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Abstract: In this paper, we investigate on 39 Variable Selection procedures to give an overview of the existing1

literature for practitioners. "Let the data speak for themselves" has become the motto of many applied researchers2

since the amount of data has significantly grew. Automatic model selection have been raised by the search3

for data-driven theories for quite a long time now. However while great extensions have been made on the4

theoretical side still basic procedures are used in most empirical work, eg. Stepwise Regression. Some reviews5

are already available in the literature for variable selection, but always focus on a specific topic like linear6

regression, groups of variables or smoothly varying coefficients. Here we provide a review of main methods and7

state-of-the art extensions as well as a topology of them over a wide range of model structures (linear, grouped,8

additive, partially linear and non-parametric). We provide explanations for which methods to use for different9

model purposes and what are key differences among them. We also review two methods for improving variable10

selection in the general sense.11

Keywords: Variable Selection; Automatic Modelling; Sparse Models12

JEL Classification: C50,C5913

1. Introduction14

When building a statistical model the question of which variables to include arise very often. In practice is it15

true almost all the time. This can come from ignorance, competing theories, or whatever. Practitioners have now16

at their disposal a wide range of technologies to solve this issue. Literature on this topic started with Stepwise17

Regression (Breaux 1967) and Autometrics (Hendry et al. 1987), moving to more advanced procedures from18

which the most famous are the Non Negative Garrotte (Breiman 1995), the Least Angle and Shrinkage Selection19

Operator (hereafter LASSO, Tibshirani (1996)) and the Sure Independence Screening (Fan and Zhang 2008).20

Many papers are available for empiricists to get an overview of the existing methods. Fan and Lv (2010) reviews21

most of the literature on linear and generalized models. A large part is devoted to penalized methods and22

algorithmic solutions, also the optimal choice of the parameter penalty is discussed. Breheny and Huang (2009)23

and Huang et al. (2012) gave a complete review of selection procedures in grouped variables models with great24

technical comparisons, especially in terms of rate of convergence. Castle et al. (2011) compared Autometrics to a25

wide range of other methods (Stepwise, Akaike Information Criterion, LASSO, etc. 1) in terms of prediction26

accuracy under orthogonality of the regressors, with a particular attention given to dynamic models. In the same27

spirit as our paper Park et al. (2015) gave a very recent review of variable selection procedures but dealing28

only with varying-coefficient models. Fan and Lv (2017) provided a comprehensive review in the context of29

Sure Independence Screening major improvements. We can also cite more focusing papers like Fu (1998) who30

compared the Bridge and the LASSO theoretically but also empirically both through simulation and real data.31

1 Some of them are not presented in this paper either because they are out of its scope, eg. bayesian framework, or because they are special
cases of other ones.
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Epprecht et al. (2013) that compared Autometrics and the LASSO according to prediction and selection accuracy.32

33

The contribution of this paper is threefold. First, 39 procedures are considered, these are listed and clearly34

classified. Secondly, we establish a topology of procedures under different model structures. We consider major35

ones: Linear Models, Grouped Variables Models, Additive Models, Partial Linear Models and Non-parametric36

Models. Thirdly, we describe and compare state-of-the-art papers in the literature. We give contexts where each37

procedure should be used, to which specific problem they answer and compare them on this ground. In this sense38

any practitioner with enough knowledge in Statistics can refer to our paper as a methodological guide for doing39

variable selection. It gives a wider view of existing technologies than the other reviews we mentioned.40

41

The paper is organized as follows, in section 2 we introduce the three main categories of variable selection42

procedures and we provide a typological table of these ones on the ground of model structures. Descriptions as43

well as comparisons are discussed along the sections 3 to 7. Each of these sections focuses on a particular model44

structure. Section 8 is devoted to two general methods for improving model selection, both can be applied on all45

the procedures presented accross the paper. In the final section we make few critics on actual procedures and46

give insight on future area of research.47

2. Typology of Procedures48

In this section we propose a typology of state-of-the-art selection methods in many different frameworks,49

there are many types of models that can be considered. For this aim, Table 1 provides the classification of50

statistical methods available in the literature and that will be discussed in the paper. From the latter we have51

determined 3 main categories of algorithms:52

• Tests-based53

• Penalty-based54

• Screening-based55

Originally, the first developed are based on statistical tests. The work was to automate standard tests in56

Econometrics (like testing residuals for normality, t-tests etc.) for choosing among candidate variables. It57

includes Stepwise Regression and Autometrics for example.58

Then there are Penalty-based procedures. Imposing a constraint on parameters directly inside estimation59

encourages sparsity among them. For instance LASSO and Ridge belongs to this category.60

The lasts are Screening procedures, they are not all designed to do selection intrinsically but rather ranking61

variables by importance. The main advantage is that it applies more easily to very large dimensional problems,62

when number of regressors is diverging with the number of observations (eg. cases with p >> n). This is mainly63

true because it considers additive models (linear or not) and so variables can be treated separately.64

We discuss this distinction more deeply in subsections below and give brief description of their main features.65

2.1. Tests-Based66

This is the most classical way of handling variable selection in statistical models. It was also the first67

attempt of variable selection. Everything started with Stepwise Regression (Breaux 1967), one of the latest of68

this kind is Autometrics (Hendry et al. 1987) 2. We focus on Stepwise Regression and Autometrics for two69

reasons. The first is that Stepwise Regression is the most well-known and the most widespread method for70

choosing variables in a model. Despite it dates back to 1967 many empiricists still practice it. The second is that71

Autometrics has integrated many features of Econometrics to achieve the highest degree of completeness for an72

automatic procedure. Authors have considered endogeneity, non-linearities, unit-roots and many others, trying to73

overcome most issues a statistician can face.74

Stepwise Regression is the most simple and most straightforward way of doing model selection by just retrieving75

2 Even though it started in 1987 there are still improvements nowadays.
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insignificant variables (backward approach) or adding significant ones (forward approach) based on some76

statistical criterion. Therefore it is pretty easy to use it empirically because implementation is straightforward.77

However in several situations this does not ensure consistent selection. Its selection properties have been78

investigated in Wang (2009). On the contrary Autometrics is a complete philosophy of modelling, but comes at79

the cost of a quite complex algorithm and many tuning parameters are required, making its use more difficult for80

non-expert.81

2.2. Penalty-Based82

Thanks to the work of Tibshirani (1996) it became a quite common strategy in empirics. This kind of83

methods involves applying a penalty on parameters to encourage sparsity (i.e. some are set exactly to zero).84

