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1 Introduction

In many economic situations, agents’ behaviors depend on their peers. Such

interactions are well documented for criminal activities, or for R&D part-

nerships, or for protective investment against terrorism for instance. This

creates opportunities for a policymaker to exploit these interdependencies,

either to reduce or to increase the overall activity. For example, effort re-

duction may be desirable with criminal activities, whereas increased effort

may be valuable in R&D investment or protection against terrorism. One

possible policy consists in trading effort change against transfers. However

in many circumstances, contracting costs substantially increase with the

number of contracts. With a limited budget, the policymaker may then

resort to make deals with a limited subset of agents.

This article considers agents organized in a network of local complemen-

tarities. We study the problem of a policymaker contracting with a single

agent in order to minimize (resp. maximize) aggregate effort.1 Because the

agent can behave opportunistically in many economic environments, we

study both enforceable and non-enforceable contracts. The problem can

be solved in two steps: first, studying the optimal contract with any agent,

and then selecting the best agent, called the key player.

Our analysis shows that, for all utilities with linear best-responses, it

only takes two statistics about the position of each agent on the network to

identify the key player: the Bonacich centrality, which counts the number

of (weighted) walks starting from the agent, and the number of (weighted)

closed walks starting from the agent. In more detail, we show that the pol-

icy effect is the product of two components: the change in targeted agent

effort (what we call the incentive component) and the change in aggregate

effort following a one-unit rise in targeted agent effort (the network com-

1Although limiting the analysis to a single contract may appear to be a drastic simplification, the

model covers a substantial part of the more general issue of contracting with a group.

2



ponent). The latter is a pure network multiplier effect and is equal to the

ratio of Bonacich centrality over the number of closed walks. The former

is a function of both statistics, the budget level, the shape of utility, and

whether the policymaker maximizes or minimizes effort. In the end, the

key player depends on all these parameters. Moreover, under effort maxi-

mization, the key player depends on contract enforceability, whereas under

effort minimization enforceability plays no role.

We also further characterize the key player under linear quadratic util-

ities. First, we find that, when contracts are enforceable, the key player is

budget-dependent. This result stands in sharp contrast to non-enforceable

contracts (under effort maximization), for which the key player maximizes

the Bonacich centrality, irrespective of the budget level. Second, we ex-

amine the excess-effort linear contract, which is a natural contract given

that agents exert effort in the absence of a principal. This contract puts

the inter-centrality index in the spotlight, which is reminiscent of the key

player analysis of Ballester, Calvò-Armengol and Zenou (2006).

There is already a literature on key-player analysis.2 In their pioneer-

ing work, Ballester et al (2006) investigate key-player policy in a context of

linear quadratic utilities, examining which agents should be dropped from

the network so as to minimize aggregate effort. The optimal target is an

agent maximizing the inter-centrality index, a specific centrality measure

internalizing how much the agent affects others’ contribution to the aggre-

gate. Ballester, Calvò-Armengol and Zenou [2010], Liu, Patacchini, Zenou

and Lee [2014], and Konig, Liu and Zenou [2014] elaborate on this seminal

paper. Our approach complements Ballester et al (2006) by considering the

situation where a policymaker with a limited budget needs to compensate

the agent in order to reduce the agent’s effort, whereas in their setup pol-

icy intervention is costless. Our approach opens the way to partial effort

2See Zenou (2016) for a recent survey.
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reduction, a useful device when the policymaker has a limited budget.

The Key-player policy fits into a more general literature related to opti-

mal targeting on networks. In a related paper, Belhaj and Deröıan (2017)

study optimal contracting on networks without any constraint on the num-

ber of contracts established by the principal under linear quadratic utilities.

Interestingly, even in this less restrictive environment, it can be optimal to

contract with a subset of the population, and in particular with a single

agent. Zhou and Chen (2015) examine the benefits of sequentiality in the

same game as ours. In their setting, one (forward-looking) agent plays

in the first stage and the others in the second stage. A network designer

has to find the best agent to play first. Their solution coincides with ours

for a zero budget under linear quadratic utilities. Our key-player analysis,

in particular Proposition 2 in the present article, generalizes their paper’s

Proposition 2 to a non-zero budget. Demange (2017) studies the optimal

targeting strategies of a planner aiming to increase the aggregate action of

agents embedded in a social network, allowing for non-linear interaction.

