of (41) can be obtained by using
(43) to write ĝ2p/ĥ

2
p = n1/5 and

k02n

4cν
+

δn

25/2

(
1

(1 + n1/5)3/2
− 23/2

(1 + 2n1/5)3/2

)
(47)

= ĥν+1ν
[
(2 + 2n1/5)(ν−2)/2yn(0; ĥp

√
2, ĝp)− (1 + 2n1/5)(ν−2)/2yn(0; ĥp, ĝp)

]

−ĥν+3 (ν + 1)
[
(2 + 2n1/5)ν/2yn(1; ĥp

√
2, ĝp)− (1 + 2n1/5)ν/2yn(1; ĥp, ĝp)

]
,

which is a polynomial of the form α1 = α2ĥ
ν+1 + α3ĥ

ν+3 yielding as before

ĥa =

(
α1

α2 + α3ĥ2p

)1/(ν+1)

(48)
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if we use the plug-in ĥp on the RHS. However, unlike before, it is not the

case that ĥaa of (46) equals
√
(−α2/α3), because of the presence of terms

like (a2 + 2n1/5)a that are due to g.

B Other kernels

There are three subsections here. First, we derive our method’s bandwidths
when one uses the separable Epanechnikov kernel. Second, we report a
simulation experiment to show that the Epanechnikov kernel is best for
estimating a density that is Gaussian, but that a Student kernel is better
in all other cases. This is why the main text reports the application of our
method to the Student kernel, and this Supplementary Material the rest.

Third, we derive Student kernels’ AMISE, which is needed to translate
AMISE-optimal bandwidths from one kernel to another. This result applies
to Epanechnikov and other kernels.

B.1 Epanechnikov kernel

UCV with Epanechnikov kernel. Derivations similar to (15) yield:

ĥ =



3
∑n

j=1

∑
i>j

(
1|zij |<

√
5ĥp

4
√
2− 1|zij |<

√
10ĥp

)
z2ij

10
∑n

j=1

∑
i>j

(
1|zij |<

√
5ĥp

2
√
2− 1|zij |<

√
10ĥp

)




1/2

. (49)

For ĥp based on Silverman’s rule but for the Epanechnikov case, we get

ĥp = 1.05σ̂n−1/5, which is almost the same as the normal’s.
Derivations for approximating UCV with the Epanechnikov kernel yield:

ĥa =




3
5

∑n
j=1

∑
i>j

(
1|zij |<

√
5ĥp

4
√
2− 1|zij |<

√
10ĥp

)
z2ij

n+ 2
∑n

j=1

∑
i>j

(
1|zij |<

√
5ĥp

2
√
2− 1|zij |<

√
10ĥp

)




1/2

, (50)

where n is replaced by 0 for the corresponding ĥaa.
BCV with Epanechnikov kernel. Derivations for approximating

BCV with the Epanechnikov kernel yield the first-order condition

ĥ6 =
1

217/2n

n∑

j=1

∑

i>j

1|zij |<
√
10ĥ

(
7z6ij − 110z4ij ĥ

2 + 396z2ij ĥ
4 − 120ĥ6

)
, (51)

where we have used k221 = 1 and k02 = 3/53/2. Terms can be collected as

ĥ =



∑n

j=1

∑
i>j 1|zij |<

√
10ĥ

(
7z4ij − 110z2ij ĥ

2 + 396ĥ4
)
z2ij

8
(
211/2n+ 15

∑n
j=1

∑
i>j 1|zij |<

√
10ĥ

)




1/6

, (52)
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and the corresponding solution ĥa is with ĥp plugged into the RHS.
SCV with Epanechnikov kernel. Derivations for approximating SCV

with the Epanechnikov kernel (with k02 = 3/53/2) yield:

ĝaa =

(
3

10

zn(ĥp, ĝp)− zn(0, ĝp)

a−1 + ζn(ĥp, ĝp)− ζn(0, ĝp)

)1/2

, (53)

ĥaa =

(
3

5

zn(ĥp
√
2, ĝp)− zn(ĥp, ĝp)

a0 + ζn(ĥp
√
2, ĝp)− ζn(ĥp, ĝp)

− 2ĝ2aa

)1/2

, (54)

ĝa =

(
3

10

zn(ĥp, ĝp)− zn(0, ĝp)

a0 + ζn(ĥp, ĝp)− ζn(0, ĝp)

)1/2

, (55)

ĥa =

(
3

10
(
1 + n1/5

) zn(ĥp
√
2, ĝp)− zn(ĥp, ĝp)

a1 + ζn(ĥp
√
2, ĝp)− ζn(ĥp, ĝp)

)1/2

, (56)

with aj =
(
j + 1 + 2n1/5

)3/2
n/5, ζn(h, g) =

∑n
j=1

∑
i>j 1|zij |<

√
5
√
(h2+2g2),

zn(h, g) =
∑n

j=1

∑
i>j 1|zij |<

√
5
√
(h2+2g2)z

2
ij .

B.2 Epanechnikov versus Student kernels in finite samples

The asymptotically-best kernel for optimizing the AMISE is the Epanech-
nikov kernel which is exactly separable. The following experiment shows that
this kernel is easily dominated in finite samples as soon as we depart from
the Gaussian case. Within our Monte Carlo framework of Section E below,
let us compute for each generating process: the ISE using an Epanechnikov
kernel with ĥ = 1.05 σ̂ n−1/5, and the ISE using a Student kernel with ĥS(ν̂)
of (16) with ν̂ obtained using our empirical rule of Table 6. Table 3 gives
the Monte Carlo mean (and standard deviation) of the ratio of these two
ISEs. The Epanechnikov kernel is the best kernel for estimating a Gaussian
density. However, as soon as we consider more complex processes, the Stu-
dent kernel becomes substantially more efficient and this gain persists even
as n increases.

This result demonstrates three things. First, our simple sample-based
procedure for choosing ν is efficient. Second, the improvements are increas-
ing as soon as we depart from the Gaussian case, these departures being
the most relevant cases when dealing with applications. Every try we made
with the Epanechnikov kernel proved to be inefficient, either with UCV or
SCV. Finally, and as a side-product, if the Student kernel with ĥS(ν̂) of (16)
manages to beat the Epanechnikov kernel in most cases, it means that ĥS of
(16) is a good initial plug-in to use as ĥp. In an unreported experiment, we

show that the generalized Jones and Sheather rule ĥJS of (76) does not bring
in any improvement, confirming the result of Proposition 1 which implies
that both give the same asymptotic outcome.
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Table 3: Comparing relative efficiency of Epanechnikov and Student kernels
Sample size 150 450 1000 1500
Gaussian N(0, 1) 0.91

(0.12)
0.92
(0.08)

0.92
(0.07)

0.92
(0.07)

Bimodal mix 0.5N(−1, 4/9) + 0.5N(1, 4/9) 1.34
(0.34)

1.35
(0.28)

1.31
(0.22)

1.31
(0.22)

Skewed mix 0.75N(0, 1) + 0.25N(3/2, 1/9) 1.47
(0.37)

1.58
(0.35)

1.66
(0.36)

1.66
(0.29)

Student t(3) 1.62
(1.28)

1.69
(1.01)

1.68
(0.99)

1.61
(0.66)

Lognormal LN(0, 1) 5.23
(2.04)

6.80
(2.26)

8.06
(2.18)

8.67
(2.19)

Figures represent the Monte Carlo mean of the ratio ISEEpan/ISEStud and its standard
deviation in small numbers below it. The ν̂ for the Student kernel was determined using
our rule of thumb of Table 6 of Section E below. The bandwidths follow Silverman’s rule,
generalized for each kernel.

