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Abstract

I study the role of communication and commitment between an informed and an unin-

formed agent. The two agents contribute to a joint project such that (i) the agents’ actions

are substitutable, and (ii) the actions are constrained. In the absence of commitment and

when decision-making is simultaneous, there is full information revelation as long as con-

straints are not binding. The presence of binding constraints results in only partial revelation

of information in equilibrium. The most informative equilibrium is strictly pareto domi-

nant. When decisions are sequential, information revealed is unchanged but the actions of

the agents change, resulting in higher welfare. Finally, I characterize the ex ante optimal

commitment mechanism for the uninformed agent. Providing greater commitment power

strictly raises welfare of both agents and leads to greater overall efficiency.
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1 Introduction

A number of interactions in economics and political science involves joint decision-making by
agents with information asymmetries. In international alliances, for example, members share
private information and pool resources to achieve a common objective (e.g., unified defense,
intelligence sharing or security cooperation). These joint tasks involve coordinated actions be-
tween the agents. When the actions are substitutable and there are binding constraints (e.g.
fiscal, military) on the agents, it exacerbates the incentives of an informed agent to misrepre-
sent private information in order to induce a higher action from the uninformed agent. The
constraints therefore affects agents’ capacity to contribute and coordinate efficiently.

Given the misaligment of incentives, any purely communication based decision-making pro-
tocol may not effectively aggregate private information. To overcome inefficiencies, alliances
typically resort to ex-ante commitment mechanisms (e.g., through binding agreements). How-
ever, it is sometimes not possible to contract both agents’ decisions. While the uninformed
agent is able to commit to a contractible decision, it is likely that the informed agent retains
decision-making authority, resulting in limited (imperfect) commitment.

This raises questions on how to organize decision-making when there is communication be-
tween agents, but no commitment. When commitment is feasible, what the optimal mechanism
is when the informed agent’s actions are non-contractible remains an open question. Finally,
it is unclear whether constraining the autonomy of agents via binding commitment rules im-
proves joint welfare of agents compared to decision-making under pure communication. To
analyze these questions, this paper introduces a novel coordination game between two agents
with action substitutability and constraints, and compares alternate decision making protocols
that are communication and commitment based.

The theoretical work on communication with coordination motives has predominantly fo-
cused on strategic complementarities in actions (e.g. Alonso, Dessein, and Matouschek, 2008),
while the problem of coordination with substitutable actions has not received sufficient atten-
tion. Further, the literature on commitment has focused on optimal delegation problems in
which there is a single decision-maker with either perfect commitment (e.g. Alonso and Ma-
touschek, 2008; Amador and Bagwell, 2013) or imperfect commitment (e.g. Bester and Strausz,
2001). In contrast, I introduce a novel form of imperfect commitment in this paper. Specifically,
I focus on the case in which both agents are decision-makers, and there is limited commitment
in that only one agent commits to a binding (contractible) decision while the other agent’s ac-
tion is non-contractible. The paper therefore combines the literature on communication with
coordination motives, and contracting with imperfect commitment.

The coordination game between two agents with joint decision-making is such that i) pri-
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vate information is soft; ii) communication takes the form of cheap talk à la Crawford and Sobel
(1982); iii) actions are imperfect substitutes; and iv) agents face constraints on their actions. The
key feature of the model is that each agent has a coordination function that generates an output
based on the individual actions. The concavity property of the underlying preferences implies
that there is an unique value of the coordination function corresponding to each state of the
world, and these values are different for the two agents. Crucially, the preferences exhibit a
shared costs feature, instead of the free riding (marginal costs) property that is commonly ob-
served in games with action substitutability (e.g., Dubey, Haimanko, and Zapechelnyuk (2006)).
The way to interpret this feature is to think of a cost that each agent suffers from working to-
gether and taking joint actions. In alliances, for example, both partnering countries suffer losses
when they contribute to a joint military operation. This could be a reputational cost incurred
for partnering in a military operation with another country. These shared costs are exacerbated
by the size of the overall joint operation and not restricted to only each countries’ individual
contribution to the effort.

In the baseline model, I analyze simultaneous decision-making with no commitment. To
establish the existence and uniqueness of pure strategty equilibria in the decision-making stage,
I use techniques of aggregative games developed by Jensen (2010). Once the uniqueness of
actions is established for any set of beliefs between the agents, it is then possible to fully
characterize the complete set of communication equilibria.

Three types of communication equilibria emerge in this setup, namely, i) threshold; ii) partial
pooling; and iii) hybrid equilibria. In the threshold equilibria, the informed agent communicates
truthfully only up to a certain threshold and pools all information beyond.1 However, when
the informed agent does not suffer from binding constraints on actions, all private information
is communicated in equilibrium and there is full efficiency. It is only in the presence of binding
constraints that full information revelation breaks down and there is some loss of information
in equilibrium. The intuition is that in the absence of any constraints, both agents can take
actions such that the joint coordination function for each agent corresponds with their first best
levels, thereby precluding the need to misrepresent information.

In the partial pooling equilibria, the informed agent chooses multiple message pools up to a
certain threshold and pools all the information above this threshold. The novel feature of these
equilibria is that there is a continuum of partial pooling equilibria possible for each feasible
threshold. Moreover, these equilibria are different in structure to the partitional equilibria
of CS in that they are not monotonically increasing (or decreasing) in size. The size of the

1 The threshold equilibria are similar to those derived by Kartik, Ottaviani, and Squintani (2007), and Kartik
(2009). In both these papers, there is exaggerated communication in equilibrium which is in contrast to the truthful
messaging equilibria characterized in this paper.
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message pools depends on the equilibrium action of the marginal type in the interval, i.e.,
the indifference condition is pinned down by the action that achieves first best for the two
adjacent messages. The hybrid equilibria combines the features of the above two equilibria.
Specifically, the informed agent separates for some types within a threshold and pools some
others. This gives rise to equilibria with pooling on either ends of the type space, and separation
in between.2

Given the multiplicity of communication equilibria in the model, it is important to compare
their welfare properties. Surprisingly, the communication equilibria exhibit an intuitive pareto
ordering - the more informative threshold equilibrium is pareto dominant. This implies that
welfare of agents is monotonically increasing in the amount of information revealed. When
more information is revealed, both agents achieve their first best for a greater measure of types.
Further, under the most informative equilibrium, the pooling message induces a greater action
from the uninformed agent. The key intuition is that the informed agent has discretion in
choosing her actions and making use of her private information on the pooling interval. This
novel feature provides greater flexibility to the informed agent and allows for better coordina-
tion of agents’ actions. It minimizes the inefficiency from under-allocation (over-allocation) for
the informed (uninformed) agent, thereby improving welfare of both agents.

Having identified a pareto dominant equilibrium, I analyze a sequential protocol in which
the uninformed agent moves first (Stackelberg leader) after the communication round. When
actions are sequential, the most informative threshold equilibrium of the coordination game
is the same as in the simultaneous protocol.3 However, the sequential protocol provides both
agents a higher ex-ante welfare. This stems from the fact that once the uninformed agent’s
action is sunk, the informed agent observes this and correspondingly adjusts (moderate) her
own action. The uninformed agent benefits from this moderating effect, and therefore takes
a higher action in equilibrium when the information is pooled. This further translates into
greater ex-ante welfare for the informed agent as well, resulting in higher overall efficiency.

Though sequential decision-making improves joint welfare of the agents, there is still inef-
ficiency on the pooling interval. This arises because the uninformed agent takes an expected
action while the informed agent exploits her private information. Typically, agents can rely
on binding commitments to mitigate this inefficiency. To capture this, I analyze a commitment
protocol under which the uninformed agent commits to a communication dependent incentive
compatible action rule. Following this, the informed agent decides on the information to com-

2The hybrid equilibria bears some semblance in structure to the central pooling equilibria in the work of Bernheim
and Severinov (2003). They characterize signaling equilibria in which there is pooling towards the middle of the
spectrum of types and separation on either ends of the type space. Instead of central pooling, however, the hybrid
equilibria exhibits pooling on both extremes, and induces separation in the middle of the type space.

3I will consider the most informative equilibrium for comparison purposes since it is ex ante efficient.
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municate. Crucially, the informed agent moves after the contractible action (of the uninformed
agent) is realized. Notice that this is similar to the optimal delegation problem except that there
is an additional informed decision-maker whose action is non-contractible.

Since there is limited commitment, the informed agent, depending on the contracted com-
mitment rule, can decide what to reveal and then subsequently what action to take. This adds a
layer of complexity to the commitment problem faced by the uninformed agent. However, due
to the result of Bester and Strausz (2001)4, there exists an incentive feasible direct mechanism
(Revelation Principle) in which the set of messages used by the informed agent corresponds
with the type space, and uninformed agent commits to actions contingent on the type revealed.
Further, the informed agent observes the commitment rule and best responds to this action.
Since the revelation principle is applicable, the uninformed agent’s problem is twofold: i) to
choose an action rule that satisfies the informed agent’s incentive compatibility constraints;
and ii) to minimize the inefficiencies from coordination, conditional on satisfying the incentive
compatibility conditions.

The optimal commitment rule exhibits three key features. The informed agent mimics the
actions of the simultaneous protocol up to the most informative threshold. Beyond this, the
informed agent minimizes coordination losses by committing to actions such that the informed
agent always takes the highest action in the non-contractible stage. Finally, the uninformed
agent caps actions beyond a (higher) threshold of information.5 By committing to an ex ante
decision rule, the uninformed agent incentivizes the informed agent to reveal more information
in a way that benefits both agents.

Related Literature

This paper extends and contributes to the vast theoretical and applied literature of that stud-
ies communication in interdependent environments. The role of communication with strate-
gic complementarities in actions have been widely studied and applied to varied settings (e.g.
Alonso, Dessein, and Matouschek, 2008; Baliga and Morris, 2002; Dessein and Santos, 2006; Ha-
genbach and Koessler, 2010; Rantakari, 2008). Barring Alonso (2007), who considers a principal-
agent setting in which an uninformed principal controls the decision rights and actions of the
two players are either strategic complements or substitutes, none of the other papers have
looked at incentive problems when the nature of coordination is such that both players’ actions
are substitutable.