In a recent paper, Galeotti, Golub and Goyal (2017) study optimal target-

ing in networks, where a principal aims at maximizing utilitarian welfare

or minimizing the volatility of aggregate activity. In the drop-out game of

Calvò-Armengol and Jackson (2004), the planner subsidizes agents’ labor

market entry.

The paper is organized as follows. Section 2 presents the model. Section

3 first presents our main result (Theorem 1), applicable to general utilities

with linear best-responses, and then characterizes the key player further by

focusing on linear quadratic utilities. A short discussion about alternative

policies closes this section. Section 4 concludes. All proofs are presented

in the Appendix.
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2 Model

We consider a finite set of agents interacting on a network of local comple-

mentarities. A policymaker with a limited budget contracts with a single

agent in order to either minimize or maximize the aggregate effort. Effort,

contract and network are assumed to be publicly observable. We consider

a three-stage game. In the first stage, the policymaker offers a contract to

a single agent. In the second stage, the agent decides whether to accept or

reject the offer. In the third stage, all agents exert effort, and the transfer

is realized. We study the Subgame Perfect Nash Equilibrium (SPNE).

Notations. Numbers are written in lower case, matrices (including

vectors) in block letters and in boldface. We denote by 1 the n-dimensional

vector of ones. We let superscript T stand for the transpose operator. For

instance, we write vector X = (x1, · · · , xn)T , with xi its ith entry, and

x = 1TX denotes the sum of entries of vector X.

Network. We let N = {1, 2, · · · , n} be the set of agents organized in a

network of bilateral relationships. The network is formally represented by

a symmetric adjacency matrix G = [gij], with binary element gij ∈ {0, 1}.

The link between agents i and j exists whenever gij = 1, in which case

we will say that agents i and j are neighbors. By convention, gii = 0 for

all i. By abuse of language we will speak of network G. The network

is undirected, i.e. GT = G (where symbol T quotes for the transpose

operator). We let µ(G) denote the index of the adjacency matrix G, which

is its largest eigenvalue by symmetry.

Agents’ utilities. Agents exert effort and derive utility from own effort

as well as from aggregate neighbors’ effort. We let vector X = (xi)i∈N ∈ Rn
+

be a given profile of effort, and we define for convenience the vector Y =

GX as the vector of aggregate neighbors’ effort. Individual utilities are

homogeneous across agents and generate linear interaction between neigh-
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bors in a context of local positive externalities and local complementarities.

Formally, agent i’s utility is expressed as the function u(xi, yi) and is quasi-

concave in the first argument, increasing in the second argument. Defining

xBRi (yi) as agent i’s best-response effort when aggregate neighbors effort is

equal to yi, we impose the following assumption:

Assumption 1. The utility function generates a linear best-response of the

form

xBRi (yi) = 1 + δyi (1)

where parameter δ > 0 measures the strength of complementarities,

or intensity of interaction, between neighbors. This system of linear best-

responses generates a unique and interior equilibrium effort profile if and

only if δµ(G) < 1, which we assume throughout the article (otherwise there

is no equilibrium and effort would escalate to infinity − see Ballester et al

[2006] in the context of linear quadratic utilities).

Example 1. Under linear quadratic utilities (see Ballester et al [2006]),

agent i’s utility is given by

ui(xi, yi) = xi −
1

2
x2
i + δxiyi

Parameter δ measures the strength of complementarities or intensity of

interaction between neighbors, and agent i’s best-response is identical to

equation (1).

Example 2. Agent s’s utility function is written

ui(xi, yi) = xi − f(xi − δyi)

where function f is C2, increasing, convex and satisfies f ′−1(1) = 1. Func-

tion f represents the cost of effort, which is lowered by neighbors’ effort.

Effort cost is lowered by neighbors’ effort, higher δ meaning higher impact
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on own effort cost. Then agent i’s best-response is identical to equation

(1).

Centralities and equilibrium. We let I denote the n-dimensional

identity matrix. We set the n-square matrix M = (I−δG)−1.The condition

δµ(G) < 1 guarantees M ≥ 0. For any vector Z ≥ 0, we let BZ = MZ

denote the Bonacich centrality of the network weighted by Z (we avoid

references to network G and parameter δ for convenience). The quantity

bZ,i is the number of paths from agent i to others, where paths are weighted

as follows: the weight of a path of length k from agent i to agent j is δkzj.