B.3 AMISE for Student kernel, and implied exchange-rate

for other kernels

The following proposition works out the implication on AMISE of using a
Student t(ν) kernel.

Proposition 3 Within the class of Student t(ν) kernels, the AMISE is

(
41−ν

ν2 (ν − 2)
Γ

(
ν +

1

2

)2 Γ
(
1
2ν +

1
2

)2

Γ
(
1
2ν
)6

)2/5 (
h4

4
I2 +

1

nh

)
, (57)

whose leading term with respect to ν is

(
ν
(
1− 3

16ν

)4 (
1− 1

4ν

)2

4π (ν − 2)

)2/5(
h4

4
I2 +

1

nh

)
.

Here, h denotes the bandwidth of the canonical kernel of Marron and Nolan
(1989).

Proof 1 This follows by using the canonical kernels of Marron and Nolan
(1989), corrected by Abadir and Lawford (2004) for a typo, to write the
AMISE as

(
k202k21

)2/5
(
h4

4
I2 +

1

nh

)
. (58)

The term
(
k202k21

)2/5
varies with the kernel, but the subsequent term does

not. The result follows from k02 and k21 of Lemma 2.

The plot of the first factor of (57) is given in Figure 3, since the second
factor does not vary with ν. It shows that, for ν > 4, there is little loss of
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Figure 3: AMISE as a function of ν

relative efficiency from using any t(ν) including the normal. But this result
is obtained under the assumption that the choice of ν does not affect the
estimation of the unknown h in the second factor of (57), which is not the
case, especially in finite samples. Furthermore, as shown in Hall and Marron
(1987), minimizing the MISE leads to the deterministic bandwidth (2) con-
taining an unknown I2 whose estimation introduces an error which is domi-
nated by minimizing the ISE instead. To assess the net effect of introducing
a Student kernel on finite-sample performance, we needed to resort to the
simulations that we present below.

Proposition 3 implies the analytic formula for an exchange-rate table that
translates AMISE-optimal bandwidths from one kernel to another, which we
have calculated. We have conducted unreported simulations that show that
this exchange rate, however, does not extend to translating ISE-optimal
h’s, not even in large samples. This is another reason for us to require
simulations to compare CV-optimal bandwidths.

C Multivariate and product kernels

We do not pursue BCV solutions here because they underperformed in the
univariate case. We focus on the traditional UCV and the more modern
SCV. In the bivariate application to the Michigan dataset, we also applied
our formulae for product kernels and the results we got were only slightly
different from those for our multivariate kernels. The reason is that we are
dealing with the small dimension of d = 2; see the discussion of rates in
Subsection C.2 below. Note that both methods use the orthonormalization
procedure that we discuss before Theorem 2 in the main text, implying a
bandwidth matrix H that is proportional to the sample variance matrix.

27



The derivations of Subsections C.1 and C.3 below contain the results for
this Theorem 2, with the stated plug-ins obtained from Subsection 4.2 of
the main text.

C.1 UCV, multivariate kernel

With zij = xj − xi (whose elements are denoted by zij,m), we now have

S2 = n−1Kh
√
2(0) + 2n−2

n∑

j=1

∑

i>j

Kh
√
2(zij),

S2 + S3 =
Kh

√
2(0)

n
+

2 +O(1/n)

n2

n∑

j=1

∑

i>j

[
Kh

√
2(zij)− 2Kh(zij)

]

and we will drop O(1/n) as before but keep the diagonal element Kh
√
2(0)/n.

The scaled t(ν) kernel gives Kh
√
2(0) = 2−d/2cν,dh

−d and the objective func-
tion (up to constant scale)

2−1−d/2nh−d+hν
n∑

j=1

∑

i>j

[
2ν/2

(
2h2 +

1

ν
z⊤
ijzij

)−(ν+d)/2

− 2

(
h2 +

1

ν
z⊤
ijzij

)−(ν+d)/2
]

and exact first-order condition

2−1−d/2nd = νĥν+d
u

[
2ν/2yn(0; ĥu

√
2)− 2yn(0; ĥu)

]
(59)

−2(ν + d)ĥν+d+2
u

[
2ν/2yn(1; ĥu

√
2)− yn(1; ĥu)

]
,

where yn(q;h) =
∑n

j=1

∑
i>j(h

2 + 1
νz

⊤
ijzij)

−q−(ν+d)/2. As before, the same

asymptotic invariance applies to yn(q;h), but with ĥu = Op(n
−1/(4+d)) now,

allowing us to use ĥp in yn(q;h) in (59) whose form is now α1 = α2ĥ
ν+d +

α3ĥ
ν+d+2 and having the explicit asymptotic solution

ĥa = (α1/(α2 + α3ĥ
2
p))

1/(ν+d) (60)

and its asymptotic approximation is ĥaa =
√
(−α2/α3).

C.2 UCV, product kernel

Here we consider the case of multiplicative marginal t(ν) kernels. Sain et al.
(1994) show that this case of product kernels with common h for all dimen-
sions, Kh(t) = h−d

∏d
m=1K(h−1tm), leads to faster convergence in n when

the dimension d is larger: compared to the AMISE-minimizing h0, they
show that ĥu − h0 = Op(n

−(2+d)/(8+2d)) and ĥu/h0 = 1 + Op(n
−d/(8+2d)),

both rates improving and approaching n−1/2 for larger d.
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We now have the objective function (up to constant scale)

2−1−d/2nh−d+hνd
n∑

j=1

∑

i>j

[
2νd/2

d∏

m=1

(
2h2 + z2ij,m/ν

)−(ν+1)/2 − 2
d∏

m=1

(
h2 + z2ij,m/ν

)−(ν+1)/2

]

and first-order condition

2−1−d/2nd = νĥ(ν+1)d
u

[
2νd/2yn(0; ĥu

√
2)− 2yn(0; ĥu)

]
(61)

−2(ν + 1)ĥ(ν+1)d+2
u

[
2νd/2yn(1; ĥu

√
2)− yn(1; ĥu)

]
,

where yn(q;h) =
∑n

j=1

∑
i>j

∑d
m=1

(
h2 + z2ij,m/ν

)−q
/
∏d

m=1

(
h2 + z2ij,m/ν

)(ν+1)/2
.