Sparsity is a necessary condition for situations of unidentifiability ie. where p > n. Such a problem can be85

solved using penalties on parameters to make inference possible. These parameters can come from parametric86

models or from non-parametric models, so penalty based method can be applied on both structures. This kind87

of procedure started with the Non Negative Garrote (NNG of Breiman (1995)) in an Ordinary Least Squares88

framework up now to much complex model structure like varying coefficients and two-ways interactions ANOVA89

non-parametric models. The idea of producing sparse models is a convenient way of integrating a test inside90

the estimation. Inference of such models requires the prior assumption that some variables are not relevant, this91

is the test part, and penalty-based methods helps estimating the coefficients, this is the inference part. So both92

procedures are merged in an unified framework giving rise to a novel conception of statistical modelling. Maybe93

the most famous in this category is the LASSO of Tibshirani (1996).94

2.3. Screening-Based95

Screening is actually the most effective way of dealing with very high dimensional features (large p). Few96

other selection methods can be as computationally efficient as these ones. However Screening often does not97

perform model selection itself, it rather ranks variables. To do so they have to be mixed up with other procedures,98

in the literature they are mainly penalty-based. Even if it does not select variables reducing the candidate set is an99

important aspect of the variable selection and screening methods are powerful in this task. In this respect it is100

worth mentioning the Sure Independence Screening (hereafter SIS, Fan and Lv (2008)) that is the first of this101

kind.102

Screening makes the use of a ranking measure, either linear or not so it can be applied in both frameworks. Some103

may rely on specific models (like a linear model) while others are model-free. The major differences among104

procedures in this category relies on the choice of the ranking measure. Correlation coefficients are the first105

coming to mind, these are mainly used. One limitation in screening is that they usually treats variables by pairs to106

compute their measure of association, so every effect is considered as additive and does not correct for the presence107

of interactions effects. This is not necessarily true, especially in the non-parametric settings. Sophisticated108

correlations such as distance correlation or canonical kernel correlation are employed in a multivariate framework109

and account for such interactions even if they do not model them explicitly. However in this case they may loose110

their computational efficiency compared to independence screening ones. As said before, a brief review of some111

SIS methods can be found in Fan and Lv (2017).112



Version May 31, 2018 submitted to Econometrics 4 of 23

Table 1. Topology of Variable Selection Methods

Screening Penalty Testing

Linear

SIS SparseStep Stepwise
SFR LASSO Autometrics

CASE Ridge
FA-CAR BRidge

SCAD
MCP
NNG
SHIM

Group

gLASSO
gBridge
gSCAD
gMCP

ElasticNet

Additive
NIS SpAM

CR-SIS penGAM

Partial Linear

kernelLASSO SP-GLRT
adaSVC
DPLSE

PSA
PEPS

Non-Parametric

DC-SIS VANISH MARS
HSIC-SIS COSSO

KCCA-SIS
Gcorr
MDI
MDA

RODEO

3. Linear Models113

We began with the first model structure: the linear model. It is described as:

y = Xβ + ε (1)

The variable to be explained y (sometimes also called the output, the response or the dependent variable) is a114

one dimensional vector of length n, corresponding to the number of observations. The matrix X contains the115

explanatory variables (sometimes also called the inputs, the regressors or the independent variables) of length n116

and dimension p which is the number of candidate variables. Therefore the one dimensional vector β of length k117

contains the parameters of interest. The residuals (sometimes called also the error term) are denoted ε , even if it118

could be of interest we do not solely focus on their properties and consequences on variable selection in this119

paper. This notation will be held constant throughout the paper. Notice that all of the three methodologies are120

able to handle linear models, while this is not necessarily true for other structures (e.g. additive models).121

3.1. Testing122

Stepwise Regression (Breaux 1967) is the first model selection procedure. This approach have been123

motivated when statisticians started to consider model uncertainty. This means that among p variables we can124

possibly construct 2p models, so we should maybe take them all into account. To test all possibilities we have125

to compute "all-subsets". This cannot be achieved for large p. In order to overcome this problem and reduce126

the search, stepwise regression investigates only a subset of all possible regressions with the hope to end with127

the true model. There exist two approaches: Backward and Forward. Either the process starts from a null128

model (only an intercept) and introduces variables one by one, this is the forward step. Or it starts from the129

full model (all variables) and deletes them one by one, this is the backward step. One improvement is also to130
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consider both. Usually the selection within each step is made according to some criterion. One consider all131

one-variable increments from the actual model and choose the best move according to this criterion, it might be132

the lowest p-value, highest adjusted R2, lowest Mallow’s Cp, lowest AIC, lowest prediction error, leave-one-out133

cross validation, etc.134

You can imagine any criterion to perform this job, but the main issue arising from Stepwise Regression does not135

come from the choice of the criterion. Interesting critics (Doornik 2009) arise from the developers of Autometrics.136

The main one is the lack of search. Stepwise regression proceeds step by step along a single path. Then, there is137

no backtesting. That is the procedure never considers testing again variables that have been removed after each138

step. Such an idea is present using the forward backward combination but it is restricted to the previous step only.139

Obviously they are not the only one to express admonitions about Stepwise Regression. We can mention many140

papers from Hurvich and Tsai (1990), Steyerberg et al. (1999), Whittingham et al. (2006) or Flom and Cassell141

(2007) where they all prove biased estimation and inconsistent selection of Stepwise Regression.142

However even if used as a selection method it behaves poorly, used a screening method it showed better results.143

This has been developed by Wang (2009) and is detailed in the next subsection.144

On the other side is Autometrics, an algorithm for model selection developed by Hendry et al. (1987)145

under the famous Theory of Encompassing and the LSE (London School of Economics) type of Econometrics.146

This method has been created as early as 1987 and is still under development. The basis of its methodology is147

the General-to-Specific approach. Theory of Encompassing states that the researcher should start from a very148

large model (called the GUM: General Unrestricted Model) encompassing all other possible models and then149

reduce it to a simpler but congruent specification. This idea is somehow related to the backward specification in150

Stepwise Regression. His work is an automation of standard way of testing for relevance in Econometrics such151

as t-tests and F-tests and major concerns deal with power of tests, repeated testing but also outliers detection,152

non-linearities, high dimensional features (with p > n) and parameter invariance.153

Tests come with some hyperparameters specifying the size of the battery of tests (t-tests, F-tests, normality154

checks, etc.).155

Repeated testing occurs when a variable that has been deleted under a certain specification that has now changed156

is reintroduced and tested again. The absence of such a thing in Stepwise Regression is a severe drawback and157

the main reason why it fails pretty often.158

Non-linearities are handled using Principal Components Analysis (see Castle and Hendry (2010)) that makes the159

design matrix orthogonal. Such a decomposition allows to introduce squares and cubics of the transformed160

variables which are linear combination of the original ones. Orthogonality limits the number of non-linear terms161

since it already accounts for interaction using components. In simple words a polynomial of degree d with p162

variable results in (d+p
d )−1 terms, while their methods reduces to d× p which is very much less. It is advocated163

that it can reproduce non-linear functions often met in Economics and Social Sciences. However the class of164

functions that it can reproduce may be restricted compared to standard non-parametric methods 3.165

High dimensional features and non-identifiability (p > n) of the GUM is solved in a very simple way called166

"Block Search". Regressors are divided in different blocks until the size of each block is lower than p. Then167

tests are applied in each block, some variables are discarded, the remaining blocks are merged and the process168

continues. This idea is based on the fact that the methodology is still consistent under separability. This idea is169

quite similar to the Split-and-Conquer methodology of Chen and Xie (2014) to solve ultra-high dimensional170

problems.171

Outliers can be detected using the Impulse Indicator Saturated Selection (IIS) developed by Hendry et al. (2006).172

