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Abstract
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1 Introduction

We model a situation where a principal contracts with agents organized in
a network conveying synergies. In many applications, this network aspect
impacts principal-agent relationships. To cite a few: innovation-oriented
public funds when firms are organized in R&D networks, monopoly pricing
in presence of consumer externalities, cash transfers contingent on school at-
tendance in presence of networked peer effects in the school, the distribution
of bonus in firms when there are local synergies between employees, taxation
in shopping malls.

Because of interdependencies between agents’ utilities, the principal should
take into account how complementarities between neighbors propagate through-
out the network. Taking care of these ripple effects should entail that more
central agents be offered contracts where they exert a higher effort (and
thus with the largest rewards). These general considerations suggest that
the network structure can substantially affect contracting, which opens the
following questions. How does the network shape optimal contracts? In
particular, should the principal concentrate rewards on a subset of agents,
and should the principal tax agents to sponsor other agents? Which network
structures maximize contract performance? How does contract enforceability
affect optimality? Do linear contracts, which are not optimal but simple to
set up, perform well?

We study how the network structure affects optimal contracts in a static
framework with observable efforts and linear quadratic utilities. In this set-
ting, we are able to quantify the ripple effect as induced by the variation of
individual efforts, which is crucial to provide tractable analytical results.

First, we study enforceable contracts. We show that the optimal contracts
are contingent, in the sense that contract acceptance is conditional on the
acceptance of other contracts. These contracts are desirable for the principal
because they maximize the opportunity cost of contracting agents. We fully
characterize optimal contracts. Our analysis shows that effort is increasing
in bonacich centrality, but reward is increasing with centrality only for suf-
ficiently large budget. We also identify conditions under which the principal
optimally taxes part of the society. Taxation emerges for either low budgets
or high intensity of interaction.

Second, we consider non enforceable contracts (still the principal commits
to her promisse). Here contracts are simple options left to agents. By com-
plementarities, optimal contracts are such that offers are made to all agents.
Moreover, taking account of the heterogenous influence power of agents on
the network, rewards are related to the square of Bonacich centralities, while
efforts to weighted centralities where the weights are the centralities them-
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selves. In terms of contract performance, two messages emerge. On the one
hand, denser networks are more performant, and thus, contemplating all pos-
sible networks, the most performant is the complete network. On the othed
hand, among all networks with same density (i.e. same number of links),
the networks with maximal impact are Nested-Split Graphs. These graphs
are such that all neighborhoods are nested. This means that performing
networks have a high level of asymmetry and hierarchy.

Third, we study a linear contract where the principal rewards agents’
excess efforts with respect to their initial effort. This constitutes a realis-
tic setting guaranteeing full implementation. We show that the principal
should optimally propose an homogenous excess-effort per-unit return to ev-
ery agent, and a payment proportional to the relative centralities of agents
(i.e., the ratio of individual centrality over the sum of centralities). We also
show that denser networks enhance the performance of these contracts.

Fourth, we study the case where the principal is constrained to contract
with a single agent, i.e. he undertakes a key-player intervention. With linear
contracting, the targetted agent maximizes an inter-centrality index (which
is known to play a crucial role in key-player analyzes). A principal setting
up an optimal non enforceable contract has to target the agent maximizing
the simple bonacich centrality. Last, with enforceable contracts, the optimal
target has a more complicated index, and the main message is that this index
is budget-dependent.

Last, we extend this model to network entry. A contract should guarantee
that the agent is willing to enter the network. In this respect, the principal
has to take care that it can be more costly to guarantee the participation
of least central agents. We characterize optimal (enforceable) contracts. Es-
sentially, the principal identifies the targetted agents by selecting the sub-
network that maximizes aggregate bonacich centrality. We mainly show that
the nework participation cost motive can lead to exclude a subset of the pop-
ulation from network participation, and that contractual arrangements can
result in larger rewards to least central agents. Moreover, conform to the
previous model with fixed network, among all networks with same density
(i.e. same number of links), the networks supporting maximal performance
are Nested-Split Graphs.

Related literature. Our model bridges two literatures, multi-agent con-
tract theory and network games.

This model is strongly connected with the literature on multi-agent con-
tracting. In the context of teams, and related free riding problem, Holmstrom
(1982) shows how a principal can restore efficiency by conditioning workers’
payments on team performance. More recently, Segal (1999) discusses at a
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high level of generality the efficiency implications of contracting in context
where agents’ utilities are interdependent and when discrimination is possi-
ble. In the opposite, Segal (2003) examines the implications of imposing a
non-discrimination close. Like the former paper, our analysis assumes that
the principal can discriminate between agents. In regard to this literature, we
introduce a network of local complementarities between agents. This echoes
the recent paper of Bernstein and Winter (2012), who extend one model of
Segal (1999) to a context where externalities between utilities are positive
and heterogenous. Some of our results are qualitatively close to theirs, but
the models are actually rather distinct. In particular, in contract with Se-
gal’s framework, the sum of agents utilities and principal objective is not
a function of the sum of agents’ efforts in our model (thus our hypotheses
violate condition W as exposed in Segal [1999]). In the context of employ-
ment relationships, Levin [2002] model multilateral contracting between a
firm owner and employees in a dynamical setting. This paper investigates
the trade-off firms face between making commitments to their workforce as
a whole (multilateral relational contracts), and making more limited com-
mitments to individuals or smaller groups of employees (bilateral relational
contracts). One main message is that bilateral contracts are easier to adjust
in response to changes in the environment, which may help to explain why
firms rely on temporary employees, and the adoption of two-tier workforces.
One important departure with regard to this model is static incentives. In
Levin’s environment, the the firm cannot commit to reward performance,
and thus static equilibrium is such that workers will do no more than the
minimum, and the firm will do best not to produce at all. In contrast, our
model builds on a credible commitment assumption.

Our model is also inserted in the network games literature with local com-
plementarities. For instance, Goyal and Moraga (2001) introduce a model a
R&D networks in which parter firms share R&D knowledge, and this gen-
erates local complementarities. Calvo and Zenou (2004) consider a model
of crime economics, where criminal benefit from local information sharing.
Ballester, Calvo and Zenou (2006) introduce models of linear interaction on
networks, including strategic complementarity1 and link agents’ equilibrium
play to their Bonacich centrality. Recently, Belhaj, Bramoullé and Deröıan
(2014) consider more general games, where player’s actions can be bounded
from above. In this papier, we consider the linear interaction setting and we
suppose that the intensity of interaction is low enough to guarantee equilib-
rium existence (and uniqueness).

Some few papers tackle policy or principal intervention on networks.

1See for instance Topkis (1998) for an overview of games with strategic complementarities.
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Ballester et al. (2006) ask about key player policy. In short, in a con-
text of strategic complementarities, which agent should be dropped out of
the network so as to maximize or minimize aggregate efforts on the network?
The authors show that the good target is an agent maximizing a specific cen-
trality measure (Ballester, Calvo and Zenou [2010], Liu, Patacchini, Zenou
and Lee [2014], and Konig, Liu and Zenou [2014] elaborate on this seminal
paper). Our paper also addresses key-player analysis, but the principal sub-
sidizes the targetted agent. Some recent alternative network policies in the
context of linear network games can be mentioned. Allouch (2012) considers
a model of local public good under linear interaction, and ask about optimal
transfers so as to improve aggregate effort (the problem is equivalent to a
zero-budget setting). The author shows that network structure decisively
shapes optimal transfers. Zhou and Chen (2013) examine the benefits of se-
quentiality in the same game as ours. In their setting, one (forward looking)
agent plays in a first stage and the others in the second stage. A network
designer has to find the best agent to play first in order to increase aggregate
efforts or utilities. They find in particular that, due to sequentiality, the key
leader is not a simultaneous-move key player. In the context of monopoly
pricing in presence of externalities between consumers, Bloch and Quérou
(2013), as well as Candogan, Bimpikis and Ozdaglar (2012), study models
where a monopolist charges a prices to interdependent consumers. These
models exhibit an interesting tradeoff for the firm regarding pricing policy:
central agents have increased demand for products, but they also originate
large influence effects on other consumers. One interesting result is that with
linear pricing, these effects compensate excatly, in such a way that, in the
end, positions on the network do not affect prices. In our paper, the linear
contract is formally isomorphic to linear pricing by monopolies as exposed
in Bloch and Querou (2013). Our work complements their view by showing
that the network matters under optimal contracting.