The asymptotic invariance of yn(q;h) allows us to use ĥp in these,
to get an explicit asymptotic solution in (61) whose form is now
α1 = α2ĥ

(ν+1)d + α3ĥ
(ν+1)d+2. We get

ĥa = (α1/(α2 + α3ĥ
2
p))

1/(ν+1)d (62)

and ĥaa =
√
(−α2/α3).

Notice the power of ĥa in the cases of multivariate kernel versus product
kernel: 1/(ν+d) vs 1/(ν+1)d, the latter leading to a fraction closer to zero
when d is large. Although the yn(·) functions (and the alphas) are not the
same, they are of comparable orders of magnitudes as they are effectively
related to the value of the density at a given point.

C.3 SCV, multivariate kernel

As before, but with

k02,d =

(
ν

2ν + d

)d/2

(
(πν)−d/2 Γ

(
ν+d
2

)
/Γ
(
ν
2

))2

(π (2ν + d))−d/2 Γ (ν + d) /Γ
(
ν + d

2

)

of Lemma 2(ii),

Ss =
k02,d
nhd

+
δcν,d
n

((
2h2 + 2g2

)−d/2 − 2
(
h2 + 2g2

)−d/2
+
(
2g2
)−d/2

)

+
2cν,d
n2

[
(
2h2 + 2g2

)ν/2
yn(0;h

√
2, g) − 2

(
h2 + 2g2

)ν/2
yn(0;h, g) + 2ν/2gνyn(0; 0, g)]

where yn(q;h, g) =
∑n

j=1

∑
i>j(h

2 + 2g2 + 1
νz

⊤
ijzij)

−q−(ν+d)/2. Since
∂yn(0;h

√
2, g)/∂h = (h/g) ∂yn(0;h

√
2, g)/∂g and

∂yn(0;h, g)

∂g
=

2g

h

∂yn(0;h, g)

∂h
= −2 (ν + d) g yn(1;h, g),
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defining y†n(q;h, g) =
(
h2 + 2g2

)q−1+ν/2
yn(q;h, g) allows us to write the

exact first-order conditions for g and h, respectively, as

δdn

2

(
(2ĥ2s + 2ĝ2s )

−1−d/2 − 2(ĥ2s + 2ĝ2s )
−1−d/2 + (2ĝ2s )

−1−d/2
)

= ν
[
y†n(0; ĥs

√
2, ĝs)− 2y†n(0; ĥs, ĝs) + y†n(0; 0, ĝs)

]

− (ν + d)
[
y†n(1; ĥs

√
2, ĝs)− 2y†n(1; ĥs, ĝs) + y†n(1; 0, ĝs)

]

and

k02,ddn

4cν,dĥ
2+d
s

+
δdn

2

(
(2ĥ2s + 2ĝ2s )

−1−d/2 − (ĥ2s + 2ĝ2s )
−1−d/2

)

= ν
[
y†n(0; ĥs

√
2, ĝs)− y†n(0; ĥs, ĝs)

]
− (ν + d)

[
y†n(1; ĥs

√
2, ĝs)− y†n(1; ĥs, ĝs)

]
.

Simplifying the former by subtracting the latter,

k02,ddn

4cν,dĥ
2+d
s

+
δdn

2

(
(ĥ2s + 2ĝ2s )

−1−d/2 − (2ĝ2s )
−1−d/2

)

= ν
[
y†n(0; ĥs, ĝs)− y†n(0; 0, ĝs)

]
− (ν + d)

[
y†n(1; ĥs, ĝs)− y†n(1; 0, ĝs)

]
.

We now consider joint solutions of the last two equations.
As before, replacing y†n(q; aĥs, ĝs) by (a2ĥ2s + 2ĝ2s )

q−1+ν/2yn(q; aĥp, ĝp),
the RHS of the last equation gives

ĝaa =


 yn(0; ĥp, ĝp)− yn(0; 0, ĝp)

2
(
1 + d

ν

) [
yn(1; ĥp, ĝp)− yn(1; 0, ĝp)

]




1/2

(63)

and the one before it (without LHS)

ĥaa =


 yn(0; ĥp

√
2, ĝp)− yn(0; ĥp, ĝp)(

1 + d
ν

) [
yn(1; ĥp

√
2, ĝp)− yn(1; ĥp, ĝp)

] − 2ĝ2aa




1/2

(64)

and (keeping its LHS)

k02,ddn

4cν,d
+
δdn

2

(
(2 + 2n1/5)−1−d/2 − (1 + 2n1/5)−1−d/2

)
(65)

= νĥν+d
[
(2 + 2n1/5)(ν−2)/2yn(0; ĥp

√
2, ĝp)− (1 + 2n1/5)(ν−2)/2yn(0; ĥp, ĝp)

]

− (ν + d) ĥν+d+2
[
(2 + 2n1/5)ν/2yn(1; ĥp

√
2, ĝp)− (1 + 2n1/5)ν/2yn(1; ĥp, ĝp)

]

which is a polynomial of the form α1 = α2ĥ
ν+d+α3ĥ

ν+d+2 yielding as before

ĥa = (α1/(α2 + α3ĥ
2
p))

1/(ν+d) (66)

if we use the plug-in ĥp on the RHS.
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C.4 SCV, product kernel

We now have

Ss =
kd02
nhd

+
δcdν
n

((
2h2 + 2g2

)−d/2 − 2
(
h2 + 2g2

)−d/2
+
(
2g2
)−d/2

)

+
2cdν
n2d

[(
2h2 + 2g2

)νd/2
yn(0;h

√
2, g) − 2

(
h2 + 2g2

)νd/2
yn(0;h, g) + 2νd/2gνdyn(0; 0, g)

]
,

where yn(q;h, g) =
∑n

j=1

∑
i>j

∑d
m=1(h

2 + 2g2 + z2ij,m/ν)
−q/

∏d
m=1(h

2 +

2g2 + z2ij,m/ν)
(ν+1)/2. Since ∂yn(0;h

√
2, g)/∂h = (h/g) ∂yn(0;h

√
2, g)/∂g

and
∂yn(0;h, g)

∂g
=

2g

h

∂yn(0;h, g)

∂h
= −2d (ν + 1) g yn(1;h, g),

defining y†n(q;h, g) =
(
h2 + 2g2

)q−1+νd/2
yn(q;h, g) allows us to write the

exact first-order conditions for g and h, respectively, as

δdn

2

(
(2ĥ2s + 2ĝ2s )