This is in the same spirit as the Block-Search (or Split-and-Conquer) approach defined previously. A set of173

indicator is added to the GUM for every observation, and tests are applied in a Block-Search manner to remove174

observations that are not consistent with the model, identified as outliers.175

176

3 This should be investigated more deeply, to the best of our knowledge no papers have tried to compare their non-linear regression to the
very well-known non-parametric procedures like Kernels or Splines. An obvious link can be made with Projection Pursuit Regression
(PPR), in this respect we claim that Autometrics may be a special case of PPR.
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Stepwise Regression and Autometrics are serial procedures where selection and estimation are performed177

sequentially. In some sense Penalty-Based methods aim at performing both at the same time. One can view178

penalty-based procedures as the direct implementation of tests inside inference.179

3.2. Penalty180

Penalty-based methods can be divided in two categories: penalties on the norm and concave ones. The181

shape of the penalty may have a great influence on the selected set of variables and their estimates. Sparse model182

is achieved because we reduce nearly zero coefficients to zero in estimation. The penalty parameter plays the183

role of a threshold but in a non-orthogonal framework. To understand better the origins of these penalty one184

should refer to threshold methods in Kowalski (2014). For that reason the penalty also introduces shrinkage of185

the coefficients, making them biased. The literature is focused on the choice of the penalty in terms of selection186

consistency and bias properties.187

3.2.1. Norm Penalties188

There are almost as many methods as there are norms, but generally the objective is to solve:

min
β

‖y−Xβ‖2
2 +λ‖β‖2

γ (2)

Each methods applies to different Lγ norms.189

• SparseStep: γ = 0190

• LASSO : γ = 1191

• Ridge : γ = 2192

This methodology is gathered in the more general Bridge estimator (Frank and Friedman 1993) that considers any
value for γ , but the authors did not say how to solve the problem. The advantage of Ridge (Hoerl and Kennard
1970) is that it has an analytical solution. However the solution is not sparse so it does not select variables (only
shrinkage). The Least Absolute Shrinkage and Selection Operator (LASSO, Tibshirani (1996)) does because
the L1 norm is singular at the origin. However both give bias estimates because they apply shrinkage to the
coefficients. The zero norm used in SparseStep (van den Burg et al. 2017) is the counting norm, they penalize
directly the number of non-zero elements in β , not their values (no shrinkage). Usually constraints on the number
of non-zero elements require high computational costs (exhaustive search over the model space). Here they use
an easy even though very precise continuous approximation from de Rooi and Eilers (2011) and that turns the
problem into something computationally tractable.
Meinshausen and Bühlmann (2006) shown that LASSO tends to select noise variables using a penalty parameter
optimally chosen for prediction. For this reason Zou (2006) developed AdaLASSO (Adaptive LASSO). His paper
proved that the optimal estimation rate is not compatible with consistent selection. Moreover even sacrificing
the estimation rate does not ensure that the LASSO will select the right variables with positive probability. This
phenomenon is highlighted through a necessary condition on the covariance matrix of the regressors that cannot
always be satisfied using the LASSO with a single penalty parameter. Therefore he introduced adaptive weights
to the LASSO to make it consistent with variable selection.

min
β

‖y−Xβ‖2
2 +λ‖wβ‖1 (3)

The latest improvement on linear models is to allow for interactions terms. Even if it is possible, only adding
them into a LASSO is not an efficient procedure because it greatly extends the dimensionality of the design
matrix. The idea of the Strong Heredity Interaction Model (SHIM,Choi et al. (2010)) is to add interactions only
if main effects are selected also (strong heredity property), this greatly reduces the search space and provides an
efficient way of doing ANOVA-types of models. They consider a reparametrization of the two-ways interactions
models:

y = Xβ +
p

∑
j=1

∑
k 6= j

γ jkβ jβkx jxk (4)
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Introducing main effect parameters β on top of cross-effects γ ensures that the interaction will be non-zero if and
only if both main effects are non-zeros. The problem is a composite LASSO of the following form:

min
β ,γ
‖y−Xβ‖2

2 +λβ‖β‖1 +λγ‖γ‖1 (5)

Solutions to these problems are numerous. Usually either it reduces to the LASSO and then algorithms like193

Least Angle Regression (LARS) of Efron et al. (2004) are employed. Otherwise iterative algorithms like the194

Local Quadratic Approximation Fan and Li (2001) can be used.195

3.2.2. Concave Penalties196

Norm penalties are very standard and easy to work with but there exists also other types of penalties. Thus
we can consider penalties in a very general framework:

min
β

‖y−Xβ‖2
2 + pλ (β ) (6)

The difference will then lie in the choice of pλ (β ).197

• NonNegativeGarotte:

pλ (β ) = nλ

p

∑
j=1

(
1− λ

β 2
j

)
+

(7)

• SCAD :

pλ (β ) =


λ , if |β | ≤ λ

aλ−|β |
a−1 , if λ < |β |< aλ

0, if |β | ≥ aλ

(8)

• MCP :

pλ (β ) =

{
λ |β |− x2

2γ
, if |β | ≤ γλ

0.5γλ 2, if |β |> γλ
(9)

The Non Negative Garotte (Breiman 1995) was the first penalty of this kind, but because it has bad properties198

(especially variables selection inconsistency) it was rapidly abandoned. SCAD (Smoothly Clipped Absolute199

Deviation,Fan and Li (2001)) was the first penalty method that was consistent, continuous and unbiased for large200

values of β . MCP (Minimax Convex penalty,Zhang et al. (2010)) has little difference with SCAD in terms of201

selected variables. A comparative study between them can be found in Zhang (2007).202

One thing with penalty method is that there are always some penalty parameters (eg λ in LASSO) that have to be203

chosen. Usually they are set to optimal values according to some General Cross Validation (GCV) criterion or204

out-of-sample predictions. This is crucial because results can be very sensitive to the choice of these parameters.205

SCAD is more robust to this problem thanks to a bias-free property.4206

3.3. Screening207

Another methodology in variable selection is Screening. In fact these are ranking methods that rely on208

some association measure between the dependent variable and the regressors. Very often this measure is taken to209

be bivariate allowing then an extremely fast analysis.210

4 This is true only for large values of parameters, the reader can get intuitions of this phenomenon with threshold methods (Kowalski
2014).
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3.3.1. Regressor Based211

The Sure Independence Screening (SIS,Fan and Lv (2008)) is the first of this kind and almost all methods
are derived from it. It uses simple correlation on standardized variables : ω̂(x j,y) = x̃ j ỹ and gives a ranking of
the x j. The set M̂ of relevant features is determined by a simple threshold:

M̂ = {1≤ j ≤ p : |ω̂(x j,y)| is among the top d largest ones} (10)

