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Abstract

Logarithms of prices of financial assets are conventionally assumed to follow drift-

diffusion processes. While the drift term is typically ignored in the infill asymptotic

theory and applications, the presence of nonzero drifts is an undeniable fact. The

finite sample theory and extensive simulations provided in this paper reveal that the

drift component has a nonnegligible impact on the estimation accuracy of volatility and

leads to a dramatic power loss of a class of jump identification procedures. We propose

an alternative construction of volatility estimators and jump tests and observe signifi-

cant improvement of both in the presence of nonnegligible drift. As an illustration, we

apply the new volatility estimators and jump tests, along with their original versions,

to 21 years of 5-minute log-returns of the NASDAQ stock price index.
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1 Introduction

Consider the conventional setup of an Ito semimartingale process of log-prices yt such

that

dyt = µtdt+ σtdWt, (1)

where Wt is an Ft-adapted standard Brownian motion with {Ft : t ∈ [0, T ]} being a right-

continuous information filtration. With locally bounded coefficients µt and σt, the drift

term is dominated by the diffusion process. For this reason, most infill asymptotics are

unaffected by the presence of a drift. The drift component is therefore typically ignored

in the high-frequency literature.

There is however substantial empirical evidence documenting that asset prices might

have a nonzero drift component. In the low-frequency framework (such as monthly, weekly

and daily), prolonged periods of mildly explosive trends were identified in many financial

assets, for example, the stock market during the dot-com bubble period in the late 1990s

(Phillips et al., 2011, 2015; Shi and Song, 2016) and the commodity markets over the

last decade (Etienne et al., 2014; Gutierrez, 2012; Phillips and Yu, 2011). Evidence of

a non-negligible drift was also observed by Phillips and Shi (2017) in log-prices of the

S&P 500 index during the 2008 subprime mortgage crisis period and in bond yields and

CDS spreads of most European countries during the 2010 debt crisis. Additionally, there

is extensive literature documenting temporary deviations of log-prices from the random

walk.1 In the high-frequency framework, motivated by the large number of flash crashes,2

Christensen et al. (2016) propose a drift bust hypothesis, which postulates the existence

of short-lived locally explosive trends in log-prices. This hypothesis was tested using a

nonparametric approach and with tick data. The authors find that drift bursts (espe-

cially negative drifts) form an integral part of price dynamics in equities, fixed income,

currencies and commodities.

Our paper investigates the finite sample impact of nonzero drifts on the estimation ac-
1See, for example, Bekaert and Hodrick (1992); Bessembinder and Chan (1992); Campbell and Ammer

(1993); Campbell and Hamao (1992); Lo and MacKinlay (1988); Fama and French (1988); Balvers et al. (2000);
Chaudhuri and Wu (2003).

2See, for example, Nanex Research http://www.nanex.net/NxResearch/.
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curacy of volatility in the high-frequency setting, namely the realized volatility (Barndorff-

Nielsen and Shephard, 2002), the bipower variation (Barndorff-Nielsen and Shephard,

2004), and the noise-robust volatility estimator (Podolskij and Vetter, 2009). We consider

a linear drift-diffusion process, which captures an important form of nonzero drifts and

has been studied extensively in the literature. See, for example, Lo and Wang (1995);

Barndorff-Nielsen and Shephard (2001); Nicolato and Venardos (2003); Aalen and Gjess-

ing (2004); Zhou and Yu (2015); Wang and Yu (2016). The discrete-time model of this

process allows for both the random walk and local-to-unity dynamics3 (Phillips, 1987).

The theoretical literature on realized volatility merely focuses on the asymptotic prop-

erties and apart from some notable exceptions (Meddahi, 2002; Bandi and Russell, 2005)

do not study their finite sample properties. One important contribution made by this

paper is deriving the finite sample bias of the realized volatility under the linear drift

diffusion process. The finite sample theory, together with extensive simulations, reveal

that the nonzero drift causes a substantial bias in the volatility estimation. We propose

a correction that leads to a significant improvement in the estimation accuracy.

Furthermore, we study the impact of nonzero drifts on the performance of jump tests.

Testing for jumps and precisely identifying their occurrences is of overwhelming impor-

tance in finance since jumps have implications in risk management, portfolio allocation

and derivatives pricing (Aı̈t-Sahalia, 2004). Several tests have been proposed in the lit-

erature (see Mancini and Calvori, 2012 for a survey). The most popular test is probably

the test for finite activity jumps4 proposed independently by Andersen et al. (2007) and

Lee and Mykland (2008, LM08 hereafter) and extended by Lee and Mykland (2012, LM12

hereafter) to account for the presence of microstructure noise. These tests (especially

the LM08 test) have been shown to have the overall best performance by Dumitru and

Urga (2012) in a comprehensive Monte-Carlo simulation comparing nine jump detection

procedures available in the literature.

We demonstrate that the finite sample performance of the LM08 and LM12 tests is
3The local-to-unity process deviates mildly from the random walk in both stationary and explosive direc-

tions. It bridges the gap between a random walk and stationary/explosive processes.
4Lee and Hannig (2010) propose a test for the presence of infinite-activity jumps (i.e., a Levy jump diffusion

process).
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unsatisfactory if the drift is nonzero. Indeed, under this circumstance, the tests are

severely undersized, which translates into a dramatic loss of power. To address this finite

sample problem, we propose an alternative construction of the test statistic. Despite its

ease of implementation, our test improves the finite sample performance significantly.

As an illustration, we apply the new bipower volatility estimator and the new LM08

jump test, along with their original versions, to 5-minute log-returns of the NASDAQ

stock index from 1996 to 2016. The main conclusion is that the bipower variation tends

to overestimate the volatility in the presence of nonzero drift by on average 2.5% but

sometimes up to more than 40%. The proposed new jump test allows the identification

of more jumps. These additional jumps occur during periods with upward or downward

trends in log-prices.

2 The Drift-Diffusion Process

Let {0 < t1 < · · · < tT < N} be a set of T equally spaced observation times spanningN days.

The distance between two consecutive observation times is denoted by ∆ = ti−ti−1 = N/T .

Assumption 2.1 Assume that the drift and diffusion coefficients in (1) do not change dra-

matically over a short time interval such that

(1) sup
i

sup
ti≤s≤ti+1

|µs − µti | = Op(∆
1/2−ε)

(2) sup
i

sup
ti≤s≤ti+1

|σs − σti | = Op(∆
1/2−ε)

for any ε ≥ 0.

These conditions are satisfied by most Ito processes and allow both the drift and stochastic

volatility to depend on the log-price process itself. For the convenience of exposition, we

focus on a linear drift-diffusion process with µt and σt specified as follows.
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Assumption 2.2 The drift coefficient in (1) takes the form of

µt = θ(yt −m) with constants θ and µ.

Note that the drift coefficient µt is a linear function of the log-price yt and satisfies As-

sumption 2.1-(1) because for any ti ≤ s ≤ ti+1,

µs − µti = θ2

∫ s

ti

ytdt− θ2m(s− ti) + θ

∫ s

ti

σtdWt

= θ

∫ s

ti

σtdWt{1 + op(1)} = Op(∆
1/2).

Assumption 2.3 The diffusion coefficient is given by

σ2
t =

p∑
i=0

diΠi,St ,

where p is an integer number, the di’s are real numbers and the Πi,St ’s are the eigenfunctions

of the infinitesimal generator5 associated to the state variable St whose dynamic is

dSt = µ (St) dt+ σ(St)dWt.

Assumption 2.3 includes the most popular volatility models such as the log-normal model,

the squared root model and the GARCH(1,1) model of Nelson (1991) as special cases. See

Meddahi (2002) for more details. Note that Assumption 2.3 implies that E
(
σ2
t

)
= d0.

The volatility process satisfies Assumption 2.1-(2) that σs − σti = Op(∆
1/2) for any ti ≤

s ≤ ti+1. For example, the GARCH(1,1) volatility model is defined as

σ2
t = St and dSt = κ (ω − St) dt+

√
2λκStdWt, (2)

where κ > 0, ω > 0, and 0 < λ < 1. The changes of the diffusion coefficient σs − σti =

5See Hansen and Scheinkman (1995) and Aıt-Sahalia et al. (2003) for a review and Appendix A for a
summary of their theoretical properties.
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Op(∆
1/2) because σs + σti = Op(1); hence,

σ2
s − σ2

ti = κω(s− ti)− κ
∫ s

ti

σ2
t dt+

√
2λκ

∫ s

ti

σ2
t dWt

=
√

2λκ

∫ s

ti

σ2
t dWt{1 + op(1)} = Op(∆

1/2),

and σs − σti = (σ2
s − σ2

ti)/(σs + σti).

The linear drift-diffusion process is

dyt = θ (yt −m) dt+ σtdWt, (3)

with an exact discrete solution (Arnold, 1974, Corollary 8.2.4)

yti+1 = g (θ) + α (θ) yti + Vti+1 , (4)

where g (θ) = µ [1− exp (θ∆)], α (θ) = exp (θ∆), and Vti+1 =
∫ ti+1

ti
eθ(ti+∆−s)σsdWs. The inter-

cept g (θ) converges to zero at a rate of ∆. The autoregressive coefficient α (θ) = 1 if θ = 0;

hence, the log-price has a random walk dynamic. If θ 6= 0, we obtain that

α (θ) = exp (θ∆) = 1 + θ∆ +Op
(
∆2
)

converges to unity as ∆→ 0 at a rate of ∆. The order of magnitude of the autoregressive

coefficient Op(∆) can be written as Op(1/T ), given that ∆ = N/T and N is a constant.