−1−d/2 − 2(ĥ2s + 2ĝ2s )
−1−d/2 + (2ĝ2s )

−1−d/2
)

= ν
[
y†n(0; ĥs

√
2, ĝs)− 2y†n(0; ĥs, ĝs) + y†n(0; 0, ĝs)

]

− (ν + 1)
[
y†n(1; ĥs

√
2, ĝs)− 2y†n(1; ĥs, ĝs) + y†n(1; 0, ĝs)

]

and

kd02dn

4cdν ĥ
2+d
s

+
δdn

2

(
(2ĥ2s + 2ĝ2s )

−1−d/2 − (ĥ2s + 2ĝ2s )
−1−d/2

)

= ν
[
y†n(0; ĥs

√
2, ĝs)− y†n(0; ĥs, ĝs)

]
− (ν + 1)

[
y†n(1; ĥs

√
2, ĝs)− y†n(1; ĥs, ĝs)

]
.

Simplifying the former by subtracting the latter,

kd02dn

4cdν ĥ
2+d
s

+
δdn

2

(
(ĥ2s + 2ĝ2s )

−1−d/2 − (2ĝ2s )
−1−d/2

)

= ν
[
y†n(0; ĥs, ĝs)− y†n(0; 0, ĝs)

]
− (ν + 1)

[
y†n(1; ĥs, ĝs)− y†n(1; 0, ĝs)

]

We now consider joint solutions of the last two equations.
As before, replacing y†n(q; aĥs, ĝs) = (a2ĥ2s + 2ĝ2s )

q−1+νd/2yn(q; aĥp, ĝp)
the RHS of the last equation gives

ĝaa =


 yn(0; ĥp, ĝp)− yn(0; 0, ĝp)

2
(
1 + 1

ν

) [
yn(1; ĥp, ĝp)− yn(1; 0, ĝp)

]




1/2

(67)

and the one before it (without LHS)

ĥaa =


 yn(0; ĥp

√
2, ĝp)− yn(0; ĥp, ĝp)(

1 + 1
ν

) [
yn(1; ĥp

√
2, ĝp)− yn(1; ĥp, ĝp)

] − 2ĝ2aa




1/2

(68)
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and (keeping its LHS)

kd02dn

4cdν
+
δdn

2

(
(2 + 2n1/5)−1−d/2 − (1 + 2n1/5)−1−d/2

)
(69)

= νĥ(ν+1)d
[
(2 + 2n1/5)−1+νd/2yn(0; ĥp

√
2, ĝp)− (1 + 2n1/5)−1+νd/2yn(0; ĥp, ĝp)

]

− (ν + 1) ĥ(ν+1)d+2
[
(2 + 2n1/5)νd/2yn(1; ĥp

√
2, ĝp)− (1 + 2n1/5)νd/2yn(1; ĥp, ĝp)

]

which is a polynomial of the form α1 = α2ĥ
(ν+1)d + α3ĥ

(ν+1)d+2 yielding as
before

ĥa = (α1/(α2 + α3ĥ
2
p))

1/(ν+1)d (70)

if we use the plug-in ĥp on the RHS.

C.5 Multivariate plug-in ĥp for product kernels

In the case of the product kernel, replace k02,d in (27) by

kd02 =

(√
2Γ
(
ν
2 + 1

2

)
Γ
(
ν
2 + 1

4

)
Γ
(
ν
2 + 3

4

)
√
πν

3
2

(
Γ
(
ν
2

))3

)d

∼
((

1− 3
16ν

)2 (
1− 1

4ν

)

2
√
π

)d

from Lemma 2.

D Further proofs

D.1 Proof of Lemma 1

Proof 2 By definition,

(
K(q) ∗K(r)

)
(a) =

∫ ∞

−∞
K(q) (t)K(r) (a− t) dt;

and we drop the argument a henceforth from the LHS for convenience. Using
K = φ,

K(q)∗K(r) =

∫ ∞

−∞
φ(q) (t)φ(r) (a− t) dt = Dq

w1
Dr

w2

∫ ∞

−∞
φ (w1 + t)φ (w2 + a− t) dt,

where Dq
w is shorthand for the q-th derivative with respect to w, evaluated

at w = 0. Using the convolution of two Gaussians,

K(q) ∗K(r) =
1√
2
Dq

w1
Dr

w2
φ

(
w1 +w2 + a√

2

)
=
φ(q+r) (a/

√
2)√

2

= (−1)q+r φ (a/
√
2)Heq+r (a/

√
2)

2(q+r+1)/2
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by the definition of Hermite polynomials.
To work out Dh ∗Dh ∗ Lg ∗ Lg, we start with

Lg ∗ Lg =
1

g2

∫ ∞

−∞
φ

(
t

g

)
φ

(
a− t

g

)
dt =

1

g

∫ ∞

−∞
φ (u)φ

(
a

g
− u

)
du

by a change of variable. Applying the result of the previous convolution and
using He0 = 1,

Lg ∗ Lg =
φ (a/ (g

√
2))

g
√
2

= Lg
√
2 = Kg

√
2

Next,
Dh ∗Dh = Kh ∗Kh − 2Kh +K0 = Kh

√
2 − 2Kh +K0,

hence

Dh ∗Dh ∗ Lg ∗ Lg =
(
Kh

√
2 − 2Kh +K0

)
∗Kg

√
2

= Kh
√
2 ∗Kg

√
2 − 2Kh ∗Kg

√
2 +Kg

√
2.

The remaining convolutions can be worked out by means of

Kb∗Kc =
1

bc

∫ ∞

−∞
φ

(
t

b

)
φ

(
a− t

c

)
dt =

1√
(b2 + c2)

φ

(
a√

(b2 + c2)

)
= K√

(b2+c2)

to give the required result.

D.2 Proof of Proposition 1

Proof 3 Differentiating (13) with respect to h, we get the first-order condi-
tion

ν

n∑

j=1

∑

i>j

[
2ν/2(2ĥ2 + z2ij/ν)

−(ν+1)/2 − 2(ĥ2 + z2ij/ν)
−(ν+1)/2

]

= 2 (ν + 1) ĥ2
n∑

j=1

∑

i>j

[
2ν/2(2ĥ2 + z2ij/ν)

−(ν+3)/2 − (ĥ2 + z2ij/ν)
−(ν+3)/2

]

or

ν
[
2ν/2yn(0; ĥ

√
2)− 2yn(0; ĥ)

]
= 2 (ν + 1) ĥ2

[
2ν/2yn(1; ĥ

√
2)− yn(1; ĥ)

]
.