4See Proposition 1.
5Without this capping, the uninformed agent would end up providing first best levels to the informed for all

possible states, which would be equivalent to full delegation as in Dessein (2002). This form of full delegation is
never optimal for the uninformed agent in this paper.
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The literature on communication and commitment (Holmstrom, 1978) has delved into the
question of optimal delegation by an uninformed Principal. Alonso and Matouschek (2008)
characterize the necessary and sufficient conditions for interval delegation to be optimal under
quadratic loss utility functions. Amador and Bagwell (2013) generalize this result for a broader
class of welfare functions and also allow for money burning feature. In both these papers,
there is only a single decision-maker (uninformed Principal) and there is perfect commitment.
The paper by Ambrus and Egorov (2017) study contracting with both money burning and also
allow for monetary transfers. On the other hand Krishna and Morgan (2008) look at contracting
with imperfect commitment and monetary transfers. Contrastingly, my paper studies a case in
which both agents are decision-makers and there is only limited commitment. Surprisingly, the
optimal commitment mechanism in my paper resembles the interval delegation result in that
the uninformed agent provides a cap on actions.

Another relevant paper is the work by Melumad and Shibano (1991), who characterize a de-
terministic commitment rule for the uninformed receiver in a standard cheap talk game. They
find that commitment power to the uninformed receiver improves her welfare compared to
pure cheap talk. However, the opposite is true for the informed sender. The optimal commit-
ment rule in my work is also deterministic but on the other hand improves the welfare of both
the informed and uninformed agents, which is contrary to their findings.

This paper is also related to the work on information sharing with substitutable actions. Gal-
Or (1985) and Li (1985) study cournot competition with uncertainty about the market demand
parameter. They find that communication breaks down in equilibrium and no information
is credibly revealed by the firms. On the contrary, when the uncertainty is regarding cost
parameters (Gal-Or, 1986; Goltsman and Pavlov, 2014) there exists informative communication
equilibria with cheap talk. My paper on the other hand is concerned with scenarios where
there are coordination incentives and shared costs that is a function of both agents’ actions.

The rest of the paper proceeds as follows. In Section 2, I present a simple example to show
the main intuition driving my results. Section 3 outlines the basic model and Section 4 presents
conditions for full information revelation equilibrium. Section 5 contains the results pertaining
to partial revelation equilibria. In Section 6, I present efficiency properties of equilibria and
analysis of the sequential protocol follows in Section 7. In Section 8, I characterize the opti-
mal commitment mechanism for the uninformed agent. Finally, Section 9 contains concluding
remarks.
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2 An Example

Consider a joint task to be executed by an uninformed agent A1 and an informed agent A2

(without loss of generality). A2 perfectly observes signal about the state of the world θ, drawn
from an uniform distribution [0, 1]. The information is soft and A2 communicates its private
information by sending a cheap talk message m(θ) to A1. Upon communication, both A1 and
A2 take actions that affects both their payoffs. Let the utility functions be the following:

U1 = −
[(

x1 + ηx2

1 + η

)
− θ

]2

U2 = −
[(

x2 + ηx1

1 + η

)
− θ − b

]2

Observe that both players take actions that contribute to the project and these actions are
substitutable in that ∂2Ui

∂x1∂x2
< 0, where η ∈ (0, 1) captures the degree of substitutability. Finally,

the two players face constraints in that xi has a domain [−a, a]. When A2 truthfully reveals the
true state of the world, i.e. m(θ) = θ, the two players solve the following best responses:

A1 : x1 = (1 + η)θ − ηx2

A2 : x2 = (1 + η)(θ + b)− ηx1

To simplify the exposition, let b = 2
5 and η = 1

2 . The actions after truthful messaging are
given by: x∗1 = θ− 2

5 , x∗2 = θ + 4
5 . Notice immediately that full information revelation is possible

if a > 9
5 . This is because A2 is able to reveal truthfully the highest type θ = 1, and x∗2(1) =

9
5 .

This way, A2 achieves first best. On the other hand, when a < 4
5 , no information can be credibly

revealed by A2.6

Finally, when 4
5 < a < 9

5 , A2 has an incentive to reveal some information. To see this, let
a = 1. Then, for any θ ∈ [0, 1

5 ], A2 reveals the state truthfully since her optimal action is within
the domain of available actions (in this case x∗2(

1
5) = 1). But, for any θ > 1

5 , A2 cannot sustain
a truthful messaging strategy since the constraints are binding for A2 (i.e. x2 = 1). Then the
optimal action for A1 is according to its best response function, which is x1 = 3

2 θ − 1
2 . This

6Suppose say a = 2
5 . Then the constraint is binding for all types. A2 can inflate her signal in order to induce

A1 to allocate more. To see this, instead of m(0) = 0, say inflated message is m(0) = 2
5 . Then, A1 best responds by

allocating x∗1 = 2
5 . A2 then contributes x∗2 = 3

5 −
1
5 = 2

5 . That is, by inflating her information the informed agent
induces a higher action from A1 whilst achieving first best. However this incentive to misrepresent means that
messages do not carry credibility in equilibrium. A2 can never credibly reveal any information to A1 and therefore
communication is rendered ineffective.
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(a) a ≥ 9
5
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1

m
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(b) a = 1

Figure 1: When a ≥ 9
5 , the action constraints are not binding for A2, resulting in full information

revelation. On the other hand, when a ∈ (4
5 , 9

5) there is only partial revelation of information.
Specifically, for all states above 1

5 , the agent A2 pools and sends a message m = 1.

cannot be an equilibrium since A2 gets a payoff of U2 = −
(

1+ 1
2 (

3
2 .θ− 1

2 )
3
2

− θ − 2
5

)2

6= 0 where

1+ 1
2 (

3
2 .θ− 1

2 )
3
2

< θ + 2
5 for m = θ > 1

5 . This implies there is under-allocation from A2’s perspective
if it reveals the truth. Therefore, A2 has an incentive to exaggerate its information in order to
induce the other agent to play a higher action. This precludes separation beyond θ = 1

5 .
In fact, all types above this cutoff must pool and send the highest message, m = 1. This

is primarily because the signals are (imperfectly) invertible in this environment. For instance,
when θ = 2

5 , A2 would want to exaggerate and send a message of at least m ≥ 3
5 , since

this would ensure that her action constraints are not binding. Now suppose say A2 sends
m = 3

5 . This message could possibly come from any of the types θ ∈ (1
5 , 2

5 ], each of whom
have incentives to deviate and send m = 3

5 . Hence, A1 can invert the message and form beliefs
accordingly.7 But if this were the case, every type in the interval (1

5 , 1] would find it profitable to
exaggerate even further. Therefore, there is at most a partially revealing equilibrium in which
A2 is truthful (separates) in the range θ ∈ [0, 1

5 ] and pools for θ ∈ (1
5 , 1] by sending the highest

possible inflated message, m = 1.
The example suggests a novel trade-off for information transmission with substitutability and

7Partition equilibria of the kind developed by CS are also ruled out on the interval ( 1
5 , 1]. The incentive to

exaggerate ensures that if there are two partitions, say, the high types in the lower partition would find it profitable
to deviate to the higher partition, precluding the existence of an indifference type in the first place.
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action constraints. The ability to truthfully reveal information depends on the actions available
to the informed player. The informed agent A2 is able to provide more information as the action
set available to her is bigger. For the same reasons, when constraints are binding, there is an
incentive to inflate private information and extract more actions from the uninformed agent
A1.

3 The Model

Consider a joint project between two agents, an uninformed agent A1 and an informed agent
A2. The payoff from the project is dependent on state θ ∈ [0, 1] and the actions taken by both
agents. The state θ is distributed according to a cdf F(.) and a corresponding density f (.) with
full support. Agent A2 receives a perfectly observable private signal about the state θ. The set
of possible actions available to the agents is constrained and given by xi ∈ V ⊆ R, where the
set V is closed and compact.

Each agent’s utility is given by U(φi(xi, x−i), θ, bi), where φi(.) is the agent-specific (sym-
metric) joint action function (henceforth coordination function). The coordination function φi(.)
depends on agent i’s action xi, as well as the action of the other agent, x−i. The function is
represented by a mapping φi : V ×V → Z ⊂ R. The bias parameter bi measures the conflict of
interest between the two agents. This captures the extent to which the goals of the agents differ
according to the needs of the project.

The standard assumptions on the utility function of players hold. Specifically, U : V2 ×
[0, 1]×R→ R is twice continuously differentiable, U11(.) < 0, U12(.) > 0, and U13(.) > 0 such
that U has a unique maxima for any given pair (θ, bi). The utility functions satisfy the condition
∂2U
∂xixj

< 0, implying that actions of the two agents are substitutable. For sake of exposition, let
the bias of the uninformed agent be normalized to b1 = 0 and that of the informed to b2 = b > 0.
Let φ̄1

θ ≡ arg max
φ1

U
(
φ1, θ

)
and φ̄2

θ ≡ arg max
φ2

U
(
φ2, θ, b

)
be the first best levels of joint actions

for the two agents respectively, for a given θ.
Finally, I make the following assumptions on the functional form of the coordination func-

tion of the agents:

Assumption 1 Increasing marginal contribution: ∂φi(.)
∂xi

> 0

Assumption 2 Positive spillover: ∀i, j 6= i : ∂φi(.)
∂xj

> 0

Assumption 3 Imperfect substitutability: ∀i, j 6= i :

(
∂φi
∂xi

)
(

∂φi
∂xj

) > 1
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Assumption 1 ensures that the function is strictly increasing in each agent’s own action,
while the second assumption ensures the same with respect to the other agent’s action. As-
sumption 3 implies that the marginal contribution effect dominates the spillover effect. Further, it
rules out perfectly substitutable actions.8

Timing - Simultaneous Decision-Making with no Commitment:

Following Kartik (2009), let M =
⋃

θ Mθ be a Borel space of messages available to A2 such that
∀θ, θ

′ ∈ [0, 1] : Mθ
⋂

Mθ
′ = ∅. The “Simultaneous Protocol” proceeds in two stages.