Therefore, the dynamic in (4) is local-to-unity (Phillips, 1987) in the explosive direction if

θ > 0 and in the stationary direction if θ < 0. One can show that Vti+1 follows a linear drift

process such that

dVti+1 = θVti+1ds+ σti+1dWti+1 . (5)

Under (3), we have
∫ ti+∆
ti

σsdWs = Op(∆
1/2); hence, Vti+1 = Op(∆

1/2). See Phillips and Yu

(2011) for the derivation.
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2.1 The Return Process

The solution of the stochastic differential equation (3) is

yt = eθty0 +m(1− eθt) +

∫ t

0
eθ(t−s)σsdWs, (6)

where y0 is the initial value. The return process is denoted by rti and defined as yti −yti−1.

Lemma 2.1 Under the linear drift-diffusion process (3), rti has the following properties:

(i) rti can be written as

rti = ∆iA+

∫ ti

ti−1

σsdWs +

∫ ti

ti−1

B(ti, s)σsdWs +

∫ ti−1

0
[B(ti, s)−B(ti−1, s)]σsdWs (7)

=

∫ ti

ti−1

σsdWs{1 + op(1)},

where ∆iA = A(ti) − A(ti−1), A(t) =
∫ t

0 a(r)dr and B(t, s) =
∫ t
s b(r, s)dr with t ≥ s,

a(t) = θ (y0 −m) eθt and b(t, s) = θeθ(t−s);

(ii) The expectation of rti , denoted by mti , is

mti = ∆iA = (y0 −m)eθti−1(eθ∆ − 1).

See Appendix A for the proof.

From Lemma 2.1(i), the return process is asymptotically dominated by the volatility

component
∫ ti
ti−1

σsdWs. In other words, the drift term is asymptotically negligible and as

shown by Barndorff-Nielsen and Shephard (2002),

r2
ti →

∫ ti

ti−1

σ2
sds.

Although the drift component is negligible when the sampling interval ∆ approaches zero,
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very often, one has to rely on low-frequency data for estimations and hypothesis testing.

This is because ultrahigh-frequency data for asset prices are not always available, or

because lower-frequency data (such as 5- or 10-minute data) are preferred to mitigate the

impact of microstructure noise (Park and Linton, 2011).

Lemma 2.1(ii) suggests that the expected value of the log-return process depends on

the values of m, θ, ∆, as well as the initial value y0. The mean of the average log-returns

over N = 1 day is

∆

1/∆∑
i=1

mti = ∆(y0 −m)(eθ − 1). (8)

Figure 1 shows the value of (8) for several combinations of values for y0 and θ at the 1-

minute (∆ = 1/400) and 5-minute (∆ = 1/80) frequencies. We consider a wide range of

values of θ and allow the initial value to vary from 0 to 7. We set m to zero for simplicity.

As we observe, when the process deviates from the random walk (i.e., with nonzero θ),

the drift component has an order of magnitude of 10−3. Additionally, the magnitude of

the drift increases under three circumstances: 1) if the sampling frequency is lower, 2) if

the initial value becomes larger, and 3) if θ moves away from zero.6

Figure 1: The average drift of log-returns over one day for various combinations of θ, y0
and ∆.
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The parameter settings are empirically realistic. As a comparison, the daily median7 of
6If the sampling frequency is one second (∆ = 1/24000), the drift component is negligible for all combina-

tions of parameters and is therefore not reported to save space.
7We calculate the median instead of the sample mean to reduce the impact of jumps in asset prices (see

8



5-minute log-returns of the NASDAQ stock market index is plotted in Figure 2 for the pe-

riod 1996–2016. This figure shows that the daily median of 5-minute log-returns ranges

from −2.2 × 10−3 to 1.1 × 10−3, which is of the same order of magnitude as the drift com-

ponent presented in Figure 1. In particular, the daily median of the 5-minute log-returns

deviates from zero for a substantial period of time in early 2000 when the dot-com bubble

burst and around the subprime mortgage crisis period.

Figure 2: Daily median of 5-minute log-returns of the NASDAQ stock index from 1996 to
2016.
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2.2 The Realized Volatility Estimator

The realized volatility estimator (see Andersen and Bollerslev, 1998 and Barndorff-Nielsen

and Shephard, 2002 among others) is defined as

RVti(K) =
i∑

j=i−K+1

r2
tj ,

whereK is the number of observations included in the estimation. The bias of the realized

volatility is therefore

E

(
RVti(K)−

∫ ti

ti−K
σ2
udu

)
.

Proposition 2.1 Under the linear diffusion process (3), the finite sample bias of the realized

Section 3.1 for a detailed discussion).
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volatility is zero if θ = 0. If θ 6= 0,

E

(
RVti(K)−

∫ ti

ti−K
σ2
udu

)
= E1 + E2 + E3, (9)

where

E1 = (y0 −m)2
(
eθ∆ − 1

)2
eθti−K

1− e2θ∆K

1− e2θ∆
, (10)

E2 = d0K

[
1

2θ

(
e2θ∆ − 1

)
+

2

θ

(
1− eθ∆

)
+ 1

]
, (11)

E3 =
d0

2θ

(
eθ∆ − 1

)2
(
e2θti−K

1− e2θ∆K

1− e2θ∆
−K

)
. (12)

The proof of the proposition is in Appendix A. One can see that although the drift term µt is

asymptotically negligible, it has a finite sample impact on the realized volatility estimator.

To minimize the impact of the drift term, we propose calculating the realized volatility

from centered log-returns. We study two modified realized volatility estimators. The first

one is infeasible because it is based on the unknown quantity mtj , while the second one

is feasible because it relies on the sample mean of the K log-returns entering in the

computation of the realized volatility, i.e.,

m̂ti(K) =
1

K

i∑
j=i−K+1

rtj .

The two modified realized volatility estimators are

Infeasible: RV †ti(K) =
∑i

j=i−K+1(rtj −mtj )
2;

Feasible: RV ∗ti (K) =
∑i

j=i−K+1[rtj − m̂ti(K)]2.

Proposition 2.2 Under the linear diffusion process (3), the finite sample bias of the infea-
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sible modified realized volatility estimator RV † is zero when θ = 0; while when θ 6= 0,

E

(
RV †ti(K)−

∫ ti

ti−K
σ2
udu

)
= E2 + E3. (13)

Proposition 2.3 Under the linear diffusion process (3), the finite sample bias of the feasible

modified realized volatility estimator RV ∗ is zero when θ = 0; while when θ 6= 0,

E

(
RV ∗ti (K)−

∫ ti

ti−K
σ2
udu

)
= (E1 − E4) +

K + 1

K
(E2 + E3) + d0∆, (14)

where E4 = 1
K (y0 −m)2 eθti−K

(
eθ∆K − 1

)2.

The proofs of the above two propositions are in Appendix A. The first term in (9) disap-

pears when the realized volatility is calculated from centered log-returns (i.e., rtj −mtj ).

When using the RV ∗ estimator, while we observe additional noise terms arising from the

estimation of the sample mean, the first bias term in (9) is reduced by E4. To visualize the

relative magnitude of the bias, we simulate the quantities in Proposition 2.1-2.3 with the

same parameter setting as for Figure 1 but also set the unconditional variance d0 to 10−4

(as in the subsequent simulations), K = 1/∆ and ti−K = 0.

The bias of the realized volatilities RV , RV † and RV ∗ are plotted in Figure 3. It is obvi-

ous that the biases of the modified volatility estimators are much smaller than that of the

original estimator in finite sample. The discrepancy becomes increasingly obvious as the

process deviates further away from the random walk and when the initial value increases.

Additionally, the bias of the modified volatility estimator is extremely close to zero with an

order of magnitude of 10−9 for RV † and 10−6 for RV ∗ when ∆ = 1/80. This suggests that

although Propositions 2.2 and 2.3 show that the biases of the modified estimators are

nonzero when the process deviates from the random walk, they are negligible compared

to that of the realized volatility estimator.

Furthermore, we plot each of the three terms characterizing the bias of RV ∗ in Propo-

sition 2.3 in Figure 4. First, the term (K + 1)/(E2 + E3)K is the smallest among the three
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Figure 3: The bias of the (modified) realized volatility estimators.
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(b) 5-minute ∆ = 1/80
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terms. The order of (K + 1)/(E2 + E3)K, therefore E2 + E3, is 10−9 for the 5-minute data and

10−10 for the 1-minute data, which is negligible compared with the total bias of RV (i.e.,

10−3 as shown in Figure 3). This allows us to infer that the bias of RV is mostly due to E1.

Second, the E1−E4 term has the same order as (K+1)/(E2 +E3)K and hence also negligible

(although it increases with both |θ| and y0). Lastly, the term that dominates the bias of

RV ∗ is d0∆. It takes value 2.5 × 10−7 and 1.25 × 10−6, respectively, when ∆ = 1/400 and

1/80, which are much smaller than the unconditional variance (recall that E(σ2
t ) = 10−4).

Figure 4: Components of the bias of RV ∗.
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(b) ∆ = 1/80
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The finite sample bias of the realized volatility estimator was first documented in Med-

dahi (2002), where the drift coefficient is assumed to be a square integrable function of

the state variable St such that µt =
∑p

i=0 giΠi,St, where
∑p

i=0 |gi| < ∞. This specification
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includes, for example, the case where the drift coefficient is an affine function of the

variance σ2
t and also the case of constant drift.

Remark 2.1 Assume that the drift coefficient µt = m. The log-price yt can be rewritten as

yt = y0 +mt+

∫ t

0
σsdWs

and therefore rti = m∆ +
∫ ti
ti−1

σsdWs. The biases of RV , RV† and RV ∗ are respectively

E

(
RVti(K)−

∫ ti

ti−1

σ2
udu

)
= Km2∆2,

E

(
RV †ti(K)−

∫ ti

ti−1

σ2
udu

)
= 0,

E

(
RV ∗ti (K)−

∫ ti

ti−1

σ2
udu

)
= d0∆.

