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Abstract

Information sharing to achieve a foreign policy objective is an important feature of mod-

ern day alliances between countries. We develop a model of strategic communication to

study information aggregation within an alliance. In an alliance, i) there is public com-

munication (cheap talk) of private information by members; ii) the actions of players are

strategic substitutes; iii) there are resource constraints on actions; and, iv) members have

heterogeneous preferences over final outcomes. Our analysis uncovers a novel incentive for

information aggregation – the extent of resource constraints on alliance members. Specif-

ically, truthful information sharing depends on the size of bounds on each players’ action

space. We show that public communication protocol can support information aggregation as

long as preferences of alliance members are sufficiently cohesive with respect to the bounds

on actions. We derive a precise characterization of cohesiveness within an alliance as a

function of the biases and the resource constraints of alliance members. Further, our theory

provides an informational rationale for alliance formation between countries.
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1 Introduction

Countries form alliances with each other in order to achieve common goals (e.g., military, secu-

rity, and economic). Examples of such modern day alliances –military and otherwise– include

NATO, The EU, ASEAN, among others. These alliances are cooperative in nature in that they

consist of countries that have an overarching set of policy goals, who then act cooperatively in

realizing those shared objectives1. At the heart of such cooperation, then, is the informational

incentive of being part of an alliance2. Sharing information, be it external intelligence, or in-

ternal security related, is therefore a vital component of alliances between sovereign nations.

Specifically, this captures an environment in which individual member nations strategically

share information through diplomatic channels, and take appropriate actions that is commen-

surate with the information aggregated and the preferences of other members.

We develop a model of alliances that incorporates four key features: information sharing,

strategic interdependency in actions, preference heterogeneity, and resource constraints. Ini-

tially, members of an alliance receive a private signal about an unknown state of the world

that affects their payoff. In the communication stage, each player, publicly and simultaneously,

sends a cheap-talk message about their private information to the group. After the communi-

cation stage, conditional on the private information and the messages exchanged, each player

takes an action, where actions of players are strategic substitutes.

Our main finding is the full information aggregation result. Specifically, we show that

all private information held by members of an alliance are revealed in equilibrium as long

as players’ biases are cohesive – the distance between the bias of an individual player and a

weighted average of biases of the group falls within a certain bound. The intuition behind the

1NATO’s 2010 Strategic Concept Concept (2010) document specifies this idea succinctly, and we quote - ”The
Alliance will engage actively to enhance international security, through partnership with relevant countries and
other international organizations; by contributing actively to arms control, non-proliferation and disarmament.”;
further, it adds ”Any security issue of interest to any Ally can be brought to the NATO table, to share information,
exchange views and, where appropriate, forge common approaches.”.

2Traditionally, in the international relations literature (Walt, 1985, Walt, 1990, and Waltz, 2010), alliance forma-
tion has primarily been studied within the purview of state capacity - either align in order to balance against a
powerful state or bandwagon with a threatening state (or coalition).
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result is that as long as players’ biases are cohesive, each player cannot do better than fully

revealing her private information. This way, as long as the players’ available domain of actions

is large enough, the private information held by members of the alliance is fully aggregated.

The paper closest to our work is the one by Galeotti et al. Galeotti, Ghiglino, and Squin-

tani (2013). Though the information and communication structure are identical, a fundamental

difference is that in their work, actions of players were independent of each other. As a re-

sult, the message of a player does not affect her own actions. In our setup, since actions are

interdependent, a player’s message also affects her beliefs about other players’ actions, and

therefore, affects her own action. Hagenbach and Koessler Hagenbach and Koessler (2010)

study a model of strategic with multiple players and interdependent actions. However, two

differences emerge. First, while they study strategic complementarities in actions, we develop

a model in which actions are substitutable. Second, in their information framework, private

signals of players are independent and communication is private. On the other hand, we are

interested in a model where signals are correlated, but the communication protocol is public.

As a result, our analysis is very distinct from either of the two papers mentioned above.

An important theoretical contribution of our work is the fact that the domain of the action

set of players –resource constraint– drives truthful communication. In particular, when actions

are unrestricted (no resource constraints), there is always truthful communication irrespective

of the bias differences. In this sense, we find a novel interaction between bias dispersion and re-

source constraints, which was absent in both Galeotti et al. Galeotti et al. (2013) and Hagenbach

and Koessler Hagenbach and Koessler (2010).

The rest of the paper is organized as follows. Section 2 develops the framework of the

model and section 3 presents the full information aggregation result. Section 4 provides brief

concluding remarks.
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2 Model

A group of players, N = {1, 2, ...., n}, decide on contributions to a joint project. Each player

chooses an action xi ∈ [0, 1], where the bounds represent the resource constraint faced by every

individual player. Moreover, actions of players are themselves interdependent in a way that

they are strategic substitutes. The payoff of every player is dependent on an unknown common

state of the world θ distributed uniformly on [0, 1]. The state θ is not directly observable,

but each player i receives a private signal si ∈ {0, 1} about the state of the world such that:

si = 1 with probability θ, and si = 0 with probability 1− θ. Finally, each player has a bias bi,

that captures the extent to which a player cares about the outcome (without loss of generality,

0 6 b1 6 b2 6 ....... 6 bn).