• In the first stage, A2 observes the true state θ ∈ [0, 1] and sends a message m ∈ M to
A1. Let this messaging strategy be defined by a mapping µ : [0, 1] → M and the message
m = µ(θ).

• In the second stage, both agents simultaneously take actions α1 : M → V and α2 : [0, 1]×
M→ V.

Equilibrium

An equilibrium of the simultaneous protocol game is a Perfect Bayesian Equilibrium in pure
strategies that satisfies the following properties:

• A1 and A2 simultaneously choose actions (x∗1(m), x∗2(θ, m)) that maximizes their expected
utility according to the optimization problem:

x∗1(m) ≡ arg max
x1∈V

Eθ|m

[
U
(

φ1(x1, x∗2(θ, m)), θ
)]

subject to x1 ∈ V (1)

x∗2(θ, m) ≡ arg max
x2∈V

[
U
(

φ2(x2, x∗1(m)), θ, b
)]

subject to x2 ∈ V (2)

• the coordination function maximizes each players’ expected utility conditional on their in-
formation, ie, φ1∗(x∗1(m), x∗2(θ, m)) ≡ arg maxφ1 U

(
φ1(x1, x2), θ

)
and φ2∗(x∗2(θ, m), x∗1(m)) ≡

arg maxφ2 U
(
φ2(x2, x1), θ, b

)
• the posterior beliefs, given by a cdf P(θ | m), are updated using Bayes’ rule whenever

possible, given the messaging rule µ∗(θ)

8When actions are perfect substitutes, notice that there is no interior equilibrium in the action stage. Take the
example presented in Section 2 and substitute η = 1. The best responses are such that there exists only corner
solutions in which the informed agent takes the highest action and the uninformed one, the lowest one possible.
For this reason, I focus on imperfect substitutability of actions.
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• given the beliefs and second stage actions x1(m) and x2(θ, m), A2 chooses a messaging
strategy that maximizes expected payoff in the first stage,

µ∗(θ) ∈ arg max
m∈M

EP(.|m)

[
U
(

φ2(x2(θ, m), x1(m)), θ, b
)]

A PBE always exists in games with cheap talk. This is a babbling equilibrium in which
the agent A2’s message is ignored and A1 takes an action based on the prior distribution of
the state. In this paper, I try to identify conditions under which more informative equilibria
emerge.

4 Full Information Revelation

When can the two agents share information efficiently? In other words, can all the private
information held by A2 be completely revealed to A1, meaning µ(θ) = θ for all θ ∈ [0, 1].
To see if a fully revealing equilibrium exists, it is important to understand the incentives of
the informed agent A2. For truthful messaging to be an equilibrium, A2 must achieve first
best for every possible state θ. Since A2 is constrained, the bounds on her action set given by
inf V = k and sup V = k̄ directly affects A2’s ability to achieve first best. Therefore, the domain
of available actions V acts as an incentive compatibility constraint for truth-telling.

Given this intuition, it is convenient to reformulate the second stage problem when A2 has
an unrestricted action domain to choose from. The following definition does precisely that.

Definition 1 Unconstrained Allocation: Let x̄2(θ, m) be the optimal action of A2 when i) x2 ∈ R;
and ii) message m is believed by A1 to be the true state.

x̃2(θ, m) solves max
x2∈R

U
(

φ2(x2, x̄1(m)), θ, b
)

subject to

x̄1(m) ≡ arg max
x1∈V

U
(

φ1(x1, x̄2(θ, m)), m
)

Further, when communication is truthful (m = θ), let the optimal action of players under the uncon-
strained optimization problem be x̄1(θ) and x̄2(θ) = x̄2(θ, θ).

Assumption 4 k ≤ x̄2(0) ≤ k̄

Definition 1 does not necessarily prescribe the action of A2 in equilibrium. Instead, x̄2(θ, m)

allows us to intuitively characterize the response of an informed agent when the message mis-
represents the true state but is believed to be true by a naive A1 (Kartik, Ottaviani, and Squin-
tani, 2007; Ottaviani and Squintani, 2006). Assumption 4 ensures trivial outcomes are ruled
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out, i.e the case where no information is revealed credibly.9 Finally, the following definition
helps characterize the full information revelation equilibrium.

Definition 2 Highest type incentive compatibility (HTIC)10 : x̄2(1) ≤ k̄

Definition 2 implies that the best response of A2 after truthfully communicating the highest
state θ = 1 is within the domain of feasible actions. When HTIC is satisfied, it also implies that
x̄2(θ) ≤ k̄ for every θ < 1.

Proposition 1 A full information revelation equilibrium exists if and only if HTIC condition is satisfied.

Proof. See Appendix A.1
The HTIC condition ensures that the action constraints are never binding for A2 under

truthful revelation. This implies the informed agent can reveal her information and achieve full
efficiency such that x∗2(θ) = x̄2(θ) for all θ ∈ [0, 1]. Despite the soft nature of information, there
is full information transmission.

5 Partial Information Revelation

This section focuses on equilibria that emerge in the presence of binding constraints on the
agents. The following assumption ensures an intuitive characterization of informative equilib-
ria.

Assumption 5 k ≤ x̄2(0, 1) ≤ k̄

Assumption 5 ensures any exaggeration by A2
11 would induce an action that is within the

bounds of the action constraints. This is useful is ruling out non-trivial cases and helps focus
on the efficiency properties of informative communication equilibria.

The starting point of the analysis is to formulate the informed agent’s incentive to mis-
represent her information. This happens precisely when there exists states for which truthful
communication can never be credible. Observe that when HTIC condition fails, then there must
exist a cutoff θ̄ such that x̄2(θ̄) = k̄. Let G = {θ : x̄2(θ) > k̄} be the set of states for which truth-
ful revelation results in the constraint being binding on A2. The cutoff state θ̄ = sup{[0, 1]\G}

9 x̄2(0) ≤ k̄ provides an intuitive condition for any information transmission with action substitutability. When
this fails, no information can be credibly revealed since A1 always believes that A2 is exaggerating its private
information.

10HTIC is not related to the No incentive to separate (NITS) condition proposed by Chen, Kartik, and Sobel (2008).
11Note that this is a stronger version of assumption 4, which ensures feasibility of truthful communication for

only the lowest type information.
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therefore provides an upper bound on the extent of truthful communication. In other words,
for any state θ > θ̄, truthful reporting by A2 (m = θ) results in under-allocation (miscoordina-
tion). As a consequence, A2 would find it profitable to misreport (m > θ) and induce A1 to
allocate more in order to reduce this inefficiency from miscoordination. As a result, none of the
messages beyond θ̄ are credible in any equilibria of the communication game.12

Lemma 1 When HTIC is violated, all types in set G pool on the same message in every equilibrium of
the communication game.

Proof. See Appendix A.2
The intuition behind Lemma 1 is the following. Suppose it was possible for A2 to partition

the set G into two - G1 = (θ̄, θ̄g] and G2 = (θ̄g, 1]. Then, there are always types that are pooled in
the first partition for whom A2’s optimal action is constrained by the bound k̄. This implies that
for some types in G1, A2 would have an incentive to exaggerate and pool with the higher types
in G2, precluding the possibility of such a partition in equilibrium. Therefore, in the presence
of constraints, two things hold: i) at most, there is only partial revelation of information; and
ii) no credible information is conveyed beyond θ̄. The next proposition characterizes the set of
all partially revealing threshold equilibria.

Proposition 2 Under assumptions 1-5, when HTIC is violated, there are Partially Revealing Threshold
Equilibria (PRTE) such that, ∀θ∗ ∈ [0, θ̄]: m = θ if θ ∈ [0, θ∗] and m = 1 if θ ∈ (θ∗, 1].

Proof. See Appendix A.3
Two things stand out from Proposition 2. First, it suggests that inflated messaging occurs

only above a certain cutoff state, while every message within the cutoff is truthful.13 Second,
A2 could possibly choose how much information to reveal in equilibrium. Though the PRTE
θ∗ = θ̄ is the most informative equilibrium, it does not necessarily restrict them from providing less
information to A1. The θ̄ equilibrium provides a lower bound on the communication barrier.
In contrast, the pure babbling equilibrium of the game (where θ∗ = 0) represents the one with
the most communication barrier in which there is complete breakdown of information sharing
between the agents.

12This resembles the credibility notion of self-signaling, identified by Aumann (1990), and Farrell and Rabin
(1996). When the unconstrained action is above the bound, it implies that the action constraints are binding, and
the equilibrium actions is x∗2(θ) = k̄. Given imperfect substitutability, the informed agent’s action has a positive
spillover implying that U1(φ

2∗(k̄, x∗1(θ)), θ, b) > 0. This ’positive spillover effect’ implies that communication ceases
to be credible, since A2 (strictly) prefers to induce a higher action from A1, by inflating her private information.
See Baliga and Morris (2002) for more on this point.

13On a similar vein, Ottaviani and Squintani (2006) construct a cutoff equilibrium in which messages are reveal-
ing (albeit inflated) below the threshold, and for states above the cutoff, information transmission is partitional in
nature. See also Kartik (2009) in which the exaggeration in communication is driven by lying costs.
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In fact, the informed agent could choose to partition the information within the interval
[0, θ̄), instead of revealing them truthfully. This is so because, under any PRTE, the constraints
are satisfied with slack for any type in this interval. As a result, there is always a possibility
to pool any type θ ∈ [0, θ̄) with lower types within the interval such that the incentive com-
patibility conditions are satisfied. This gives rise to possibly multiple discontinuous partitions
(Bernheim and Severinov (2003)).14 The following proposition characterizes all such hybrid
equilibria.

Proposition 3 Hybrid equilibria: Fix a PRTE with threshold θ∗ < θ̄. For every such θ∗ equilibrium,
there exists partitions in the separating interval [0, θ∗] such that A2 pools some types and separates on
other types.

Proof. Appendix A.4
The intuition for the existence of hybrid equilibria is straightforward. The only incentive

constraint that requires to be satisfied to sustain pooling of types within the interval is that the
marginal type has no incentive to deviate. This is equivalent to requiring that the IC condition
—action constraints not binding— is satisfied for the highest type within the pooling interval.
However, for any type θ < θ̄, it is true that x2(θ) < k̄. From the continuity property of φ2 and
U(.) there is always a δ > 0 such that instead of revealing m = θ, if A2 sends a pooling message
mpool = (θ − δ, θ], the optimal action for agent A2 is such that the constraints are not binding,
i.e. x̄2(θ, mpool) ≤ k̄.