The proof is given in Appendix A. See Meddahi (2002, Proposition 4.1) for the exact ex-

pression for the bias of the realized volatility estimator under the general assumption that

µt =
∑p

i=0 giΠi,St. It is important to note that while the realized volatility estimator is bi-

ased, the modified estimator RV † is unbiased. The feasible RV ∗ estimator is biased but

the magnitude of its bias is marginal.8

3 Jump Robust Drift and Volatility Estimators

There is ample evidence on the presence of jumps in asset prices. This questions the

relevance of the empirical mean for the estimation of E(rtj ) and also calls for the use of

robust to jumps estimators of the integrated variance. In this section, we study the finite

sample properties of the median and the jump robust volatility estimators computed on

centered log-returns via a comprehensive Monte-Carlo simulation.
8Deriving a bias correction might be possible but is beyond the scope of this paper.
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3.1 Jump Robust Drift Estimator

It is well known in the robust statistics literature that the median is less sensitive to

outliers or jumps than is the sample mean. Indeed, the asymptotic breakdown point is

0 for the sample mean and 1/2 for the median (see Maronna et al., 2006, among others).

In presence of jumps, it is therefore natural to center the log-returns using the median of

the past K log-returns, denoted by

m̂∗ti(K) = median
(
rti−K+1 , · · · , rti

)
,

rather than their empirical mean m̂ti(K).

To compare the accuracy of m̂∗ti(K) and m̂ti(K) as estimators for the drift component

in the presence of jumps, we consider a data generating process that generalizes (4) by

allowing for p additive jumps:

yti+1 = g(θ) + α(θ)yti +

p∑
j=1

φjti+1
Ijti+1

+ Vti+1 , (15)

where Ijti+1
is a dummy variable indicating the location of the jth jump (the occurrence

of which is random), and φjti+1
is the corresponding jump size. The error term Vti+1 is

specified by

Vti+1 = σti+1

√
∆εti+1 (16)

σ2
ti+1

= α0 + σ2
ti(β1 + α1

√
∆vti+1), (17)

where εti+1 and vti+1 are two independent i.i.d.∼ N(0, 1) random variables. Equation (16) is

consistent with the specification of Vti+1 in (5) if the value of the error term within the

time interval [ti, ti+1] is assumed to be fixed. The volatility dynamic (17) is a standard

Euler discretization of the GARCH(1,1) diffusion process (2). The parameters are linked

as follows: α0 = κω∆, β1 = 1− κ∆, and α1 =
√

2λκ.
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To illustrate the impact of jumps on the empirical mean and the robustness of the

median, we generate 24, 000 observations corresponding to one day of 1-second data of an

asset traded during 6.5 hours per day.9 We pick one observation every 60 and 300 data

points to obtain the 1-minute and 5-minute data, respectively. That is, the time span of

interest is one day (N = 1), the sample size T equals the number of observations per day,

and the time interval is ∆ = 1/T . The settings of y0, µ and θ are as in Figure 1.

Two different settings for jumps are considered. There is either one single large negative

jump within a day with φ1
ti+1

= −1.5σti+1 or two small jumps with φjti+1
= −0.6σti+1 for

j = 1, 2.10 For the volatility dynamic, we follow Andersen and Bollerslev (1998) and choose

the parameters κ = 0.035 and λ = 0.296 to simulate a realistic log-price process with very

persistent GARCH effects and set ω = 10−4 such that E(σ2
ti+1

) = 10−4.

Figure 5: The bias of the sample mean and median in the presence of one single large
jump (i.e. φ1

ti+1
= −1.5σti+1 ).
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(b) 5-minute ∆ = 1/80
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The empirical mean and median of the last observation of each day, denoted respec-

tively by m̂tT (T ) and m̂∗tT (T ), are compared to the true value mtT . The superiority of the

median is clear from Figures 5 and 6, which shows that the bias is systematically smaller

for the median than for the sample mean for all combinations of parameters considered in

the simulation.11 Therefore, we recommend the use of the median instead of the sample
9This is the case for the NASDAQ stock market, which trades from 9:30 to 16:00.

10The simulation results are qualitatively the same for positive jumps and jumps with a random sign.
11Similar figures are available for the root mean squared errors (RMSE) but not reported here to save space

and because they follow more or less closely the shape of the figures on the bias.
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Figure 6: The bias of the sample mean and median in the presence of two small jumps
(φjti+1

= −0.6σti+1 for j = 1, 2).
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(b) 5-minute ∆ = 1/80
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mean in empirical applications if the presence of jumps is suspected.

3.2 Jump Robust Volatility Estimators

The bipower variation proposed by Barndorff-Nielsen and Shephard (2004) is probably the

most popular jump-robust estimator of the integrated variance. It has been extended by

Podolskij and Vetter (2009) to accommodate the presence of market microstructure noise

in ultrahigh-frequency data. Despite the well-behaved asymptotic properties of these

estimators, we demonstrate below that like the realized volatility estimator their finite

sample performance is unsatisfactory in the presence of a nonzero drift. We propose an

alternative construction of these estimators that leads to a significant improvement in the

estimation accuracy.

The bipower variation of Barndorff-Nielsen and Shephard (2004) is defined as

BVti(K) =
1

c2
1

i∑
j=i−K+2

|rtj ||rtj−1 |, (18)

where c1 = E(|U |) = 0.7979 is a normalizing constant (U denoting the standard normal

distribution). As ∆→ 0,

BVti(K)→p

∫ ti

ti−K

σ2
udu.
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The new estimator of the integrated variance we propose, denoted by BV ∗ti (K), corre-

sponds to the bipower variation computed from centered log-returns, i.e.,

BV ∗ti (K) =
1

c2
1

i∑
j=i−K+2

|r∗tj ||r
∗
tj−1
|,

where r∗ti = rti − m̂∗ti(K). Since the drift component of asset returns is asymptotically

dominated by the variance, using the centered log-returns r∗ti for the calculation of the

bipower variation will not alter its limiting property but should improve its finite sample

properties, as for the modified realized volatility RV ∗.

To illustrate the robustness of our estimator, we consider the data generating process

(15)-(17) with the same parameter settings as in Section 3.1. For simplicity, we allow

for one negative jump per day with the magnitude equal to 60% of the spot volatility (i.e.,

φ1
ti+1

= −0.6σti+1 ). We report in Figure 7 the bias of both the bipower variation and modified

bipower variation for the last observation of the day (i.e., tT ) from observations over the

past day (i.e., respectively BVtT (K) and BV ∗tT (K), with K = T ).

Figure 7: The estimation bias of the bipower and modified bipower variation.
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(b) 5-minute ∆ = 1/80
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First, if θ = 0, there is almost no difference in the estimation accuracy between the

two estimators. Second, the bias of the bipower variation (BV ) increases dramatically as

the sampling frequency decreases and as |θ| and y0 become larger. On the other hand,

as expected, BV ∗ provides a much more accurate estimation of the integrated variance.
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Indeed, the bias of BV ∗ is very small for all combinations of parameters considered in this

simulation.

A similar correction can be applied to other estimators of the integrated variance. We

have also performed a Monte-Carlo simulations with the MedRV of Andersen et al. (2012)

and the threshold realized variance of Mancini (2009). Results are qualitatively the same

as for BV and BV ∗ in Figure 7 and are therefore not reported to save space.

4 The Jump and Noise Robust Volatility Estimators

One might expect that with ultrahigh-frequency data, the drift component will be ex-

tremely close to zero; hence, the discrepancy between the bipower variation and the mod-

ified bipower variation will diminish. We show in this section that this is unfortunately

not true for the noise-robust volatility estimator of Podolskij and Vetter (2009).

Assume that the noise-contaminated log-price y†ti is

y†ti = yti + ηti , (19)

where (ηti)1≤i≤T is a noise process with mean zero and variance q2, independent of yti.

Assume also that the noise process is serially correlated with an order of s− 1.

The estimator of Podolskij and Vetter (2009) is constructed as follows. Define the Γ-

return r
(Γ)
ti

as

r
(Γ)
ti

= y†ti − y
†
ti−Γ

,

where Γ = γ1K
1/2 with γ1 > 0. We divide the past K Γ-returns into B nonoverlapping

blocks. The number of blocks is B = γ2Γ with γ2 > 1, and the size of the blocks is

S = K/B. The average log-return of block b is

r̄ti,b =
1

S

i−(B−b)S∑
j=i−(B−b+1)S+1

r
(Γ)
tj
. (20)
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Podolskij and Vetter (2009) propose to compute the bipower variation for noise-contaminated

data using preaveraged returns, i.e.,

BV N
ti (K) =

1

c2
1

B∑
b=2

|r̄ti,b||r̄ti,b−1|. (21)

One can obtain a consistent estimator for the integrated variance ÎV ti(K) by removing the

variation induced by the market microstructure noise from the bipower variation such

that

ÎV ti(K) :=
γ1γ2BV

N
ti (K)− v2q̂

2
ti(K)

v1
→
∫ ti

ti−K

σ2
udu, (22)

where q̂2
ti(K) is a consistent estimator of the noise variance q2 and defined as

q̂2
ti(K) =

1

2(K − s)

i∑
j=i−K+s+1

(y†tj − y
†
tj−s

)2,

v1 =
γ1[3γ2 − 4 + max{(2− γ3

2), 0}]
3(γ2 − 1)2

and v2 =
2 min{(γ2 − 1), 1}

γ1(γ2 − 1)2
.

While the drift component of log-returns is extremely close to zero in the ultrahigh-

frequency setting, the drift of the preaveraged returns r̄ti,b (using which the bipower vari-

ation is computed) might be of a nonnegligible magnitude. For the sake of illustration, we

consider a data generating process following (15), (16)-(17) and (19). Parameter settings

for the non-noise components remain unchanged. We assume i.i.d. noise (i.e., s = 1)

for simplicity. The variance of the noise is set to be proportional to the variance of the

underlying process as in Bandi and Russell (2006); Boudt et al. (2017); Lee and Mykland

(2012). Specifically, q2 = 0.01
√∫ 1

0 σ
4(s)ds and hence q ≈ 0.1%. We simulate one day of

1-second data with one small jump per day (for a total of 104 replications).