Formally, player i’s utility is given by,

ui(x; θ,bi)] = −[(( xi+ηx−i
1+(n−1)η )− θ − bi)

2]; where x−i = ∑
j 6=i

xj, x = (x1, x2, ....., xn)

This utility form captures the four features described earlier. First, players’ actions are

interdependent in that utility depends on deviations of the (player-specific) joint contribution

function from the player’s ideal action, given by θ + bi. This interdependence is such that
∂2ui(.)
∂xi∂xj

< 0, and the degree of substitutability is not perfect, ie, η ∈ (0, 1). Second, there is

a need for information sharing in order to aggregate each players’ private information about

the state θ. Third, players face a resource constraint since there are signal realizations and

biases such that θ + bi > 1, but actions are bounded on [0, 1]. Lastly, bi captures the preference

heterogeneity of players over final outcomes3.

This set-up lends itself naturally to situations in international affairs that involve countries

cooperating with each other to resolve a common foreign policy objective - like engaging in

conflicts, or providing assistance to peacekeeping, among others. In such scenarios, each coun-

try in the alliance has potentially varying degrees of information and interest in the cause.

3These features are perfectly encapsulated by the NATO Strategic Concept 2010 document. Specifically, it
identifies three key objectives of the security alliance between NATO countries - Collective Defence, Crisis Man-
agement and Cooperative Security. The emphasis is on ’cooperation’ and ’collective’, and achieving this requires
a way to deal with preference heterogeneity within the alliance and structure to communicate information among
the members.
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Sharing private information enables countries in an alliance to target resources in an efficient

way, and doing so is a vital component of successful cooperation4.

2.1 Communication Round

With no communication, player types are correlated and there is complementarity in players’

signals5. Each player, before the communication stage, can be classified into one of two types

- high (si = 1) and low (si = 0). We allow for communication in the following way: after each

player receives their signal si, they publicly and simultaneously communicate their information

through cheap-talk messages mi ∈ Mi to each of the other n− 1 players.

In this paper, we focus on pure messaging strategies and a public communication protocol,

in which each player simultaneously sends a public message mi(si) to every other player in the

group6. Player i’s messaging strategy is given by,

mi : {0, 1} −→ {0, 1}

A truthful message by i to the group implies mi(si) = si for si = 0 and 1, and babbling mes-

sage is one where mi(si) = mi(1− si). Let m = (m1, m2, ...., mn) be the communication strategy

of the n players7. Through out this paper, we abstract away from other more complicated forms

of messaging strategies8, and focus on pure communication strategies for reasons of tractability

and clearer exposition of the trade-off’s.

4For example, consider NATO’s Partnership Action Plan against Terrorism, drafted post the September 2011
attacks. It clearly delineates the vital element of information sharing as one of the key requirements for effectively
fighting terrorism and other security related challenges. For more, see http://www.nato.int/cps/en/natohq/

official_texts_19549.htm.
5In our model, player signals are conditionally independent. However, there is signal correlation and comple-

mentarity in the following way: Pr(sj = 1 | si = 1) = 2
3 , Pr(sj = 0 | si = 1) = 1

3 and Pr(sj = 0 | si = 0) = 2
3 , Pr(sj =

1 | si = 0) = 1
3 .

6Public communication protocols are very common in the real-world. For example, forums like UN, NATO and
other regional alliances often get together and share private information about a common issue. Public diplomacy
remains a main feature of such organizations.

7Both the signaling structure and messaging strategies are similar to Galeotti et al. Galeotti et al. (2013) In fact,
to be more precise, they use a more general communication protocol, placing no restriction on messages being
public or private.

8For example, one such mixed strategy would be a partially separating strategy under which player i babbles
(or reveals) for one signal type and mixes between truth-telling and babbling for the other signal type.
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2.2 Action round

Once messages have been exchanged, each player decides on their individual contribution xi.

We will once again focus on pure second-stage strategies. Since the utility function is strictly

concave in xi, best-responses exist and are unique. A second stage strategy can be defined as

follows:

τi : Si × (Mi ×M−i)→ [0, 1]

Therefore, τi(si, (mi, m−i)) is the strategy of player i with signal si, having sent message mi

and received messages m−i = (mj)j∈N\{i} from the group. Let τ(s, m) = (τi(si, (mi, m−i)))i∈N

be the strategy profile of the players.

2.3 Equilibrium Definition

Given the above structure of messaging, the players can be grouped post the communication

round into two sets (according to equilibrium beliefs) - truthful set and babbling set. We define

them in the following way:

Definition 1 Truthful set, T = {i : mi(0) = 0, mi(1) = 1}

Definition 2 Babbling set, B = {j : mj(0) = mj(1)}

The first is just the set of players whose messages are believed in equilibrium as informative,

and messages from the second are ignored as uninformative (note that all this is based on

equilibrium beliefs). Given this, the vector of messages after communication consists of |T|

truthful messages mT = {mi : i ∈ T} and |B| babbling messages mB = {mj : j ∈ B}. Note

that any off-equilibrium path messages are believed and treated as if they were equilibrium

messages. This gives rise to an IC constraint for truth-telling such that, in equilibrium, each

player’s beliefs about other players’ messages are updated using Bayes’ rule.