6 Efficiency

As is the case with cheap talk models, there is a multiplicity of equilibria in this setup. An
important question that arises is the relationship between information and welfare of agents, or
alternatively, the extent of communication barriers and efficiency. To understand the efficiency
properties of equilibria, it is necessary to pin down the response of A1 to a pooling message by
A2 under any threshold equilibrium θ∗. The following lemma characterizes this.

Lemma 2 For any information threshold θ∗, agent A1’s equilibrium action on receiving the message
mθ∗

pool = (θ∗, 1] is given by xsim
1 (mθ∗

pool) that solves,

arg max
x1∈V

θ∗sim∫
θ∗

U(φ1(x1, x∗2(t, mθ∗
pool)), t)dP(t | mθ∗

pool) +

1∫
θ∗sim

U(φ1(x1, k̄), t)dP(t | mθ∗
pool)

14Notice however that in all such equilibria, the types belonging to G = (θ̄, 1] are always pooled together.
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θ0 θ∗ 1

x1

xsim
1

x∗2 < k̄

x∗2 = k̄

θ∗sim

(a) A1’s action under θ∗ < θ̄

θ0 θ̄ 1

x1

xsim
1

x∗2 < k̄

x∗2 = k̄

θ̄sim

(b) A1’s action under θ̄

θ0 θ∗ 1

k̄

x2

θ∗sim

(c) A2’s action under θ∗ < θ̄

θ0 θ̄ 1

k̄

x2

θ̄sim

(d) A2’s action under θ̄

Figure 2: i) interval of separation: m(θ) = θ; ii) interval of pooling: mpool = 1

Proof. See Appendix A.5
The above lemma states that the best-response of A1 to a pooling message entails an im-

portant trade off. Specifically, A1’s action is such A2’s action is always binding for some
types within the pooling interval, i.e. there exists a measure of types (θ∗, θ∗sim] such that
∀θ ∈ (θ∗, θ∗sim] : x∗2(θ, mθ∗

pool) ≤ k̄ and for all other types (θ∗sim, 1], x∗2(θ, mθ∗
pool) = k̄.

Figure 2 illustrates this point. Notice that there is non-monotonicity in A2’s action at θ∗

because of the discontinuous jump in A1’s response upon receiving the pooling message. Since
A1’s action has a discontinuity at θ∗, the informed agent is able to readjust her actions to
achieve first best. Further, since A1’s action is not high enough, there is always an interval of
types —(θ∗sim, 1] —for which the constraint is binding for A2.

Lemma 2 clearly illustrates the benefit for the informed agent from revealing more infor-
mation. First, it maximizes welfare on the interval [0, θ∗sim]. Second, as θ∗ increases, A1’s action
xsim

1 = x∗1(m
θ∗
pool) also increases on the pooling interval. This further implies that on the interval

(θ∗sim, 1], extracting a higher action from A1 is welfare improving for the informed agent, given
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θ0 θ1 1

x1

xsim
1

i) [0, θ1] : m(θ) = θ

ii) (θ1, 1] : m1
pool = 1

x∗2 < k̄

x∗2 = k̄

θ1
sim

θ0 θ2 1

x1

xsim
1

i) [0, θ2] : m(θ) = θ

ii) (θ2, 1] : m2
pool = 1

x∗2 < k̄

x∗2 = k̄

θ2
sim

Figure 3: a) θ1 < θ2; b) θ1
sim < θ2

sim; c) xsim
1 (m1

pool) < xsim
1 (m2

pool)

the positive spillover effect.

Proposition 4 The most informative equilibrium, θ∗ = θ̄, is ex-ante efficient for both agents.

Proof. See Appendix A.6

Both agents benefit from more information sharing. In other words, the more severe com-
munication barriers are, greater the welfare inefficiencies for the agents. A greater threshold
of information means the constraints on the action set is not binding (increases efficiency) for
a greater measure of types for A2 and also entails a higher action from the A1 on the pooling
interval. Both of these effects provide A2 with a greater ex-ante welfare. Figure 3 shows these
trade offs. On the left, under a less informative threshold, A1’s action is lower on the pooling
interval and this directly affects the informed agent’s ability to achieve first best.

7 Sequential Protocol

Given the partial revelation of information in the presence of binding constraints, there is an
efficiency loss for the two agents. In particular, the most informative equilibrium entails welfare
losses for the agents. In this section, I study sequential decision-making under which the
uninformed agent A1 moves first and takes a decision after the communication round.

The sequential protocol proceeds as follows:

• A2 observes the true state θ ∈ [0, 1], sends a message m ∈ M to A1 such that µ : [0, 1]→ M
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• A1 observes the message m and commits to an action, which is a decision mapping from
the message set to the action set, α1 : M→ V.

• Finally, A2 observes the actions of A1 and decides on an action α2 : [0, 1]×V → V

Notice the critical difference in this protocol. By moving first, the uninformed agent pro-
vides an additional layer of information to A2. The presence of constraints implies that despite
such sequential decisions, A2 is unable to credibly convey the true state beyond the θ̄ thresh-
old. This is driven by the earlier observations under simultaneous protocol. The following
proposition lays out this result.

Proposition 5 Every PRTE under simultaneous protocol is also an equilibrium under sequential proto-
col.

Proof. See Appendix A.7

Given a set of actions, under the most informative threshold equilibrium θ̄,15 the sequential
protocol provides the same (ex-ante) welfare to the agents on the interval [0, θ̄) compared to
the case of simultaneous actions. The crucial difference between the two protocols arises on the
uninformative domain of the state space, when the communication barrier is reached. Since A1

takes an action before A2 after the message mpool = (θ̄, 1], the equilibrium action under simply
solves the following:

xpa
1 = xpa

1 (mpool) ≡ arg max
x1∈V

θ̄pa∫
θ̄

U
(

φ1 (x1, xpa
2 (t, x1)

)
, t
)

dF +

1∫
θ̄pa

U
(

φ1 (x1, k̄
)

, t
)

dF (3)

When A2 observes A1’s action, there is an additional undoing effect ( dx1
dx2

< 0) in that A2 can
adjust its action depending on the actions of A1. This undoing effect implies that A1 takes a
higher action on the pooling interval compared to the .

Lemma 3 xpa
1 > xsim

1

For agent A2, the welfare improvement under sequential decisions directly follows from
Lemma 3. Specifically, A2’s constraint is now binding for a smaller interval of types [θ̄pa, 1] (see
Figure 4). However, over this interval since xpa

1 > xsim
1 and U1 > 0, the expected utility for

15Given the efficiency properties of equilibria, I will henceforth compare the welfare outcomes under only the
most informative equilibrium across protocols.
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θ0 θ̄ 1

x1

xpa
1

xsim
1

x∗2 < k̄ x∗2 = k̄

x∗2 < k̄ x∗2 = k̄

θ̄pa

θ̄sim

Figure 4: i) [0, θ̄] : interval of separation; ii) (θ̄, 1] : interval of pooling

A2 is greater under ex-post commitment. For the uninformed agent A1, the reason is intuitive.
Suppose under sequential protocol A1 contributes xsim

1 + ε on the pooling interval. A2 observes
this action and readjusts her own action downwards. This readjustment is akin to the undoing
effect, and it mitigates the extent of miscoordination from over-allocation for A1, resulting in
increased welfare.

Proposition 6 Sequential Protocol provides a higher ex-ante welfare to both agents compared to Simul-
taneous Protocol.

Proof. See Appendix A.8

8 Optimal Commitment

Making the uninformed agent the Stackelberg leader improved overall joint welfare for the
agents. However, there is still a source of inefficiency under sequential protocol on the pooling
interval. Specifically, there is a discontinuous jump in A1’s action at θ̄ (see Figure 2(b)). Corre-
spondingly, A2’s action is also non-monotonic (see Figure 2(d)). A1 fails to extract maximum
possible action k̄ from A2 on the pooling interval. As a result, A1 is over-allocating in order to
satisfy agent A2’s first best φ̄2

θ on the interval (θ̄, θ̄pa].16

By instead committing to an ex-ante action rule, A1 can mitigate some of this inefficiency.
The commitment rule is equivalent to A1 choosing an ex-ante action that is contingent on the

16For similar arguments, the same miscoordination concerns are valid under the simultaneous protocol.
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information communicated by A2. The optimal commitment rule problem for A1 is given by
the following:

argmax
x f a

R (θ)∈V

1∫
0

U
(

φ1
(

x f a
1 (θ), x f a

2 (θ, x f a
1 (θ))

)
, θ
)

dF such that ∀θ
′
, θ
′′ ∈ [0, 1] :

U
(

φ2
(

x f a
2 (θ

′
, x f a

1 (θ
′
)), x f a

1 (θ
′
)
)

, θ
′
, b
)
≥ U

(
φ2
(

x f a
2 (θ

′
, x f a

1 (θ
′′
)), x f a

1 (θ
′′
)
)

, θ
′
, b
)

x f a
2 (θ, x f a

1 (θ)) ≡ argmax
x2∈V

U
(

φ2(x2, x f a
1 (θ)), θ, b

)
The problem for agent A1 boils down to choosing a sequence of actions for every state

θ ∈ [0, 1] such that it maximizes the agent’s overall expected utility conditional on the IC
constraint that ensures truthful revelation for all types of A2’s private information. From the
Revelation Principle, if A1 mimics the actions under sequential protocol, it can guarantee at least
as much welfare. Such a mimicking strategy would be incentive compatible on the separating
interval since A2 achieves first best. Similarly, on the pooling interval, A2 cannot do any better
than merely revealing its private information as the action rule of A1 remains fixed at xpa

1 .
However, instead of committing to a fixed action on the pooling interval, A1 can instead

commit to a message contingent action rule x f a
1 (θ) for every θ ∈ [0, 1]. The following series of

claims must be valid for the commitment mechanism to be optimal for A1.