This set is reduced step by step until some moment. The method in itself does not select anything in fact, it just212

remove the less correlated features from the set of candidates, but we are left with a candidate set where selection213

has to apply. SIS needs a selection procedure in the end to obtain consistent results. The main advantage of the214

method is that when the number of variables p is very large compared to the number of observations n usual215

selection procedures tend to misbehave (Fan and Lv 2008). In their paper SIS has proven to lead to a set of216

candidates that is manageable for LASSO and others in order to have good properties. SIS allows for ultrahigh217

dimensional features, ultrahigh being defined as: log(p) =O(nα ) with 0≤ α ≤ 1.218

In this respect the screening properties of screening of Forward Regression (Wang 2009) have been investigated219

and with little improvements proved to be consistent in variables selection. However it still requires a selection220

procedure in the end, Forward Regression is just used for the screening part that is ranking and reducing the set221

of candidates.222

Because SIS may encounters issue for selecting weakly correlated variables (weak signal-to-noise ratio) Fan and223

Lv (2008) introduced Iterative conditional SIS that is applying correlation ranking but conditional on selected224

features. This is equivalent as looking through correlation between features and residuals from a model using225

primarily selected variables instead of correlation with the dependent variable. This idea can be related to former226

algorithms that were developed to infer the LASSO (eg. Forward Stagewise).227

3.3.2. Covariance Based228

The last approach is less common. The Covariate Assisted Screening Estimates (CASE, Ke et al. (2014)) is229

a method that looks for sparse models but in the case where signals are rare and weak. All methods presented so230

far work well if β is sparse (so rare) and has high values (strong signals). In this case methods like SCAD are231

even bias-free. But if the signals are weak on top of rare then they won’t manage to perform variable selection232

very well. The idea in CASE is to sparsify the covariance matrix of the regressors using a linear filter and then233

look for models inside this sparse covariance matrix using tests and penalties. Drawbacks are the choice of the234

filter that is problem dependent and the power of the tests.235

To improve on CASE when regressors are highly correlated, giving a very dense covariance structure, Factor236

Adjusted-Covariate Assisted Ranking (FA-CAR, Ke and Yang (2017)) proposes using PCA to sparsify it. This is237

in line with selecting appropriately the filter in CASE when the problem to solve includes strong collinearity. In238

fact the covariance is assumed to have a sparse structure, hidden by latent variables. These are estimated by PCA239

and then removed from the variables. The process does not change anything for the equation and the parameters240

to be estimated does not require more technology than the simple OLS on the transformed decorrelated variables.241

The main issue is to select the number of latent variables to be removed, this can be done via cross-validation for242

instance, still it remains difficult.243

4. Grouped Models244

Depending on the application the model can come in a group structure form of the type:

y =
G

∑
g=1

∑
j∈g

β jx j + ε (11)
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which can be rewritten in matrix-grouped notation:

y =
G

∑
g=1

Xgβg + ε (12)

Within this framework there are 2 main possibilities. One can look for which group to be selected or which245

variable is more relevant in which group. The former is referred to as single-level selection (sparse between group246

estimates) and the latter as bi-level selection (sparse between and within group estimates). Technical reviews of247

selection procedures with grouped variables can be found in Breheny and Huang (2009) and Huang et al. (2012).248

4.1. Penalty249

4.1.1. Single-level250

The concept of group-penalty was introduced in Yuan and Lin (2006) (groupLASSO) in a LASSO
framework. The objective is to solve a modified LASSO:

min
β

‖y−
G

∑
g=1

∑
j∈g

β jx j‖2
2 +λ

G

∑
g=1

cg(β
′
gRgβg)

1/2 (13)

The parameters cg are used to adjust for the group sizes in order to have selection consistency. The parameter
λ controls for the penalty. The choice of Rg that weights each coefficients within the group is still challenging.
A solution is to take Rg = (X ′gXg)/n the Gram matrix of the grouped variables Xg. The effect is to scale the
variables within groups and so make coefficients comparable in some sense. It can be easily shown that this lead
to the LASSO solution with standardization of regressors when the group is formed with only one variable, such
a thing is made pretty often empirically and is even advised by the LASSO’s authors.
An obvious extension is to take into account any penalty, providing the following objective:

min
β

‖y−
G

∑
g=1

∑
j∈g

β jx j‖2
2 + p(

G

∑
g=1
‖βg‖Rg ;cgλ ,γ) (14)

Where p(·) can be taken to be the Bridge, the SCAD or the MCP criterion introducing then the groupBridge251

(Huang et al. 2009), the groupSCAD Wang et al. (2007) and the groupMCP (Breheny and Huang 2009)252

respectively.253

4.1.2. Bi-level254

Improvements have been made on norm penalties by considering mixed norms like the ElasticNet (Zou and
Hastie 2005):

min
β

‖y−Xβ‖2
2 +λ1‖β‖1 +λ2‖β‖2

2 (15)

This method overcomes the issue of collinearity because it favours selection of correlated regressors255

simultaneously while LASSO tends to select only on out of them. In fact the EasticNet can be solved as a256

LASSO using slight modification of the LARS algorithm. Since it is a mix of Ridge and LASSO, parameters can257

be estimated by Ridge in a first step then apply the LASSO. A small correction due to the second penalty λ2 is258

required. Originally the Elastic-net was not designed explicitly for grouped structure.259

Also composite penalties have been considered in Breheny and Huang (2009) using the MCP criterion at both260

stages (between and within).261

262

Since there is a great literature of reviews on these method (Breheny and Huang 2009, Huang et al. 2012)263

we do not spend time giving more details and advise readers interested in group models to have a look at them.264
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5. Additive Models265

A step further in model structure complexity is to consider different non-parametric functions associated
with each variables. The non-parametric additive model takes the following form:

y =
p

∑
j=1

f j(x j)+ ε (16)

5.1. Penalty266

The Sparse Additive Model (SpAM) of Ravikumar et al. (2007) applies to this kind of models. The idea is
simply to apply the LASSO to functions non-parametrically fitted with parametric coefficients coming in top of
them. This is obviously the most natural extension of LASSO to the additive structure. The main program to
solve is:

min
β , f j
‖y−

p

∑
j=1

β j f j(x j)‖2
2 +λ

p

∑
j=1
|β j| (17)

Even though the term ∑
p
j=1 β j f j(x j) remind us the very well-known Splines where the f j would be the basis

functions, the authors claim that any non-parametric method can be used for fitting them. The solution is given in
the form of a backfitting algorithm (Breiman and Friedman 1985). Another approach have been investigated by
Meier et al. (2009): the penalized General Additive Model (penGAM). It applies to the same models as before
but are especially designed for splines estimation. In the same spirit the individual functions are penalized, but
since each function can be represented as the sum of linear combinations of basis functions. It turns out to be a
groupLASSO problem.
Their contribution is also to consider not only sparsity but also smoothness in the estimation. Because complex
functions require many basis functions it is common in the splines settings to construct an over complete basis
and then apply shrinkage on coefficients 5 to have a smooth estimates, this is known as smoothing splines. This
takes the form of a Ridge regression so it can be easily integrated inside the procedure. The main objective is to
solve:

min
f
‖y− f (X)‖2

2 + J( f ) (18)