(71)
Since R = Op(n

2) and ĥ = Op(n
−1/5), the leading term of each double sum

defining a yn(·; ·) is the one not containing ĥ, and the asymptotic solution
is unaffected by using ĥp in yn(q; ĥp).
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D.3 Lemmas for generalized plug-in bandwidths

Lemma 2 Let ν > 2.
(i) For a Student t(ν) kernel, k21 =

∫∞
−∞ t2K(t) dt = ν/ (ν − 2) and

k02 =

∫ ∞

−∞
K(t)2 dt =

Γ
(
ν
2 + 1

2

)
Γ
(
ν
2 + 1

4

)
Γ
(
ν
2 + 3

4

)√
2

ν
3
2Γ
(
ν
2

)3 √
π

∼
(
1− 3

16ν

)2 (
1− 1

4ν

)

2
√
π

,

where K(t) = cν/(1 + t2/ν)(ν+1)/2 with cν = Γ(ν+1
2 )/(

√
(πν)Γ(ν2 )), and

k02 ∼ a(ν) means that the function a(ν) is made up of the leading terms of
the asymptotic expansion of k02 for large ν.
(ii) For a multivariate Student t(ν) kernel,

k02,d =

∫

Rd

c2ν,d

(
1 +

1

ν
t⊤t

)−ν−d

dt

=

(
ν

2ν + d

)d/2

(
(πν)−d/2 Γ

(
ν+d
2

)
/Γ
(
ν
2

))2

(π (2ν + d))−d/2 Γ (ν + d) /Γ
(
ν + d

2

) ∼ (4π)−d/2

(
1 + d(d−2)

4ν

)2
(
1 + d(3d−2)

8ν

) ,

where cν,d = (πν)−d/2 Γ(ν+d
2 )/Γ(ν2 ) generalizes the univariate cν = cν,1.

(iii) For a scaled Student t(ν) density with variance σ2,

I2 =

∫ ∞

−∞
f (2)(u)2 du =

3ν (ν + 1)2 (ν + 3)2 c2ν

σ5 (ν − 2)5/2 (2ν + 9)1/2 (2ν + 7) (2ν + 5) c2ν+9

∼ 3 (ν + 1)2 (ν + 3)2 (4ν − 1)2

σ54 (ν − 2)5/2 (2ν + 7) (2ν + 5) (8ν + 17)
√
(πν)

.

(iv) For a scaled multivariate Student t(ν) density with variance σ2I,

I2 =

∫

Rd

(
d∑

j=1

∂2f(u)/∂u2j )
2 du =

d (2 + d)

2ν+d+1π(d−1)/2bd+4ν2+d/2

Γ
(
ν+d
2 + 2

)
Γ
(
ν + d

2 + 2
)

(
Γ
(
ν
2

))2
Γ
(
ν+d+5

2

)

∼ d (2 + d)

2d+2πd/2bd+4

(
1 +

(d+ 4) (d+ 2)

4ν

)(
1 +

d (d+ 4)

16ν

)(
1− (d+ 4) (3d+ 12)

16ν

)
,

where we have the scale factor b = σ
√
(1− 2/ν).

Proof 4 (i) For k21, the result is simply the usual variance of a t(ν). For
k02, the integrating constant c2ν+1 of the t(2ν + 1) density implies that

k02 =

∫ ∞

−∞

c2ν
(1 + t2/ν)ν+1

dt =

(
Γ
(
ν+1
2

)
/
(√

(πν)Γ
(
ν
2

)))2

Γ (ν + 1) /
(√
π
√
(2ν + 1)Γ

(
ν + 1

2

))
√
ν√

(2ν + 1)

=
Γ
(
ν
2 + 1

2

)
Γ
(
ν
2 + 1

4

)
Γ
(
ν
2 + 3

4

)√
2

ν
3
2Γ
(
ν
2

)3√
π

∼ 1

2
√
π

(
1− 3

16ν

)2(
1− 1

4ν

)
,
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where the last equality follows from Legendre’s duplication formula

Γ (η) =
2η−1

√
π
Γ
(η
2

)
Γ

(
η + 1

2

)
,

and the subsequent asymptotic expansion is due to the general approximation
for the ratio of two gamma functions

Γ(a+ ν/2)

Γ(b+ ν/2)
=

(ν
2

)a−b
(
1 +

(a− b)(a+ b− 1)

ν
+O

(
1

ν2

))

∼
(ν
2

)a−b
(
1 +

(a− b)(a+ b− 1)

ν

)
;

e.g., see pp.358,368,711 of Abadir et al. (2018).
(ii) The scaled multivariate t(ν) kernel is

Kh(t) = cν,d |H|−1/2

(
1 +

1

ν
t⊤H−1t

)−(ν+d)/2

= cν,dh
ν

(
h2 +

1

ν

d∑

m=1

t2m

)−(ν+d)/2

.

Then,

k02,d =

(
ν

2ν + d

)d/2 c2ν,d
c2ν+d,d

∫

Rd

c2ν+d,d

(
1 +

1

2ν + d
t⊤t

)−ν−d

dt

=

(
ν

2ν + d

)d/2 c2ν,d
c2ν+d,d

=

(
ν

2ν + d

)d/2

(
(πν)−d/2 Γ

(
ν+d
2

)
/Γ
(
ν
2

))2

(π (2ν + d))−d/2 Γ (ν + d) /Γ
(
ν + d

2

) ∼ (4π)−d/2

(
1 + d(d−2)

4ν

)2
(
1 + d(3d−2)

8ν

) .

(iii) The Student t(ν) density with variance σ2 is

f(u) =
cν

σ
√
(1− 2/ν) (1 + u2/ (νσ2 (1− 2/ν)))(ν+1)/2

,

hence

f (2)(u)2 =
(1 + 1/ν)2 c2ν
σ6 (1− 2/ν)3

(
1− (ν + 2) u2/

(
νσ2 (1− 2/ν)

))2

(1 + u2/ (νσ2 (1− 2/ν)))ν+5 .

By the change of variable t = u
√
(2ν + 9)/

√(
νσ2 (1− 2/ν)

)
,

I2 =

∫ ∞

−∞
f (2)(u)2 du =

(1 + 1/ν)2 c2ν

σ5 (1− 2/ν)5/2 (2 + 9/ν)1/2 c2ν+9

∫ ∞

−∞

c2ν+9

(
1− ν+2

2ν+9t
2
)2

(1 + t2/ (2ν + 9))ν+5 dt.

35



From the Student t(2ν + 9) density,

I2 =
(1 + 1/ν)2 c2ν

σ5 (1− 2/ν)5/2 (2 + 9/ν)1/2 c2ν+9

(
1− 2

ν + 2

2ν + 7
+

(
ν + 2

2ν + 9

)2 3 (2ν + 9)2

(2ν + 7) (2ν + 5)

)

=
3ν (ν + 1)2 (ν + 3)2 c2ν

σ5 (ν − 2)5/2 (2ν + 9)1/2 (2ν + 7) (2ν + 5) c2ν+9

.