Claim 1 On the separating interval, the commitment rule mirrors the simultaneous protocol, i.e., ∀θ ∈
[0, θ̄] : x f a

1 (θ) = x̄1(θ).

This follows directly from noting that both agents achieve first best joint action φ̄i
θ on this

interval. To see this, the best response of A2 to x̄1(θ) is x̄2(θ). Further, the pair of actions
(x̄2(θ), x̄1(θ)) is an unique maxima and therefore is incentive compatible for A2.

Claim 2 On the pooling interval there is no single flat segment such that ∀θ ∈ mpool : x f a
1 (θ) = z ≥

x̄1(θ̄).

Suppose x f a
1 (θ) = x̄1(θ̄). Then ∀θ ∈ mpool : x2(θ) = k̄. This cannot be optimal since

A1 can always do better by committing a bit more and satisfying A2’s IC. Instead, suppose
x f a

1 (θ) = z > x̄1(θ̄). Say, for the sake of argument that z = xpa
1 , i.e. A1 mimics the action under

sequential protocol. This again cannot be optimal since agent A2’s action is less than k̄ on the
interval (θ̄, θ̄pa). A1 can instead always allocate lesser to the project and induce A2 to contribute
k̄. Given the imperfect substitutability of actions, this increases the expected payoff of agent A1

by minimizing miscoordination (from over-allocation) on the pooling interval.
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Claim 3 If x f a
1 (θ) is strictly increasing on any interval (θ1, θ2) within mpool, then A2 must allocate k̄

for all types in this interval.

Claim 3 follows from previous arguments. Again, there are a number of different ways
in which A2’s IC can be satisfied on the increasing interval, i.e. multiple pairs (x1, x2) satisfy
∀θ ∈ (θ1, θ2) : φ2(x2, x1) = φ̄2

θ . However, of all these pairs that satisfy first best for A2, the
one that minimizes A1’s miscoordination loss is the one in which A2 contributes x2 = k̄. If
this weren’t true, A1 could increase its welfare by decreasing her actions and inducing a higher
action from A2.

Claim 4 On mpool, there cannot be a flat segment followed by a strictly increasing interval.

Claim 4 is true since on a flat segment A1’s action is independent of communication. This
implies that either A2’s IC is satisfied for all types in that interval or there is inefficiency for
some types. If it is the former, then A1 can improve its payoff by previous arguments (see
Claim 3) and extracting k̄ from A2. If it is the latter on the other hand, for types that do not
achieve first best, A2 can always deviate to the strictly increasing interval and benefit from
greater actions of A1, thereby violating IC constraint for truth-telling.

Figure 5 illustrates the consequence of Claim 1 - Claim 4. Specifically, A1 instead of com-
mitting to a single flat action on (θ̄, θ̄pa), pivots and provides lesser thereby extracting k̄ from
A2. A2 still achieves first best levels φ̄2

θ while for A1 there is over-allocation resulting in greater
miscoordination. However, the miscoordination is lesser compared to the sequential protocol in
that φ̄1

θ < φ1(x f a
1 (θ), k̄) < φ1(xpa

1 , xpa
2 (θ, xpa

1 )). This implies that miscoordination is minimized
under the commitment rule leading to an increase in expected utility for A1. In light of these
arguments, the commitment problem can be reformulated as the following:

argmax
x f a

1 (θ)∈V

θ̄ f a∫
θ̄

U
(

φ1
(

x f a
1 (θ), k̄

)
, θ
)

dF +

1∫
θ̄ f a

U
(

φ1
(

x f a
1 (θ̄ f a), k̄

)
, θ
)

dF such that

∀θ
′
, θ
′′ ∈ [0, 1] : U

(
φ2
(

k̄, x f a
2 (θ

′
)
)

, θ
′
, b
)
≥ U

(
φ2
(

x f a
2 (θ

′
, x f a

1 (θ
′′
)), x f a

1 (θ
′′
)
)

, θ
′
, b
)

x f a
1 (θ̄c) ≡ argmax

x1∈V
U
(

φ2(k̄, x1), θ, b
)

Two important properties of the optimal commitment rule becomes clear from the above
reformulation. First, there is maximal contribution from A2 on the interval mpool. Second, A1

caps actions at θ̄ f a by allocating up to x f a
1 (θ̄ f a) but no more on the interval (θ̄ f a, 1].

Proposition 7 The optimal action rule for A1 is given by the following:
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θ0 θ̄ 1

x1

xpa
1

x f a
2 = k̄

xpa
2 < k̄

θ̄pa

(a) A1’s action

θ0 θ̄ 1

x2

x f a
2 = k̄

φ2 = φ̄2
θ

θ̄pa

(b) A2’s action

Figure 5: A1 can commit to an action that is strictly lower than xpa
1 on the interval (θ̄, θ̄pa).

Notice this is possible since A2 can always increase its action to k̄ and achieve first best φ̄2
θ .

1. ∀θ ∈ [0, θ̄] : x f a
1 (θ) = x̄1(θ)

2. ∀θ ∈ (θ̄, θ̄ f a] : x f a
1 (θ) ≡ arg max

x1
U(φ2(k̄, x1), θ, b)

3. ∀θ ∈ (θ̄ f a, 1] : x f a
1 (θ) = x f a

1 (θ̄ f a)

Proof. See Appendix A.9
The optimal action rule mimics the sequential (simultaneous) protocol on the separating

interval [0, θ̄]. On the pooling interval, the rule provides the first best levels of coordination
function for A2 up to some (higher) threshold θ̄ f a and then is unchanged beyond. The optimal
rule exhibits two key features. First, it is discontinuous at exactly θ̄ and nowhere else. Second,
on the interval (θ̄, θ̄ f a] where A1’s actions are strictly increasing, agent A2’s action is constant
and fixed at k̄. That is, out of all possible incentive compatible commitment rules the one that
maximizes A1’s expected utility is the one that induces the highest action from A2.17

Proposition 8 The optimal commitment rule improves ex-ante welfare of both agents compared to the
case of sequential protocol.

Proof. See Appendix A.10
The intuition is the following. Notice that A1’s commitment problem is equivalent to choos-

ing a cutoff threshold θ̄ f a up to which there is strictly increasing actions. In other words, agent
A1’s problem is equivalent to choosing a cutoff θ̄ f a and a corresponding cap on contributions

x f a
2 (θ̄ f a) such that A2 takes the maximal action k̄ and achieves first best up to θ̄ f a. Suppose A1

17That is, ∀θ ∈ (θ̄, θ̄ f a], φ2(k̄, x1) = φ2(k̄− ε, x1 + γ) = φ̄2
θ , implies that U(φ1(x1, k̄), θ) > U(φ1(x1 + γ, k̄− ε), θ).
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pa > φ̄1

θ
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(a) A1 action under sequential protocol

θ0 θ̄ 1

k̄

x2

FB

θ̄pa

(b) A2 action under sequential protocol

θ0 θ̄ 1

x1

xpa
1

x f a
2 = k̄

φ1
pa > φ1

f a > φ̄1
θ

θ̄pa

(c) A1 action under commitment rule

θ0 θ̄ 1

x2

k̄
FB

θ̄pa

(d) A2 action under commitment rule

Figure 6: Under the ex ante commitment, A1 can pivot and induce k̄ from A2 (see 6(b),6(d)).
This way, the miscoordination loss is mitigated for A1 (6(c)).

mimics the sequential protocol actions (see Figure 6) on the separating interval and chooses the
cutoff θ̄pa and a cap x f a

1 (θ̄pa) = xpa
1 (θ̄pa) = xpa

1 such that it satisfies maximal action on (θ̄, θ̄pa]

(meaning x f a
2 (θ) = k̄ on this interval).

Since A1 induces A2 to contribute k̄, and commits to taking the residual action required
to satisfy her IC constraint (Figure 6(d)), the marginal utility for A2 is strictly increasing at
(θ̄pa, x f a

1 (θ̄pa)). This implies that the threshold is greater than θ̄pa, and ipso facto, the cap on
contributions with commitment is also higher. That is, θ̄ f a > θ̄pa and x f a

1 (θ̄ f a) > x f a
1 (θ̄pa) (see

Figure 7). For A2, as argued previously, welfare is strictly increasing in the cutoff threshold
and therefore the optimal commitment rule is welfare improving since A2 achieves first best on
[0, θ̄ f a] and on the interval (θ̄ f a, 1], the cap under the commitment rule is greater than under
sequential decision-making.
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θ0 θ̄ 1

x1

xpa
1

x f a
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xpa
2 < k̄
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2 = k̄
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Figure 7: The optimal mechanism exhibits two key features. On the interval (θ̄, 1], there is
maximal contribution from A2 (x f a

2 = k̄). Further, A1 places a cap on actions given by x f a
1 (θ̄ f a).

Extensions

Lying costs

The equilibrium in both protocols exhibits some level of lying by the informed agent. Exper-
imental evidence suggests that there is an intrinsic propensity to say the truth even when the
information conveyed is soft (Gneezy, 2005; Hurkens and Kartik, 2009), suggesting an aver-
sion to lying. In international alliances, misrepresentation of information by a national leader
could lead to distrust and reputational loss, especially when it is possible for the uninformed
members to learn about the true state of the world ex-post.

Introducing lying costs changes the incentives of the informed agent drastically. Suppose,
for sake of exposition, lying costs are minimized when the messages are truthful (i.e. µ(θ) = θ).
Then, the presence of lying costs eliminates all but the most informative equilibrium under
both simultaneous and sequential protocols. The intuition is that there is now a lying cost
associated with wrongful reporting for no marginal benefit in utility. (On the interval [0, θ̄],
U1
(
φ2(x2(θ, θ), x1(θ)), θ, b

)
= 0 implying that truthful reporting is indeed a solution.) That is,

by lying, A2 does no better than under truthful reporting but incurs a wasteful cost by pooling
with the other types and sending m̃ = 1. This implies that there is an unique separating
equilibrium on [0, θ̄] such that µ(θ) = θ.