Figure 8 displays the average of the median of r̄ti,b(K), denoted by m̃∗ti(K) = median(r̄ti,1, · · · , r̄ti,B),

for various combinations of θ and y0. This figure shows that the median increases as the
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Figure 8: Median of r̄ti,b for various combinations of θ and y0.
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process deviates from the random walk, and the magnitude is comparable to the median

of 5-minute returns plotted in Figure 1. As before, this deviation is expected to affect the

performance of the integrated variance estimator.

As an alternative, we propose modifying the estimator of Podolskij and Vetter (2009)

by computing the bipower variation using centered preaveraged returns, i.e.,

BV N∗
ti (K) =

1

c2
1

B∑
b=2

|r̄ti,b − m̃
∗
ti(K)||r̄ti,b−1 − m̃∗ti(K)|, (23)

and

ÎV
∗
ti(K) :=

γ1γ2BV
N∗
ti (K)− v2q̂

2
ti(K)

v1
→
∫ ti

ti−K

σ2
udu.

The consistency of ÎV
∗
ti(K) follows directly from Podolskij and Vetter (2009).

With the same simulation setting, we compute the bias of the two noise and jumps

robust estimators ÎV ti(K) and ÎV
∗
ti(K) (see Figure 9). We observe patterns similar to those

in Figure 7. While the estimation accuracy of the original volatility estimator deteriorates

substantially as |θ| and y0 deviate from zero, the new estimator is much more accurate.
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Figure 9: The estimation bias of ÎV ti(K) and ÎV
∗
ti(K).
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5 Jump Tests

The popularity of the LM08 and LM12 tests is due to their ease of implementation, their

good size and power under fairly general conditions (e.g., allowing both the drift and the

volatility to be stochastic) and the fact that they allow for testing the presence of jumps

within a short period of time (e.g., 5 minutes or 1 hour).

We show in this section that the nonzero drift component leads to a significant down-

ward size distortion and power loss for the LM08 test when applied to relatively low-

frequency (e.g., 5-minute) data. Despite the fact that the LM12 test is designed for

ultrahigh-frequency (e.g. 1-second) data and can be applied to very short time spans

(e.g., 1-hour), it is also undersized if the log-price process has a nonzero drift. We pro-

pose a modification of both tests and show the importance of this correction for the finite

sample performance of the tests through Monte-Carlo simulations.

5.1 The Lee and Mykland (2008) Tests

Andersen et al. (2007) and Lee and Mykland (2008) independently proposed a test statistic

for jumps, denoted Jti below, for which they derived the asymptotic distribution in the zero

drift case, while Lee and Mykland (2008) also proposed another test statistic, denoted by

J̃ti below, for the nonzero drift case. The two statistics are defined as follows:

Jti =
rti

σ̂ti(K)
and J̃ti =

rti − m̂ti(K)

σ̂ti(K)
. (24)
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Lee and Mykland (2008) proposed estimating the instantaneous volatility σ̂ti(K) using a

rolling window of K log-returns as follows:

σ̂ti(K) =

√
1

K − 1
BVti(K). (25)

The construction of both test statistics Jti and J̃ti involves the bipower variation. As

discussed in the previous section, the finite sample performance of this volatility estima-

tor is unsatisfactory if the process has a nonzero drift. Additionally, the demeaned test

statistic J̃ is based on the sample mean, the performance of which is inferior to that of the

median in the presence of jumps as shown in Section 3.1. To improve the finite sample

performance of the tests, we propose a correction to these jump test statistics. The new

test statistic is denoted by J∗ti and defined as

J∗ti =
rti − m̂∗ti(K)

σ̂∗ti(K)
. (26)

We replace m̂ti(K) by the median m̂∗ti(K) and σ̂ti(K) by σ̂∗ti(K), an estimator of the instan-

taneous volatility based on the bipower variation computed from centered log-returns,

i.e.,

σ̂∗ti(K) =

√
1

K − 1
BV ∗ti (K). (27)

The properties of both test statistics have been studied by Lee and Mykland (2008).

More specifically, they show that in the absence of jumps and if log-prices follow a dif-

fusion process as in (1), and satisfying the two conditions stated in Assumption 2.1, Jti

and J̃ti converge to a standard normal distribution as the sampling interval ∆ tends to

zero, provided that K is sufficiently large. Given that the drift component is asymptoti-

cally negligible, the proposed correction will not alter the limiting distribution of the test
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statistic. Therefore, if K = Op(∆
α) with −1 < α < −0.5, we have

sup
i∈{1,··· ,T}

|Sti − U | = Op(∆
η),

where Sti =
{
Jti , J̃ti , J

∗
ti

}
and −ε < η < 3

2 + α− ε for any ε ≥ 0.

The jump test is implemented for each individual observation within the day. To control

for the size of multiple tests, while Andersen et al. (2007) use a Bonferroni correction, Lee

and Mykland (2008) suggest using critical values based on the extreme value theory.

Recall that the maximum of a set of L i.i.d. realizations of the absolute value of the

standard normal random distribution Ui (for i = 1, . . . , L) follows asymptotically a Gumbel

distribution (see, for example, Aldous, 1989; Mutangi and Matarise, 2011), i.e.,

max
i
|Ui| − CL
SL

→ ξ (28)

where CL = (2 logL)1/2− 1
2(2 logL)−1/2[log π+ log(logL)], SL = (2 logL)−1/2, and ξ is the stan-

dard Gumbel distribution with cumulative distribution function P{ξ ≤ x} = exp [− exp(−x)].

Since, under the null hypothesis of no jump, Sti follows a standard normal distribution,

the probability of max
i
|Sti | (over a set of L values) exceeding the critical value cvL,β is 100β%

such that

P

{
max
i
|Sti | > cvL,β

}
= 1− exp

[
− exp

(
−
cvL,β − CL

SL

)]
= β,

and hence,

cvL,β = CL − SL log [− log (1− β)] . (29)

Therefore, we declare that there is a jump at time ti according to the Jti (resp. J̃ti

and J∗ti ) statistic if |Jti | > cvL,β (resp.
∣∣∣J̃ti∣∣∣ > cvL,β and

∣∣J∗ti∣∣ > cvL,β). If we set L to be the

number of observations per day, the probability of finding at least one spurious jump
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(either positive or negative) within each day is 100β%.12

5.2 The Finite Sample Performance of the Jump Tests

In this section, we investigate the finite sample performance of the LM08 tests J and J̃ ,

and our modified test J∗. The data generating process used to study the size of the tests

is (4) while we rely on (15) to study their power. The volatility dynamic is specified by

(16)-(17). The parameter settings are the same as in Section 3.1. Under the alternative,

there is one jump per day with a magnitude of φ1
ti+1

= −0.6σti+1.

We generate 48, 000 observations corresponding to two days of 1-second data of an

asset and aggregate them at the 1-minute and 5-minute frequencies as above. The first

day is used as a burn-in period; we focus on the detection results of the second day.

Therefore, the time span of interest is one (N = 1), the sample size T equals the number

of observations per day, and the time interval is ∆ = 1/T . The sample mean and median

and the instantaneous volatility are estimated from a rolling window of K log-returns,

which is required to be between
√
T and T . We choose K to be closer to the upper bound

(i.e., K = T − 1) to ensure that there are sufficient observations to estimate the integrated

variance before rescaling it to obtain an estimate of the instantaneous volatility of rti.

For the critical values, we set L = T and β = 1% so that the probability of finding at

least one spurious jump within each day is 1% or, equivalently, we expect that one out of

100 days contains at least one spurious jump. Therefore, the critical values used in this

simulation are cv24000,1% = 5.13, cv400,1% = 4.37 and cv80,1% = 4.07 when the tests are applied

to 1-second, 1-minute and 5-minute data, respectively. Note that the asymptotic critical

values (29) depend on the values chosen for both L and β. Here, we control for the overall

size of the test over a day (L = T ) and set β = 1%. Alternatively, we could control the size of

the test over a longer period (e.g., a month or a year). Interestingly, when setting L = 20T

and β = 10%, the critical value is 4.02 for 5-minute data and is slightly smaller than the
12Given the rolling window calculation of the test statistics, the i.i.d assumption required by the extreme

value theorem is likely to be violated for the jump tests. As a consequence, the multiplicity issue might not
have been perfectly controlled for with the proposed critical values. One can see from Figure 10(b) and 12(a)
that there is a small upward size distortion remaining for the modified LM tests. This is, however, not the
focus of this paper. A solid investigation of this problem is left for future work.
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one of the above setting (i.e., 4.07).

Figure 10: Empirical performance of the (modified) LM08 tests.
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(c) Power: 1-minute ∆ = 1/400

0

2
0

y
0

40.05

20

40

6

60

0

80

8

100

-0.05

(d) Power: 5-minute ∆ = 1/80
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The empirical sizes and powers (with 104 replications) of the LM08 statistics J and J̃ ,

and the modified LM08 statistic J∗ are plotted in Figure 10 for two sampling frequencies

(1- and 5-minute data).13 We observe that if log-prices follow a random walk (i.e., θ = 0),

the empirical sizes of the LM08 tests J and J̃ are close to the nominal size of 1%.14 On the

contrary, we observe a significant downward size distortion for both tests as the dynamic

of log-prices deviates from the random walk (i.e., θ 6= 0) and the initial value y0 increases.15

The undersize problem becomes even more severe if the sampling frequency is lower.