Using

cν =
Γ
(
ν+1
2

)
√
(πν)Γ

(
ν
2

) ∼ 1− 1
4ν√

(2π)
(72)

and

c2ν+9 =
Γ (ν + 5)√

π
√
(2ν + 9)Γ

(
ν + 9

2

) ∼ 1 + 17
8ν√

π
√(

2 + 9
ν

)

gives the required asymptotic result.

(iv) Letting b = σ
√
(1− 2/ν), the Student t density with variance

σ2I (for ν > 2) is

f(u) =
cν,d
bd

(
1 +

1

νb2

d∑

m=1

u2m

)−(ν+d)/2

(where the components are uncorrelated but mutually dependent) and

∂2f(u)

∂u2j
= −

(ν + d)
(
νb2 +

∑d
m=1 u

2
m − (ν + 2 + d)u2j

)

ν2b4
(
1 +

∑d
m=1 u

2
m/ (νb

2)
)2 f(u),

hence

I2 =
(ν + d)2 (ν + 2)2 c2ν,d

ν2b2d+4

∫

Rd

(
d

ν + 2
− 1

νb2

d∑

m=1

u2m

)2(
1 +

1

νb2

d∑

m=1

u2m

)−ν−d−4

du

=
(ν + d)2 (ν + 2)2 c2ν,d

ν2−d/2bd+4

2∑

j=0

(
2

j

)(
−1− d

ν + 2

)j ∫

Rd

(
1 +

1

νb2

d∑

m=1

u2m

)−j−ν−d−2
du

(νb2)d/2

=
(ν + d)2 (ν + 2)2 c2ν,d

ν2−d/2bd+4

2∑

j=0

(
2

j

)(
−1− d

ν + 2

)j c−1
2(j+ν)+d+4,d

(2 (j + ν) + d+ 4)d/2

by the integral of the multivariate Student t(2 (j + ν) + d+ 4) and a change
of scale b

√
ν ↔ b

√
(2 (j + ν) + d+ 4). By

c2ν,dc
−1
2(j+ν)+d+4,d

(2 (j + ν) + d+ 4)d/2
= (πν)−d

(
Γ
(
ν+d
2

)

Γ
(
ν
2

)
)2

πd/2Γ
(
j + ν + d

2 + 2
)

Γ (j + ν + d+ 2)
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and the recurrence relation Γ(a+ 1) = aΓ(a) giving

2∑

j=0

(
2

j

)
Γ
(
j + ν + d

2 + 2
)

Γ (j + ν + d+ 2)

(
−1− d

ν + 2

)j

=
d (2 + d)

4

(ν + d+ 2)2

(ν + 2)2
Γ
(
ν + d

2 + 2
)

Γ (ν + d+ 4)
,

we get

I2 =
4d (2 + d)

πd/2bd+4ν2+d/2

(
Γ
(
ν+d
2 + 2

)

Γ
(
ν
2

)
)2

Γ
(
ν + d

2 + 2
)

Γ (ν + d+ 4)
(73)

=
d (2 + d)

2ν+d+1π(d−1)/2bd+4ν2+d/2

Γ
(
ν+d
2 + 2

)
Γ
(
ν + d

2 + 2
)

(
Γ
(
ν
2

))2
Γ
(
ν+d+5

2

)

by Legendre’s duplication formula as on pp.358,368 of Abadir et al. (2018).
If we use p.711 of Abadir et al. (2018) on the first line of (73), then ν → ∞
gives

I2 ∼
d (2 + d)

2d+2πd/2bd+4

(
1 +

d

ν

)2(
1 +

d+ 2

ν

)2(
1 +

d (d− 2)

4ν

)2(
1− (d+ 4) (3d+ 10)

4ν

)
,

while if we apply Legendre’s duplication formula on the second line of (73)
before expanding for ν → ∞, we get

I2 ∼
d (2 + d)

2d+2πd/2bd+4

(
1 +

(d+ 4) (d+ 2)

4ν

)(
1 +

d (d+ 4)

16ν

)(
1− (d+ 4) (3d+ 12)

16ν

)
;

the two forms being equivalent if we expand to the same degree in 1/ν, and
both giving

I2 →
d (2 + d)

2d+2πd/2σd+4

in the limit.

The next lemma allows us to generalize the popular plug-in method
of Jones and Sheather (1991) for univariate densities, now using a Student
(rather than Gaussian) kernel and plug-in density.

Lemma 3 (i) For a Student t(ν) kernel,

K(4)(t) =
cν (ν + 1) (ν + 3)

(
(ν + 2) (ν + 4) t4 − 6ν (ν + 4) t2 + 3ν2

)

ν4 (1 + t2/ν)(ν+9)/2

∼ (4ν − 1) (ν + 1) (ν + 3)
(
(ν + 2) (ν + 4) t4 − 6ν (ν + 4) t2 + 3ν2

)

4
√
(2π)ν5 (1 + t2/ν)(ν+9)/2

.
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(ii) For a scaled Student t(ν) density with ν > 2 and variance σ2,

I3 =

∫ ∞

−∞
f (3)(u)2 du =

15ν (ν + 1)2 (ν + 3)2 (ν + 5)2 c2ν

σ7 (ν − 2)7/2 (2ν + 13)1/2 (2ν + 7) (2ν + 9) (2ν + 11) c2ν+13

∼ 15 (ν + 1)2 (ν + 3)2 (ν + 5)2 (4ν − 1)2

σ74
√
(πν) (ν − 2)7/2 (2ν + 7) (2ν + 9) (2ν + 11) (8ν + 25)

,

where cν = Γ(ν+1
2 )/

(√
(πν)Γ(ν2 )

)
.

Proof 5 (i) This follows directly from K(t) = cν/(1+t
2/ν)(ν+1)/2 and (72).

(ii) From the Student t(ν) density with variance σ2 (see Lemma 2(iii)),

f (3)(u)2 =
9ν (ν + 1)2 (ν + 3)2 c2ν

σ10 (ν − 2)5
u2
(
1− (ν + 2) u2/

(
3σ2 (ν − 2)

))2

(1 + u2/ (σ2 (ν − 2)))ν+7 .

By the change of variable t = u/
√(
σ2 (ν − 2)

)
,

I3 =

∫ ∞

−∞
f (3)(u)2 du =

9ν (ν + 1)2 (ν + 3)2 c2ν

σ7 (ν − 2)7/2

∫ ∞

−∞
t2
(
1− (ν + 2) t2/3

)2

(1 + t2)ν+7 dt.