In particular, bi represents the un-weighted Bonacich centrality of agent

i (in network G under decay parameter δ). We let B = M1 denote the

vector of Bonacich centralities.

Letting X0 = (x0
i )i∈N be the Nash equilibrium played by agents when

there is no policymaker’s intervention, we get X0 = B. Hence, equilibrium

effort can be interpreted in terms of Bonacich centrality. By linearity of

best-responses, the utility of agent i at the Nash equilibrium X0 is given

by u(bi,
bi−1
δ

), and is a function solely of the centrality of agent i.

The policymaker’s intervention. The policymaker’s objective is to

either minimize or maximize aggregate effort subject to a limited budget

constraint.3 We define the variable ø ∈ {−1, 1}. The policymaker’s objec-

tive function is given by the quantity ø 1TX, with ø = −1 (resp. ø = 1)

when the policymaker wants to minimize (resp. maximize) aggregate ef-

fort. The policymaker offers a contract to a single agent on the network.

A contract between the policymaker and agent i specifies an effort xi ∈ R+

and a monetary transfer t ∈ R from the policymaker to agent i. We as-

sume that in the case of effort minimization, the budget is so low that the

3This program can be part of a more general program with endogenous budget, where policymaker’s

payoff is a function of the sum of agents’ effort net of transfers. We abstract from optimal budget

selection considerations and assume that the budget is not larger than the optimal budget.

7



policymaker cannot compensate any agent for exerting a null effort4 (this

will be formalized by Assumption 3 in the next section). We let X∗−i(xi)

be the Nash equilibrium played by agents in N \ {i}, given xi, and we let

X∗(xi) = (x∗1, x
∗
2, · · · , x∗i−1, xi, x

∗
i+1, · · · , x∗n)T be the profile of effort such

that all other agents but i play the Nash equilibrium given effort xi. We

also define Y∗(xi) = GX∗(xi).

We will study the optimal contract, i.e. the contract maximizing the

policymaker’s objective under individual participation constraint. Depend-

ing on the economic environment, the contract may not be enforceable, i.e.

after signing the contract, the agent may behave opportunistically. We will

consider both enforceable and non-enforceable contracts.

(i). Enforceable contract. The optimal enforceable contract max-

imizes the policymaker’s objective under the agent’s participation con-

straint, i.e. the agent’s utility upon contract acceptance is not lower than

without a contract. As a basic observation, the agent’s participation con-

straint is binding at optimum, otherwise the policymaker could trade effort

change against saved budget. So, recalling that ø = 1 (resp. ø = −1) when

the policymaker wants to maximize (resp. minimize) aggregate effort, the

optimal enforceable bilateral contract solves

max
i∈N,xi

s.t. u(xi, y
∗
i (xi)) + t = u(bi,

bi−1
δ

)

ø 1TX∗(xi) (2)

(ii). Non-enforceable contract. When the contract is not enforce-

able, the agent can deviate from the effort prescribed in the contract, so

there is an additional incentive constraint in the program. This constraint

ensures that the agent does not find it profitable to behave opportunisti-

cally once the contract is accepted, where opportunism means playing a

4Otherwise the key player would be the agent maximizing the inter-centrality index, as in Ballester

et al (2006).
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best-response to others’ effort, who are best-responding to the effort pre-

scribed by the contract. The optimal non-enforceable contract maximizes

the following program:

max
i∈N,xi

s.t.


u(xi, y

∗
i (xi)) + t ≥ u(bi,

bi−1
δ

)

ui(xi, y
∗
−i(xi)) + t ≥ u(xBRi (y∗i (xi)), y

∗
i (xi))

ø 1TX∗(xi)

Which constraint is binding at optimum depends on the policymaker’s

objective. When the policymaker wants to maximize effort, the binding

constraint is the incentive constraint, because others best-respond to in-

creased effort by increasing effort too, which ensures a higher utility level

under opportunistic behavior. So, under effort maximization, the program

for identifying the optimal non-enforceable bilateral contract is given by:

max
i∈N,xi

s.t. ui(xi, y
∗
−i(xi)) + t = u(xBRi (y∗i (xi)), y

∗
i (xi))

1TX∗(xi) (3)

In contrast, enforceability is not an issue under effort minimization.

This is because others best-respond to decreased effort by decreasing effort

too, which entails a utility under opportunistic behavior lower than the util-

ity without policy intervention. Hence, under effort minimization, whether

or not the contract is enforced, program (3) is equivalent to program (2).