With the sparsity-smoothness penalty being:

J( f ) = λ1

√
‖ f j‖2 +λ2

∫
( f ′′j (x))2dx (19)

and because we can rewrite each f j(x) = ∑
K
k=1 β j,kb j,k(x) as a sum of K basis b(·) then the problem can be

written as:

min
β

‖y−Bβ‖2
2 +λ1

p

∑
j=1

√
β ′jB

′
jB jβ j +λ2β ′jΩ jβ j (20)

Ω j composed of the inner products of the second derivatives of the basis functions.267

268

5.2. Screening269

In an equivalent manner on the screening side the Non-parametric Independence Screening procedure (NIS)
has been introduced by Fan et al. (2011) as a natural extension to SIS. Instead of marginal linear correlation they
use the concept of "marginal utility", already defined in Fan et al. (2009) for generalized linear models, and here

5 Usually the Ridge because it has an analytical solution.
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set this marginal utility to be the sum of squared marginal residuals resulting from a non-parametric additive
model.

ω̂ j =
n

∑
i=1

(
yi− f̂ j(xi, j)

)2 (21)

The latter, with f̂ j(xi j) obtained by splines 6, gives a ranking of variables in the same way as SIS:

M̂ = {1≤ j ≤ p : ω̂ j > δ} (22)

Where δ is a predefined threshold. Usually this step does not ensures selection consistency so they rely on a
external procedure, namely SpAM or penGAM. Because of the problem of weak signals Iterative Conditional SIS
has been discussed exactly the same as Iterative Conditional SIS was for SIS, that is applying NIS on residuals,
conditionally on primarily selected variables. It is worth mentionning the work of Zhang et al. (2017) who
developed Correlation Ranked SIS (CR-SIS). The main purpose is to allow for any monotonic transformation of
y by using its cumulative distribution as the dependent variable.

ω j =Cov( f j(x j),G(y))2

G(y) =
1
n

n

∑
i=1

I(yi ≤ y)
(23)

The resulting model is less restricted allowing a non-linear response.270

6. Partial Linear Models271

A Partial Linear model takes the form:

y = X1β + g(X2)+ ε (24)

An important feature of these models is to assume two sets of variables. The X matrix is divided into X1 and X2272

of dimension p1 and p2 respectively. The motivation behind this is to say that linearity is satisfactory enough for273

some variables and treating these ones non-parametrically result in a loss of efficiency. So one should divide274

the regressors according to their link function either it is parametric (X1) or not (X2). This section is divided in275

two parts. The first one will concern Partial Linear models in their general form. Because a great literature has276

focused on smoothly varying-coefficients the second part will focus only on them.277

6.1. Standard278

6.1.1. Penalty279

The Double-Penalized Least Squares Estimator (DPLSE) of Ni et al. (2009) is a method for selection of
variables and selection between parametric and non-parametric parts. A penalty is imposed on the parametric
part to select variables and splines are used for non-parametric estimation. Since in the splines settings one can
rewrite this function as a linear combination of basis expansion:

g = [J,X2]δ +Ba (25)

with J the unit vector a are the parameters of the basis expansion B and δ is the overall parameter on X2. The
SCAD penalty is then applied on the vector β ∗ = [β ,δ ] This can be viewed as a composite penalty where the
key idea is to write everything as linear and perform usual model selection. Partial Splines with Adaptive penalty
(PSA) of Cheng et al. (2015) try to achieve a sparse parametric part while having a non-parametric part aside

6 Because of low computational costs, but it can be estimated with any non-parametric regression technology.



Version May 31, 2018 submitted to Econometrics 12 of 23

using a combination of Adaptive LASSO on the parametric part and Penalized Splines for the non-parametric.
Therefore the problem to solve is:

min
β , f
‖y−X1β − f (X2)‖2 +λ1

∫ 1

0
( f ′′(X2))

2dX2 +λ2

p

∑
j=1

|β j|
|β̃ j|γ

(26)

We remark the last term is exactly the penalty from the adaptive LASSO. This is in line with DPLSE, adding a
smoothness penalty on top of the procedure. In this respect it is worth mentioning the Penalized Estimation with
Polynomial Splines (PEPS) of Lian et al. (2015). The same objective is achieved in a quite similar fashion. The
only difference is that the penalty is not adaptive:

min
β , f
‖y−Bβ‖2 + nλ1

p

∑
j=1

w1, j‖β j‖A j + nλ2

p

∑
j=1

w2, j‖β j‖D j (27)

Basis expansion is contained in B therefore exploiting once again the linear transformation provided in splines,280

just like DPLSE introduced it. The whole thing is turned as a linear model on which penalties are applied281

to achieve sparsity ‖β j‖A j = ‖∑k β j,kBk(x j)‖ and linear parts are recovered from the smoothness penalty282

‖β j‖D j = ‖∑k β j,kB′′k (x j)‖.283

284

In the end there is little difference between the 3 procedures. All exploits the linearity provided by splines.285

PEPS improves on DPLSE adding a smoothness penalty and PSA improves on PEPS making the penalty adaptive286

to achieve better selection consistency.287

6.2. Varying Coefficients288

Another usual structure for modelling is the semi-varying coefficient model, written as:

y = X1β +X2α(Z)+ ε (28)

The coefficients α associated to each x j∈2 are supposed to vary smoothly along another variable Z. This can be289

seen as a particular case of previous models where g(·) has the specific varying coefficient form.290

6.2.1. Penalty291

The methods in this section do not use the semi-structure form, they work only with the varying-coefficient
part.

y = Xβ (Z)+ ε (29)

The Kernel LASSO of Wang and Xia (2009) deals with this problem in the spirit of groupLASSO.

min
β

n

∑
t=1

n

∑
i=1
{yi−Xiβ (Zt)}2 Kh(Zt−Zi)+

p

∑
j=1

λ j‖β j‖ (30)

The penalty enforces the procedure to reduce estimated varying coefficients close to zero to true zeros in a
single-level group fashion.
Another improvement in this setting is the Adaptive Semi-Varying Coefficients (AdaSVC) of Hu and Xia (2012).
Instead of all coefficients varying smoothly one may think that some don’t (hence semi-varying). To avoid the
loss of efficiency introduced by non-parametric estimation when the true underlying coefficient is constant the
latter have to be identified. Their method can simultaneously identify and estimate such a model. Selection is
done only over constant regressors. They do not consider sparsity as in Kernel LASSO. The idea is to impose a
group penalty on the estimated varying-coefficients such that the penalty enforces nearly constant coefficients to
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be truly constant. Their penalty is in line with the FusedLASSO of Tibshirani et al. (2005). The main idea is that
nearly constant coefficients will become constant in a grouped fashion. The objective is to solve:

min
β

n

∑
t=1

n

∑
i=1
{yi−Xiβ (Zt)}2 Kh(Zt−Zi)+

p

∑
j=1

λ j‖b j‖ (31)

with the penalty applied on a different norm than the Kernel LASSO:

‖b j‖=

{
n

∑
t=2

(β j(Zt)−β j(Zt−1))
2

}1/2

(32)

6.2.2. Testing292

The Semi-Parametric Generalized Likelihood Ratio Test (SP-GLRT) of Li and Liang (2008). It applies to
semi-varying coefficients model. The purpose is both to identify relevant variables and whether if they belong to
the non-linear or the linear component. The likelihood can be written as:

L(α ,β ) = l(α ,β )−n
p

∑
j=1

pλ j (|β j|) (33)

The two parts are estimated alternatively conditionally on the other. Then they introduce a novel generalized
likelihood ratio test:

TGLR = rK{R(H1)−R(H0)} (34)

with
R(H1) =Q(X1β +X2α(Z),y) (35)

The conditional likelihood under H1 : at least one coefficient from the non-parametric part is non-zero.