The equilibrium concept is sequential equilibrium in pure strategies. An equilibrium is

defined as a strategy profile (m, τ) = ((mi)i∈N, (τi)i∈N) such that,
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1. Actions are sequentially rational, given messages and beliefs:

∀i ∈ N, m−i ∈ M−i :

τi(si, (mi, m−i)) ∈ arg max
xi

∫ 1

0
∑

s−i∈{0,1}n−1

ui(xi,(τj(sj, (mj, m−j)))j 6=i; θ, bi)

Pr(s−i | θ) f (θ|m−i, si)dθ

2. Messages are truthful iff they satisfy the IC for truth-telling:

∀i ∈ N, si ∈ {0, 1} :

−
∫ 1

0
∑

sT−1∈{0,1}t−1
∑

sB∈{0,1}n−t

ui(τi(si, (si, m−i)), (τj(sj, (si, m−i)))j∈T−1,

(τk(sB(k), (si, m−i)))k∈B; θ, bi) f (θ, sT−1, sB|s)dθ

≥

−
∫ 1

0
∑

sT−1∈{0,1}t−1
∑

sB∈{0,1}n−t

ui(τi(si, (1− si, m−i)), (τj(sj, (1− si, m−i)))j∈T−1,

(τk(sB(k), (1− si, m−i)))k∈B; θ, bi) f (θ, sT−1, sB|s)dθ

where sT−1 is the set of (T − 1) truthful signals, apart from player i and sB is the set of

babbling signals

3 Equilibrium Characterization

We proceed by first characterizing the optimal best responses in the contributions stage of

the game. When deciding on how much to contribute given the information generated by

communication, each player takes into account the interdependence in actions. Let t = |T|

and b = |B| be the number of truthful players and babbling players respectively, after the

communication stage.
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Another intuitive way of thinking about the action stage is to abstract away from communi-

cation, and assume the following. Suppose that all agents were exogenously given information

mT, and a sub-group of b agents were additionally provided with a private signal - 0 or 1.

Given this exogenous information structure, what are the optimal actions of each player given

their information, and the interdependence in actions. The solution to the problem is then a

Bayesian Nash equilibrium (BNE) in which there are b players who can be either of two types,

and t truthful players.

The maximization problem of each of the t truthful players is given by,

∀i ∈ T : max
xi

Eθ,sB [ui((xi, xT\{i}, xB(sB)); θ, bi) | mT] (1)

where, xT\{i} = {xj : j ∈ T\{i}} and xB(sB) = {xj(sB(j)) : j ∈ B} are the vector of actions

by the t− 1 truthful players other than i, and b babbling players respectively.

Analogously, the maximization problem for a babbling player j with private signal sj is

given by,

∀j ∈ B, sj ∈ {0, 1} : max
xj(sj)

Eθ,sB [uj((xj(sj), xT, xB\{j}(sB\{j})); θ, bj) | mT, sj] (2)

where, sB\{j} ∈ {0, 1}n−t−1 is the vector of all possible signals of the remaining (n− t− 1)

babbling players, xT is the vector of actions of all the truthful players, and xB\{j}(sB\{j}) is

the vector of actions of remaining (n− t− 1) babbling players aside j. Hence, players choose

an action that solves a system of equations (t + 2b) given by their maximization problem9, as

stated above.
9The usefulness of looking at public communication can be seen from the above equations. Every player in the

group knows precisely who the set of truthful players are (in equilibrium beliefs), their messages, as well as the
set of babbling players. Moreover, given the beta-binomial distribution, each player can then form expectations of
what private information any babbling player holds. The babbling player is then one of two types - low signal or
signal type - and every player in the group has the same posterior about the conditional expectation over babbling
types.
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3.1 Characterization of equilibrium contributions

3.1.1 No Resource constraints

We proceed by first characterizing the best responses of each type of player and their equilib-

rium actions, as if there were no resource constraints on the actions of players. The reason to

do this is twofold. First, it abstracts away from the difficulty of thinking about interdependent

actions with bounds, and allows us to find closed-form solutions to the action stage problem.

Second, the exact form of equilibrium actions, as will be made clearer later, provides impor-

tant intuition to think about the messaging strategies of players and characterize the messaging

equilibrium.

We also impose a bound on the dispersion of biases so that the alignment of any player i

remains within certain limits10. Specifically, we define the following:

Definition 3 Let Ai = [bi − η
(1+(n−1)η) ∑

j∈N
bj], be a measure of dispersion of the alignment of interests

of player i from that of the group. Further, assume that ∀i ∈ N, (1+(n−1)η)
1−η .Ai ∈ (−1, 1).

Lemma 1 Under unrestricted domain (xi ∈ R) and public communication, the players’ sequentially

rational action after receiving t truthful messages and (n− t) babbling messages is given by:

Truthful player:

xi∈T =
(1 + (n− 1)η)

1− η
.Ai +

(k + 1)
(t + 2)

Babbling player with low signal:

x(i∈B,si=0) =
(1 + (n− 1)η)

1− η
.Ai +

k + 1
t + 2

.
h(t)

1 + h(t)

10Since we consider communication with resource constraints, it is necessary to limit the values a player’s bias
can take. For example, we cannot have one player to have an extremely high bias, like bi = 10 or so. This
trivializes the problem when bounds are introduced, since, irrespective of the communication, player i always
takes the maximum action within the bound, xi = 1. Moreover, every such player with extreme biases always
misreport their signal in equilibrium.
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Babbling player with high signal:

x(i∈B,si=1) =
(1 + (n− 1)η)

1− η
.Ai +

k + 1
t + 2

.
h(t)

1 + h(t)
+

1
1 + h(t)

where h(t) =
(2+t(1−η))
(1+(n−1)η)(

1+ (2+t(1−η))
(1+(n−1)η)

)
Notice that the actions post communication is dependent on Ai, the difference in bias of

the player from the weighted average of biases of all players in the group. We construe this

difference as a measure of alignment of interests in the group, or alternatively, as a measure of

dispersion in the biases.