3 Contracting with key players

An optimal policy consists in identifying the best agent and the best deal

with this agent. In this section, we examine both enforceable and non-

enforceable optimal contracts. In each case, we characterize the key-player

contract as a function of network structure, intensity of interaction, and

available budget.
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3.1 General insights

In the absence of policymaker intervention, agents exert their Nash equi-

librium effort, equal to their Bonacich centrality. Suppose that a policy

targets one agent, and induces an effort change equal to ø · α, with α > 0

by convention. The next proposition indicates how the network reacts to

this change:

Proposition 1. Consider ø ∈ {−1, 1}. Suppose that, from the initial

equilibrium bi, agent i’s effort varies by an amount ø · α. Then for all

utility functions with linear best-responses, the aggregate effort change is

equal to

bi
mii

· ø · α (4)

By Proposition 1, an effort change of one unit by agent i induces a final

aggregate effort change of magnitude bi
mii

. This ratio therefore captures

agent i’s network effect, measuring the influence of the agent on aggregate

behavior. This result is useful to understand the impact of any key-player

policy intervention. Actually, the message is that for a given effort change

α, the agent with largest impact on aggregate effort maximizes the index

bi
mii

. Enhancing this ratio basically means having a great influence on oth-

ers. Moreover, measuring the impact of agent i on others only takes a pair

of measures (bi,mii).

Note that in Ballester et al (2006), removing an agent from the network

is equivalent to decreasing her effort by an amount equal to her effort bi (so

that she exerts no effort in the end); replacing α with the value bi we get

the inter-centrality index
b2i
mii

. Now, what is crucial in the following analysis

is that modifying agent i’s effort is costly, and, with a limited budget, it is

not always possible to induce zero effort from the key player. In general,

the efficiency of a given policy will depend not only on the agent’s impact
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on others, but also on the policy capacity to induce a large change in the

agent’s effort. We will see now how the nature of the contract, the budget

level, and the position of the agent on the network all affect the maximal

amount of effort change that the policymaker can obtain from any agent.

This will be useful to identify the key player.

To assess how much effort the policymaker can demand from the agent,

her participation constraint is key. To evaluate this, we need to quantify

how much neighbors’ best-responding effort changes when an agent’s effort

changes by ø · α. This is what the next lemma does, exploiting linear

best-responses5:

Lemma 1. Consider ø ∈ {−1, 1}. Suppose that, from the initial equilib-

rium bi, agent i’s effort changes by ø · α. Then the aggregate Nash effort

of agent i’s neighbors is given by

y∗i (bi + α) =
(bi − 1)mii + α(mii − 1)

δmii

(5)

This simple lemma states that, with linear best-responses, the aggregate

response of agent i’s neighbors to effort change only depends on the statis-

tics bi and mii. This result will simplify the key-player analysis. Knowing

neighbors’ response to own effort change, we can examine the incidence of

the participation constraint on key-player selection. In particular, the next

theorem indicates which network statistics need to be used by the policy-

maker to find the key player for all utilities with linear best-responses. To

proceed, we first impose two assumptions. Define

h(α) = u

(
bi + α,

(bi − 1)mii + α(mii − 1)

δmii

)
Assumption 2 (effort maximization).

lim
α→+∞

h′(α) < 0

5Lemma 1 follows directly from Y = GX = GM(1 + α1i) and δGM = M − I.
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Assumption 2 guarantees, under effort maximization, the existence of

an optimal contract. Note that this assumption imposes conditions both

on utility and on the intensity of interaction.

Assumption 3 (effort minimization). The condition

u(0,
bi −mii

δmii

) + t ≤ u

(
bi,
bi − 1

δ

)
holds for all i ∈ N .

Assumption 3 guarantees that, under effort minimization, the budget

is so small that the policymaker cannot offer a contract with null effort to

any agent. We get:

Theorem 1. There exists a positive function α() such that the key player

maximizes the index

bi
mii

· α(bi,mii, t, ø) (6)

Note that function α() in Theorem 1 is defined by the agent’s partic-

ipation constraint. A sharp message from Theorem 1 is that, for a given

budget and a given policymaker objective, the pairs (bi,mii) are sufficient

network statistics to identify the key player for all contracts and all utility

functions with linear best-responses. In particular, when agreeing to con-

tract, agent i’s effort change only depends on these two statistics for all

utilities.