R(H0) =Q(X1β ,y) (36)

The conditional likelihood under H0 : the variable does not appear in the non-parametric part. where the
conditional likelihood is given by:

Q(µ ,y) =
∫ y

µ

s− y
V (s)

ds (37)

The test is then evaluated using a Monte Carlo or Bootstrap methods to empirically estimates distribution of the293

statistics since the theoretical degrees of freedom tends to infinity preventing from a parametric test.294

This has to be noticed because this is one of the first attempt of introducing non-parametric and therefore automatic295

tests inside a selection procedure. While methods like Autometrics and Stepwise Regression relies on parametric296

tests, SP-GLRT uses data-driven tests to construct the model. This idea of exploiting the data themselves to297

conduct tests is certainly not new, but it was in model selection. This idea is the core of methodologies for298

improving model selection in section 8.299

7. Non-Parametric Models300

A fully non-parametric model takes the form of:

y = f (X)+ ε (38)

Where f (·) is any multivariate function, linear or not, additive or not. This framework is very general therefore301

making it complicated for estimation. The most well known drawback is the Curse of Dimensionality. Briefly,302

it states that the number of observations required for estimation of this function grows exponentially with the303

dimension of X : p. It is already complicated to fit such a (maybe very non-linear) function non-parametrically304

in a reduced dimension, thus looking for a sparse representation is necessary when dealing with large p.305
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This time the different methods differ under several aspects. Testing ones like MARS shares similarities306

with Stepwise Regression for example, in an ANOVA Splines settings. Penalty ones uses ANOVA models also,307

the reason is that it limits interactions terms and gets closer to an additive model, this is indeed very common308

when dealing with fully non-parametric regression. The screening based ones can be divided in two categories:309

some make the use of generalized correlations to avoid using a model (DC-SIS,HSIC-SIS,KCCA-SIS,Gcorr) 7
310

while others rely on a specific model ex ante (MDI,MDA,RODEO).8311

7.1. Penalty312

The Variable selection using Adaptive Nonlinear Interaction Structures in High dimensions (VANISH) of
Radchenko and James (2010). It is very similar to the SHIM of Choi et al. (2010) but in a non-linear framework.
In order to approach the complexity of the function it uses an ANOVA-type of model defined as:

f (X) =
p

∑
j=1

f j(x j)+ ∑
j<k

f j,k(x j,xk)+ ...+ ε (39)

Where f j are the main effects, f j,k are the two-way interactions and so on. Their approach is closely related to
the penGAM of Meier et al. (2009) generalized to include interaction terms 9 but with a different penalty. The
authors say that the penalty shouldn’t be the same for main effect than for two-way interactions. They advocate
the fact that ceteris paribus including an interaction term add more regressors than a main effect and thus that they
are less interpretable. So interactions should be more penalized. Therefore this condition is a little bit different
from the "strong heredity constraint" introduced in Choi et al. (2010). The objective is to solve:

min
f
‖y− f (X)‖2

2 + τ
2J( f ) (40)

With:

J( f ) = λ1

p

∑
j=1

(
‖ f j‖2 + ∑

k 6= j
‖ f j,k‖2

)1/2

+λ2

p

∑
j=1

p

∑
k= j+1

‖ f j,k‖ (41)

The penalty is written so that the first part penalizes additional regressors while the second penalizes interactions
occurring without main effects. In the SHIM there was no possibility for that. Here this constraint is released
but a stronger penalty can be applied to restrict interactions without main effects, which are less interpretable.
Another approach for fitting this type of models is the Component Selection and Smoothing Operator (COSSO)
of Lin et al. (2006). It differs from VANISH in the penalty function. The key idea is to use a penalty term
written in terms of a sum of Reproducible Kernel Hilbert Space (RHKS) norms. In a model with only two-way
interactions it would be:

J( f ) =
p(p−1)/2

∑
α=1

‖Pα f‖2 (42)

This time the penalty is not designed to take into account the structure of the resulting model. There is no desire313

to limit interactions. Since the heredity constraint is not present as before the model authors of VANISH claim it314

has trouble with high dimensional settings. Nevertheless the heredity constraint can obviously be inadequate315

in some applications where only interactions matter, in this type of settings COSSO is more advisable than316

VANISH.317

7 Respectively Distance Correlation-SIS, Hilbert Schmidt Independence Criterion-SIS, Kernel Canonical Correlation Analysis and the
Generalized Correlation.

8 Respectively Mean Decrease Impurity, Mean Decrease Accuracy and the Regularization Of Derivative Expectation Operator.
9 They also introduce it as SpIn (SpAM with INteractions) in their paper but claim that interactions would then not be treated efficiently.
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7.2. Testing318

Introduced by Friedman (1991) the Multivariate Adaptive Regression Splines is a method for building
non-parametric fully non-linear ANOVA sparse models (39). The model is written in terms of splines as:

f̂ (x) =
K

∑
k=1

ckBk(x) (43)

The basis functions Bk are taken to be hinge functions. The form of these functions makes the model piecewise
linear.

Bk(x,α ,β ) = βmax(0,α + x) (44)

Therefore α can be considered as "knots" like in standard splines. The β are parameters on which selection319

will occur through a pretty complicated algorithm. The building process is quite comparable to the one of usual320

Regression Trees and Stepwise Regression. Starting from a null model a forward step search over all possible321

variables and determines by least squares the parameter β (thus it creates a new hinge function) and over all322

possible values where to add a knot α that reduces best the residuals sum of squares 10 . This process goes until323

some stopping criterion is met. All combinations have to be taken into account, therefore it is computationally324

intractable for high interactions effects. Friedman advises to limit the number of interactions m to a small value325

like 2 such that the model can be build in a reasonable time. Selection of variables is part of the building process.326

If using a fit based criterion like the sum of squares residuals, variables are selected only if they bring enough327

explanatory power during the search. The same thing applies for Regression Trees on non-parametric models. In328

this sense MARS is closely related to Stepwise Regression. Also MARS is available with a backward approach,329

and a combination of both. This method is mainly used to fit high dimensional non-linear functions because since330

it is piecewise linear, it does not suffer much from the Curse of Dimensionality. However its selection consistency331

can be directly linked to the way variables are selected in trees, this is discussed in the next subsections. Used332

directly MARS is more like a non-linear version of Stepwise Regression using piecewise functions.333