In various applications, the principal is a policymaker aiming at foster-
ing agents’ efforts by subsidizing agents directly. In the drop out game of
Calvò-Armengol and Jackson (2004), in labor market context, the authors
examine a binary game with local complementaries. A planner can suibi-
size agents entry, and see the consequence on the number of agents dropping
in. Importantly, in this context the agents’ consent is not an issue, while
it is crucial in our framework. In Svetovic and Steiner (2012), agents face
a coordination problem akin to the adoption of a network technology. A
principal announces investment subsidies which, at minimal cost, attain a
given likelihood of successful coordination. Optimal subsidies target agents
who impose high externalities on others and on whom others impose low
externalities. This result echoes our findings showing that rewards take into

5



account the position of agents in the network. However, this latter paper is
focused on the role of strategic uncertainty in coordination processes, which
is not a concern in our paper.

The paper is organized as follows. Section 2 presents the model. Section
3 presents optimal contracting in both enforceable and non enforceable con-
texts, as well as linear contracting and key-player analysis. Section 4 extend
the model to network entry. Section 5 concludes. All proofs are given in
section 6.

2 A model of contracts on a fixed network

A principal contracts with a finite set of agents organized in a fixed net-
work of local complementarities. In our setting, agents exert effort, and the
principal’s objective is to maximize a function of the sum of agents’ efforts
net of transfers. We propose a three-stage game. In the first stage, the
principal proposes contracts. In the second stage, agents simultaneously de-
cide whether to accept or reject their respective offers. In the third stage,
agents exert effort and transfers are realized. Both efforts and the network
are assumed to be observable. We study Subgame Perfect Nash Equilibrium
(SPNE). In this model, coordination is a matter and equilibrium multiplicity
may arise. We analyze in this paper the SPNE of the game which maximizes
the principal’s objective; that is, we focus on the equilibrium such that all
proposed offers are accepted2.

Notations. Vectors and matrices are in capital letter, e.g. effort profile
X, of network G, while matrix components are in lower case. Agents are
indexed with a subscript, e.g. xi will quote for the effort level of agent i. We
let symbol ‖ · ‖ represent the vectorial 2-norm, e.g. ‖X‖ =

√∑
k∈N x

2
k. The

sum of the components of a profile is written in lower case, e.g. x =
∑

k∈N xk.
Symbol ‘≥’ applied to vectors means the weak inequality on each component.
We let denote 1 the profile of ones (its dimensionality will not necessarily
be n, but we keep implicit this aspect for convenience when there is no
confusion).

Network. We let N = {1, 2, · · · , n} be a set of agents organized in a
network of bilateral relationship. The network is formally represented by a
symmetric3 adjacency matrix G = [gij], with binary4 element gij ∈ {0, 1}.

2The optimal contract guaranteeing a unique equilibrium in which all agents accept the principal’s
offer is of divide and conquer sort - see Seagal (2003). Its study is out of the scope of the present paper.

3All results, except linear contracting and in particular Proposition 4, are robust to non binary and
asymmetric relationships, i.e. GT 6= G, where centralities are replaced by outward centralities.

4Results are robust to weighted relationships. They are also robust to the introduction of a low level
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The link between agents i and j exists whenever gij = 1. In that case, we
shall say that agents i and j are neighbors. By convention, gii = 0 for all
i. We may abuse the language and speak about network G. We let µ(G)
denote the index of the adjacency matrix G, which is by symmetry its largest
eigvenvalue.

Agents’ utilities. We label by xi ∈ R+ agent i’s effort and by X =
{x1, x2, · · · , xn} the profile of efforts. When agent i exerts effort xi on net-
work G, she derives some utility from own effort as well as the sum of efforts
of neighbors. We consider the simple benchmark of linear quadratic utilities
which are frequently used in the network game literature (see Ballester et al.
[2006]). Let a ∈ R+, δ ∈ [0, 1

µ(G)
[, vi ∈ R, and let yi =

∑
j∈N gijxj. When

agent i exerts effort xi, agent i’s utility is written:

ui(xi, yi) = vi + aixi −
1

2
x2
i + δxiyi (1)

Here parameter ai measures some private return to own effort, while parame-
ter δ measures the strength of complementarities, or intensity of interaction,
between neighbors. To isolate pure network effects and keep things simple,
agents have homogenous characteristics ai = a and vi = 0 for all i, but the
analysis is easily extended to heterogenous agents’ characteristics. With this
specification, agents’ utilities depend positively on neighbors’ efforts, and
efforts between neighbors are strategic complements.

When an agent does not accept the contract proposed by the principal,
she plays a best-response to others’ efforts as derived from utility (1), that
is xBRi = a+ δyi. Agent i’s utility level under best-response play is written:

uBRi (yi) =
1

2
(a+ δyi)

2 (2)

Contracts. The principal commits to a set of publicly observable con-
tractual offers. Contracts are proposed to every agent in the society at no
cost, and the principal can discriminate between agents.

We define si as agent i’s acceptance strategy: si = 1 (resp. si = 0) means
that agent i accepts (resp. rejects) the principal’s offer. We let S ∈ {0, 1}N
represent the profile of acceptance strategies of agents in stage 2. Generally
speaking, a contract between the principal and agent i is a pair of functions(
xi(s−i), ti(s−i)

)
. The quantity ti ∈ R can be interpreted as a monetary

transfer from the principal to the agent (this transfer can be either positive
or negative). Both transfer function and effort function are contingent on
acceptance status of others. We consider two alternative economic contexts,

of strategic substitutability.
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depending on contract enforceability. When contracts are enforceable, agents
are tied to the effort level proposed in the contract. When contracts are not
enforceable, an agent behaves opportunistically, and she exerts the desired
level of effort if she obtains at least the utility derived from her best-response
effort. This means that contracting is a simple option, such that the agent
receives a transfer in case she complies with a certain effort level.

The principal’s payoff ΠP (X,T ) (where subscript P stands for ‘Principal’)
under efforts X and realized transfers T , is increasing and concave in the
sum of agents’ efforts through function F (), strictly increasing (F ′ > 0),
differentiable, and concave (F ′′ < 0):

ΠP (X,T ) = F

(∑
i∈N

xi

)
−
∑
i∈N

ti (3)

To guarantee that the principal’s payoff is positive at optimum, we also
assume F (0) ≥ 0, F ′(0) > 1, limz→+∞F

′(z) < 1. The optimal set of contracts
guarantees contract acceptance, and thus solves:

max
{(xi(s−i),ti(s−i))}i∈N

s.t. ∀i ∈ N, ui(xi, yi) + ti = uBRi (yi)

F

(∑
i∈N

xi

)
−
∑
i∈N

ti (4)

The constraint in the above program represents an individual participa-
tion constraint5. Importantly, at the equilibrium agent i’s reservation utility
uBRi (yi), i.e. utility under offer rejection, depends on others’ efforts. The level
of effort exerted by others at optimum may vary according to the context,
as we will detail further.

To identify optimal contracts, the principal can, in a first step, solve the
sub-problem associated with a fixed budget, and obtaining the optimal set
of contracts contingent on budget t:

max
{(xi(s−i),ti(s−i))}i∈N

s.t.


∀i ∈ N, ui(xi, yi) + ti = uBRi (yi)∑

i∈N
ti = t

∑
i∈N

xi (5)

5Agents are assumed to accept the offer under indifference, so the principal will necessarily extract
agents’ utility surplus until indifference; this is without loss of generality to restrict attention the program
with binding participation constraints.
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This subprogram generates an optimal effort profile X̂(t), with corre-
sponding aggregate effort x̂(t). In a second step, the principal compares
the performance of each budget, and determines the optimal budget. The
optimal budget t̂ solves6:

∂x̂(t̂)

∂t
F ′(x̂(t̂)) = 1 (6)

Note that the conditions that we impose on function F imply that the profit
of the principal is positive for all positive budget t ∈ [0, t̂].

The principal thus proposes contractual offers in order to maximize her
payoff under agents’ participation constraint. To identify optimal contracts,
the principal can, in a first step, solve the sub-problem associated with a
fixed budget t, and obtain the optimal set of contracts contingent on this
budget. In a second step, the principal compares the performance of each
budget, and determines the optimal budget. The shape of function F () is
crucial to understand budget selection. In concrete applications, the budget
t is endogenous and related to agents’ efforts through function F (), as for
shopping malls or monopoly pricing. In other applications, like the funding
of R&D by an international institution, the budget can be considered as ex-
ogenous. Throughout the paper, we will mainly abstract from this discussion
and focus on the first step, where the budget is kept fixed. Technically, this
means that it is sufficient to focus on the sub-problem in which the princi-
pal’s objective is to maximize the sum of efforts.

This model fits with various applications.