From the Student t(2ν + 13) density,

I3 =
9ν (ν + 1)2 (ν + 3)2 c2ν

σ7 (ν − 2)7/2 c2ν+13
√
(2ν + 13)

×
(

1

2ν + 11
− 2 (ν + 2)

(2ν + 9) (2ν + 11)
+

5 (ν + 2)2

3 (2ν + 7) (2ν + 9) (2ν + 11)

)

=
15ν (ν + 1)2 (ν + 3)2 (ν + 5)2 c2ν

σ7 (ν − 2)7/2 (2ν + 13)1/2 (2ν + 7) (2ν + 9) (2ν + 11) c2ν+13

.

Using (72) for cν and

c2ν+13 =
Γ (ν + 7)√

π
√
(2ν + 13)Γ

(
ν + 13

2

) ∼ 1 + 25
8ν√

π
√(

2 + 13
ν

)

gives the required asymptotic result.

This lemma provides us with the ingredients for the estimate Î2 =
n−2λ̂−5

∑
i,j K

(4)(zij/λ̂) as

Î2 =
(4ν − 1) (ν + 1) (ν + 3)

4
√
(2π)n2λ̂5ν5

∑

i,j

(ν + 2) (ν + 4) z4ij/λ̂
4 − 6ν (ν + 4) z2ij/λ̂

2 + 3ν2

(1 + z2ij/(λ̂
2ν))(ν+9)/2

(74)
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with λ =
(
2K(4)(0)/ (nI3k21)

)1/7
estimated by

λ̂ =

(√
2 (ν − 2)9/2 (2ν + 7) (2ν + 9) (2ν + 11) (8ν + 25)

5ν7/2 (ν + 1) (ν + 3) (ν + 5)2 (4ν − 1)

)1/7

σ̂n−1/7 (75)

leading to

ĥJS =

(
(ν − 2)2 (16ν − 3)2 (4ν − 1)

√
π211ν5Î2

)1/5

n−1/5. (76)

E Investigating finite-sample performance

We study the small sample performance of our UCV formulae, then the ones
for SCV. We do not report the results for BCV, as they are dominated by the
other methods in the case of non-Gaussian densities, while improving only
slightly over the usual UCV in the Gaussian case. We propose an empirical
method to determine an optimal choice for the degrees of freedom ν of the
Student kernel, based on a measure of complexity of the data’s distribution.

E.1 General simulation framework

We have selected five generating processes: Gaussian, symmetric bimodal
and asymmetric mixtures of normals, Student’s t(3), and lognormal in order
to cover various degrees of complexity. We report these in Table 4, together

Table 4: Generating processes and a measure of their intrinsic complexity
n 150 450 1000
Gaussian N(0, 1) 0.065 0.039 0.026
Bimodal mix 0.5N(−1, 4/9) + 0.5N(1, 4/9) 0.105 0.086 0.077
Skewed mix 0.75N(0, 1) + 0.25N(3/2, 1/9) 0.105 0.090 0.083
Student t(3) 0.146 0.127 0.115
Lognormal LN(0, 1) 0.266 0.256 0.252

We report the 0.9 quantile of dn(x) obtained with 1,500 simulations.

with a statistical measure of complexity based on the Kolmogorov-Smirnov
statistics for departing from normality, dn(x) = maxx̃i

|F̂n(x̃i) − Φ(x̃i)|,
where x̃i are the standardized values of the observed sample xi, and F̂n(.)
is the empirical distribution function.1

1There exists various measures of complexity in the literature, mainly based on I2 or
I4. They are simple to evaluate analytically, but are much more difficult to estimate
empirically as they rely on the delicate choice of a bandwidth. The Kolmogorov-Smirnov
statistic measures departure from normality without requiring the choice of a bandwidth
and is used here as a measure of complexity, as the Gaussian density is the simplest to
estimate. In the Gaussian case

√
ndn(x) converges in distribution and dn(x)

p
−→ 0, while

otherwise dn(x) converges to a positive constant summarizing our degree of complexity.
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In order to study the performance of our different suggested methods,
we first compute an optimal ISE for each process that corresponds to the
minimum integrated square error when using a Gaussian-kernel density es-
timator, knowing the true density as done in Faraway and Jhun (1990) for
instance. This is the best ISE that can be reached when using a Kernel
density estimation. We then compute the ISE of each method and divide
it by this optimal ISEopt. Results displayed in tables are thus scale free.
For each experiment, we generate 1,500 replications.2 All computations are
done in R.

E.2 UCV and choice of degree of freedom ν

The optimal ν is found for each process by minimizing the true ISE when f
is estimated using a Student kernel, where h is determined either using the
generalized Silverman rule ĥS of (16) or according to the UCV approximation
(31). From Table 5, we see that the optimal ν decreases as complexity

Table 5: Optimal median value for ν̂

ĥS of (16) ĥa of (31)
150 450 1000 150 450 1000

Gaussian 30.0 30.0 30.0 30.0 30.0 30.0
Bimodal mix 5.7 4.9 4.7 8.4 7.2 6.8
Skewed mix 4.5 3.9 3.6 6.1 5.1 4.8
Student t(3) 4.6 4.1 3.9 7.6 6.1 6.1
Lognormal 2.5 2.5 2.5 2.6 2.6 2.7

increases. For a Gaussian process we found an optimal ν = 30, while for
a lognormal process it was ν = 2.5. For the other processes, the median
optimal value could be between ν = 4 and ν = 6, depending on the method
chosen and the sample size.

But of course, we do not know the true process in real life. We just
know that Gaussian samples are characterized by a measured complexity
not exceeding 0.065, while for lognormal samples it always exceeds 0.15.
Other processes are characterized by in-between measured complexity. So
we can decide to select ν according to the measured complexity, following
the rule of thumb given in Table 6. We could have designed a response
surface, but it would have introduced more variability.