When players’ actions have unrestricted domain (meaning xi ∈ R), players are able to ex-

actly compensate for the messages in equilibrium and possibly ’undo’ the effects of commu-

nication by choosing an optimal action that exactly matches their ideal state, given the set of

equilibrium messages. Under unrestricted domain, there always exists a fully revealing equi-

librium in which every player reveals her private information to the group11.

In a fully revealing equilibrium with unrestricted domain of actions, T = N and every player

plays the following action, post the communication round:

xi∈N =
(1 + (n− 1)η)

1− η
.Ai +

(k + 1)
(t + 2)

(3)

3.1.2 Resource constraints

Intuitively, introducing resource constraints by restricting the set of actions to [0, 1] changes the

nature of information revelation for the players by reintroducing trade-off’s between providing

more information and concerns of under (or over) provision. This arises because with bounded

actions, players are unable to completely compensate for the effect of their message on the

11This point has been made in Venkatesh (2016). Specifically, it shows that, for a specific class of utility functions,
when players’ actions are unrestricted, there is completely truthful communication as players can undo the effects
of communication in the subsequent action stage. This ability to compensate for the messages ex-post precludes
the incentives to lie and ensures truthful communication.
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actions of others.

To make this point clearer, let us consider the action of n - the player with the highest bias. In

the fully revealing equilibrium described above, under a restricted action set [0, 1], xn = min{1,
(1+(n−1)η)

1−η .Ai +
(k+1)
(t+2) }. This implies that xn = 1 whenever the other expression exceeds the

bound. This leads to under-provision as other players would not substitute completely (since

η < 1), leaving player n to suffer a loss from under-provision. The problem of under-provision

is exacerbated when player n’s signal is sn = 0. Fearing under-provision, player n can do better

by exaggerating her private information and sending a message mn = 1 to the group instead.

This type of exaggeration has two effects. First, there is a pure information effect that pushes

every players’ actions up. Second, there is a countervailing free-riding effect in that players now

also understand that n is also going to take a higher action, and hence will adjust their actions

accordingly. Nevertheless, player n benefits from misreporting since even in equilibrium, each

of the other players’ action are higher (in expectations), and this reduces the loss from under-

provision. In equilibrium, though, player n’s message is never credible for precisely the above

reasons, and thus will not be believed.

Players with very low biases in the group face the opposite problem - that of over-provision.

Without loss of generality, take the case of player 1 with bias b1. Again, when each of the other

(n− 1) players are revealing truthfully, say, player 1 may have an incentive to deviate from

reporting a high signal (s1 = 1) truthfully. Player 1’s optimal action as dictated by the previous

lemma is x1 = max{0, (1+(n−1)η)
1−η Ai +

(k+1)
(t+2) }. When, however, for any possible signal realization

sN\{1}, the optimal action of player 1 is below zero, then the bounds kick in and x1 = 0, leading

to over-provision concerns. That is, player 1 can benefit from under-reporting her high signal

and instead send a message m1 = 0. This would push the actions of the rest of the players in

group down, thereby decreasing losses from over-provision.

Therefore, with resource constraints, two types of problems arise with communication. Play-

ers with a higher preference, in order to avoid under-provision, may tend to exaggerate their

private information and those with lower biases, fearing over-provision, may end up under-
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reporting their signals. One question that arises naturally in this context is who exactly are the

players with under (over) provision concerns. A closer look at the equilibrium actions under

unrestricted domain provides crucial intuition for answering this question.

For every player i such that Ai < 0, actions in any equilibrium can never hit the upper

bound. However, there may be truthful signal realizations under which the optimal action may

be less than 0, but because of the lower bound on actions, player i would constrained to play

xi = 0. This implies for these players, there are over-provision concerns, meaning they would

always report their low signal truthfully, but under-report the high one. Similarly, the players

for whom Ai > 0 would worry about the upper bound as their actions are always positive for

any set of signal realizations. These players are ones who fear under-provision and therefore,

have an incentive to exaggerate their low signals.

Therefore, players themselves can be separated into two types - 0− type and 1− type. We

define them in the following way:

Definition 4 0− type = {i ∈ N : Ai < 0}

Definition 5 1− type = {i ∈ N : Ai > 0}

The players in the set 0− type always reveal their low signal, but face incentives to misrep-

resent si = 1. Vice versa, the players in the set 1− type always reveal their high signal, but may

misrepresent their low signal, si = 0.