Production in firms. We enrich the classical team production model
(Holmstrom [1982]), where the firm is composed of n workers and a firm
owner distinct from workers, by adding a network aspect as follows. Workers
are organized in a network G describing local complementarities. In particu-
lar, a worker’s effort generates quadratic costs but synergies with neighbors
on network G contribute to reduce effort cost as follows:

ci(xi, yi) =
x2
i

2
− δxi

(∑
j∈N

gijxj

)
The larger the sum of efforts of agent i’s neighbors, the lower the cost. Fur-
thermore, the cost function exhibits complementarities in neighbors’ efforts:
for a fixed level of neighbors’ efforts, a higher level of own effort entails a

6In the above program, it is immediate that the optimal budget t̂ ≥ 0. Furthermore, it is also
immediate that the principal spends the whole budget.
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larger impact of neighbors’ efforts on own effort cost. Workers are payed a
wage from the firm owner. This wage is given by v + axi, v, a > 0, where v
is a fixed common fee, and axi is a linear compensation in individual output
- which is assumed for simplicity exactly reflected by effort. The term axi
is not linked to the firm’s profits. When firm’s profits are uncertain, this
part constitutes a kind of insurance against that risk. The value of the firm’s
output is an increasing function of the sum of efforts of employees. Due to
diverse production costs, the value function is in general concave. To fit with
our model, on top of initial wages, the firm owner can distribute to each
agent i an individual bonus ti(xi) ≥ 0 conditional on increased effort level.
The firm owner wants to maximize output less wages, and the budget t is
here endogenous to workers’ efforts.

Research activity and science parks. The world of research is a world of
synergies. A huge literature documents the role played by research collabora-
tive activities between firms or academics (see Goyal and Van der Leij (2006)
for an empirical analysis of the properties of the networks of collaboration
between academics; see for instance Hagedoorn (2002) for a description of
R&D networks between firms). As in Goyal and Moraga (2001), consider in-
dependent markets with linear demand d− p, d > 0, and xi as firm i’s R&D
effort. There is no fixed cost, and marginal costs are related to partners’
efforts through the equation ci = c− xi − yi. We thus have

πi(xi, yi) = (d− c+ xi + yi)
2 − γx2

i

where γx2
i is the cost of R&D effort and c the constant marginal production

cost, γ > 1. This profit function corresponds to a modified version of utility
(1), where agent i’s utility is of type ui(xi, yi) + Vi(yi), with V () a non de-
creasing function. In this context, the principal can be a public institution,
like a regional institution, a state or a state union, wanting to foster the
amount of research. To proceed, such institutions frequently reward agents
and some dots can be conditional on performance. In this frame, the budget
of the public institution’s fund can be exogenous (then the principal solves
program (5) with a given budget t in hand), or partly related to the industry’s
aggregate profit.7

Conditional cash transfers in education. It is often argued that peer
effects are prevalent at school. Some recent papers have identified friendship
networks at school. For instance, Calvo, Patacchini and Zenou (2009) identify
peer effects in frienship networks at school, and they use utility function in

7We note that the public authority can also be interested in minimizing the sum of industry costs. In
that case, the objective is a weighted sum of efforts where weight are proportional to agent’s degree. Even
if we present the simple case of equal weights for clarity, our model is easily extended to the setting where
the principal’s objective is an increasing function of the sum of weighted efforts (with fixed weights).
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equation (1) as teenagers’ utilities. Grants are often conditional to students
performance. For example, there are two influential programs (PROGRESA-
Opportunidades in Mexico and Bolsa-Familia in Brazil) of cash transfers
conditional on school attendance (for a review, see Fiszbein, Schady, Ferreira,
Grosh, Keleher, Olinto and Skoufias [2009], see also Dieye, Djebbari and
Barrera-Osorio [2014]). In this application, one may consider the principal’s
budget as exogenous to students performance.

Monopoly pricing with interdependent consumers. In many cases, con-
sumptions of neighborhood or friends affects own consumption. Bloch and
Quérou (2013) consider monopoly pricing in a model of network externali-
ties where consumers only care about the consumption of a subset of agents
determined by an exogenous social network. Their setting is extended to
divisible goods in Candogan et al. (2012), whose consider utility (1) with
a = di − pi; here di measures private preference parameter and pi represents
the per unit price charged by the monopolist. As shown by Candogan et
al., the optimal price profile {p∗i } charged by the monopolist is homogenous,
i.e. p∗i = p∗ for all i. Assume that the monopolist has already set up the
optimal price p∗ in the past. On top of this price, suppose the monopolist
can propose to each consumer an idiosyncratic discount conditional on some
quantity sold. One important message with regard to this literature is that,
with regard to linear pricing, the existence of discounts-like contracts allows
the monopolist to significantly enhance the demand and thus to increase her
profit by charging heterogenous optimal prices.
One interesting related application concerns shopping malls. Shop owners
borrow space to a mall developer. Typically stores are placed together in
close proximity within a large shopping mall. Shops are organized in the
mall space, and there is positive externalities between demands for adjacent
shops in the space: first, customer traffic in likely to be affected by the
upkeep of adjacent stores; second, anchor stores and national name-brand
stores, generate positive externalities by drawing customer traffic not only
to their own store, but also to other stores (the network of local externalities
is likely to be asymmetric). Here, xi denotes firm i’s effort to increase its
sells, and the network G represents the physical mall space, where adjacent
locations correspond to a link. In shopping malls, mall store contracts are
rather sophisticated and partly depend on the amount of sells of the shop
in the mall8. Interestingly, a part of the payoff of the mall owner can result
from externalities related to shops efforts. For instance, in case the mall
owner installs a costly car park, a larger demand in the mall increases car
park revenue.

8Gould et al. (2006) provide a detailed empirical analysis based on a well documented dataset.
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3 Optimal contracts

In this section, we examine diverse contractual arrangements in a situation
where the principal contracts with agents organized in a fixed network. In this
context, we study the impact of the network structure on contractual design
in various situations. We examine in the order optimal contingent contracting
(the first-best in our context), then optimal bilateral contracting, then linear
contracts, and last we undertake a key-player analysis, which corresponds
to the situation where the principal is constrained to contract with a single
agent on the network.

3.1 Optimal enforceable contracts

In this subsection, we consider that contracts are enforceable, i.e. agents
do not behave opportunistically. This economic environment is in general
favorable to the principal’s objective.

Here, we are interested in the first-best contract which can be reached
by the principal. First note that, when all agents play their best-response,
this originates the unique equilibrium effort profile X0 and the corresponding
equilibrium utility profile U0 as follows. Let matrix M = (I − δG)−1 ≥ 09

and B = M1. Equilibrium efforts can be interpreted in terms of network
Bonacich centrality. For any profile Z ≥ 0, we let BZ = MZ denote agent
i’s Bonacich centrality (weighted by Z). The quantity bZ,i is the number of
paths from agent i to others, where paths are weighted as follows: the weight
of a path of length k from agent i to agent j is δkzj. We have:

Result 1 (Ballester et al. (2006)). An equilibrium effort profile exists if
and only if δµ(G) < 1. In this case,

x0
i = aB (7)

and

u0
i =

a2

2
b2
i (8)

The first task for the principal is to determine the minimum agents’ out-
side opportunity, this level being crucially tied to the effort level he can ask
agents to exert. Basically, the lowest reservation utilities agents may consent

9The condition δµ(G) < 1 guarantees M ≥ 0; otherwise there is no equilibrium: efforts would escalate
to infinity.
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to obtain under the principal’s offer are exactly the utilities they would ob-
tain in the absence of principal’s intervention. This would induce a maximum
surplus extraction from agents’ utilities. Can the principal design contracts
such that an agent refusing the offer would obtain this minimal reservation
utility?

The point is that, by complementarities and positive externalities, utili-
ties under offer rejection are increasing with others’ efforts, so simple bilateral
contracts, for sure, would not allow the principal to extract this maximum
utility surplus from agents10. It is straightforward to observe that the prin-
cipal should raise contingent contracts. A contingent contract is a take-it-or-
leave-it offer such that, if one agent rejects the offer, no contract is accepted,
the consequence of which is that agents play the equilibrium X0.

Contingent contracts can be written as follows. We note first that we are
interested in the first-best optimum, and in particular we do not examine how
agents behave out of the optimal contract. It is thus without loss of generality
to restrict attention to the simplified setting in which the principal proposes
a transfer against some effort level11. Second, we have to take into account
that offers are conditional on other offers’ acceptance. Define for convenience
the profile 1−i = (1, · · · , 1) which contains n−1 ones. A contingent contract
with agent i is a pair (xi(s−i = 1−i), ti(s−i = 1−i)). This contract means
that agent i should both exert effort xi and receive transfer ti if all other
agents accept the offer. The key implication of this formulation is that if
agent i does not accept her offer, other agents are not tied to the effort level
prescribed in their offer.