It is important to note that when agent i rejects the offer, she still

exerts effort and interacts with her neighbors. This interaction aspect de-

termines the cost of changing agent i’s effort. In total, interaction matters

twice: it determines the magnitude of effort change that agent i can accept

for a given budget, contractual arrangement and policymaker objective

(the term α(bi,mii, t, ø)), what we call the incentive component of the key-

player policy; and it shapes the impact of that change on the aggregate
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effort change (the term bi
mii

), what we call the network component of the

key-player policy. The performance of the key-player policy depends on

incentive component and network component combined. This is grasped

by equation (6), which characterizes policy efficiency as the product of the

agent network effect multiplied by the maximal amount of effort change

she can accept given the available budget.

3.2 Key players under linear quadratic utilities

So far, we have seen that the effort reduction of the targeted agent is a

function of two network statistics. This function is shaped by the agent’s

utility. We will now characterize the key player under the widely studied

case of linear quadratic utilities (see Ballester et al [2006]), as presented in

Example 1.

To guarantee the existence of an optimal contract under effort maxi-

mization, we need to assume max
i∈N

mii < 2 (equivalent to Assumption 2

with linear quadratic utility). We define δc as the smallest value of δ such

that max
i∈N

mii = 2, and we assume that δ < δc throughout the section.

We start with the optimal enforceable contract. We obtain the following

characterization:

Proposition 2 (enforceable contract under linear quadratic util-

ity). For the optimal enforceable bilateral contract, the key player maxi-

mizes the index

bi
mii

·
√

(mii − 1)2b2
i + 2mii(2−mii) t+ ø · (mii − 1)bi

2−mii

(7)

When contracts are enforceable, the key player maximizes an index

which is a sophisticated function of the position. In particular, the index is

by no means reducible to a simple centrality measure. From Proposition 2

we get two main messages. First, the key player can vary with the amount
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of available budget. To illustrate, Figure 1 depicts how the identity of the

key player varies as a function of the budget under effort minimization in a

seven-agent network with fixed intensity of interaction. For a low budget,

Figure 1: Effort minimization − optimal bilateral contract: the key player

is budget-dependent.

agent 4 is the key player, whereas for a higher budget, the key player

is agent 1. Agent 4 is more peripheral than agent 1, which shows how

budget constraint can affect the position of the optimal target. Second,

for the same budget, the key player under effort maximization is in general

different from the key player under effort minimization. For example, in

the network depicted in Figure 1, with δ = 0.1 and t = 0.01, the key player

is agent 3 under effort maximization but agent 4 under effort minimization.

This is illustrated further in the limit cases of low budget and low intensity

of interaction for any network. When t is close to zero, the key player

maximizes the index 1
(mii−1)2bi

under effort minimization, and the index

b2i
mii
· mii−1

2−mii
under effort maximization. Moreover, when δ tends to zero, the

key player is maximized for low-degree agents under effort minimization,

and for high-degree agents under effort maximization. In these two limit

cases of low budget and low intensity of interaction, the same mechanism
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operates. Under effort minimization, the incentive component dominates

the network component, meaning that key player depends mainly on the

agent whose own effort varies the most under contract acceptance. The

reverse holds under effort maximization, i.e. the key player depends mainly

on network component.

Note also that, when there is null budget, the policymaker cannot re-

duce effort under effort minimization. Indeed, reducing own effort below

best-response effort is costly for the agent, and by complementarities this

effort reduction induces a decrease in others’ effort too, which by positive

externalities further penalizes the agent’s utility. Overall, to obtain the

agent’s consent, the policymaker needs to compensate her with a positive

transfer. In contrast, the policymaker with a null budget can enhance effort

under effort maximization. The null budget case coincides with Zhou and

Chen (2015), where a policymaker with zero budget exploits the benefits

of sequential play (see equation (13) in Proposition 2 in their paper).

We turn to the case of a non-enforceable contract. We recall that,

under effort minimization (i.e., for ø = −1), the optimal non-enforceable

and enforceable bilateral contracts coincide (the key player maximizing the

index given by equation (7)). We thus focus on effort maximization:

Proposition 3 (non-enforceable contract under linear quadratic

utility). When the policymaker maximizes aggregate effort (i.e., ø = 1),

the optimal non-enforceable contract maximizes the index bi.