What is left to consider is the equilibrium messaging on the pooling interval, mpool = (θ̄, 1].
One way to interpret my results is by considering them as the limit case of a game with lying
costs. As the intensity of lying costs goes to zero, the equilibrium messaging is truthful on [0, θ̄]
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and all other types send the message m = 1. Specifically, when the intensity of lying is very
small, there is an incentive to (almost) costlessly exaggerate information beyond θ̄, resulting
in the maximally exaggerated message at the limit, lim

θ↓θ̄
µ(θ) = 1. On the other hand, when

the lying costs are sufficiently high, there is full separation as the incentives to exaggerate are
counteracted by the lying costs.

The interesting case is when the lying costs are sufficiently high but not prohibitively so. It
is then possible for alternate equilibrium messaging strategies to emerge. For example, agent
A2 could bunch state space and send the same (possibly inflated) message for every type in this
partition, resulting in clustering of A2’s private information (Chen, 2011) on the interval mpool.
In this case the intensity of the cost parameter, the bias and degree of substitutability would
together determine the indifference condition that characterizes such a clustering equilibria.18

Verifiable Information Disclosure

So far, the analysis has focused mainly on transmission of soft information. In many projects
the nature of information is verifiable (Grossman (1981); Milgrom (1981)). The informed agent
can provide verifiable information about project quality, for example. Alternatively, the project
contract might specify evidence provision as a requirement. When information can be veri-
fied, the incentives for communication change completely. There is unraveling in the sense
that A2 would always find it optimal to reveal every state truthfully, leading to full informa-
tion transmission even in the presence of action constraints. This is straightforward to ob-
serve. On the pooling interval, for the highest state θ = 1, A2 is better off revealing. This
way, x1(1) > x1(mpool) and since there are under-allocation concerns for A2 on this interval
(U1(φ

2(k̄, x1(mpool)), 1, b) > 0), it follows that revealing the highest state by providing verifiable
evidence improves the agent’s utility. However, this argument holds for all states below as well
and there is complete unraveling.

9 Conclusion

The paper investigates the role of communication and commitment when there are (one-sided)
information asymmetries between agents. When agents’ decisions are substitutable and they
face action constraints, under simultaneous decision-making protocol, there is only partial in-
formation revelation (communication barriers) in equilibrium. There is a positive relationship

18Chen (2011) finds clustering and inflated messaging in a completely different setup. In Chen’s work, there is a
small prior probability that an informed sender is honest (always reports truthfully) and the uninformed receiver
is naive (always believes the message). This leads to message inflation and clustering at the top end of the message
spectrum.
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between amount of information revealed and efficiency, in that welfare of both agents are
strictly increasing in the extent of information shared. With sequential decision making, the to-
tal amount of information conveyed remains unchanged but the two agents’ welfare improves.

With ex-ante commitments, the uninformed agent commits to minimizing the mis-coordination
losses up to a threshold and also caps actions beyond this threshold of information. The optimal
commitment mechanism increases the payoff to both agents compared to the other protocols.
The analysis provides an informational and efficiency rationale for the use of binding commit-
ments in international alliances.

There are potentially other incentive problems associated with the presence of constraints
that are worth exploring. For example, when there is two sided incomplete information, con-
straints might exacerbate the communication barriers between agents. In fact, as information
is more dispersed, the inefficiencies emerging from constraints might worsen leading to de-
creased welfare. Alternatively, when players instead have a coordination motive with strategic
complementarity in actions, constraints might still play a similar role in constraining the cred-
ibility of information. Another avenue for future research is to endogenize the investment in
the action set. Though constraints were assumed to be exogenous in this paper, it could very
well be that agents invest in actions ex-ante at some marginal cost. SInce the domain of actions
available to each player determines the extent of information revealed, this investment decision
might differ according to what the underlying decision-making protocol is. All such scenarios
require a more detailed analysis, and are left for future work.
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A Appendix

A.1 Proof of Proposition 1

Sufficiency

Let φ̄2
θ = φ2(x̄2(θ), x̄1(θ)) be the first best levels of contribution for A2 when the state is θ.

When HTIC condition is satisfied, it implies that for every other θ ∈ [0, 1), x̄2(θ) < k̄ by single
crossing property of the utility function (U12 > 0). But if this is the case, when A2 sends
a truthful message m = θ, the optimal action under both constrained and unconstrained (no
action constraints) optimization coincide remains the same. This means that for every θ ∈ [0, 1],
x∗2(θ) = x̄2(θ). Since A1 does not face any constraints, it also implies that x∗1(θ) = x̄1(θ) and
φ̄2

θ = φ2(x∗2(θ), x∗1(θ)). This ensures there is no inefficiency and A2 always achieves first best
levels of coordination function for every θ. Hence, there exists an equilibrium in which there is
full information revelation.

Necessity

Suppose HTIC is violated (x̄2(1) > k̄) but there is full information revelation by A2. Then,
by definition, there exists a non-empty set G = {θ : x̄2(θ) > k̄}. When HTIC is violated, the
action under unconstrained best response does not coincide with the equilibrium actions that
are bounded by the action constraint, ie ∀θ ∈ G : x∗2(θ) = k̄ < x̄2(θ) under truthful revelation.
Now take a θ

′ ∈ G. If A2 reports θ
′
, the optimal actions are x∗2(θ

′
) = k̄ and x∗1(θ

′
) solves

maxx1∈V U
(

φ1(x1, k̄), θ
′
)

. However, given imperfect substitutability, φ1(x∗1(θ
′
), k̄) < φ2(k̄, x∗1(θ

′
))

< φ2(x̄2(θ
′
), x̄1(θ

′
)) ≡ φ̄2

θ
′ . But, because HTIC is violated, the coordination function under truth-

telling is φ2(k̄, x∗1(θ
′
)) which is clearly not optimal for A2 in the sense that U1

(
φ2(k̄, x∗1(θ

′
)), θ

′
, b
)

> 0. From continuity, there exists an ε such that if A2 deviates and sends a message m = θ
′
+ ε,

it induces equilibrium actions x∗1(θ
′
+ ε) > x∗1(θ

′
) and x∗2(θ

′
, θ
′
+ ε) = k̄. This way A2 can

guarantee a higher payoff since φ2(k̄, x∗1(θ
′
+ ε)) > φ2(k̄, x∗1(θ

′
)) and,

U(φ2(k̄, x∗1(θ
′
+ ε)), θ

′
, b) > U(φ2∗(k̄, x∗1(θ

′
)), θ

′
, b)

However, this means that A2 has an incentive to deviate and send an exaggerated message,
precluding truthful communication. This is a contradiction. QED
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A.2 Proof of Lemma 1

Suppose there exists an equilibrium in messaging strategy such that some types in G = (θ̄, 1]
send a different message from m = 1. Since I consider monotonic equilibria, wlog, ∃θ

′ ∈ G such
that types in (θ̄, θ

′
] send a message m

′
and types in (θ

′
, 1] send a message m

′′
, where m

′
< m

′′
.

Then, from single crossing (U12 > 0) it follows that x∗1(m
′
) ≡ argmax

x1∈V
EθU

(
φ1(x1, x∗2(θ, m

′
)), θ

)
and x∗1(m

′′
) ≡ argmax

x1∈V
EθU

(
φ1(x1, x∗2(θ, m

′′
)), θ

)
are such that x∗1(m

′
) < x∗1(m

′′
). By a similar

argument, x∗1(θ
′
) ≡ argmax

x1∈V
U
(

φ1(x1, x∗2(θ
′
)), θ

′
)

must be such that x∗1(m
′
) > x∗1(θ

′
) > x∗1(m

′′
).

x∗1(θ
′
) is simply A1’s equilibrium action when A2’s message is truthful (i.e. m = θ

′
, p(θ

′ |m) = 1).

But if this were the case, at m = θ
′
, x̃2(θ

′
) > k̄ =⇒ x∗2(θ

′
) = k̄. Further, for A2 the utility is

increasing at m = θ
′
, i.e. U1

(
φ2(k̄, x∗1(θ

′
)), θ

′
, b
)
> 0. This is driven by Assumption 3, since A1

chooses an action x1 to achieve φ̄1
θ
′ < φ̄2

θ
′ . However, if U1

(
φ2(k̄, x∗1(θ

′
)), θ

′
, b
)
> 0 and U11 < 0,

it implies that the following holds:

U
(

φ2(k̄, x∗1(θ
′
)), θ

′
, b
)
> U

(
φ2(k̄, x∗1(m

′
)), θ

′
, b
)

The payoff to A2 from sending a truthful message at θ
′

is greater than from pooling with some
lower types and sending the message m

′
. Given Assumption 5, it holds that k < x∗2(θ

′
, m

′′
).

A2’s equilibrium action from sending a pooling message m
′′

when the true state is θ
′

is always
within the available domain of actions. But if this were true, there are two possibilities.
If x∗2(θ

′
, m

′′
) = k̄, then it holds that

U
(

φ2(k̄, x∗1(m
′′)), θ

′
, b
)
> U

(
φ2(k̄, x∗1(m

′
)), θ

′
, b
)

If x∗2(θ
′
, m

′′
) < k̄, then φ2(x∗2(θ

′
, m

′′
), x∗1(m

′′)) = φ̄2
θ
′ meaning that A2 achieves first best levels of

the coordination function in which case,

U
(

φ̄2
θ
′ , θ

′
, b
)
> U

(
φ2(k̄, x∗1(m

′
)), θ

′
, b
)

As a result, A2 with private information θ
′

would always deviate and send the higher pooling
message m

′′
. This argument holds for higher partitions and when types in G are pooled with

types in [0, θ̄]. This completes the proof. QED
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A.3 Proof of Proposition 2

Consider the following construction of PRTE for a threshold θ∗:

• If θ ≤ θ∗, m = θ; if θ > θ∗, m = 1.

• If m ≤ θ∗, p(θ | m = θ) = 1; if m = 1, p(θ | m) = f (θ)

• When m ≤ θ∗: x∗2(m) = x̄2(m) and x∗1(m) = x̄1(m)

• When m = 1:

x∗2(θ, m) ≡ arg maxx2∈V U
(
φ2(x2, x∗1(m)), θ, b

)
x∗1(m) ≡ arg maxx1∈V

1∫
θ∗

U
(
φ1(x1, x∗2(θ, m)), θ

)
f (θ)dθ

• When m ∈ (θ∗, 1): p(θ∗|m) = 1.