3.2 Full Information aggregation with resource constraints

In the previous subsection, we put forth some of the trade off’s involved in information revela-

tion with resource constraints. Particularly, the set of players can be (ex-ante) partitioned into

either a 0− type or 1− type, depending on the initial distribution of biases b. Further, we know

that with public communication and pure messaging strategies, information revelation takes

the form of a partition of truthful players T and babbling player B. The natural question that

arises is, under what conditions does there exists full information aggregation with resource
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constraints. The following Lemma provides the necessary and sufficient conditions required

for complete information aggregation (|T| = n) under resource constraints:

Theorem 1 Under public communication protocol with given bias distribution b and resource con-

straints, there is a n-player equilibrium such that every player in the group reveals truthfully if and only

if:

∀i ∈ N : |Ai| 6
2

n + 2
.

(1− η)

(1 + (n− 1)η)

Proof. See Appendix A

We provide brief intuition for the above result. To do so, we borrow from earlier argu-

ments as well as from Austen-Smith Austen-Smith (1993). For a player in the group to reveal

information truthfully, it must be that for every possible signal type, and every possible signal

realization of the other (n− 1) players, her action must be within the bounds. For a 0− type

player, the relevant one is the lower bound of 0, and for the 1− type, upper bound of 1.

Let a player, say i, from the set 0− type hold a signal si = 1. In any equilibrium where t

players reveal truthfully, it must hold that the equilibrium action of player i is greater than zero,

for every possible signal realization12 of the remaining (t− 1) truthful players. Otherwise, there

is an incentive to lie for player i in the communication stage. Moreover, what matters is the

sufficient statistic (given by ∑
j∈T\{i}

sj) of the (t− 1) signals. Given this formulation, truth-telling

for a 0− type player has to satisfy the tightest IC constraint - meaning her action under the

tightest constraint has to be within the bounds. If this was not so, an equilibrium with i ∈ T

violates the IC for truth-telling. The tightest constraint for a 0− type player occurs when k = 1,

meaning all other (t− 1) signals are 0 ( ∑
j∈T\{i}

sj = 0) and si = 1. Once this is satisfied, all other

IC constraints are satisfied automatically, by single crossing property of the utility function

( ∂2ui
∂xi∂θ > 0).

An analogous logic ensues for any truth-telling player belonging to the set 1− type. For a

player i ∈ 1− type to separate her messages in equilibrium, her equilibrium actions have to

12Given the nature of beta binomial distribution, signals are ex-ante correlated, and that given a signal, all
possible contingencies of remaining (t− 1) signals occur with a positive probability.
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to be < 1 for every possible realization of the remaining (t− 1) signals. This further implies

that the tightest IC in this case is one where the sufficient statistic of the rest of the truthful

messages is the highest possible, ie, ∑
j∈T\{i}

sj = (t− 1), and si = 0. Again, as before, if this IC

is satisfied, every other constraint would also be satisfied because of single crossing property.

Theorem 1 clearly shows the importance of alignment of interests for information transmis-

sion within an alliance. Despite varying degrees of interest about the ideal state of the world,

it is possible for alliances to aggregate information as long as the dispersion in the biases is

within a bound. To this effect, players in the group must be ’closely’ aligned. Ai provides a

measure of this alignment that ensures aggregation of information.

4 Conclusion

The full information aggregation result is useful for two reasons. Firstly, we introduce a novel

methodology to obtain full information aggregation equilibrium with interdependent actions.

The technique of using bounds on actions as IC constraints is, to the best of our knowledge, a

first in the wider theoretical literature. Secondly, full aggregation result highlights the impor-

tance of alignment of interest for successful information sharing within members of an alliance.

Specifically, we provide an intuitive characterization for cohesiveness of an alliance.

A Full Information Aggregation

Before proceeding to prove Lemma 1, we provide some basic insights into the nature of maxi-

mization problem that each type of players face, and in general, lay out some important prop-

erties of the Beta-Binomial distribution that we employ in our paper.

We start by reformulating the maximization problem faced by a truthful player, given in equa-

tion 1, as follows:
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max
xi

∫ 1

0
∑

sB∈{0,1}n−t

ui((xi, xT\{i}, xB(sB)); θ, bi)Pr(sB|θ) f (θ|mT)dθ

The conditional density f (θ|mT) belongs to a standard beta-binomial distribution. Letting

k = ∑i∈T si, the number of signals si with i ∈ T that are equal to one, the posterior distri-

bution of θ with uniform prior on [0, 1], given k successes in t trials, is a Beta distribution

with parameters k + 1 and t − k + 1. As a consequence, f (θ|mT) = (t+1)!
k!(t−k)! θ

k (1− θ)t−k and

E [θ|mT] = [k + 1]/[t + 2]. Further, for any sB, letting `(sB) = ∑q∈B sq, it is the case that

Pr(sB|θ) = θ`(sB) (1− θ)n−t−`(sB).

In a similar way, the problem of every babbling player j ∈ B with a private signal sj, stated in

equation 2, can be expanded as the following:

max
xj(sj)

∫ 1

0
∑

sB\{j}∈{0,1}n−t−1

uj((xj(sj), xT, xB\{j}(sB\{j})); θ, bj)Pr(sB\{j}|θ)

f (θ|mT, sj)dθ

Again, the posterior density f (θ|mT, sj) belongs to the beta family, with k + sj successes in t + 1

signals, and is a Beta distribution with parameters k + sj + 1 and (t− k− sj + 2). Consequently,

f (θ|mT, sj) = (t+2)!
(k+sj)!(t+1−k−sj)!