It is worth mentioning that, as opposed to the case where the contract

is enforceable, the key player here does not depend on the budget. Fur-

thermore, the relevant centrality measure is the Bonacich centrality. This

may be good news for the policymaker: observing effort is all it takes to

identify the key player.
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Effort-change linear contract. We study the payment scheme that is

linear in the change of effort. This contract is interesting because it is sim-

pler and perhaps more realistic than an optimal contract, especially when

the agent’s effort is not perfectly observed. Moreover, as we will see, the

effort-change linear contract puts the spotlight on the inter-centrality index.

Such a contract with agent i is a transfer function ti(xi) = γi · ø · (xi − bi),

with γi ∈ R+, so agent i is rewarded whenever effort increases (resp. de-

creases) under effort maximization (resp. minimization).6 Actually, the

participation constraint is an issue under effort minimization but not un-

der effort maximization (see the proof of Proposition 4 for more details).

Indeed, when effort is lowered agents’ utilities decrease, so the transfer

should cover the difference. But given the structure of the payment and

the shape of utilities, the transfer covers the difference only when the bud-

get is sufficiently large. We let ψi =
b2i
mii

represent agent i’s inter-centrality

index. We obtain:

Proposition 4 (Effort-change linear contract). When ø = 1, the optimal

excess linear contract selects the agent with maximal inter-centrality index

ψi. When ø = −1, the optimal excess linear contract selects the agent

with maximal inter-centrality index ψi among the set of agents satisfying(
mii−1
mii

)2
ψi ≤ t

4
.

At least two messages emerge for the effort-change linear contract.

First, this contract highlights the inter-centrality index familiar in stan-

dard key-player policies à la Ballester et al (2006), consisting in a costless

removal of an agent from the network. However, the key player depends on

the policymaker’s objective. Under effort minimization, the participation

constraint matters and determines the key player. Conversely, participation

is not an issue under effort maximization, so the policymaker can always

6Imposing a non-negative return is without loss of generality; as we will see, this constraint is never

binding at optimum (under both effort maximization and effort minimization).
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improve on the outcome with any positive budget. Second, the key player

is budget-dependent under effort minimization.

Table 1 summarizes the findings of this subsection, by presenting the

key player under linear quadratic utilities, according to the nature of the

contract, the budget, the policymaker’s objective.

Contract \ objective ø = −1 ø = 1

Enforceable bi
mii
·
√

(mii−1)2b2i+2mii(2−mii) t−(mii−1)bi

2−mii

bi
mii
·
√

(mii−1)2b2i+2mii(2−mii) t+(mii−1)bi

2−mii

Non-enforceable bi
mii
·
√

(mii−1)2b2i+2mii(2−mii) t−(mii−1)bi

2−mii
bi

Effort-change linear ψi such that
(
mii−1
mii

)2
ψi ≤ t

4
ψi

Table 1: Key player under linear quadratic utilities as a function of poli-

cymaker’s objective and contract.

3.3 Discussion

So far, we have identified key players under contracting policies. However,

our approach can be used under other policies, and we can compare the

results in terms of key player identification. For instance, in contexts where

the principal wishes to modify effort, suppose that a policymaker has a

technology able to modify agent i’s private return on effort by ø · ai within

the limits of her budget t, so that ai = f(t) with f increasing in the

budget.7 Proposition 1 help identifying the key player. The agent’s induced

effort change is given by f(t)mii and, by Proposition 1, the aggregate effort

change is given by f(t)bi. That is, the key player maximizes Bonacich

centrality, i.e. is the agent with highest effort.

In other contexts, the policymaker is able to modify agents’ effort by

using a costly technology. For example, the cost may be an increasing

7In Demange (2017), a principal injects cash into a financial system, which corresponds to increasing

the agent’s best-response by a fixed amount. In the same vein, contextual effects can significantly affect

key-player policies (Ballester and Zenou [2014]).
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function of the difference between modified effort and initial effort, t =

f(|xi−x0
i |).8 Applying Proposition 1 again, we deduce that the key player

maximizes the index bi
mii

. It is worth mentioning that, in both examples, the

key player depends neither on budget level nor on policymaker’s objective.

The performance of all these alternative policies can be directly com-

pared to the incentive-based policy examined in this article, and given by

Theorem 1, by focusing their impact on the targeted agent.