The first condition says that for all states in [0, θ∗], A2 communicates truthfully, and for any
state above, pools by sending an exaggerated message m = 1. The second condition describes
the formation of posterior beliefs. For any message on [0, θ∗], A1 believes it to be separating and
for messages m = 1, the posterior is just the conditional prior on the state space. The third and
fourth statements indicate the equilibrium actions conditional on the message and posterior
beliefs of A1. The final condition rules out any profitable off-equilibrium path deviations. For
off-equilibrium path messages m ∈ (θ∗, 1), A1 assigns the belief θ = θ∗, that is the deviation
comes from the highest possible truth-telling type.
Then, for an equilibrium with cutoff θ∗ to exist, there should be no profitable deviations for
any type. To check this, consider the types in (0, θ∗] and (θ∗, 1]. For any θ ∈ (0, θ∗], A2

does not have an incentive to deviate from truth telling since it achieves first best levels φ̄2
θ , ie

x∗2(θ) = x̄2(θ) ≤ k̄.
For types θ ∈ (θ∗, 1], the payoff from sending m = 1 is still higher than sending any other
off-equilibrium path message. There are possible two cases to consider.
Case i): x∗2(θ, m) < k̄
In this case, A2 achieves first best in that the agent can do no better than under m = 1.
Case ii): x̄2(θ, m) > k̄
Here, the informed agent is constrained by the bound meaning there is some under-allocation
for A2 (meaning U1 > 0). Notice that x∗1(m) > x∗1(θ

∗) which means that A1’s action is higher
upon receiving the pooling message m = 1 resulting in a discontinuity at θ∗. However, since
φ2

2(k̄, x1) > 0 and U1 > 0 for A2 at the bound, a higher action from A1 reduces the ineffi-
ciency from miscoordination. Given that x∗1(m) > x∗1(θ

∗), it follows that U
(
φ2(k̄, x∗1(m)), θ, b

)
>

U
(
φ2(k̄, x∗1(θ

∗)), θ, b
)

for all such θ. This concludes the proof. QED

28



A.4 Proof of Proposition 3

Take any PRTE with threshold θ∗. I make the following claim.

Claim: ∀θ
′ ∈ (0, θ∗), ∃ ε > 0 : ∀θ ∈ (θ

′ − ε, θ
′
],

U
(

φ2 (x∗2(θ), x∗1(θ)) , θ, b
)
= U

(
φ2
(

x∗2(θ, m(θ′−ε,θ′ ]), x∗1(m(θ′−ε,θ′ ])
)

, θ, b
)

Where the message m(θ′−ε,θ′ ] simply implies that the type is in the interval (θ
′ − ε, θ

′
]. The

claim just states that for any separating type θ
′
, it is possible to find a pooling interval of types

mpool = m(θ′−ε,θ′ ] such that the indifference condition holds for all types within this interval,
i.e. each of the types in the pooling interval is indifferent between the separating message and
the pooling one. The indifference (IC) condition merely requires that A2 is able to achieve φ̄S

θ

which is possible as long as best responses are within the constraints.
To show this, all we need to check for are the indifference conditions of the boundary types
θ
′ − ε and θ

′
,

U
(

φ2
(

x∗2(θ
′
), x∗1(θ

′
)
)

, θ
′
, b
)
= U

(
φ2
(

x∗2(θ
′
, m(θ′−ε,θ′ ]), x∗1(m(θ′−ε,θ′ ])

)
, θ
′
, b
)

U
(

φ2
(

x∗2(θ
′ − ε), x∗1(θ

′ − ε)
)

, θ
′ − ε, b

)
= U

(
φ2
(

x∗2(θ
′ − ε, m(θ′−ε,θ′ ]), x∗1(m(θ′−ε,θ′ ])

)
, θ
′ − ε, b

)
The latter condition follows from noting that any upward deviation is always within the do-
main of available actions (from Assumption 5). That is, x∗1(θ

′ − ε) > x∗1(m(θ′−ε,θ′ ]) from single

crossing (U12 > 0) and x∗2(θ
′ − ε) < x∗2(θ

′ − ε, m(θ′−ε,θ′ ]) due to imperfect substitutability. How-

ever, φ2
(

x∗2(θ
′ − ε), x∗1(θ

′ − ε)
)
= φ2

(
x∗2(θ

′ − ε, m(θ′−ε,θ′ ]), x∗1(m(θ′−ε,θ′ ])
)
= φ̄2

θ
′−ε

meaning that

A2 achieves first best levels of coordination function for the type θ
′ − ε irrespective of whether

the message is a separating or pooling one.
The former condition states that the type θ

′
would pool with lower types and be indiffer-

ent from separating. To see this, notice that x∗2(θ
′
) = k

′
< k̄ under a separating (truthful)

message. By continuity, there must exist a ε-deviation such that the x∗2(θ
′
, m(θ′−ε,θ′ ]) ∈ (k

′
, k̄].

If this were not true, then lim
ε→0

x∗2(θ
′
, m(θ′−ε,θ′ ]) = k

′
< k̄, a contradiction. As before, since

x∗2(θ
′
) < x∗2(θ

′
, m(θ′−ε,θ′ ]) it follows (from Assumption 3 and SC) that x∗1(θ

′
) > x∗1(m(θ′−ε,θ′ ]) but

φ2
(

x∗2(θ
′
), x∗1(θ

′
)
)
= φ2

(
x∗2(θ

′
, m(θ′−ε,θ′ ]), x∗1(m(θ′−ε,θ′ ])

)
= φ̄2

θ
′ . If not, A2 can always increase

actions up to the point where it achieves first best. Therefore, there is always the possibility of
pooling within any PRTE. This completes the proof. QED
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A.5 Proof of Lemma 2

Take a pooling message mpool = (θ∗, 1] associated with the PRTE θ∗. Suppose, A1’s response
x∗1(mpool) is such that ∀θ ∈ (θ∗, 1) : x∗2(θ, mpool) < k̄ and x∗2(1, mpool) = k̄. This means that A2

achieves φ̄S
θ for every type in the interval mpool. Then, evaluating the FOC of the A1 gives,

1∫
θ∗

U1

(
φ1 (x∗1(mpool), x∗2(θ, mpool)

)
, θ
)

φ1
1 f (θ)dθ (4)

When A2 achieves first best, it must be that φ2 (x∗2(θ, mpool), x∗1(mpool)
)
= φ̄2

θ . But this implies
that there is miscoordination for A1 in that φ1 (x∗1(mpool), x∗2(θ, mpool)

)
> φ̄1

θ . This further entails
that U1

(
φ1 (x∗1(mpool), x∗2(θ, mpool)

)
, θ
)
< 0 on the interval (θ∗, 1]. From this, it follows that

equation 4 is less than zero. This means that A1’s action cannot be such that the constraint is
not binding for A2, for every types in mpool.
Since x∗2(θ

∗) ≤ k̄, from continuity property, it follows that ∃θ∗sim ∈ (θ∗, 1] : ∀θ ∈ (θ∗, θ∗sim), x∗2(θ) ≤
k̄ and ∀θ ∈ [θ∗sim, 1], x∗2(θ) = k̄. This completes the proof. QED

A.6 Proof of Proposition 4

Let W1(θ
∗) and W2(θ

∗) be the ex-ante welfare of the two agents respectively. I will write them
down in terms of the cutoff threshold θ∗.

A1 Welfare:

W1(θ
∗) =

θ∗∫
0

U
(

φ1 (x∗1(t), x∗2(t)) , t
)

f (t)dt+

1∫
θ∗

U
(

φ1
(

x∗1(m
θ∗
pool), x∗2(t, mθ∗

pool)
)

, t
)

f (t)dt

Taking the derivative of A1’s welfare with respect to θ∗,

dW1(θ
∗)

dθ∗
=[
U
(

φ1 (x∗1(θ
∗), x∗2(θ

∗)) , θ∗
)
−U

(
φ1
(

x∗1(m
θ∗
pool), x∗2(θ

∗, mθ∗
pool)

)
, θ∗
)]

f (θ∗) > 0

for any θ∗ ≤ θ̄ since φ1 (x∗1(θ
∗), x∗2(θ

∗)) = φ̄1
θ∗ , the first best levels of coordination. Further, there

is a discontinuous jump at θ∗ following a pooling message, implying that
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∣∣∣φ1 (x∗1(θ
∗), x∗2(θ

∗))− φ1
(

x∗1(m
θ∗
pool), x∗2(θ

∗, mθ∗
pool)

)∣∣∣ > 0 at θ∗.

A2 Welfare:

Take any two cutoff equilibria θ1, θ2 ≤ θ̄, call them PRTE1 and PRTE2, such that θ1 < θ2

(wlog). Let the corresponding pooling messages associated with the PRTE be m1
pool = (θ1, 1]

and m2
pool = (θ2, 1] respectively. I will establish that A2 is better off with the more informative

equilibrium θ2. Similar to arguments made in Lemma 2, for cutoff equilibria θ1, θ2 there exists
a corresponding θ1

sim and θ2
sim such that x∗2(θ

1
sim, m1

pool) = x∗2(θ
2
sim, m2

pool) = k̄.
From SC property, A1s action must be higher for the pooling message m2

pool corresponding to
the threshold θ2, i.e. x∗1(m

2
pool) > x∗1(m

1
pool). If this is true, then θ1

sim < θ2
sim. Suppose not, and

θ1
sim > θ2

sim. Then, x∗2(θ
2
sim, m1

pool) < x∗2(θ
1
sim, m1

pool) = k̄. But x∗2(θ
2
sim, m1

pool) ≥ x∗2(θ
2
sim, m2

pool) = k̄.
This is a contradiction. Therefore the claim holds. In order to prove the result for A2, I consider
two possible scenarios.