7.3. Screening334

7.3.1. Model-free335

In the screening literature of non-parametric methods we find a bunch of papers that deals with the same336

core idea. They all define some association measure that generalizes usual linear correlation. Here is the list337

of them as well as the criteria they use. In fact these methods are quite nested within each other. Considering338

which one is the best is a question of computational complexity rather than in which case they apply. Otherwise339

it seems that the last one (KCCA) should be selected.340

• DC-SIS (Li et al. 2012)
The Distance Correlation is a generalization of the Pearson Correlation Coefficient in terms of norm
distances. It can be written as:

ω j =
dcov(x,y)√

dcov(x,x)dcov(y,y)
(45)

Where:
dcov(x,y)2 = E[‖X−X ′‖‖Y −Y ′‖]

+E[‖X−X ′‖]E[‖Y −Y ′‖]
−2E[E[‖X−X ′‖]E[‖Y −Y ′‖]]

(46)

10 This is known as "Greedy Algorithms" where the optimal global solution is sought by taking optimal local solutions.
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• HSIC-SIS (Balasubramanian et al. 2013)
The Hilbert Schmidt Independence Criterion generalizes the previous one as it defines a maximum distance
metric in a RKHS space:

ω
2
(k) = E[kX (X ,X ′)kY(Y ,Y ′)]

+E[kX (X ,X ′)]E[kY(Y ,Y ′)]

−2E[E[kX (X ,X ′)]E[kY(Y ,Y ′)]]

(47)

We recognize again the form of the usual correlation but this time written in terms of kernels. In order to
avoid the choice of the bandwidths in kernels, they decided to use the sup of the criterion over a family of
Kernel K.

γ = sup
{

ω(k) : k ∈ K
}

(48)

Empirically the ranking measure is simpler to compute:

ω̂ =
1
n

sup
kX ,kY

√
trace(KX HKYH) (49)

with H = I− (1/n)JJ′, I being the n×n unit matrix and J the n×1 unit vector.341

• KCCA-SIS Liu et al. (2016)
The Kernel Canonical Correlation Analysis is the last improvement in the field of Non-parametric Screening.
It encompasses SIS as it can handle non-linearities. Unlike DC-SIS it is scale-free and does not rely on the
Gaussian assumption. However even if it shares many aspects of the HSIC-SIS it differs in one aspect:
HSIC is based on maximum covariance between the transformations of two variables, while KCCA uses
the maximum correlation between the transformations by removing the marginal variations. Their measure
is defined as:

RY X = Σ−1/2
YY ΣY X Σ−1/2

XX (50)

Because the covariance matrices may not be invertible they introduce a ridge penalty ε:

RY X = (ΣYY + εI)−1/2ΣY X (ΣXX + εI)−1/2 (51)

The correlation measure is then defined as the norm of the correlation operator:

ω(ε) j = ‖RY X j‖ (52)

Empirical estimates of covariance matrices Σ are obtained after singular decomposition of kernel matrices342

(the latter being the same as in HSIC). While bandwidths in kernels can be chosen optimally ex ante, ε has343

to be estimated via GCV over a grid of values.344

For each one the variables are ranked along marginal association measures ω̂ j between y and x j and one
defines the set of relevant features after applying a threshold. The latter’s value differs among them.

M̂ = {1≤ j ≤ p : ω̂ j ≥ δ} (53)

• DC-SIS: δ = cn−k
345

• HSIC-SIS: δ = cn−k
346

• KCCA-SIS: δ = cn−kε−3/2
347

with 0≤ k ≤ 1/2.348

349
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Another of the same kind is the Generalized Correlation Screening (Gcorr) of Hall and Miller (2009) that
was introduced as a more general method than NIS. The general correlation coefficient is used as the measure of
non-linear relationship. It can be defined as:

ω̂ j = sup
h∈H

∑
n
i=1{h(xi, j)− h̄ j}(yi− ȳ)√

n∑
n
i=1{h(xi, j)2− h̄2

j}
(54)

Then these estimates are tested using bootstrap confidence interval instead of threshold like the others usually do.350

Finally significant ones are ranked. Even though their method seems very general, empirically h(·) are chosen to351

be polynomial functions. This can be restrictive in some situations and less non-parametric in some sense.352

7.3.2. Model Based353

The Regularization Of Derivative Expectation Operator (RODEO) of Lafferty et al. (2008), named in
reference to the LASSO, applies in the framework of Multivariate Kernel Methods. In kernel regression a
specific attention is given to the choice of the bandwidth. We recall that this hyperparameter defines the width
of the support for the regression, the lower it is the less observations enter the local regression, leading to less
bias but more variance and conversely for a high bandwidth. The authors here state that for variables that are
important in the model the derivative of the estimated function with respect to the bandwidth h is higher than for
useless variables. A change in bandwidth affects the estimation if the variable intervenes in the model, it affects
the bias-variance trade-off. For an irrelevant variable a change in bandwidth has no effect since more or less
observations does not change the fitted curve. For a Gaussian kernel we have:

∂ fh(x)
∂h j

= e′(X ′WX)−1X ′
∂W
∂h j

(y−X β̂ )

∂W
∂h j

=WL j

L j =
1
h3

j
diag((x1, j− x̄ j)

2, ..., (xn, j− x̄ j)
2)

(55)

Note that it refers to a specific point in the sample x̄. The derivative is not computed over the whole sample. The354

authors propose an extension of local RODEO to a global procedure where the derivative is computed in every355

point and then averaged.356

The idea is to exploit this derivative iteratively, starting from a high bandwidth value and adapted in each step357

according to a certain rate of decay. Important variables should have low bandwidth, so the derivative is greater358

and the bandwidth reduces more quickly. Variables then can be ranked according to the final value of their359

bandwidth. One can apply some threshold on these to end up with a sparse solution. In this respect RODEO can360

be classified as a screening procedure. RODEO is based on a full estimation via Kernel, therefore it suffers the361

Curse of Dimensionality mentioned earlier. RODEO may not be able to deal with high dimensional feature space.362

363

A large part of the literature focuses on a quite restricted set of regression methods for doing selection such
as Ordinary Least Squares for linear models, Splines and Kernels for non-linear ones. However there exists other
ways for doing regression from which model selection procedures intuitively arise. In a Bayesian framework
11 one will consider a collection of models called an Ensemble. There is a distribution of them and we are
uncertain on which one is the truth 12. Still we can exploit this distribution accross these different models to
assign probabilities to each variables since they may not all appear in every models. This idea has also been
developed in the frequentist approach by Breiman (2001) who introduced Random Forest. From an Ensemble
of Regression Trees (called a Forest) he derived two types of variables importance measures : Mean Decrease

11 Which is out of the scope of this paper but still very important.
12 This relates obviously to the problem raised when discussing Stepwise Regression. Here the Ensemble is a subset of the model space.
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Impurity (MDI) and Mean Decrease Accuracy (MDA). We recall briefly that a tree is constructed as a recursive
partitioning over the sample space. Simple Regression Trees allows for constant estimation in subregions, this
is closely related to the Nadaraya-Watson local constant kernel estimator. Splits are chosen according to an
impurity criterion that describes the degree of similarity 13 of the data in the partition.