Given the above discussion, we can state:

Proposition 1. Under enforceable contracts, the optimal contract is a con-
tingent contract. It guarantees that agent i’s utility under offer rejection is
equal to a2

2
b2
i .

The next question is to characterize optimal efforts and transfers, given
that agent i’s participation constraint is written at the first-best:

ui(xi, yi) + ti =
a2

2
b2
i

Note that the principal can always propose to any agent i the default
contract (xdefi , 0), such that the agent is indifferent between accepting the

10This statement is valid even with contracts à la Mirrlees where agents are payed conditionally on
reaching a joint performance. Indeed, even in this case, an agent refusing the offer would benefit from
neighbors’ increased efforts.

11Since we are only interested in the first-best contract, and given that there is no uncertainty in the
game, this formulation is sufficient here: the principal is able to compute exactly the optimal contract
that guarantees agents’ acceptance, and agents exert the exact effort level prescribed in the contract at
optimum.
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offer or not (status quo offer). The proposed effort level xdefi corresponds
to agent i’s best-response given others efforts. Also, in this game of com-
plementarities, the principal never finds profitable to propose to agent i an
effort level xi < xBRi .

In particular, two questions need to be addressed. First, should more
central agents be proposed higher rewards and/or efforts? The answer is
far from being obvious. Indeed, if central agents generate a huge amount of
externalities on other, they also receive more externalities; thus their effort
level is initially higher, and with convex effort cost, increasing their effort
is budget-demanding. Second, it is interesting to know whether or not this
maximum surplus extraction requires to tax some agents in order to increase
rewards to the most influencial agents on the network.

To guarantee a well-defined problem, we assume that δ < 1
2µ(G)

. We

allocation maximizing utilities Xe = aB′ satisfies uei = a2

2
b′i. For convenience,

we write B′(G) = B(G, 2δ) and b′(G) = b(G, 2δ). We obtain:

Proposition 2. The optimal contingent contract, for given budget t, is writ-
ten for all i:

t̂i(t) =
1

2

[
a2b2

i +

(
2t− a2‖B‖2

b′

)
b′i

]

x̂i(t) =

(
a+

√
a2 +

2t− a2‖B‖2

b′

)
b′i

Optimal efforts are always well-defined. The positiveness of the member
under the square root in the latter equation is equivalent to budget t being
larger than the difference between aggregate initial utilities and the aggregate
utility of the allocation Xe. This effort profile maximizing precisely aggregate
utilities, and the budget being nonnegative, this constraint always holds.

We define the following centrality index H = (h1, h2, · · · , hn):

hi =
b2
i

b′i
(9)

This index is the ratio
u0i
uei

of the (initial) agent i’s equilibrium utility over

the utility of the efficient allocation. For all i ∈ N , we define

t̄i =
a2

2

(
||B||2 − b′hi

)
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and

t̄ = max
i∈N

t̄i

For all regular networks Gk, k = 0, 1, · · · , n − 1, we have t̄ = 0 because
the Bonacich centrality is homogenous across agents on regular networks.
For other networks, we obtain

Lemma 1. For any non regular network G, t̄ > 0.

The positiveness of the quantity t̄ is crucial to understand taxation (i.e.
the set of agents offered a negative transfer). Exploiting Lemma 1, we are
now in position to identify taxed agents. From Proposition 2, we deduce that
agent i is taxed whenever t < t̄i. We deduce how to find taxed agents:

Corollary 1. The principal taxes at least one agent on the network as soon
as t < t̄. Moreover, taxed agents have smaller the index hi.

Hence, taxing some agents allows the principal to contract with agents
whose gap between equilibrium utility and efficient utility is the largest. The
centrality index H and Bonacich centrality index are linked but they may
have different ordinal rankings. To illustrate, for δ = 0.01, this is the case on
the four-player four-links network built as a four-player star complemented
with a link between two peripherals. Here, Bonacich centralities are aligned
with degrees while the ranking of the index H puts first the most connected
agent, then the least connected, then the others.

Fix δ and vary t. The optimal contract satisfies that, whatever the net-
work, all agents are rewarded for a large enough budget. Moreover, the
condition t < t̄ is always met for regular networks, meaning that, whatever
the budget, every agent is rewarded for this class of graphs. In contrast, for
a low budget, except on regular networks certain agents are taxed (with still
an effort level higher than their best-response choice).

Fix t and vary δ. For δ close to 0 or equal to 0, the solution is distributed
and agents receive approximately the same reward. When δ takes a large
value, the network effects are stronger. In general, t̄ is increasing with δ. For
a given budget, this means that taxation can emerge for a high enough value
of δ.

It is worth emphasizing that the network is crucial to understand taxa-
tion. Indeed, in the empty network all agents are isolated and thus every
agent gets an equal sharing of the budget12.

12This can be even seen when extending the model to heterogeneous agents’ characteristics. Hence,
the network effect inducing taxation is not reducible to an idiosyncratic heterogeneity effect.
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Finally, the optimal contract performance is measured by

x̂(t) =

(
a+

√
a2 +

2t− a2‖B‖2

b′

)
b′ (10)

We deduce from equation (10) that aggregate effort at the optimum is in-
creasing in aggregate centrality b′. Making a comparative statics to assess
the performance of various network structures, two messages emerge. First,
performance is increased with link addition; not surprisingly, increasing syn-
ergies is a good news for the principal13. Second, less obvious is to compare
network structures this same density. Belhaj et al. (2013) show that among
all networks with same total number of links, a network maximizing the
quantity b′ is a Nested-Split GraphIn short, Nested-Split graphs are such
that, for any pair of agents on the network, one neighborhood is nested in
the other one14. Hence, we can state:

Corollary 2. Among all networks with fixed number of links, a network
maximizing contract performance is a Nested-Split Graph.

Therefore, performant networks are highly hierarchical structures.

3.2 Optimal non enforceable contracts

With non enforceable contracts, agents accepting offers are not tied to their
promisse. Therefore, conditioning individual contract on other agents’ ac-
ceptance has no value for the principal. In particular, the effort profile cor-
responding to optimal enforceable contract cannot be sustained as a Nash
equilibrium (with same budget). Indeed, each agent, by playing a best-
response effort, obtains a utility level than u0

i . Each agent will deviate from
the prescribed level of effort of the contract.

Hence, the principal must resort to offer simple options, such that the
principal commits to a transfer if some effort level is exerted. It is therefore
without loss of generality to restrict attention to simple bilateral contracts.
Under non enforceable contracts, an offer to agent i is thus a pair (xi, ti),
meaning that if agent exert effort xi the principal is tied to proceed to tranfer
ti (in our setting the principal does not defect to his promisse).

How does non enforceability affects the optimum? A first immediate re-
mark is that the principal should propose offers with nonnegative transfers

13Similarly, contract performance increases with parameter δ.
14This class encompasses stars and quasi-star networks, complete and Quasi-complete networks, dom-

inant groups, and also more complex architectures - see for instance Mahadev and Peled (1995) for more
details.
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(an agent’s utility under negative transfer cannot exceed the reservation util-
ity, which corresponds to a null transfer and a best-response), which means
that the sole incentive compatible contract with null transfer is the default
contract. Now, does the principal propose offers with positive transfers to
every agent in the society, or in contrast should the principal concentrate
rewards to a strict subset of the society?

This issue is inutitively unclear. Subsidizing one agent increases the reser-
vation utilities of others, which de facto limits the efforts to be proposed by
the principal. The next proposition characterizes optimal bilateral contracts
as a function of agents’ positions on the network. We define E = (b2

1, · · · , b2
n)

as the profile of squares of non weighted centralities. Then:

Proposition 3. Optimal contracts satisfy t̂i > 0 for all i ∈ N , and are
written: {

T̂ (t) = t
‖B‖2 · E

X̂(t) = X0 +
√

2t
‖B‖ ·BB

Proposition 3 expresses that all transfers are positive and all efforts are
larger than the best-response effort, as indicated by indexes E and BB - in
short the principal does not concentrate rewards to a subset of agents. We
obsesrve that the sharing of the budget among agents is independent of the

budget level, since t̂i
t

=
b2i
‖B‖ . Furthermore, transfers are shaped by the square

of the un-weighted Bonacich centralities (parameter a does not play any role
here), thus the distribution of the budget is somehow concentrated in favor
of the most central agents.