Indeed, if the tests are applied to 5-minute data, the null hypothesis of no jump is almost
13A table display of results in Figure 10, 12, and 13 are provided in an online supplement.
14We obtained qualitatively the same results for the case of constant volatility and for other quantiles (5%

and 0.1%). Results are not reported to save space.
15When the LM08 tests are applied to 1-second data (without microstructure noise), both tests have an

empirical size close to the nominal size of 1% for all combinations of parameters and a power of 100%. The
results are not reported here to save space.
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never rejected for both tests16 if |θ| ≥ 0.02 and y0 ≥ 3 (Figure 10b).

Figure 10c shows that the power of both tests is close to 100% for all specifications

(except the bottom left corner) if the tests are applied to data at the 1-minute frequency.

For 5-minute data, power values are approximately 88% if asset prices follow a random

walk with additive jumps. As expected, in the absence of microstructure noise, jumps

are easier to detect if the sampling frequency increases. However, the assumption of no

microstructure noise for data sampled at a frequency higher than 1-minute is unrealistic.

Therefore, the LM08 tests are usually applied to 5-minute data to reduce the impact of

microstructure noise at the cost of a slight power loss. If 5-minute data are used (see

Figure 10d), the downward size distortion problem of both tests translates into a dramatic

loss of power if the process has a nonzero drift. In particular, both tests have a power

close to 0 if |θ| ≥ 0.02 and y0 ≥ 4. This result is consistent with our expectation that

the nonnegligible mean of log-returns affects the performance of the LM08 tests in finite

samples. Importantly, the demeaned version of the test (i.e., J̃ ), which relies on m̂ and

BV (rather than m̂∗ and BV ∗), does not improve the performance of the test.

The new jump test has an outstanding performance. The empirical size of the test is

reasonably close to the nominal size of 1% for both sampling frequencies. The empirical

power of the test is 100% if the sampling frequency is high (i.e., 1-minute) and approx-

imately 88% if applied to 5-minute data. This result is in sharp contrast to Figure 10,

where both J and J̃ tests suffer from serious size distortion towards 0 and a lack of power

for 1/∆ = 80 and |θ| 6= 0.

5.3 Intraday Periodicity

For ease of exposition, we have so far ignored intraday periodicity effects in the spot

volatility. However, it has been well known since the studies of Taylor and Xu (1997) and

Andersen and Bollerslev (1998b) that the opening, lunch period and closing of financial

markets induce a strong periodic pattern in the volatility of high-frequency returns. More

recently, Boudt et al. (2011) proposed several nonparametric robust-to-jumps estimators
16Importantly, a close-to-zero rate of rejection is also observed if using a higher critical value of β = 5%.
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of the intraday (or intraweek) periodicity and a correction to the LM08 jump statistics

by allowing the spot volatility to depend on the estimated periodicity. They show that

this modification helps increase the power to detect the relatively small jumps occurring

at times of volatility being periodically low and to reduce the number of spurious jump

detections at times when volatility is periodically high.

The most efficient nonparametric periodicity estimator of Boudt et al. (2011), denoted

f̂ti, is the weighted standard deviations (WSD). Assuming for simplicity that the length

of the periodicity cycle is one day and that we dispose of 5-minute data, the WSD es-

timator corresponds to the standard deviation of weighted standardized log-returns Jti

computed on all the observations belonging to the same 5-minute interval (across T days)

and multiplied by a correction factor to ensure its consistency in the absence of jumps.

The observation Jti receives either a weight of either zero when J2
ti is higher than a high

quantile (e.g., 99%) of the χ2
1 distribution (i.e., the distribution of J2

ti in the absence of

jumps) or one otherwise. We refer the reader to Boudt et al. (2011) for details on the WSD

estimator.17 It is important to note that this estimator of the intraday periodicity relies on

the assumption that, in the absence of jumps, Jti follows a standard normal distribution,

while we have observed in Section 5.2 that this assumption is likely to be violated in finite

samples if the process has a nonzero drift.

Consequently, we propose a modified WSD estimator, denoted by f̂∗ti, where the period-

icity is estimated on J∗ti rather than Jti. Finally, as Boudt et al. (2011), we also modify our

newly proposed J∗ statistic by multiplying σ̂∗ti in (26) by the estimated intraday periodicity

f̂∗ti. The periodicity-adjusted jump test statistic is denoted by J∗Pti and defined as

J∗Pti =
rti − m̂∗ti(K)

f̂∗ti σ̂
∗
ti

(K)
. (30)

Periodicity-adjusted jump test statistics Jti and J̃ti can be obtained similarly, i.e., JPti =

17Note that, as Boudt et al. (2011), we normalize f̂ti such that f̂2
ti averages to one over the length of the

periodicity cycle (e.g., one day or one week).
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Jti/f̂ti and J̃Pti = J̃ti/f̂ti.

To study the finite sample properties of the modified WSD estimator and the periodicity-

adjusted jump test statistic, we extend the previous simulation by introducing intra-

periodicity in addition to GARCH(1,1) dynamics in the conditional variance. To this end,

we simulate data according to (15) and (17), where

Vti+1 = σtifti
√

∆εti+1 , (31)

and fti, i.e., the true periodicity, depicts the usual U-shaped pattern during the day and

is restricted to be same on all days. We simulate 252 days of one-second data. The first

251 days serve as a burn-in period to estimate the periodicity using 5-minute data, while

the last day is used to study the size and power of the J∗Pti test statistic (also computed

on 5-minute data). The burn-in period contains on average one jump per day (with size

φ1
ti+1

= −0.6σti+1fti ). The last day contains no jump under the null hypothesis and one

jump under the alternative.

The true periodicity of the simulated 5-minute data (i.e., fti ) is plotted in Figure 11

together with the averages (over 104 replications) of f̂ti and f̂∗ti. To study the impact of a

nonzero drift on the estimation of fti, θ is set to a nonzero value for either 20 (left panel) or

50 (right panel) randomly chosen days (out of the first 251 days) and 0 on the remaining

days. Figure 11 corresponds to the most extreme case, i.e. y0 = 7 and θ = 0.05 for the

20 or 50 days. The results suggest that unlike that for f̂ti, the bias of the modified WSD

estimator f̂∗ti is negligible in both cases, even in this very extreme scenario.

Finally, we explore the performance of the periodicity-adjusted jump test in Figure 12.

The same DGP is used as above but now we consider the same range of values for θ and

y0 as in the previous simulations for the last day of the simulated sample (i.e., day 252).

We assume that 20 random days (out of the first 251 days) deviate from the random walk

(i.e., θ 6= 0) in the burn-in period. Results are qualitatively the same for 50 days and

are not reported here to save space. The general conclusion from Figure 12 is that our
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Figure 11: The simulated intraday periodicity and the periodicity estimators.
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periodicity-adjusted jump test J∗P behaves similarly to the unadjusted one using J∗ in the

absence of periodicity. The test is slightly oversized but reasonably close to the nominal

size, and the power is satisfactory.

Figure 12: Empirical performance of the periodicity-adjusted jump test J∗P .
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5.4 The (Modified) Ultrahigh-Frequency Jump Test

Lee and Mykland (2012) extend the LM08 tests to the ultrahigh-frequency setting, al-

lowing for the presence of market microstructure noise. Interestingly, examining noise-

contaminated one-second data, we observe similar patterns of size distortion and power

loss of the LM12 test if θ and y0 deviate from zero and show that a similar correction to

the test statistic dramatically improves its finite sample performance.
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The noise-contaminated log-price is y†ti, as defined by (19). Recall that the noise is

assumed to be serially correlated of order s. Let Γ̃ = sM with M̃ = CT
1/2
1 (C is a constant

and T1 = T/s). For every sth observation, we calculate the Γ̃−differenced log-return as

r
(Γ̃)
tjs

= y†tjs − y
†
tjs−Γ̃

with j = M̃ + 1, · · · , T1. Let us divide the sequence {r(Γ̃)
tjs
}T1
j=M+1 into B̃ blocks of size M̃ . For

each block b, we calculate the average log-return over the block such that

r̄b =
1

M̃

M̃∑
j=1

r
(Γ̃)
tbMs+js

with b = 1, 2, · · · , B̃.

The Lee and Mykland (2012) test statistics for the presence of jumps in the log-prices

between tbsM and t(b+1)sM are

Lb =
√
M̃

r̄b√
V̂b(K)

and L̃b =
√
M̃
r̄b − m̂b(K)√

V̂b(K)
, (32)

where V̂b(K) is an estimate of the variance of
√
Mr̄b and m̂b(K) is the empirical mean of r̄b.

Both V̂b(K) and m̂b(K) are calculated using a rolling window of K returns (over D days).

Specifically, let B0 = K/M̃ . For b ≥ B0 we have m̂b(K) = 1
B0

∑B0−1
j=0 r̄b−j and

V̂b(K) =
2

3
ÎV b(K)C2D + 2q̂2

b (K), (33)

where ÎV b(K) and q̂2
b (K) are as in Section 4.

To improve the finite sample accuracy of the two test statistics in (32), we propose a
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modification similar to the one in (26). The new test statistic is

L∗b =
√
M
r̄b − m̂∗b(K)√

V̂ ∗b (K)
, (34)

where m̂∗b(K) = median(r̄b−B0+1, · · · , r̄b) and V̂ ∗b (K) is defined similarly to V̂b(K) with ÎV b(K)

replaced by ÎV
∗
b(K). All three test statistics (Lb, L̃b, and L∗tb ) converge to the standard

normal distribution under the null hypothesis of no jumps.

To study the finite sample properties of the three tests, we consider the same data

generating process and parameter settings as in Section 4. However, for consistency with

the simulations and application in Lee and Mykland (2012), we apply the tests to 1-second

data over a very short period of 1 hour (rather than 1 day as in Sections 5.2 and 5.3).

To this end, we simulate observations over a 2-hour period and use the first hour as a

burn-in period. The rolling window size is set to T − 1. Parameter C is set according to

Table 5 of Lee and Mykland (2012). The optimal value of C is 1/18 for a value of q ≈ 0.1%.