MDI(x j) =
1
Nt

∑
T

∑
t∈T

Nt

N

(
i(t)−

Ntle f t

Nt
i(tle f t)−

Ntright

Nt
i(tright)

)
(56)

The importance of variable j is computed as the average decrease in impurity among each node t in tree T . The364

idea is to show the decrease in impurity caused by a split in this variable. It is computed as the impurity in the365

node minus the sum of impurity in the child nodes weighted by their respective sizes. This gain is weighted in366

the end by the number of observations entering the node. MDI can be easily extended to an Ensemble of Trees367

(i.e. a Forest).368

The second measure relies on the predictive power of the model instead of the impurity inside nodes. From
a statistical point of view it is equivalent as focusing on out-of-sample fit rather than in-sample fit. Since it does
not rely on an inside criterion it is only defined for a tree and therefore applies only for an ensemble of them.

V IT (x j) =
∑i∈B(T ) I(yi = y(T )i )

|B(T )|
−

∑i∈B(t) I(yi = y(T )i,π j
)

|B(T )|
(57)

MDA(x j) =
∑T∈F V IT (x j)

NT
(58)

The importance of variable j is computed as the average decrease in accuracy among each tree T in the forest369

F . The idea is that if a variable is uninformative then the prediction accuracy should be unchanged under370

permutation. The difference between actual prediction and permuted prediction give sthe decrease in accuracy371

for each variable and the whole is a weighted average of each tree in the forest.372

8. Improving on Variable Selection373

This last section is devoted to general methodologies designed for improving model selection procedures.374

Based on bootstrap or resampling, the core idea is to exploit randomness to account for uncertainty in the375

modelling. Usual model selection procedures may suffer from inconsistency under some conditions. For example376

we remember the LASSO where the regularization parameter λ can not be chosen optimally 14 so that it ensures377

correct identification. This has lead to the adaptive LASSO (Zou 2006), but this problem can also be solved using378

these procedures.379

8.1. Stability Selection380

The Stability Selection (Stabsel) has been introduced by Meinshausen and Bühlmann (2010) to improve on
selection. Given a specific selection procedure a variable is said to be stable if its selection probability under
subsampling 15 (number of times it has been selected among the random samples) exceeds a specified threshold δ .
The selection probabilities for a variable j to belong to the set Sλ of selected variables for a given regularization
parameter λ is:

Πλ
j = P( j ⊆ Sλ ) (59)

The set of stable variables is then:
SStable = { j : max

λ∈Λ
Πλ

j ≥ δ} (60)

13 In case of a regression: How well the subregion can be approximated by a constant.
14 Both from an estimation and a predictive point of view
15 Without replacement, random samples have to be non-overlapping.
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This is given by the underlying selection procedure, it can be the LASSO or whatever, but the methodology aims
at improving a procedure, not being one itself.
Another way for randomness that is almost equivalent is to divide the sample in two non-overlapping parts of
sizes bn/2c and look for variables that are selected simultaneously in both. This is more computationally efficient.
The threshold can be selected appropriately so that the expected number of false inclusion V is bounded.

E[V ] ≤ 1
2δ −1

q2
λ

p
(61)

Thus one will ensure P(V > 0) ≤ α by setting for example:

δ = 0.9

qλ =
√

0.8α p
(62)

The results are then presented as stability paths: Πλ
j as a function of λ . This is in contrast to regularization paths381

of LASSO: β j as a function of λ .382

Extensions to Stabsel are proposed in Bach (2008) and Shah and Samworth (2013). The first uses bootstrap with383

replacement instead of resampling without while the latter uses subsampling of complementary pairs.384

8.2. Ranking-Based Variable Selection385

The Ranking-Based Variable Selection (RBVS) of Baranowski and Fryzlewicz (2016) is a screening
procedure based on bootstrap and permutation tests. Contrary to Stabsel it does not rely on any threshold nor any
assumptions.
Given a metric to assess the strength of the relationship denoted ω and then using the m-out-of-n bootstrap of
Bickel et al. (2012) they construct a permutation rankingR.

R= (R1, ...,Rp) satisfying ωR1 ≥ ...≥ ωRp (63)

The metric can be anything like the Pearson Correlation, the LASSO coefficients, etc. The probability of the set
of the k top-ranked variables Ak is defined as:

π(Ak) = P({R1, ...,Rk}=A) (64)

This value is approximated with using the m-out-of-n bootstrap procedure involving random draws without
replacements of the observations.
In fact selection can be performed on the set of top-ranked variables A from which the number of terms k∗ can
be determined automatically without threshold. The idea is not to look for a threshold δ that would cut in the
ranking of ω . As an alternative they try to estimate k∗ as:

k∗ = argmink=0,...,p−1
π(Ak+1,m)

π(Ak,m)
(65)

That is the number of terms for which the differences among the π(A) is the greater. This is equivalent to look386

for a threshold that best separates assuming there are two sets: the relevant and the irrelevant. It has the advantage387

of being totally non-parametric. Just like the SIS has its iterative counterpart they introduce the Iterative RBVS388

that accounts for marginally related variables with low Signal-to-Noise and for the multicollinearity problem.389

9. Discussion390

In this article, we provide a review for 39 state-of-the-art procedures to perform variable391

selection over a wide range of model structures going from the simple linear one to the complex392

non-parametric one. Procedures have been classified in three groups: Tests-Based, Penalty-Based393

and Screening-Based. They have been described and compared on the ground of model structures.394
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The main difference consists of modelling purposes and objectives rather than their strength as oracles. In395

an empirical work the choice between two strategies should rely on the form of the model, data specificities396

(collinearity,groups, etc..) and objectives (in other words understandability).397

398

Selection consistency for widely used methods in empirical work have been discussed and several399

improvements were presented. Far beyond Stepwise Regression and the LASSO, empiricists have access to400

more advanced technologies that we claim are not much more complicated than the basic ones. The limits401

in main methods (LASSO, Stepwise Regression) are now well understood and various answers have come to light.402

403

The area of model selection is still very investigated, much more now that amounts of data have become404

available. Nevertheless, methods for handling large number of variables are restricted in terms of model405

complexity. This is mainly due to the Curse of Dimensionality and it prevents from looking for very complex406

models in high dimensions. Sure Independence Screening is a powerful tool in linear models but have lower407

dataset capacities when it comes to non-linearities. Also, the literature is lacking from very complete algorithmic408

solutions. To the best of our knowledge, no statistical procedure have been developed to reach the level of409

completeness of Autometrics. Other methods are only parts of the statistical work and do not cover as many410

problems as Autometrics do.411
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