θk+sj (1− θ)t+1−k−sj and E
[
θ|mT, sj

]
= [k + sj + 1]/[t + 3]. As

before, for any sB\{j}, Pr(sB\{j}|θ) = θ`(sB\{j}) (1− θ)n−t−`(sB\{j}).

A.1 Characterization of second-stage contributions with unrestricted do-

main

We begin the characterization by first solving the best responses of each of the three types of

players from equations 1 and 2.
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i) Truthful player’s problem:

Eθ[ui(x, m)] =

−
∫ 1

0
∑

sB∈{0,1}n−t

(
xi + η ∑j∈T\{i} xj + η ∑j∈B xj(sj)

1 + (n− 1)η
− θ − bi

)2

Pr(sB|θ) f (θ|mT)dθ

where f (θ|mT) =
(t+1)!

k!(t−k)! θ
k (1− θ)t−k , iff 0 ≤ θ ≤ 1.

Differentiating the above with respect to xi, we get the following FOC:

∫ 1

0
∑

sB∈{0,1}n−t

(
xi + η ∑j∈T\{i} xj + η ∑j∈B xj(sj)

1 + (n− 1)η
− θ − bi

)

Pr(sB|θ) f (θ|mT)dθ = 0

Simplifying, we obtain:

xi + η

 ∑
j∈T\{i}

xj +
∫ 1

0
∑

sB∈{0,1}n−t
∑
j∈B

xj(sj)Pr(sB|θ) f (θ|mT)dθ

 =

(bi + E[θ|mT]) [1 + (n− 1)η]

(4)

ii) Babbling player’s problem:

With analogous procedures, the expected utility of a babbling player i with signal si is:

Eθ[ui(x, m)] = −Eθ,s−i

[( xi(si)+η ∑j 6=i xj(sj)

1+(n−1)η − θ − bi

)2
| mT, si

]
= −Eθ,sB\{i}

[(
xi(si)+η ∑j∈T xj+η ∑j∈B\{i} xj(sj)

1+(n−1)η − θ − bi

)2

| mT, si

]

= −
∫ 1

0 ∑sB\{i}∈{0,1}n−t−1

(
xi(si)+η ∑j∈T xj+η ∑j∈B\{i} xj(sj)

1+(n−1)η − θ − bi

)2

Pr(sB\{i}|θ)

f (θ|mT, si)dθ
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Again, the density f (θ|mT, si) belongs to the beta family such that f (θ|mT, si) =
(t+2)!

(k+si)!(t+1−k−si)!
θk+si (1− θ)t+1−k−si ,

iff 0 ≤ θ ≤ 1. Differentiating the above equation, we derive the following

FOC:

∫ 1

0
∑

sB\{i}∈{0,1}n−t−1

(
xi(si) + η ∑j∈T xj + η ∑j∈B\{i} xj(sj)

1 + (n− 1)η
− θ − bi

)
Pr(sB\{i}|θ)

f (θ|mT, si)dθ = 0

Simplifying yields,

xi(si) + η

∑
j∈T

xj +
∫ 1

0
∑

sB\{i}∈{0,1}n−t−1
∑

j∈B\{i}
xj(sj)Pr(sB\{i}|θ) f (θ|mT, si)dθ

 =

(bi + E[θ|mT, si]) [1 + (n− 1)η]

(5)

We focus on linear equilibrium strategies of the form: xi = A.(bi + E[θ|mT]) + B for truthful

players, and xi(si) = Asi .(bi + E[θ|mT, si]) + Bsi for babbling players. Plugging the linear forms

into expression (4), we get the following,

A(bi + E[θ|mT]) + B + η ∑
j∈T\{i}

[
A(bj + E[θ|mT]) + B

]
+η

∫ 1

0
∑

sB∈{0,1}n−t
∑
j∈B

[
Asj(bj + E[θ|mT, sj]) + Bsj

]
Pr(sB|θ) f (θ|mT)dθ =

(bi + E[θ|mT]) [1 + (n− 1)η]
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Using linearity of the strategies xi(si), above expression can be rewritten as:

[A(bi + E[θ|mT]) + B] + η ∑
j∈T\{i}

[
A(bj + E[θ|mT]) + B

]
+η

∫ 1

0
∑
j∈B

∑
sj∈{0,1}

[
Asj(bj + E[θ|mT, sj]) + Bsj

]
Pr(sj|θ) f (θ|mT)dθ =

(bi + E[θ|mT]) [1 + (n− 1)η]

Substituting in the functional forms of Pr(sj|θ) and f (θ|mT, si), we obtain:

(bi + E[θ|mT]) [1 + (n− 1)η] =

[A(bi + E[θ|mT]) + B] + η ∑j∈T\{i}
[
A(bj + E[θ|mT]) + B

]
+η
∫ 1

0 ∑j∈B
[
A0(bj + E[θ|mT, sj = 0]) + B0

]
(1− θ) (t+1)!

k!(t−k)! θ
k (1− θ)t−k dθ

+η
∫ 1

0 ∑j∈B
[
A1(bj + E[θ|mT, sj = 1]) + B1

]
θ

(t+1)!
k!(t−k)! θ

k (1− θ)t−k dθ

which, because
∫ 1

0 (1− θ) (t+1)!
k!(t−k)! θ

k (1− θ)t−k dθ = 1− E [θ|mT] and∫ 1
0 θ

(t+1)!
k!(t−k)! θ

k (1− θ)t−k dθ = E[θ|mT] is further simplified as:

(bi + E[θ|mT]) [1 + (n− 1)η] = A(bi + E[θ|mT]) + B

+ η ∑
j∈T\{i}

[
A(bj + E[θ|mT]) + B

]
+ η ∑

j∈B

[
A0(bj + E[θ|mT, sj = 0]) + B0

]
(1− E [θ|mT])

+ η ∑
j∈B

[
A1(bj + E[θ|mT, sj = 1]) + B1

]
E[θ|mT]

Substituting back the linear strategies xi and xj
(
sj
)

gives the best response for the truthful
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players,

(bi + E[θ|mT]) [1 + (n− 1)η] = xi + η ∑
j∈T\{i}

xj + η (1− E [θ|mT]) ∑
j∈B

xj(0)+

ηE[θ|mT] ∑
j∈B

xj(1)

Applying the same principles to equation (5), we obtain the expression:

(bi + E[θ|mT, si]) [1 + (n− 1)η] =

Asi(bi + E[θ|mT, si]) + Bsi + η ∑
j∈T

[
A(bj + E[θ|mT]) + B

]
+ η

∫ 1

0
∑

sB\{i}∈{0,1}n−t−1
∑

j∈B\{i}

[
Asj(bj + E[θ|mT, sj]) + Bsj

]
Pr(sB\{i}|θ) f (θ|mT, si)dθ

The manipulations on this equation are analogous in that we did previously. Hence, performing

similar substitutions, we obtain the expression:

(bi + E[θ|mT, si]) [1 + (n− 1)η] = Asi(bi + E[θ|mT, si]) + Bsi

+ η ∑
j∈T

[
A(bj + E[θ|mT]) + B

]
+ η ∑

j∈B\{i}

[
A0(bj + E[θ|mT, sj = 0]) + B0

]
(1− E [θ|mT, si])

+ η ∑
j∈B\{i}

[
A1(bj + E[θ|mT, sj = 1]) + B1

]
E[θ|mT, si]

which, again, gives us the following FOC for babbling players with private signal si (= 0 or 1)

(bi + E[θ|mT, si]) [1 + (n− 1)η] = xi(si) + η ∑
j∈T

xj + η (1− E [θ|mT, si]) ∑
j∈B\{i}

xj(0)

+ ηE[θ|mT, si] ∑
j∈B\{i}

xj(1)

Together, we can sum up the best responses for the three types of players as the following:
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Truthful player i ∈ T -

xi = (bi + E[θ|mT]) [1 + (n− 1)η]− η ∑
j∈T\{i}

xj−η (1− E [θ|mT]) ∑
j∈B

xj(0)

− ηE[θ|mT] ∑
j∈B

xj(1)
(6)

Babbling player with low signal i ∈ B, si = 0 -

xi(0) = (bi + E[θ|mT, 0]) [1 + (n− 1)η]− η ∑
j∈T

xj−η (1− E [θ|mT, 0]) ∑
j∈B\{i}

xj(0)

− ηE[θ|mT, 0] ∑
j∈B\{i}

xj(1)
(7)

Babbling player with high signal i ∈ B, si = 1 -

xi(1) = (bi + E[θ|mT, 1]) [1 + (n− 1)η]− η ∑
j∈T

xj−η (1− E [θ|mT, 1]) ∑
j∈B\{i}

xj(0)

− ηE[θ|mT, 1] ∑
j∈B\{i}

xj(1)
(8)

To verify if the equilibrium actions dictated by Lemma 1 is indeed right, we substitute them

into the RHS of each of the above three equations 6, 7 and 8.

Take equation 6 :

xi = (bi + E[θ|mT]) [1 + (n− 1)η]− η ∑j∈T\{i} xj− η (1− E [θ|mT])∑j∈B xj(0)− ηE[θ|mT]∑j∈B xj(1)

xi = (bi + E[θ|mT]) [1 + (n− 1)η]− η ∑
j∈T\{i}

(1 + (n− 1)η)
1− η

bj +
(t− 1)η2

(1− η) ∑
g∈N

bg

− η.(t− 1)
(k + 1)
(t + 2)

− η ∑
j∈B

(1 + (n− 1)η)
1− η

bj +
b.η2

(1− η) ∑
g∈N

bg

− η.b.
(k + 1)
(t + 2)

.
h(t)

1 + h(t)
− η.b.E[θ|mT].

1
1 + h(t)

Making the substitution that E[θ|mT] =
(k+1)
(t+2) , we get,
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xi = [1 + (n− 1)η] bi +
(k + 1)
(t + 2)

+(n− 1)η
(k + 1)
(t + 2)

− η ∑
j∈N\{i}

(1 + (n− 1)η)
1− η

bj

+
(n− 1)η2

(1− η) ∑
g∈N

bg − η.(n− 1)
(k + 1)
(t + 2)

xi = [1 + (n− 1)η] bi +
(k + 1)
(t + 2)

− η

1− η ∑
j∈N\{i}

bj −
(n− 1)η2

1− η ∑
j∈N\{i}

bj

+
(n− 1)η2

(1− η)
bi +

(n− 1)η2

(1− η) ∑
j∈N\{i}

bj

=⇒ xi =
(1 + (n− 2)η)

1− η
bi −

η

1− η ∑
j∈N\{i}

bj +
(k + 1)
(t + 2)

The above equation can be rewritten as,

xi =
(1 + (n− 1)η)

1− η
[bi −

η

(1 + (n− 1)η) ∑
j∈N

bj] +
(k + 1)
(t + 2)

Similar substitutions and simplification yields the equilibrium actions of the babbling types

from their best response equations 7 and 8. This completes the proof.