We set γ1 = 1 and γ2 = 1.6 as in Podolskij and Vetter (2009). The nominal size of the test

is again 1%.

The empirical performance of Lb, L̃b and L∗b statistics is illustrated in Figure 13. First,

there is no visible difference in the empirical performance (in both size and power) of the Lb

and L̃b tests. Second, we observe a downward size distortion and a power deterioration in

both tests as the process deviates from the random walk and the initial value y0 increases,

although the magnitudes of the size distortion and the power loss are smaller than those

observed in the right panel of Figure 10, that correspond to the original J and J̃ tests of

Lee and Mykland (2008) applied to 5-minute data and the span of one day. Importantly,

the size of the new test L∗b fluctuates slightly below the nominal size of 1%, while its power

is approximately 80% for all configurations of θ and y0. These results are not surprising

given our discussion and findings in Section 4 regarding the ultrahigh-frequency volatility

estimators.
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Figure 13: Empirical performance of L, L̃ and L∗ tests.
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6 Empirical Application

In this section, we compute the three J test statistics using 5-minute data of the NASDAQ

stock price index during the period from 1996 to 2016. All trades before 9:30 am or after

4:00 pm and the first trade after 9:30 am are discarded, which is the usual method of

avoiding the overnight effect. The choice of this series is dictated by the fact that several

studies (see Phillips et al., 2011, Homm and Breitung, 2012, and Shi and Song, 2016,

among others) have shown evidence of deviations from the unit root in weekly and monthly

data of the NASDAQ in the late 1990s. The log-prices are plotted in Figure 14. We observe

a very rapid expansion in the log-prices in the late 1990s. The Nasdaq stock price has

been rising steadily after the global financial crisis in 2008.

The daily bipower variation BV is plotted in the left panel of Figure 15 while the dis-
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Figure 14: The five-minute log-prices of the NASDAQ stock index over the period of 1996-
2016.
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crepancy between BV and the modified version BV ∗, measured as (BV −BV ∗) /BV ∗, is

plotted in the right panel. As expected, the daily bipower variation is of a much higher

magnitude during crisis periods (e.g. after the dot-com bubble in the early 2000s and

during the 2008 subprime mortgage crisis). Interestingly, Figure 15b suggests that the

conventional bipower variation very often overestimates the integrated variance (on aver-

age by 2.5% but in some cases by more than 40%).

Figure 15: Estimated bipower variation (BV ) of the NASDAQ stock market and the dis-
crepancy between BV and the modified bipower variation (BV ∗).
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To compute the periodicity-adjusted J test statistics, we first estimate the intraday

periodicity f̂ti and f̂∗ti year-by-year with a cycle length of one week (to allow for different

day-of-week effects as in Boudt et al., 2011) with the procedures described in Section 5.3.

Results of the three tests (JP , J̃P and J∗P ) are reported in Table 1. For the critical value
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cvL,β, we set L to the total number of 5-minute log-returns per day (i.e., L = 78 and β =

0.1%). The values reported in the three columns below ‘Significant jumps’ correspond to

the number of jump statistics greater than the critical value, while those below ‘Significant

days’ correspond to the number of days in which at least one significant jump is detected.

Table 1: Descriptive statistics of significant jumps.

Significant jumps Significant days

JP J̃P J∗P JP J̃P J∗P

1996 42 39 50 32 30 35
1997 41 44 51 34 34 40
1998 41 47 50 30 35 37
1999 22 21 28 19 18 24
2000 25 30 35 21 24 28
2001 27 28 28 24 23 23
2002 20 25 29 18 23 27
2003 36 39 44 31 33 38
2004 43 48 54 35 39 44
2005 73 75 81 53 54 57
2006 60 58 61 44 43 45
2007 60 59 71 42 41 48
2008 34 32 33 29 27 28
2009 45 39 49 35 31 38
2010 56 52 57 40 37 41
2011 34 44 43 30 37 37
2012 42 41 45 34 34 37
2013 47 48 49 35 36 36
2014 47 46 51 38 38 40
2015 31 32 37 25 26 30
2016 38 36 38 26 26 26
Total 864 883 984 675 689 759

The first conclusion we can draw from Table 1 is that for each year, the numbers of

jumps detected by the three tests are not dramatically different. However, our proposed

J∗P statistic allows us to almost systematically detect more jumps. Over 21 years, 864,

883 and 984 jumps are detected using the statistics JP , J̃P and J∗P , respectively, which

correspond to 675, 689 and 759 days with at least one significant jump. This result is

consistent with our simulation findings that if the log-price process has a nonzero drift,

the newly proposed test J∗P has a higher power than that of the other two tests.
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We can identify 87 days on which a jump is only detected by the J∗P statistic (i.e.,

JP∗ > cv78,0.1% while JP and J̃P ≤ cv78,0.1%). To better understand the difference between

the tests, the log-prices of 4 out of these 87 days (selected randomly) are plotted in Figure

16. Interestingly, these 4 days are characterized by a strong upward or downward trends

that we attribute to a nonzero drift. Recall from Figure 10 that if the process has a nonzero

drift, the original LM (2008) tests (both J and J̃ ) applied to 5-minute data are observed

to be undersized and to have less power than J∗, while J∗ has good size and very good

power (the same comment applies to periodicity adjusted tests).

Figure 16: The log-prices on 4 days on which jumps are identified by J∗P but not by JP

and J̃P . The vertical lines indicate the arrival times of the detected jumps.
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7 Conclusion

This paper derives the finite sample theory for the realized volatility under the drift-

diffusion process. The finite sample theory and extensive simulations reveal that with

a fixed sampling interval, the realized volatility but also the jump robust volatility esti-

mators (including the bipower variation, the MedRV, and the threshold realized variance)

tend to overestimate the integrated variance in the presence of a nonzero drift, and the

bias rises with the magnitude of the drift term. Moreover, despite the drift term becoming

extremely close to zero as the sampling frequency increases, our simulations show that

the volatility estimator of Podolskij and Vetter (2009), which is robust to microstructure

noise and designed for ultrahigh-frequency data, suffers from the same problem due to

the use of preaveraged returns.

Consequently, procedures derived from these integrated variance estimators (such as

the intraday periodicity estimator of Boudt et al., 2011 and the Lee and Mykland (2008,

2012) jump tests have unsatisfactory performance in finite samples when log-prices have

a nonzero drift. In particular, we demonstrate that in the presence of a nonzero drift,

the jump tests have strong size distortions and power losses. We propose an alternative

construction of the integrated variance estimator, intraday periodicity estimator and jump

test statistics, which leads to significant improvements of their performance.

The newly proposed estimators and the jump test, along with their original versions,

are applied to 5-minute log-returns of the NASDAQ for the period from 1996 to 2016. For

most observations, the new estimator provides a lower estimate of the daily integrated

variance than the bipower variation, which is consistent with our theory and simula-

tions. Furthermore, more jumps are detected using the new jump test. Interestingly, on

days when jumps are detected only by the new test, log-prices exhibit clear upward or

downward trend movements. We attribute these trends to the presence of a relatively

large drift, which explains why the original tests of Lee and Mykland (2008) fail to detect

jumps on these days.
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Appendix A

The proof of Lemma 2.1

Proof. Replacing yt in the drift coefficient µt with (6), we have

µt = a (t) +

∫ t

0
b(t, s)σsdWs,
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where a(t) = θ (y0 −m) eθt and b(t, s) = θeθ(t−s). The process yt can be rewritten as

yt = y0 +

∫ t

0
µsds+

∫ t

0
σsdWs

= y0 +A(t) +

∫ t

0
B(t, s)σsdWs +

∫ t

0
σsdWs,

where A(t) =
∫ t

0 a(r)dr and B(t, s) =
∫ t
s b(r, s)dr with t ≥ s.

(i) The return of the asset follows a dynamic of the type

rti = ∆iA+

∫ ti

ti−1

σsdWs +

∫ ti

ti−1

B(ti, s)σsdWs +

∫ ti−1

0
[B(ti, s)−B(ti−1, s)]σsdWs (35)

=

∫ ti

ti−1

σsdWs{1 + op(1)},

where ∆iA =
∫ ti
ti−1

a(r)dr. The second equality arises from the fact that ∆iA = Op(∆),∫ ti
ti−1

σsdWs = Op(∆
1/2), and the third and fourth terms on the right-hand side of the equa-

tion is Op(∆3/2).

(ii) Take expectation of both sides of the return process, we have

E(rti) = ∆iA = (y0 −m)eθti−1(eθ∆ − 1).

Theoretical Properties of the Eigenfunctions

The eigenfunctions has the following properties: (1) The eigenfunctions are normalized

such that Π0,St = 1 and V ar (Πi,St) = 1 for all i 6= 0.

(2) Any non-constant eigenfunction is centered such that

E [Πi,St ] = 0.
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(3) Two eigenfunctions that are associated with two different eigenvalues are orthogo-

nal

E [Πi,StΠj,St ] = 0 for i 6= j.

(4) Any eigenfunction is an autoregressive process of order one,

E
[
Πi,St+h |Sτ , τ ≤ t

]
= exp(−δih)Πi,St, ∀h > 0.

(5) Any square-integrable function g, i.e. E
[
g (St)

2
]
< ∞, may be written as a linear

combination of the eigenfunctions, i.e.

g (St) =
∞∑
i=0

diΠi,St ,

where di = E [g (St) Πi.St ] and
∑∞

i=0 d
2
i = E

[
g (St)

2
]
<∞.

Proof of Proposition 2.1

Proof. The bias of the realized volatility estimator is

E

 i∑
j=i−K+1

r2
tj −

∫ ti

ti−K
σ2
udu

 .