4 Conclusion

This article explored a key-player policy in which a policymaker contracts

with a single agent on the network to induce effort change. Principally, we

showed that for all utilities with linear best-responses and all budgets, it

only takes two network-related statistics to identify the performance of a

given target: the Bonacich centrality and the discounted number of cycles

starting at the agent.

This analysis leaves interesting issues open. First, it would be challeng-

ing to generalize the study to the case of group-player analysis. Second,

it would be interesting to study how the agents on the network could pro-

tect themselves against the policymaker’s intervention, and how this would

affect the efficiency of the policy.9 Third, as pointed out in Ballester et

al (2010), there may be complementarities between key-player policies and

other policies affecting incentives to stay on the network, like a policy con-

8For example, in Galeotti et al (2017), the adjustment cost of changing initial effort X0 to X is

equal to
∑
i∈N

(xi − x0i )2. Focusing on single targets, the corresponding policy cost of changing agent i’s

effort from x0i to xi would be equal to (xi − x0i )2.
9The literature on defense networks may be a natural starting point in this respect. For instance,

in the context of criminal activities, Baccara and Bar-Isaac (2008) examine alternative organizations

as optimal reaction to investigation policies. See also Acemoglu, Malekian and Ozdaglar (2013) for a

model in which nodes invest in defense against a (possibly strategic) single-node attack in presence of

contagion, as well as the works of Dziubińsky and Goyal (2013, 2017).

18



sisting in increasing wages in the formal market. It would thus be natural

to incorporate such complementarities in the comparative analysis of key-

player policies.

5 Proofs

Proof of Proposition 1. Consider ø ∈ {−1, 1}. Suppose that agent i’s effort

varies to the level xi = bi + ø · α, where α ≥ 0 by convention. Taking into

account that other agents play their best-response, and defining the vector

1i = (0, · · · , 0, 1, 0, · · · , 0) with 1 at the ith entry, we observe that X solves

(I− δG)X = 1 + ø · α
mii

1i (8)

System (8) can also be written

X = B + ø · α
mii

M1i

or equivalently, for all j ∈ N :

xj = bj + ø · αmji

mii

(9)

Summing over agents’ effort, and remembering that b represents the initial

aggregate effort, we get

x = b+ ø · α bi
mii

Proof of Theorem 1. Consider ø ∈ {−1, 1}. Suppose that the policymaker

contracts with agent i. Equation (4) provides the aggregate effort change

stemming from agent i’s effort change. The change of agent effort, ø · α, is

given by the binding participation constraint of agent i. Basically, α solves

u
(
bi + ø · α, y∗i (bi + ø · α)

)
+ t = uRi
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with uRi being agent i’s reservation utility, which can take two values over

all contracts examined in this article: it is equal to either the initial utility

u(bi,
bi−1
δ

) or, in the case of the non-enforceable contract with effort maxi-

mization (i.e. ø = 1), the utility level given by u(1+δy∗i (bi+α), y∗i (bi+α)).

Exploiting equation (5), we deduce agent i’s participation constraint in all

programs. In the case of the optimal non-enforceable bilateral contract

under effort maximization, agent i’s participation constraint is given by

u

(
bi + α,

(bi − 1)mii + α(mii − 1)

δmii

)
+ t = u

(
bi + α

mii − 1

mii

,
(bi − 1)mii + α(mii − 1)

δmii

)
(10)

For all other cases presented in this article, agent i’s participation constraint

is written

u

(
bi + ø · α, (bi − 1)mii + ø · α(mii − 1)

δmii

)
+ t = u

(
bi,
bi − 1

δ

)
(11)

The optimal value of α is found by inverting the relevant participation

constraint: when ø = 1, Assumption 2 guarantees the existence of a solution

for equation (11), and the existence of a solution for equation (10) follows

because the best-response utility - the RHS - is positive. When ø = −1,

we need to impose Assumption 3. It is transparent that all participation

constraints only depend on bi,mii, t, and of course on the policymaker’s

objective.