Equipped with this rule, let us measure the performance of ĥa of (31)
with ĥS as plug-in, and compare it to the usual UCV as proposed in standard
packages using a Gaussian kernel, which we denote by ĥucv. Results are in

2In order to reduce the variance of the Monte Carlo experiments, first we impose the
same starting seed for each experiment, and second we take the smaller samples (150, 450)
as sub-samples of the largest sample of size 1,000.
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Table 6: Selection rule for ν
dn(x) ν̂

dn ≤ 0.06 30
0.06 < dn ≤ 0.15 4 or 6
dn > 0.15 2.5

Table 7: UCV with Student kernel, and standard UCV with Gaussian kernel:
ratio of their ISEs to optimal ISEopt

ĥa(ν̂) Gaussian ĥucv
150 450 1000 150 450 1000

Gaussian 1 .48
(1.26)

1 .26
(0.64)

1 .16
(0.30)

2.09
(3.25)

1.79
(2.71)

1.49
(1.08)

Bimodal mix 1 .22
(0.26)

1 .23
(0.24)

1 .20
(0.18)

1.60
(1.32)

1.47
(0.95)

1.37
(0.69)

Skewed mix 1 .17
(0.24)

1 .18
(0.17)

1 .18
(0.15)

1.44
(0.75)

1.32
(0.65)

1.28
(0.54)

Student t(3) 1 .59
(0.80)

1 .34
(0.55)

1 .27
(0.26)

2.01
(2.96)

1.86
(2.71)

1.98
(2.99)

Lognormal 1 .24
(0.26)

1.22
(0.19)

1.20
(0.13)

1.33
(0.79)

1 .21
(0.40)

1 .14
(0.21)

We choose ν̂ according to the rule of Table 6 that is based on measured com-
plexity. We use ĥS as a plug-in for ĥa. The ĥucv corresponds to the standard
command bw.ucv of R. Small numbers between parentheses are Monte Carlo
standard deviations. Figures in italics indicate best results.

Table 7. They show that our ĥa is much better than the traditional UCV
with a Gaussian kernel, and its variability is much lower. This advantage
tends to decrease with the sample size. In small samples, the difference can
be quite large. A substantial advantage of ĥa is that it does not require
iterations that would increase variability.

E.3 SCV

SCV was designed to improve over other CV methods. The simulations of
Jones et al. (1991) show that SCV should gives better convergence results
when not far from the Gaussian but, when far from it, UCV should give
better results despite its variability. This is also the case when we compare
the last 3-column block of Table 7 with the same in Table 8. They show
that, with a Gaussian kernel, the R implementation of the SCV of Jones et al.
(1991) written by Tarn Duong (hscv(x) of the R package ks, Duong 2007)
is better than the R implementation of UCV for all processes except for the
lognormal. However, this implementation is said not to be always stable for
large sample sizes when the binning option is used (see the release notes of
the package). And without binning, the procedure is just infeasible in large
samples.
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Because of the presence of a pilot bandwidth g of (43), the choice of
ν will be different from the UCV case. We have to determine a first ν to
compute the starting value ĥS for which the initial selection rule given in
Table 6 can be applied. We then have to determine a second ν to compute
ĥa or ĥaa. Unreported Monte Carlo experiments indicate that the best
choice is ν = 30 (essentially a Gaussian kernel) for this second step. An
intuitive explanation can be that as SCV is based on the convolution of
two kernels, there is already enough smoothing. Results given in Table 8

Table 8: SCV with Student kernel, its asymptotic approximation, and Jones-
Marron-Park SCV: ratio of their ISEs to optimal ISEopt

ĥa(ν̂) ĥaa(ν̂) JMP ĥscv
150 450 1000 150 450 1000 150 450 1000

Gaussian 1 .49
(1.42)

1 .23
(0.64)

1 .14
(0.32)

1.62
(1.71)

1.29
(0.77)

1.18
(0.40)

1.50
(1.31)

1.27
(0.68)

1.16
(0.35)

Bimodal mix 1 .08
(0.12)

1 .09
(0.14)

1 .08
(0.13)

1.09
(0.15)

1.09
(0.15)

1.09
(0.15)

1.19
(0.27)

1.14
(0.21)

1.10
(0.16)

Skew mix 1.11
(0.14)

1.15
(0.16)

1.16
(0.16)

1 .07
(0.10)

1 .09
(0.11)

1 .10
(0.11)

1.21
(0.26)

1.16
(0.17)

1.12
(0.14)

Student t(3) 1.46
(1.01)

1.25
(0.80)

1.16
(0.23)

1.56
(1.26)

1.27
(0.93)

1 .15
(0.24)

1 .34
(0.69)

1 .24
(0.46)

1.17
(0.30)

Lognormal 1.20
(0.37)

1.28
(0.32)

1.45
(0.45)

1 .19
(0.37)

1 .23
(0.29)

1 .38
(0.42)

1.69
(0.61)

1.75
(0.52)

1.87
(0.56)

We choose ν̂ according to the rule of Table 6 for the starting value ĥS, then ν = 30 is used for
the second step. The ĥscv corresponds to the standard command hscv(x) of the R package
ks. The small number below the ratio of ISEs is Monte Carlo standard deviation of this
ratio. Figures in italics indicate best results.

confirm that with these choices, both ĥa(ν̂) and ĥaa(ν̂) manage to beat the
R implementation of SCV for the lognormal process, a case where SCV is
less at ease than UCV. For the Gaussian process where SCV is expected to
beat UCV, ĥa(ν̂) is superior while ĥaa(ν̂) is not far. In this Table, standard
SCV beats our proposed methods only when n is small and we have a t(3)
density. A general rule of thumb emerges, that one should switch from using
ĥa(ν̂) to preferring ĥaa(ν̂) when the density is skewed (skewed mixture and
lognormal in our table).

E.4 Numerical efficiency

We know that, in large samples, the usual cross validation method can be
time consuming when no binning techniques are used and that binning tech-
niques can be problematic for SCV. Table 9 displays absolute execution times
in seconds for various methods and various sample sizes. Our method can be
between 18 and 24 times quicker. The ĥa of SCV has similar execution times
as the ĥa of UCV, but the ĥaa formula is of course more time-consuming
because of the pilot bandwidth. Our gain in efficiency starts to be sig-
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nificant for large sample sizes (especially above 1,000) or for Monte Carlo
experiments. This gain can be very important for large financial datasets or
household surveys.

Table 9: Execution time for computing a bandwidth
450 1000 1500 5000

Student kernel and integral-free methods

UCV ĥa 0.084 0.368 0.922 9.322

SCV ĥa 0.082 0.378 0.894 9.762

SCV ĥaa 0.166 0.676 1.530 16.862
Gaussian kernel and usual cross validation

Gauss UCV 2.194 8.466 18.658 185.792
Hayfield and Racine 1.922 7.858 17.132 207.678
Duong SCV 1.490 5.405 11.740 118.665

Time is measured in seconds. All computations are done in R on a laptop equipped
with an Intel Core i3 at 2.40 GHz. The bandwidth UCV ĥa corresponds to (31), while

SCV ĥa and ĥaa correspond to (48) and (46), respectively. Gauss UCV corresponds to
the minimization of function (11) for a Gaussian kernel using a Brent algorithm as the
R command bw.ucv includes binning automatically. Hayfield and Racine corresponds to
npudensbw(x,bwmethod="cv.ls") in the R package np, Hayfield and Racine (2008). Duong
SCV corresponds to hscv(x, binned=F) from the R package ks of Duong (2022). Time for

ĥS was too quick to be measured.
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