The first step is to calculate the squared return from (35) such that

r2
tj = (∆jA)2︸ ︷︷ ︸

(1)

+

(∫ tj

tj−1

σsdWs

)2

︸ ︷︷ ︸
(2)

+

(∫ tj

tj−1

B(tj , s)σsdWs

)2

︸ ︷︷ ︸
(3)

+

(∫ tj−1

0
[B(tj , s)−B(tj−1, s)σsdWs

)2

︸ ︷︷ ︸
(4)
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+ 2∆jA

(∫ tj

tj−1

σsdWs

)
︸ ︷︷ ︸

(5)

+ 2

(
∆jA+

∫ tj

tj−1

σsdWs

)∫ tj

tj−1

B(tj , s)σsdWs︸ ︷︷ ︸
(6)

+ 2

(
∆jA+

∫ tj

tj−1

σsdWs

)(∫ tj−1

0
[B(tj , s)−B(tj−1, s]σsdWs

)
︸ ︷︷ ︸

(7)

+ 2

(∫ tj

tj−1

B(tj , s)σsdWs

)(∫ tj−1

0
[B(tj , s)−B(tj−1, s]σsdWs

)
︸ ︷︷ ︸

(8)

,

which is consists of eight terms. The first term

(∆jA)2 =

(∫ tj

tj−1

a(r)dr

)2

.

We apply the Ito’s lemma to the squared terms (2), (3) and (4).18 The second term

(∫ tj

tj−1

σsdWs

)2

= s

∫ tj

tj−1

(∫ u

tj−1

σsdWs

)
σudWu +

∫ tj

tj−1

σ2
udu;

the third term

(∫ tj

tj−1

B(tj , s)σsdWs

)2

= 2

∫ tj

tj−1

(∫ u

tj−1

B(tj , s)σsdWs

)
B (tj , u)σudWu

+

∫ tj

tj−1

B (tj , u)2 σ2
udu;

and the fourth term

(∫ tj−1

0
[B(tj , s)−B(tj−1, s)σsdWs

)2

18If η (x) = x2, we have dη = ∂η
∂x
dx+ 1

2
∂2η
∂x2

(dx)2 .
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= 2

∫ tj−1

0

(∫ u

0
[B(tj , s)−B(tj−1, s)]σsdWs

)
[B(tj , u)−B(tj−1, u)]σudWu

+

∫ tj−1

0
[B(tj , u)−B(tj−1, u)]2σ2

udu.

Similarly, we apply the Ito’s lemma to all the cross product terms (5), (6), (7) and (8).19

The fifth term

2∆jA

(∫ tj

tj−1

σsdWs

)

= 2

∫ tj

tj−1

(∫ u

tj−1

a(r)dr

)
σudWu + 2

∫ tj

tj−1

(∫ u

tj−1

σsdWs

)
a (u) du;

the sixth term

2

(
∆jA+

∫ tj

tj−1

σsdWs

)(∫ tj

tj−1

B(tj , s)σsdWs

)

= 2∆iA

∫ tj

tj−1

B(tj , s)σsdWs + 2

(∫ tj

tj−1

σsdWs

)(∫ tj

tj−1

B(tj , s)σsdWs

)

= 2

∫ tj

tj−1

(∫ u

tj−1

a(r)dr

)
B(tj , u)σudWu + 2

∫ tj

tj−1

(∫ u

tj−1

B(tj , s)σsdWs

)
a(u)du

+2

∫ tj

tj−1

(∫ u

tj−1

σsdWs

)
B(tj , u)σudWu + 2

∫ tj

tj−1

(∫ u

tj−1

B(tj , s)σsdWs

)
σudWu;

the seventh term

2

(
∆jA+

∫ tj

tj−1

σsdWs

)(∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs

)

= 2∆jA

(∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs

)
19If η (x, y) = 2xy, we have dη = ∂η

∂x
dx+ ∂η

∂y
dy.
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+2

(∫ tj

tj−1

σsdWs

)(∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs

)

= 2

∫ tj−1

0

(∫ u

tj−1

a(r)dr

)
[B(tj , u)−B(tj−1, u)]σudWu

+2

∫ tj

tj−1

(∫ u

0
[B(tj , s)−B(tj−1, s)]σsdWs

)
a(u)du

+2

∫ tj

tj−1

(∫ u

0
[B(tj , s)−B(tj−1, s)]σsdWs

)
σudWu

+2

∫ tj−1

0

(∫ u

tj−1

σsdWs

)
[B(tj , u)−B(tj−1, u)]σudWu;

and the eighth term

2

(∫ tj

tj−1

B(tj , s)σsdWs

)(∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs

)

= 2

∫ tj

tj−1

(∫ u

0
[B(tj , s)−B(tj−1, s)]σsdWs

)
B(tj , u)σudWu

+2

∫ tj−1

0

(∫ u

tj−1

B(tj , s)σsdWs

)
[B(tj , u)−B(tj−1, u)]σudWu.

The expected value of
(
r2
tj −

∫ tj
tj−1

σ2
udu

)
is therefore

E

(
r2
tj −

∫ tj

tj−1

σ2
udu

)
=

(∫ tj

tj−1

a(r)dr

)2

+

∫ tj

tj−1

B (tj , u)2E
(
σ2
u

)
du

+

∫ tj−1

0
[B(tj , u)−B(tj−1, u)]2E

(
σ2
u

)
du

+2

∫ tj

tj−1

E

(∫ u

tj−1

σsdWs

)
a (u) du

+2

∫ tj

tj−1

E

(∫ u

tj−1

B(tj , s)σsdWs

)
a(u)du
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+2

∫ tj

tj−1

E

(∫ u

0
[B(tj , s)−B(tj−1, s)]σsdWs

)
a(u)du.

From Assumption 2.3, we have

E
(
σ2
t

)
= E

(
p∑
i=0

diΠi,St

)
=

p∑
i=0

diE (Πi,St) = d0.

Therefore,

E

(
r2
tj −

∫ tj

tj−1

σ2
udu

)
=

(∫ tj

tj−1

a(r)dr

)2

+ d0

∫ tj

tj−1

B (tj , u)2 du

+d0

∫ tj−1

0
[B(tj , u)−B(tj−1, u)]2du.

By construction,

(∫ tj

tj−1

a(r)dr

)2

= (y0 −m)2

(∫ tj

tj−1

θeθrdr

)2

= (y0 −m)2
[
eθtj − eθtj−1

]2
,

which equal zero when θ = 0. By construction,

B (tj , u) =

∫ tj

u
b (r, u) dr =

∫ tj

u
θeθ(r−u)dr = eθ(tj−u) − 1,

and hence

d0

∫ tj

tj−1

B (tj , u)2 du = d0

∫ tj

tj−1

(
eθ(tj−u) − 1

)2
du

= d0

∫ tj

tj−1

(
e2θ(tj−u) − 2eθ(tj−u) + 1

)
du

= d0

[∫ tj

tj−1

e2θ(tj−u)du− 2

∫ tj

tj−1

eθ(tj−u)du+ ∆

]
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=

 d0

[
− 1

2θ

(
1− e2θ∆

)
+ 2

θ

(
1− eθ∆

)
+ ∆

]
if θ 6= 0

0 if θ = 0.

The last term

d0

∫ tj−1

0
[B(tj , u)−B(tj−1, u)]2du

= d0

∫ tj−1

0
[eθ(tj−u) − eθ(tj−1−u)]2du

= d0[eθ∆ − 1]2e2θtj−1

∫ tj−1

0
e−2θudu

=


d0
2θ

(
eθ∆ − 1

)2 [
e2θtj−1 − 1

]
if θ 6= 0

0 if θ = 0.

Therefore, the bias of the realized volatility is zero when θ = 0 and when θ 6= 0

E

 i∑
j=i−K+1

r2
tj −

∫ ti

ti−K
σ2
udu

 = (y0 −m)2
i∑

j=i−K+1

[
eθtj − eθtj−1

]2

+d0

[
1

2θ∆

(
e2θ∆ − 1

)
+

2

θ∆

(
1− eθ∆

)
+ 1

]

+
d0

2θ

(
eθ∆ − 1

)2
i∑

j=i−K+1

(
e2θtj−1 − 1

)

= (y0 −m)2
(
eθ∆ − 1

)2
eθti−K

1− e2θ∆K

1− e2θ∆

+d0K

[
1

2θ

(
e2θ∆ − 1

)
+

2

θ

(
1− eθ∆

)
+ 1

]

+
d0

2θ

(
eθ∆ − 1

)2
(
e2θti−K

1− e2θ∆K

1− e2θ∆
−K

)
.
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Proof of Proposition 2.2

Proof. The bias of the infeasible realized volatility estimator is

E

 i∑
j=i−K+1

(
rtj −mtj

)2 − ∫ ti

ti−K
σ2
udu

 ,

where mtj = E(rtj ). From (35), the squared returns

r2
tj =

(∫ tj

tj−1

σsdWs

)2

︸ ︷︷ ︸
(1)

+

(∫ tj

tj−1

B(tj , s)σsdWs

)2

︸ ︷︷ ︸
(2)

+

(∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs

)2

︸ ︷︷ ︸
(3)

+ 2

(∫ tj

tj−1

σsdWs

)∫ tj

tj−1

B(tj , s)σsdWs︸ ︷︷ ︸
(4)

+ 2

(∫ tj

tj−1

σsdWs

)(∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs

)
︸ ︷︷ ︸

(5)

+ 2

(∫ tj

tj−1

B(tj , s)σsdWs

)(∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs

)
︸ ︷︷ ︸

(6)

,

which is consists of six terms. From the proof of Proposition 2.1, the (1), (2) and (3) terms

are (∫ tj

tj−1

σsdWs

)2

=

∫ tj

tj−1

(∫ u

tj−1

σsdWs

)
σudWu +

∫ tj

tj−1

σ2
udu;
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(∫ tj

tj−1

B(tj , s)σsdWs

)2

= 2

∫ tj

tj−1

(∫ u

tj−1

B(tj , s)σsdWs

)
B (tj , u)σudWu

+

∫ tj

tj−1

B (tj , u)2 σ2
udu;

and

(∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs

)2

= 2

∫ tj−1

0

(∫ u

0
[B(tj , s)−B(tj−1, s)]σsdWs

)
[B(tj , u)−B(tj−1, u)]σudWu

+

∫ tj−1

0
[B(tj , u)−B(tj−1, u)]2σ2

udu.