Proof of Proposition 2. Assume that the policymaker contracts with agent

i. Under commitment, agent i’s participation constraint is written

xi −
x2
i

2
+ δxiyi + t =

1

2
b2
i (12)

with xi = bi − α and yi = (bi−1)mii+øα(mii−1)
δmii

. Plugging xi and yi into

equation (12), α solves the second-order equation

(2−mii) α
2 − 2ø(mii − 1)bi α− 2mii t = 0
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Since mii < 2, there is a unique positive root. It is given by

α =
1

2−mii

[
ø(mii − 1)bi +

√
(mii − 1)2b2

i + 2mii(2−mii)t

]
The contract performance being equal to α bi

mii
, the key-player maxi-

mizes the index

bi
mii

(
−(mii − 1)bi +

√
(mii − 1)2b2

i + 2mii(2−mii)t

2−mii

)

Proof of Proposition 3. Consider ø = 1. Suppose that agent i is proposed

the contract by the principal (xi, t). Let 1i = (0, 0, ..., 0, 1, 0, ..., 0) with

1 at entry i. Under no commitment, agent i’s participation constraint is

written

xi −
x2
i

2
+ δxiyi + t =

1

2
(1 + δyi)

2

with xi = bi +α and yi = (bi−1)mii+α(mii−1)
δmii

. Substituting xi and yi by their

respective values, we get after some development α2 = 2tm2
ii, that is:

α =
√

2t mii (13)

Substituting equation (13) into equation (4), we find

x = b+
√

2t bi

Proof of Proposition 4. We first present the policymaker’s program, and

then we proceed to the proof of the proposition.

• The policymaker’s program. Under contract γi, all agents play

Nash including agent i. We let X∗(γi) denote the corresponding equilibrium

effort vector10, and we set Y∗(γi) = GX∗(γi). The principal has to identify

10Contract execution does not affect the condition of existence and uniqueness of Nash equilibrium.
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the best target and the best reward under limited budget t. The optimal

linear contract maximizes the program

max
i∈N,γi

s.t.


u(x∗i (γi), y

∗
i (γi)) + t ≥ u(bi,

bi−1
δ

)

t = γi · ø(xi − bi)

ø 1TX∗(γi)

When the policymaker wants to maximize effort, the participation con-

straint is not an issue. Indeed, the agent is rewarded for increasing effort,

and by complementarities at optimum all efforts are larger than the effort at

the initial equilibrium. And by positive externalities, utilities are mechan-

ically increased. So, under effort maximization, the optimal excess-effort

linear contract solves

max
i∈N,γi

s.t. t = γi (xi − bi)

1TX∗(γi)

In contrast, when the policymaker wants to minimize effort, the par-

ticipation constraint is an issue. Indeed, when effort is lowered, agents’

utilities decrease, so the transfer should cover the difference. But by lin-

earity of the reward and because of linear quadratic utilities, the transfer

covers the cost only with a sufficiently large budget. This means that with

a low enough budget, the agent will always be better off rejecting the offer.

In total, under effort minimization, the optimal linear contract is given by

min
i∈N,γi

s.t.


u(x∗i (γi), y

∗
i (γi)) + t = u(bi,

bi−1
δ

)

t = γi (bi − xi)

1TX∗(γi)

• The proof of Proposition 4. We consider ø ∈ {−1, 1}. Suppose

that agent i is proposed a contract γi and suppose for now that her partic-

ipation constraint is satisfied. We let 1i = (0, · · · , 0, 1, 0, · · · , 0) with 1 at
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the ith entry. The Nash effort profile is written11

X∗(γi) = M(1 + ø · γi1i) (14)

Noting that M1i = bi, the variation of aggregate effort is written:

x∗ − b = ø · γibi (15)

Also, plugging Nash effort into the budget constraint, we get

x∗i − bi = ø ·miiγ̆i (16)

Plugging equation (16) into the budget constraint, we find

γ̆i =

√
t

mii

(17)

Plugging equation (17) into equation (16), we obtain

x∗i − bi = ø ·
√
t mii

while plugging equation (17) into equation (15), we obtain

x∗ − b = ø ·
√
t · bi√

mii

= ø ·
√
t ψi

Hence, conditional on contract participation, the agent with the highest

inter-centrality index should be selected.

We turn to the participation constraint, which is an issue only under ef-

fort minimization. Suppose then ø = −1. Basically, agent i’s participation

constraint is given by

1

2

(
bi −
√
miit

)2
+ bi

√
t

mii

− b2
i

2
≥ 0

i.e.,

t ≥ 4
(mii − 1

mii

)2

ψi

Hence, when t < 4 · min
i∈N

{(
mii−1
mii

)2
ψi

}
, there is no contract under effort

minimization.
11The existence of the contract does not affect the conditions of equilibrium existence and uniqueness,

the condition still being δµ(G) < 1.
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