In terms of contract performance, Proposition 3 implies the sum of opti-
mal efforts

x̂(t)− x0 =
√

2t · ‖B‖ (11)

The equation (11) is useful to undertake some comparative analysis of
the performance of network structures. From the above formula, contract
performance is clearly increasing with ‖B‖. One immediate consequence
is that contract performance is strictly increasing with link addition. Less
obvious is the comparison of the performance of networks with same number
of links. Belhaj et al. (2013) show that among all networks with fixed number
of links, a network maximizing the quantity ‖B‖ is a Nested-Split Graph.
Thus, similar to the case of enforceable contracts, we can state:

Corollary 3. When contracts are not enforceable, a network maximizing
contract performance among all networks with same number of links is a
Nested-Split Graph.
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3.3 Linear contracting

Linear contracts, by their simplicity, are often more realistic than optimal
contracts. Moreover, with contracts rewarding effort only, there is no coor-
dination concern because agents accept to contract independently of others’
choices15. The main question is to know whether the principal takes agents’
positions into account in her pricing strategy.

We examine the following excess-effort linear contract. With this con-
tract, the principal offers in the first stage a function rewarding increased
effort, letting agents choose in the second stage their optimal effort level.
Formally, agent i is proposed a transfer function ti(xi) = γi(xi − x0

i ), with
γi ∈ R+

16. Note that, from the principal’s view, this affine contract is clearly
better than a linear contract γixi; indeed, with the above affine contract, the
principal does not subsidize efforts lower than x0

i . By complementarities, it
can be seen that agents accept such an offer whatever the other’s choices17.
As a consequence, in contrast with optimal contracts, there is no coordination
issue here.

We let Γ = (γ1, γ2, · · · , γn), and we call by X∗(Γ) the equilibrium effort
associated with the set of contracts Γ. Profile X∗(Γ) takes into account both
the variation in effort of the contracting agent and the induced variation in
other efforts on the network. The equilibrium effort profile satisfies X∗(Γ) =
MA′, with a′i = a + γi for all i ∈ N . It is worth noting that the presence of
linear contracts does not affect the conditions of equilibrium existence and
uniqueness, the condition being still δµ(G) < 1.

As in preceding subsections, we solve the principal’s program for a fixed
budget t. We let Γ̆(t) denote the optimal excess-effort linear contract, and
X̆(t) = X∗(Γ̆(t)) for convenience. The contract Γ̆(t) solves:

max
Γ≥0

s.t.
n∑

i=1
γi

(
x∗i (Γ)−x0i

)
=t

n∑
i=1

x∗i (Γ)

15For instance, the empirical study of Gould et al. (2005) reports linear contracting in the context
of shopping malls (the typical contracs described being a fixed charge plus a tax proportional to sells in
excess of a threshold). As well, it is natural to consider linear pricing in the context of monopolies.

16In fact, imposing nonnegative per unit returns is without loss of generality; as we will see, this
constraint is not binding at optimum.

17Whatever the profile Γ ≥ 0 chosen by the principal, agent i’s individual participation constraint at
equilibrium X∗(Γ) is written:

1

2
(a+ γi + δy∗i )2 −

1

2
(a+ δy0i )2

For any Γ ≥ 0 and by complementarities, X∗(Γ) ≥ X0. Hence, the participation constraint is satisfied.
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where the budget constraint in the above program expresses that the sum of
rewards is equal to the budget. We obtain:

Proposition 4. For all i ∈ N , the optimal linear contract is:√
t

b
(x∗i − x0

i )

All transfers are positive18 and the return per unit of effort is homogenous
across agents. Moreover, agents are payed proportionally to their relative
centralities19. Indeed, taking account of the optimal efforts selected by the
agents, agent i’s payment can be computed as

t̆i(t) =
bi
b
· t

Also, the variation of aggregate effort is equal to

x̆(t)− x0 =
√
tb

Hence, the networks maximizing the impact of the principal’s intervention
are also those maximizing the sum of centralities (whatever the magnitude
of the budget). As for optimal contracts, this means that, on the one hand,
adding links will increase the impact of the principal’s intervention, and on
the other hand, among all networks with same number of links the networks
with maximal impact are Nested-Split Graphs (see Belhaj et al. [2013]).

3.4 Key-player analysis

In many situations, the principal can be constrained to contract with a re-
stricted number of agents in the society. This can result for instance from
contracting costs. We study the polar case where the principal is constrained
to choose a single agent to contract with. The question for the principal re-
duces to find the optimal agent to target.

We examine linear contracts, optimal non enforceable contract, and opti-
mal enforceable contract. Of course, the most performing contract is the en-
forceable contract, then the non enforceable contract, then the linear. What-
ever the case studied, one single agent is proposed an offer, thus all other
agents play their best-response. The principal subsidizes an increased effort

18It should be noted that the symmetry assumption GT = G is crucial here.
19This is not a surprise. This result is known from the literature on linear pricing in monopolies (see

Bloch and Quérou [2013]).
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for the targetted agent until a point which is compatible with the agent’s
incentive.

Following the same logic as in the benchmark case where the principal is
not contrained to select a unique agent, at the optimal enforceable contract,
the selected agent obtains in the end her initial utility, i.e. the principal
extracts all her utility surplus; in the opposite, at the optimal non enforceable
contract, the principal has to take care that the reservation utility of the
targetted agent at the optimum is larger than her initial utility, because
others’ efforts are increased by complementarities; i.e. the principal cannot
extract the full utility surplus of the targetted agent.

We introduce the inter-centrality index of agent i:

Ii =
(bi)

2

mii

This index plays an important role in problems where the objective is
to drop out the agent which has the maximum (resp. minimum) impact on
others’ efforts, and it turns out that the optimal target, so as referred to the
key player, is the agent with maximal (resp. minimal) inter-centrality index
(see Ballester et al. [2006], Bellester et al. [2010] or Liu et al. [2014]). This
index plays a key role for the linear contract:

Proposition 5. With the linear contract Γ, the agent to target has maximal
inter-centrality index Ii.

More precisely, let agent l be the targetted agent. The optimal reward

per unit of excess effort of the targetted agent is γ̆l(t) =
√

t
mll

, her effort is

x̆l(t) = x0
l +
√
t mll, and aggregate effort variation is x̆(t)− x0 =

√
t Il.

The optimal non enfocreable contract selects an other agent:

Proposition 6. At the optimal non enforceable contracting, the targetted
agent maximizes the un-weighted centrality index.

Let agent z be the targetted agent. Her effort is x̂z(t) = (a +
√

2t) mzz

and the aggregate effort variation is x̂(t)− x0 =
√

2t bz.
To finish, we turn to the optimal enforceable contract. The selected

agents exerts an effort level that guarantees her to obtain her initial utility.
Her effort is written bi + αi(t), where the quantity αi(t) is as follows. Define

Ai = 1 − 2δ(GM)ii
mii

, Bi = bi − 1 − δ(GB)i − δ(GM)ii
bi
mii

, Ci = −2(t − b2
i ) −

2bi(1 + δ(GB)i). Then

αi(t, bi,mii, (GB)i, (GM)ii) =
1

Ai
max

(
−Bi −

√
B2
i − AiCi,−Bi +

√
B2
i − AiCi

)
Hence,
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Proposition 7. At the optimal enforceable contract, the targetted agent max-
imizes the budget-dependent quantity αi(t)

bi
mii

.

Propositions 5, 6 and 7 have deep implication for the principal. For
instance, the ordinal ranking of un-weighted centralities can be distinct from
the ranking of inter-centrality indexes, and notably the agent with maximal
index. As an illustration, consider the 11-agent example of Ballester et al.
(2006), which is presented in figure 3.4:

Figure 1: For δ = 0.2, agent 1 maximizes centrality, agent 2 maximizes
inter-centrality.

When δ = 0.2, the agent with the highest centrality is agent 2, while
the agent with higher inter-centrality is agent 1. Hence, under optimal con-
tracting, the preferred target is agent 2, while with linear contracting the
principal should select agent 1.