Similarly, the cross product terms (4), (5) and (6) are

2

(∫ tj

tj−1

σsdWs

)(∫ tj

tj−1

B(tj , s)σsdWs

)

= 2

∫ tj

tj−1

(∫ u

tj−1

σsdWs

)
B(tj , u)σudWu + 2

∫ tj

tj−1

(∫ u

tj−1

B(tj , s)σsdWs

)
σudWu;

2

(∫ tj

tj−1

σsdWs

)(∫ tj−1

0
[B(tj , s)−B(tj−1, s]σsdWs

)

= 2

∫ tj

tj−1

(∫ u

0
[B(tj , s)−B(tj−1, s)]σsdWs

)
σudWu

+2

∫ tj−1

0

(∫ u

tj−1

σsdWs

)
[B(tj , u)−B(tj−1, u)]σudWu;
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and

2

(∫ tj

tj−1

B(tj , s)σsdWs

)(∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs

)

= 2

∫ tj

tj−1

(∫ (u

0
[B(tj , s)−B(tj−1, s)]σsdWs

)
B(tj , u)σudWu

+2

∫ tj−1

0

(∫ u

tj−1

B(tj , s)σsdWs

)
[B(tj , u)−B(tj−1, u)]σudWu.

The expected value of the bias is therefore

E

[(
rtj −mtj

)2 − ∫ tj

tj−1

σ2
udu

]
=

∫ tj

tj−1

B (tj , u)2E
(
σ2
u

)
du

+

∫ tj−1

0
[B(tj , u)−B(tj−1, u)]2E

(
σ2
u

)
du.

Therefore,

E

 i∑
j=i−K+1

(
rtj −mtj

)2 − ∫ ti

ti−K
σ2
udu

 = d0K

[
1

2θ

(
e2θ∆ − 1

)
+

2

θ

(
1− eθ∆

)
+ 1

]

+
d0

2θ

(
eθ∆ − 1

)2
(

1− e2θ∆K

1− e2θ∆
−K

)

when θ 6= 0 and equals zero when θ = 0.

Proof of Proposition 2.3

Proof. The bias of the feasible realized volatility estimator is

E


i∑

j=i−K+1

(
rtj − m̂ti

)2 − ∫ ti

ti−K
σ2
udu
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= E


i∑

j=i−K+1

r2
tj − 2m̂ti

i∑
j=i−K+1

rtj +Km̂2
ti −

∫ ti

ti−K
σ2
udu


= E

 i∑
j=i−K+1

r2
tj −

∫ ti

ti−K
σ2
udu

− 2
i∑

j=i−K+1

E
(
m̂tirtj

)
+KE(m̂2

ti).

The first term is the bias of the realized volatility estimator derived in Proposition 2.1. We

only need to derive the second and third terms. From Lemma 2.1,

m̂ti =
1

K

∫ ti

ti−K
a(r)dr +

1

K

∫ ti

ti−K

σsdWs +
1

K

i∑
j=i−K+1

∫ tj

ti−j

B(tj , s)σsdWs

+
1

K

i∑
j=i−K+1

∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs.

Following the proof of Proposition 2.1, we can show that

−2
i∑

j=i−K+1

E
(
m̂tirtj

)
= −2

1

K

(∫ ti

ti−K
a(r)dr

)2

.

Moreover,

KE(m̂2
ti) =

1

K

(∫ ti

ti−K
a(r)dr

)2

+
1

K
E

(∫ ti

ti−K

σsdWs

)2

+
1

K

i∑
j=i−K+1

E

(∫ tj

ti−j

B(tj , s)σsdWs

)2

+
1

K

i∑
j=i−K+1

(∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs

)2

=
1

K

(∫ ti

ti−K
a(r)dr

)2

+ d0 +
d0

K

i∑
j=i−K+1

∫ tj

tj−1

B (tj , u)2 du
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+
d0

K

i∑
j=i−K+1

∫ tj−1

0
[B(tj , u)−B(tj−1∆, u)]2du

since

1

K
E

(∫ ti

ti−K

σsdWs

)2

=
1

K

∫ ti

ti−K

E
(
σ2
u

)
du;

1

K

i∑
j=i−K+1

E

(∫ tj

tj−1

B(tj , s)σsdWs

)2

=
1

K

i∑
j=i−K+1

∫ tj

tj−1

B (tj , u)2E
(
σ2
u

)
du;

1

K

i∑
j=i−K+1

(∫ tj−1

0
[B(tj , s)−B(tj−1, s)]σsdWs

)2

=
1

K

i∑
j=i−K+1

∫ tj−1

0
[B(tj , u)−B(tj−1, u)]2E

(
σ2
u

)
du.

Therefore,

E


i∑

j=i−K+1

(
rtj − m̂ti

)2 − ∫ ti

ti−K
σ2
udu


= E

 i∑
j=i−K+1

r2
tj −

∫ ti

ti−K
σ2
udu

− 1

K

(∫ ti

ti−K
a(r)dr

)2

+ d0∆

+
d0

K

i∑
j=i−K+1

∫ tj

tj−1

B (tj , u)2 du+
d0

K

i∑
j=i−K+1

∫ tj−1

0
[B(tj , u)−B(tj−1, u)]2du.

Furthermore,

− 1

K

(∫ ti

ti−K
a(r)dr

)2

= − 1

K
(y0 −m)2 e2θti−K

(
eθ∆K − 1

)2
;

d0

K

i∑
j=i−K+1

∫ tj

tj−1

B (tj , u)2 du =
1

K

i∑
j=i−K+1

d0

∫ tj

tj−1

(
eθ(tj−u) − 1

)2
du
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=
1

K

i∑
j=i−K+1

d0

∫ tj

tj−1

(
e2θ(tj−u) − 2eθ(tj−u) + 1

)
du

=
d0

K

 i∑
j=i−K+1

∫ tj

tj−1

e2θ(tj−u)du− 2

i∑
j=i−K+1

∫ tj

tj−1

eθ(tj−u)du+ ∆K



=

 d0

[
1
2θ

(
e2θ∆ − 1

)
+ 2

θ

(
1− eθ∆

)
+ ∆

]
if θ 6= 0

0 if θ = 0

and

d0

K

i∑
j=i−K+1

∫ tj−1

0
[B(tj , u)−B(tj−1, u)]2du =

d0

K

i∑
j=i−K+1

∫ tj−1

0
[eθ(tj−u) − eθ(tj−1−u)]2du

= d0[eθ∆ − 1]2
1

K

i∑
j=i−K+1

e2θtj−1

∫ tj−1

0
e−2θudu

=


d0

2θK

(
eθ∆ − 1

)2 [
e2θti−K 1−e2θ∆K

1−e2θ∆ −K
]

if θ 6= 0

0 if θ = 0.

Therefore,

E


i∑

j=i−K+1

[
rtj − E

(
rtj
)]2 − ∫ ti

ti−K
σ2
udu


= (y0 −m)2 eθti−K

[(
eθ∆ − 1

)2 1− e2θ∆K

1− e2θ∆
− 1

K
eθti−K

(
eθ∆K − 1

)2
]

+d0∆ + d0 (K + 1)

[
1

2θ

(
e2θ∆ − 1

)
+

2

θ

(
1− eθ∆

)
+ ∆

]

+
d0

2θ

K + 1

K

(
eθ∆ − 1

)2
[
e2θti−K

1− e2θ∆K

1− e2θ∆
−K

]

when θ 6= 0 and equals zero when θ = 0.
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Proof of Remark 2.1

Proof. (1) The squared return of the constant drift process is

r2
tj =

(∫ tj

tj−1

σsdWs

)2

︸ ︷︷ ︸
(1)

+ (m∆)2︸ ︷︷ ︸
(2)

+ 2m∆

∫ tj

tj−1

σsdWs︸ ︷︷ ︸
(3)

.

The first term

(∫ tj

tj−1

σsdWs

)2

=

∫ tj

tj−1

(∫ u

tj−1

σsdWs

)
σudWu +

∫ tj

tj−1

σ2
udu.

Therefore,

E

{
r2
tj −

∫ tj

tj−1

σ2
udu

}
= m2∆2.

and the bias of RV is

E

{
RVti(K)−

∫ ti

ti−K
σ2
udu

}
= Km2∆2.

(2) Similarly, the square term of the demeaned returns

[
rtj − E

(
rtj
)]2

=

(∫ tj

tj−1

σsdWs

)2

=

∫ tj

tj−1

(∫ u

tj−1

σsdWs

)
σudWu +

∫ tj

tj−1

σ2
udu.

Therefore, the bias of RV †ti(K) is zero.

(3) The bias of the feasible modified realized volatility estimator RV ∗ is

E


i∑

j=i−K+1

(
rtj − m̂ti

)2 − ∫ ti

ti−K
σ2
udu
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= E

 i∑
j=i−K+1

r2
tj −

∫ ti

ti−K
σ2
udu

− 2
i∑

j=i−K+1

E
(
m̂tirtj

)
+KE(r̄2

ti).

The sample average

m̂ti = m∆ +
1

K

∫ ti

ti−K

σsdWs.

We can show that

−2
i∑

j=i−K+1

E
(
m̂tirtj

)
= −2Km2∆2,

KE(m̂2
ti) = Km2∆2 +

1

K

∫ ti

ti−K

E
(
σ2
u

)
du = Km2∆2 + d0∆.

Therefore,

E


i∑

j=i−K+1

(
rtj − m̂ti

)2 − ∫ ti

ti−K
σ2
udu

 = d0∆.
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