A.2 Proof of Theorem 1

Necessity: As argued in Section 3, a 0− type player always reveals the low signal and the 1− type

player never misreports a high signal. The only cases of relevance then is one where 0− type

(1− type) gets a high (low) signal.

Take the case of a 0− type player. For i to reveal a high signal si = 1, it must be that, for any

possible realization of the other (n− 1) players’ signals, sending a truthful message mi = si = 1

must be optimal. This means that the equilibrium action of i, xi(1, 1, m−i) > 0 for any set of

(truthful) messages from the other players, m−i. Since the posterior on the state θ is a beta-

binomial distribution, what matters is the sufficient statistic k, the number of 1’s in the set of

messages (mi, m−i).

21



Therefore, for i to reveal si = 1, a set of n constraints (corresponding to k = 1 to n). However,

the tightest constraint that would ensure this is when every other player reveals 0, meaning

that ∑ m−i = 0. In this case, if mi = 1, then k = ∑
j∈N

mj = 1 and therefore the expected value of

θ, E[θ | m] = 2
n+2 . Once this constraint is satisfied, every other IC for player i must be satisfied.

From the equation 3, it must be that,

(1 + (n− 1)η)
1− η

.Ai +
2

(n + 2)
> 0

Ai∈0−type > −
2

(n + 2)
.

(1− η)

(1 + (n− 1)η)
(9)

A similar argument ensues for a player j ∈ 1− type. For i to reveal a low signal truthfully, it

must be that for any other order of (n− 1) truthful signals from the other players, player i’s

optimal action upon sending the message mj = sj = 0 must be within the upper bound of the

action set. As before, we only need to concentrate on the tightest IC that satisfies this condition.

In the case of j, this is the constraint when ∑ m−j = (n− 1), that is, every other player reveals a

high signal. In this case, if mj = 0, then k = ∑
N

m = (n− 1) and therefore the expected value of

θ, E[θ | m] = n
n+2 . Once this constraint is satisfied, every other IC for player j must be satisfied.

From the equation 3, it must be that,

(1 + (n− 1)η)
1− η

.Aj +
n

(n + 2)
6 1

Aj∈1−type 6 (1− n
(n + 2)

).
(1− η)

(1 + (n− 1)η)
=

2
(n + 2)

.
(1− η)

(1 + (n− 1)η)
(10)

Since Ai∈0−type < 0 and Aj∈1−type > 0 by definition, by combining equations 9 and 10, we

conclude that there is full information aggregation if:

Ai∈N 6
2

(n + 2)
.

(1− η)

(1 + (n− 1)η)
(11)
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Sufficiency:

We prove this by contradiction. Suppose there is a n−player equilibrium and also that for some

player i ∈ N, condition 11 is violated. Without loss of generality, let the condition be violated

for player n, with conflict of interest bn. Then, given that each of remaining (n − 1) players

are being truthful, it requires to be checked if n has an incentive to report her signal. Since

bn = sup{bi : i ∈ N}, n is a 1− type player. Further, as before, sn = 0 and n reports truthfully.

Then, if each of the other signals are such that ∑ m−n = (n− 1), then the equilibrium action of

n is xn = min{1, (1+(n−1)η)
1−η .Aj +

n
(n+2)} = 1, since condition 11 is violated by our construction.

This implies there is under-provision from n’s point of view.

Now instead, if n misreports her signal and sends a message mn = 1− sn = 1, then the actions

of every other player is increased in equilibrium to the following:

xj∈N\{n}(sj, m−n, 1) =
(1 + (n− 1)η)

1− η
.Aj +

(n + 1)
(n + 2)

The above is the equilibrium action of every player other than n, who received a signal sj,

received truthful messages from every other player apart from n, m−n, and receive the mes-

sage mn = 1 from n. Letting the above expression to be within the bounds, meaning 0 6

xj∈N\{n}(sj, m−n, 1) 6 1, this implies xn is also modified according to n’s best response equa-

tion, given in 6. Specifically,

xn(sn, m−n, 1) = (bn + E[θ|m−n, sn]) [1 + (n− 1)η]− η ∑
j∈N\{n}

xj(sj, m−n, 1)

Substituting and simplifying yields the following revised action,

xn(sn, m−n, 1) =
(1 + (n− 1)η)

1− η
.Aj +

n(1− η) + η

(n + 2)

The optimal action is therefore xn = min{1, (1+(n−1)η)
1−η .Aj +

n(1−η)+η
(n+2) }. It is easy to conclude

that irrespective of whether xn(sn, m−n, 1) 6 1 or not, n is better off since the actions of other

players have unequivocally risen. Thus, n benefits from deviating to mn = 1 when sn = 0. But if
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this is true, then a n−player equilibrium ceases to exist, contradicting the starting assumption.

This concludes the proof.
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