We note that the ratio of aggregate effort reached at the optimal contract
over aggregate effort reached at the linear contract,

√
2 mll

bz
bl

, is independent
of budget t. Also, since diagonal elements of matrix M exceed 1, the ratio
exceeds

√
2. To illustrate the performance gap between linear and optimal

contract, in the example given in Figure 3.4, we find l = 1 and z = 2 and the
ratio is around 2.008, thus targetting adequately optimal contract doubles
contract performance with regard to linear contracting.
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4 Extension: contracting with network entry

In this section, we explore enforceable optimal contracting in a model with
network entry. In this extension, we assume that agents are initially not on
the network. In the context of malls, the network is a fixed network with
physical nodes, and the principal can then offer a location (on top of propos-
ing an effort and a transfer). In the previous section, shops were initially
occupying the mall space and the principal task was to contract with every
shop in the mall. However, when a developer acquires a new mall, shops
are initially out of the mall space. Facing both this physical network and
the pool of agents, the principal has to select a set of shops to contract with
and to propose to each selected shop an offer of the following kind: the con-
tract specifies a node of the network to be occupied by the shop, an effort
level and a transfer. Hence, the principal has to deal with network entry (a
non-contracting shop does not enter the network). As another concrete ap-
plication with network entry, consider a firm manager who can select among
its workers a pool of workers to set up a specific project; here the network
describes the potential synergies between all pair of workers.

Formally, there is initially a pool of agents and a physical network of pos-
sible locations for agents (we suppose with loss of generality that the number
of possible locations is equal to the number of agents). The principal selects
a set of agents to contract with. As shown in the section on enforceable con-
tracts on a fixed network, the optimal contract is contingent, thus utilities
under offer rejection are given by some exogenous value. However, the prin-
cipal should determine not only the optimal efforts and transfers, but also a
location on the network for each selected agent. In practise, since agents are
homogenous and anonymous, the selection problem of the principal consists
in choosing the best subnetwork of network G and locate arbitrary agents
on this subnetwork, irrespective of the agents’ labels. Figure 4 illustrates
the actions of the principal (in the picture, all links between agents in S are
active; this is of course conditional on agents acceptance).

For convenience, the model can be treated as if all agents where occupy-
ing all nodes, and the principal can either propose to each agent i a contract
of the type (xi, ti) or can unilaterally exclude agent i from the network (for
convenience we omit the term Ki in the contract, as we know that K̂i = N).
We call by (0, 0) the default point consisting in the unilateral exclusion of the
agent (hence, the default point is not stricto sensu a contract). With this
conventional trick, the pool of possible contracts C = [0,+∞[×R includes
the default point. Under the offer (X,T ), the set {i ∈ N, (xi, ti) 6= (0, 0)}
corresponds to the set of agents who are not unilaterally excluded from the
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Figure 2: Contracting with network entry

network. An agent rejecting the offer or being proposed the default point
exerts a null effort and obtains an exogenous and homogenous reservation
utility equal to u. Hence in opposite with the model with fixed network,
non contracting agents do not affect the utility of agents joining the net-
work. This means that in network G active links are only those involving the
agents accepting the offer, who are located on subnetwork Q (active links are
depicted in thick draw in figure 4.

Furthermore, we assume that δ < 1
2µ(G)

. This condition guarantees finite-

ness of efforts at the optimal contract. The (binding) individual participation
constraint associated with agent i’s contract with network entry is written
at optimum:

ui(xi, yi) + ti = u

The principal’s tasks can be decomposed into three nested optimization
problems. First, considering any set of agents located on a given subnet-
work say Q of network G, and set N \ Q of excluded agents, the principal
has to select the optimal contracts over the subnetwork Q, conditional on
budget t. Since agents are anonymous, this task consists in defining op-
timal contracts on every subnetwork of network G. Formally, defining G
as the set of subnetworks of network G. We define (X̂(t), T̂ (t))Q as the
optimal set of contracts associated with the subnetwork Q ∈ G and condi-
tional on budget t. Second, the principal has to select the optimal subnet-
work Q̂(t) = arg maxQ∈G ΠP ((X̂(t), T̂ (t))Q), given the optimized contracts
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on each subnetwork. Last, the principal should select the optimal budget
t̂ = arg maxt∈R+ ΠP ((X̂(t), T̂ (t))Q̂(t)), given that to each budget is associated
an optimal subnetwork with optimized contracts on it.

We start with the first task. We thus consider an arbitrary subnetwork
Q with q = |Q| the number of its nodes. In the benchmark model where
agents cannot be excluded from the network, there always exists an optimal
contract on any subnetwork Q; even with zero budget, there exists an optimal
contract in which the principal offers increased effort by taking advantage of
complementarities. However, in the model with network entry, for large
reservation utilities and limited budget, there is no warranty of beneficial
trade for the agents, because there may be no way to manage a contract
with increased efforts without violating at least one individual participation
constraint. Precisely, the budget should be big enough to cover the difference
between the sum of reservation utilities of the agents entering the network
and the maximum utility that these agents could attain on the network. We
denote for simplicity B′Q = B(Q, 2δ) (which is a vector with q elements).
The principal can raise an optimal set of contracts on Q if only if

t ≥ qu− a2

2
b′Q (12)

The optimal set of contracts (X̂, T̂ )Q(t), conditional on subnetwork Q
and budget t, has the following structure. We obtain:

Proposition 8. Consider a fixed budget t and a subnetwork Q satisfying
Condition (12). The optimal contract (X̂, T̂ )Q(t) is written:

T̂Q(t) = u1 +

(
t− qu
b′S

)
B′Q (13)

X̂Q(t) =

(
a+

√
a2 + 2

(t− qu
b′S

))
B′Q (14)

We observe that optimal offers, through both efforts and rewards, take
into account centralities (to take into account of the impact of agents on
neighbors’ utilities, the relevant decay parameter is 2δ at optimum). Second,
rewards are increasing in centralities if an only if t > qu. This apparently
surprising result can be explained as follows. Two forces shape rewards.
On the one hand, the optimal contract internalizes the influence that agents
have on others; more central agents generating larger network effects, this
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force tends to align rewards with centrality. On the other hand, the optimal
contract has to guarantee network participation to agents; this mechanism
tends to puts greater reward to peripheral agents (their utility upon contract
acceptance is lower whereas the exist option is homogenous). When the
budget exceeds the sum of reservation utilities, network influence dominates
and more central agents receive higher rewards. In the opposite, when the
budget is lower than the sum of reservation utilities, network entry dominates
and least central agents receive higher rewards.

Note also that transfers can be either positive or negative. A deep result
is that the possibility of negative transfers is exclusively related to network
exclusion considerations. Indeed, negative transfers can exist only if t < qu,
and taxed agents are those with the largest centralities. Conversely, when the
budget is large enough so that t > qu, more central agents get higher rewards.
In this case, equation (13) shows that the principal never finds profitable to
tax peripheral agents.

Regarding optimal efforts, letting Xe
Q = aB′Q denote the efficient alloca-

tion on subnetwork Q, equation (14) shows that X̂Q(t) ≥ Xe
Q. This offer

is optimal when the budget is equal to the efficient aggregate utility level,
while for a larger budget, the principal can even sustain higher effort lev-

els. Moreover, we observe that xi−u
xj−u =

b′Q,i

b′Q,j
, i.e. the ratio of excess effort

with regard to exit option is equal to the ratio of centralities; in particular it
is independent from the budget. Overall, Proposition 8 indicates that more
central agents always exert a higher effort. Indeed, in this case the two forces,
network entry and network influence, go in the same direction with efforts:
lowering peripherals’ (costly) effort favors their entry, and highering central
agents favors their influence. One spectacular case is t = qu. In this case,
the network does not affect rewards, while it still shapes efforts.

The optimal contract performance on subnetwork Q is measured by

x̂Q(t) = ab′Q +
√
b′Q

√
a2b′Q + 2(t− qu) (15)

We deduce from equation (15) that aggregate effort at the optimum is in-
creasing in aggregate centrality. Moreover, not surprisingly, high reservation
utilities dampen the aggregate at optimum since participation constraints
are demanding.

We turn to the second principal’s task. Equation (15) explains how the
principal selects the optimal subnetwork Q̂(t). First, a direct implication is
that, among all subnetworks associated with same cardinality, the preferred
network for the principal maximizes the sum of centralities. Second, this
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equation enables to compare subnetworks with different cardinalities. In
particular, there is network exclusion when the optimal set q < n. The reason
for exclusion is linked to the cost of integrating agents on the network.

The impact of reservation utilities on exclusion can be observed under low
level of interaction. When δ tends to 0, there is almost no interaction, and all
offers contain approximately the same reward (' t

q
). Yet, the number q̂ can

be smaller than n when u is large enough. We illustrate further exclusion
issue by examining two polar network structures. First, we consider G as
a complete network with n agents. Any subnetwork Q of network G is a
complete network of size q, and thus aggregate centrality on this subnetwork
is equal to b′Q = q

1−2δ(q−1)
. For low budget t and large reservation utility

u there exist two values q, q̄ such that Condition (12) holds for any q ∈
[1, q[∪]q̄,+∞[ (q and q̄ are the roots of the equation 4uδq2 + (1 − 2u(1 +
2δ) − 4tδ)q + 2t(1 + 2δ) = 0). This shows possible network exclusion: it
can be seen that for q < q, x(q) is either increasing or is single-peaked with
a maximum, while for q > q̄, x(q) is either increasing or is single-peaked
with a minimum. Take for instance a = 1, u = 3, δ = 0.03, t = 12. Then
we get q = 6, q̄ = 13, and the maximal component size compatible with
centrality existence is q = 17. Basically, the optimal size maximizes the

Figure 3: Finding the optimal subnetwork from the complete network.

depicted function under the constraint q̂ ≤ n. When n ∈ [1, 4] ∪ [14, 17], we
get q̂ = n, which means that the targetted group has maximal size. When
n ∈ [5, 13] we find q̂ = 4, meaning that netork exclusion obtains. Note that
exclusion is not only due to the feasibility constraint, it also results from a
strategic trade-off.
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The above general picture is generic. To give a flavor, consider the star
network. For n = 4, and G the four-star network with agent 1 as central, set
a = 1, t = 10, δ = 0, 1. For u ≤ 3, we find q = n, while for u = 3.1 we find
Q̂ = {12, 13}. Second, for large stars, contract existence is also a matter, as
confirmed in figure 4. As for the complete network, there exists an interval

Figure 4: Finding the optimal group size on the star network.

where contract existence does not hold (the bounds of the interval, q and q̄,
are the roots of the equation 8uδ2q2 + (1 + 4δ− 2u(1 + 4δ2)− 8tδ2)q+ 2t(1 +
4δ2) = 0).

To finish, the principal has to determine the optimal budget t̂ through
equation (6). The optimal budget makes the balance between the rate at
which increased budget improves objective function F through its induced
effect on efforts and the direct cost effect. The optimal budget is increased
for functions F with larger slopes and vice-versa. At the limit, when F is
null, the optimal efforts are those minimizing the budget t. This is done by
putting all efforts to the efficient allocation Xe, which entails a maximal ex
post aggregate utility (net of transfers) equal to a2

2
b′
Q̂

, and thus establishing

t̂ = u0 − a2

2
b′
Q̂

.

Remark. In the present extension, the principal cannot modify the net-
work. However, in science park development for instance, the park owner can
design the location of firms as he wishes, and more generally invest in the
general park ergonomy, thus indirectly impacting the intensity of communi-
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cations and synergies between firms. This aspect calls naturally for network
design, in a setting with costly link formation. Assume for simplicity that
total link formation cost is an increasing function c(l) where l is the number
of existing links in the building network. As shown in equation (15), contract
performance is increasing with b′Q. From Belhaj et al. (2013), we deduce that
when contracting with network entry, among all networks with fixed number
of links, a network maximizing contract performance is a Nested-Split Graph.
In particular, when c() is concave, the principal will form either the empty or
the complete network (still selecting a possible subgroup of agents to join the
network, as shown before). Alternatively, when c() is convex, more complex
NSGs may be optimally designed (see the cited paper for more details).

5 Conclusion

This paper presented a situation where a principal contracts with a set of
agents organized in a network of local complementarities, in the purpose of
maximizing the sum of agents’ efforts. We studied how the network structure
affects optimal contracts in a static framework with observable efforts. Our
study mainly stresses that optimal contracts do take into account agents’
positions on the network. Optimal contracts reward all agents and, taking
account of the heterogenous influence of agents on the network, rewards are
aligned with agents’ centralities. Our study also stresses that contract en-
forceability is key to understand trading. When contracts are enforceable, we
identified conditions under which the principal, raising contingent contracts,
would tax some agents, whom we identified through specific centrality in-
dex. Contrastingly, taxation is not optimal under non enforceable contracts,
and we showed that all agents are proposed a positive transfer. We stud-
ied (excess-effort) linear contracts, and we found that per unit returns are
homogenous across agents. We examined the case where the principal can
establish a single contract among all agents. We showed that with linear
contracting, the agent to target maximizes the inter-centrality index (which
is known to play a crucial role in key-player analyzes); with non enforceable
contracts, the principal should target the agent maximizing the un-weighted
Bonacich centrality; with enforceable contracts, the optimal agent to target
is budget-dependent. Last, we studied network entry under enforceable con-
tracts, and showed that the principal has to take care that guaranteeing the
participation of the least central agents could be more costly than that of
central agents. This may lead first to exclude a subset of the population, and
second to offer larger rewards to the least central agents.
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This model raises other issues. First, it would be interesting to extend this
analysis to substitute interaction. In particular, if our study formally holds
for all types of interaction under low level of interaction, the general analysis
is challenging. Notably one has to take into account that the principal may
be willing to pay for setting effort to zero. Second, it would be interesting
to understand full implementation. Under this requirement, the optimal
contract is of divide-and-conquer type (Seagal [2003]), but not much is known
about the impact of the network structure on its design. Third, it would be
important to understand non-discriminating contracts. One possibility is
to consider the case where the principal, knowing the network, proposes a
menu of contracts and to examine conditions under which agents choose the
contract corresponding to their positions on the network. Fourth, in many
circumstances, the principal is imperfectly informed of either efforts and/or
the detail of the network. This opens new insight. In particular, linked agents
on the network may collude, which my complicate the task of the principal.
Last, network design is also a means to increase the sum of agents’ efforts,
and it would therefore be interesting to know more on optimal network design
in this context. This is left for future research.

6 Proofs

This section collects all proofs.

Proof of Proposition 2. See the proof of Proposition 8. �

Proof of Proposition 3. We observe that when F () is concave or
linear, the objective function is linear while constraints are convex, so there
is a single maximum to this problem. We examine the subproblem where t
is kept fixed. Reminding that, for all k, xBRk = a+ δyk, we note that

uk(x
BR
k , yk)− uk(xk, yk) =

1

2

(
xBRk

)2 −
(
xkx

BR
k − 1

2
x2
k

)
That is,

uk(x
BR
k , yk)− uk(xk, yk) =

1

2

(
xk − xBRk

)2

Let ψk =
√

2tk for all k. The solution of the program is such that the
incentive constraint is binding. Thus, for all k, all X on the incentive con-
straint,

xk − xBRk = ψk
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or in matrix form

X −XBR = Ψ

That is, with A = a1,

X = M(A+ Ψ) (16)

We note that

X −XBR = (I − δG)(X −BA) (17)

The total budget constraint is written

(X −XBR)T (X −XBR) = 2t

That is, given equation (17), we have to solve

max
{(ti,xi)}i∈N

s.t. (X−BA)T (I−δG)T (I−δG)(X−BA)=2t

1TX

We define Z = (I − δG)(X −BA) (that is X = MZ +BA). Since Z = Ψ,
we have Z > 0 if and only if T > 0. Noting that 1TMZ = (MT1)TZ,
and reminding that MT = M , we obtain (ignoring the term of the objective
function which is independent of Z),

max
{(ti,xi)}i∈N
s.t. ZTZ=2t

(M1)TZ

Geometrically, we have select on the circle of radius 2t the point Z such
that the projection on M1 is maximal. This means that the optimal vector
Ẑ is co-linear to vector M1, that is, there exists a real number β > 0 such
that

Ẑ = βM1

As Ψ = Z, we have ti =
z2i
2

, we get

t̂i =
β2

2
b2
i

Reminding that ‖Ψ̂‖2 = 2t, we deduce that

β2 =
2t

‖B‖2
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Thus,

t̂i =
t

‖B‖2
b2
i

Also, X = BA +MZ, hence

X̂ = BA + βM21

and plugging β, we get

X̂ = BA +

√
2t

‖B‖
MB

and

x̂− x0 =
√

2t‖B‖

and we are done. �

Proof of Lemma 1. Consider any network G which is not regular.
Suppose that the optimal allocation is such that all agents receive a positive
reward for any arbitrarily low budget, i.e. t̄(G, δ) ≤ 0. This means that for
every agent i we have

t̄i(G, δ) ≤ 0 (18)

However, summing all threshold budgets, we observe that

n∑
i=1

b′i ·
n∑
k=1

b2
k =

n∑
i=1

b2
i ·

n∑
k=1

b′k

That is,

n∑
i=1

t̄i(G, δ) = 0 (19)

From this latter global balanced condition (19), we conclude that t̄i(G, δ) = 0
for all i ∈ N . Now, for any pair of agents (i, j) who get a different Bonacich
centrality, we have

(b′i − b′j) ·
n∑
k=1

b2
k 6= (b2

i − b2
j) ·

n∑
k=1

b′k
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(except perhaps for values of δ of null measure). This shows that t̄(G, δ) > 0
if and only if G contains at least two classes of agents with distinct centrali-
ties. �

Proof of Proposition 4. We have

x∗(Γ)− x0 =
n∑
i=1

γibi = ΓTB

where bi is agent i’s un-weighted centrality. The principal’s problem is written
as follows:

max
Γ∈R+n

ΓTMΓ=t

(M1)TΓ

We define S̆ = {i ∈ N, γ̆i > 0} as the set of agents with positive rewards.
To explain the role played by the nonnegativity constraint, suppose that we
do not take the condition Γ ≥ 0 into account. Geometrically, we have then
to maximize the projection of a vector on B over an ellipsöıd. However, with
symmetric adjacency matrices GT = G, we have S̆ = N . Indeed, as M is
symmetric, it is definite positive and there exists a square root matrix of
M (all the eigenvalues of a symmetric invert-matrix are real and positive -
see for instance Poole and Boullion (1974), Theorem 2.1 p. 420 -, so M is
definite positive, and there exists a matrix Q where M = QTQ), and the
constraint can be written as a norm. That is, the ellipsöıd is a circle, so the
optimal direction of Γ is that of M1. This shows that the solution satisfies
S̆ = N . Given this, the Lagrangian L is written:

L(Γ, λ) =
n∑
i=1

γibi + λ

(
t−

n∑
j=1

n∑
k=1

γjγkmjk

)
+

n∑
i=1

νiγi

where νi = 0 if and only if γi > 0. We apply the first order conditions w.r.t.
γi for all i ∈ N . We get ∂L

∂γi
= 0, i ∈ N , if and only if

bi

λ̆
=

∂

∂γi

(
γ̆2
imii + γ̆i

∑
k 6=i

mikγk + γ̆i
∑
j 6=i

mjiγj +
∑
k 6=i

∑
j 6=i

mjkγkγj

)
This means

B

λ̆
= 2M Γ̆
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that is, since B = M1,

Γ̆ =
1

2λ̆
1

To finish, given that Γ̆TM Γ̆ = t, and reminding that 1TM1 = b, we derive

λ̆ =
1

2

√
b

t

It follows that

Γ̆ =

√
t

b
· 1 (20)

Furthermore, the reward equation is written

t̆i = γ̆i · (
∑
j

mij γ̆j) (21)

Replacing equation (20) into equation (21), we get

t̆i =
bi
b
· t

Last, regarding aggregate effort, we get

x̆− x0 =
n∑
i=1

γ̆ibi (22)

That is, as incorporating equation (20) into equation (22), we obtain

x̆− x0 =
√
tb

and we are done. �

Proof of Proposition 5. Equilibrium efforts with linear contract are
written

X = X0 +MΓ (23)

with Γ = (0, · · · , 0, γi, 0, · · · , 0), agent i being the targetted agent; and the
variation of aggregate effort is written:

x− x0 =
∑
k

∑
j

mkjγj =
∑
j

γjbj = γibi (24)
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Also, the budget constraint is written

t = γi(xi − x0
i )

Suppose without loss of generality that agent i is the optimal target for
fixed budget t, thus γ̆i(t) > 0. From equation (23) we obtain

x̆i(t)− x0
i = miiγ̆i(t) (25)

Plugging equation (25) into the budget constraint, we find

γ̆i(t) =

√
t

mii

(26)

Plugging equation (26) into equation (25), we obtain

x̆i(t)− x0
i =
√
t mii

while plugging equation (26) into equation (24), we obtain

x̆(t)− x0 =
√
t · bi√

mii

=
√
t Ii

and we are done. �

Proof of Proposition 6. We consider the optimal non enforceable
contract with fixed budget t. Suppose that agent i is proposed the principal’s
offer (xi, t). Let 1i = (0, 0, ..., 0, 1, 0, ..., 0) at with 1 at position i. Agent i’s
participation constraint imposes

x̂i − δyi = a+
√

2t

For convenience, let X̂(t) denote the profile containing the optimal effort
x̂i(t) proposed by the principal to agent i, and other coordinates represent
the best-response efforts of other agents on the network. Since other agents
play their best-response, this vector solves:

(I − δG)X̂(t) = a1 +
√

2t1i

That is, letting Mi denote column i in matrix M ,

X̂(t)−X0 =
√

2tMi

and thus we find x̂i(t) = (a+
√

2t) mii and x̂(t)− x0 =
√

2t bi. �
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Proof of Proposition 7. We consider the optimal enforceable contract
with fixed budget t. Suppose that agent i is the target. The principal will
be able to raise agent i’s effort to level xi = bi + α, α > 0, with her budget
until ui(xi, yi) = u0

i , and taking into account that other agents play their
best-response. This problem is equivalently studied through the system

(I − δG)X = 1 + αE (27)

where profile E = (0, · · · , 0, 1
mii
, 0, · · · , 0). Indeed, system (27) is also written

X = B + αME

which entails xi = bi + α. We note also that, when putting xi to bi + α, we
find xj = bj + α

mji

mii
. Summing all efforts, we get

x = b+ α
bi
mii

Hence, the optimal target maximizes the quantity α bi
mii

, where α solves

ui(xi, yi) = u0
i ; that is, x2

i − 2xi(a + δyi) − 2(t − u0
i ) = 0. Replacing xj by

bj+α
mji

mii
for all j in ui, α solves the second-order equation Aiα

2+Biα+Ci = 0,

where we define Ai = 1 − 2δ(GM)ii
mii

, Bi = bi − 1 − δ(GB)i − δ(GM)ii
bi
mii

,

Ci = −2(t − b2
i ) − 2bi(1 + δ(GB)i). The result follows. Note that by the

presence of budget t in Ci, the optimal target is budget-dependent. �

Proof of Proposition 8. The program of the optimal contingent con-
tract on a fixed network and the program of optimal contract with network
entry are isomorphic, both correspond to a model where non contracting
agents have an exogenous reservation utility. We develop a unified proof
with u0

i ≥ 0 as agent i’s reservation utility and u0 =
∑

i∈N u
0
i . For Proposi-

tion 2, we take u0
i = a2

2
b2
i , while for Proposition 8, we take u0

i = u for all i.

By concavity of utilities, the problem admits a single maximum (the ob-
jective function is linear and constraints are convex). Consider a set of agents
S compatible with contract sustainability. Given that the global maximum
is unique, these conditions will be necessary and sufficient.

The Lagrangian associated with program (4) is written

L =
∑
k∈N

xk +
∑
k∈N

λk

(
uk(xk, yk) + tk − u0

k

)
+ µ

(
t−

∑
k∈N

tk

)
where the participation constraint of agent k is associated with weight λk.
Suppose that every agent receives a positive reward. From derivatives of the
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Lagrangian w.r.t. ti, it follows that λi = λ for all i. The derivative of the
Lagrangian w.r.t. xi entails (remind that ai = a for all i):

xi − 2δyi = a+
1

λ
(28)

That is, defining b′i = bi(G, 2δ) for convenience (this centrality is well-defined
as 2δ < µ(G)), the equation (28) is also written

xi =

(
1 + aλ

λ

)
b′i (29)

Agent i’s participation constraint is written

2ti = 2u0
i +

(
xi − 2δyi − 2a

)
xi (30)

Plugging equation (28) into (30), we get

2ti = 2u0
i +

(
1− aλ
λ

)
xi (31)

Plugging now equation (29) into equation (31), we find

ti = u0
i +

1

2

[
1− a2λ2

λ2

]
b′i (32)

We have now to explicit the expression 1−a2λ2
λ2

. Summing rewards over all
agents, we obtain

t = u0 +
1

2

(
1− a2λ2

λ2

)
b′

Rearranging, we obtain

1

2

1− a2λ2

λ2
=
t− u0

b′
(33)

Incorporating equation (33) into (32), we deduce that

t̂i = u0
i +

(
t− u0

b′

)
b′i

We define t̄i = u0− b′

b′i
u0
i . Transfers are positive whenever t > t̄i. In total,

defining t̄ = max
i∈N

t̄i, all rewards are positive if and only if t > t̄. Finally,
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agent i’s optimal effort x̂i is easily characterized. From equation (33) we get
λ, which we incorporate into equation (29) to obtain

x̂i =

(
a+

√
a2 + 2

(t− u0

b′

))
b′i

and we are done. �
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[3] Ballester, C., Calvò-Armengol, A. and Y. Zenou, 2010, Delinquent net-
works, Journal of the European Economic Association, 8(1), 34-61.

[4] Belhaj, M., S. Bervoets and F. Deröıan, 2013, Efficient Networks in
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