Scenario (a): When θ1
sim < θ2. That is, θ1 < θ1

sim < θ2 < θ2
sim. The welfare to A2 under the two

PRTE’s is given by,

W2(θ
1) =

θ1∫
0

U
(

φ2 (x∗2(t), x∗1(t)) , t, b
)

f (t)dt+

1∫
θ1

U
(

φ2
(

x∗2(t, m1
pool), x∗1(m

1
pool)

)
, t, b

)
f (t)dt

W2(θ
2) =

θ2∫
0

U
(

φ2 (x∗2(t), x∗1(t)) , t, b
)

f (t)dt+

1∫
θ2

U
(

φ2
(

x∗2(t, m2
pool), x∗1(m

2
pool)

)
, t, b

)
f (t)dt

Under PRTE1, A2’s equilibrium action is within the bound for the interval (0, θ1
sim]. Since θ1

sim <

θ2
sim, A2’s action is also within the bound over the interval (0, θ1

sim] under PRTE2. Therefore,
what is left to be checked are those states in which the constraints are binding for A2. In
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PRTE1, this corresponds to the interval (θ1
sim, 1]. On the same interval, I compare the expected

(ex-ante) utility under PRTE2. I will refer to this utility as the residual welfare that results from
inefficiency, WRES

2 (θ1) and WRES
2 (θ1) respectively.

WRES
2 (θ1) =

θ2
sim∫

θ1
sim

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt +

1∫
θ2

sim

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt

WRES
2 (θ2) =

θ2∫
θ1

sim

U
(

φ2 (x∗2(t), x∗1(t)) , t, b
)

f (t)dt+

θ2
sim∫

θ2

U
(

φ2
(

x∗2(t, m2
pool), x∗1(m

2
pool)

)
, t, b

)
f (t)dt

+

1∫
θ2

sim

U
(

φ2
(

k̄, x∗1(m
2
pool)

)
, t, b

)
f (t)dt

Taking the expression WRES
2 (θ1) and expanding the first term, we get,

θ2∫
θ1

sim

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt +

θ2
sim∫

θ2

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt

Comparing the above expression with the first two terms of WRES
2 (θ2),

θ2∫
θ1

sim

U
(

φ2 (x∗2(t), x∗1(t)) , t, b
)

f (t)dt +

θ2
sim∫

θ2

U
(

φ2
(

x∗2(t, m2
pool), x∗1(m

2
pool)

)
, t, b

)
f (t)dt >

θ2∫
θ1

sim

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt +

θ2
sim∫

θ2

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt

This follows from pair-wise comparison of the terms,

θ2∫
θ1

sim

U
(

φ2 (x∗2(t), x∗1(t)) , t, b
)

f (t)dt >
θ2∫

θ1
sim

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt (5)
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θ2
sim∫

θ2

U
(

φ2
(

x∗2(t, m2
pool), x∗1(m

2
pool)

)
, t, b

)
f (t)dt >

θ2
sim∫

θ2

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt (6)

Similarly comparing the last term of WRES
2 (θ1) and WRES

2 (θ2),

1∫
θ2

sim

U
(

φ2
(

k̄, x∗1(m
2
pool)

)
, t, b

)
f (t)dt >

1∫
θ2

sim

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt (7)

The inequality 5 follows from noting that on the interval (θ1
sim, θ2], A2 achieves φ̄2

t under the
higher threshold equilibrium.

∀t ∈ (θ1
sim, θ2] : U

(
φ2 (x∗2(t), x∗1(t)) , t, b

)
> U

(
φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
Similarly, inequality 6 is true since on the interval (θ2, θ2

sim], A2 induces A1 to allocate more
with message m2

pool and correspondingly changes its action to achieve first best φ̄2
t .

∀t ∈ (θ2, θ2
sim] : U

(
φ2
(

x∗2(t, m2
pool), x∗1(m

2
pool)

)
, t, b

)
> U

(
φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
The last inequality 7 follows from noting that since x∗1(m

1
pool) < x∗1(m

2
pool), it is valid that

φ2
(

k̄, x∗1(m
1
pool)

)
< φ2

(
k̄, x∗1(m

2
pool)

)
and because there is a positive spillover at the bound for

A2, ie U1 |t∈(θ2
sim,1]> 0,

∀t ∈ (θ2
sim, 1] : U

(
φ2
(

k̄, x∗1(m
2
pool)

)
, t, b

)
> U

(
φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
Comparing the terms pairwise therefore yields the required result, WRES

2 (θ2) > WRES
2 (θ1).

Scenario (b): When θ1
sim > θ2. That is, θ1 < θ2 < θ1

sim < θ2
sim.

In this case, as earlier, I will look at states in which there is inefficiency generated by information
pooling and compare the residual welfare.

WRES
2 (θ1) =

θ2
sim∫

θ1
sim

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt +

1∫
θ2

sim

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt

WRES
2 (θ2) =

θ2
sim∫

θ1
sim

U
(

φ2
(

x∗2(t, m2
pool), x∗1(m

2
pool)

)
, t, b

)
f (t)dt +

1∫
θ2

sim

U
(

φ2
(

k̄, x∗1(m
2
pool)

)
, t, b

)
f (t)dt
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Pairwise comparison yields,

θ2
sim∫

θ1
sim

U
(

φ2
(

x∗2(t, m2
pool), x∗1(m

2
pool)

)
, t, b

)
f (t)dt >

θ2
sim∫

θ1
sim

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt (8)

1∫
θ2

sim

U
(

φ2
(

k̄, x∗1(m
2
pool)

)
, t, b

)
f (t)dt >

1∫
θ2

sim

U
(

φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
f (t)dt (9)

The inequalities 8 and 9 follow from arguments made earlier. Specifically, on (θ1
sim, θ2

sim] A2 is
able to achieve φ̄2

t with the cutoff equilibrium θ2 and is therefore strictly better off compared to
the equilibrium threshold θ1. In the interval (θ2

sim, 1], there is inefficiency from miscoordination
in that φ2(.) < φ̄2

t . However, since A2 induces a higher action from A1 under θ2 equilibrium,
x∗1(m

2
pool) > x∗1(m

1
pool), it follows that φ2

(
k̄, x∗1(m

1
pool)

)
< φ2

(
k̄, x∗1(m

2
pool)

)
< φ̄2

t and given
U1 > 0 on this interval,

∀t ∈ (θ2
sim, 1] : U

(
φ2
(

k̄, x∗1(m
2
pool)

)
, t, b

)
> U

(
φ2
(

k̄, x∗1(m
1
pool)

)
, t, b

)
Therefore, WRES

2 (θ2) > WRES
2 (θ1). This completes the proof. QED

A.7 Proof of Proposition 5

Consider the following set of messaging strategies, beliefs and action profiles under ex-post
commitment protocol:

1. If θ ≤ θ∗, m = θ; if θ > θ∗, m = 1.

2. If m ≤ θ∗, p(θ | m = θ) = 1; if m = 1, p(θ | m) = f (θ)

3. When m ≤ θ∗: x∗1(m) = x̄1(m) and x∗2(θ, x∗1(m)) = argmax
x2∈V

U
(
φ2 (x2, x∗1(m)) , θ, b

)
≡

x̄2(m)

4. When m = 1:

• x∗1(m) ≡ arg maxx1∈V

1∫
θ∗

U
(
φ1(x1, x∗2(θ, x1)), θ

)
f (θ)dθ

• x∗2(θ, x∗1(m)) ≡ arg maxx2∈V U
(
φ2(x2, x∗1(m)), θ, b

)
5. When m ∈ (θ∗, 1): p(θ∗|m) = 1.
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Notice that the main point of departure from the simultaneous protocol arises from A2’s equi-
librium action x∗2(θ, x∗1(m)) that takes into account A1’s action in the second stage, post com-
munication. Clearly, on the interval of separation [0, θ∗] A1 can do no better than allocate x̄2(θ).
This is driven by the concavity of U(.) in that there is an unique φ̄1

θ for every θ and this corre-
sponds to the pair of actions (x̄2(θ), x̄1(θ)). Now, on the pooling interval A1 takes into account
that A2 can now observe the action committed to by A1 and best respond to them. Jointly,
(x∗2(θ, x∗1(m)), x∗1(m))) must maximize the expected payoffs of the agents.
Finally, I check to see if the informed agent would want to deviate from the equilibrium mes-
saging strategy. Suppose A2 deviates and sends an out-of-equilibrium message m ∈ (θ∗, 1).
Then, A1 assigns the belief that it comes from the type θ∗ and plays the corresponding ac-
tion x∗1(m) = x̄1(θ

∗). The types m∗pool = (θ∗, 1] are at least as better off sending the pooling
message m = 1. To see this, if x∗1(m) = x̄1(θ

∗), then there exists a threshold, say θout ≤ θ̄,
such that φ2 (k̄, x̃1(θ

∗)
)
= φ̄2

θout
. This is true since φ2 (k̄, x̃1(θ̄)

)
= φ̄2

θ̄
and by continuity there

should exist such a type θout. Given this, A2 with information in (θ∗, θout] cannot do any bet-
ter from deviating, since under the pooling message, they induce a higher action from A1.
This means every type t ∈ (θ∗, θout] achieves first best φ̄2

t under the pooling message. That
is, φ2

(
x∗2(t, x∗1(m

∗
pool)), x∗1(m

∗
pool)

)
= φ2 (k̄, x∗1(θ

∗)
)
= φ̄2

t . But notice that every type in (θout, 1]
would prefer sending the message m = 1 instead of the out-of-equilibrium one. This is driven
by the miscoordination concerns that manifest as a result of the constraints. Specifically,

∀θ ∈ (θout, 1] : φ2 (k̄, x∗1(θ
∗)
)
< φ2

(
x∗2(θ, x∗1(m

∗
pool)), x∗1(m

∗
pool)

)
≤ φ̄2θ̄

Therefore, all types in (θout, 1] are strictly worse off by deviating. This completes the proof.
QED

A.8 Proof of Proposition 6

I will continue to focus on the ex-ante efficient equilibrium (θ̄) for comparison of welfare. Again,
on the separating interval [0, θ̄], both the protocols provide the same ex ante welfare to both
agents. So it is sufficient to focus on the pooling interval, henceforth mpool = (θ̄, 1]. Let A1’s
action after mpool be xsim

1 and xpa
1 under simultaneous and sequential protocols respectively. To

compare equilibrium welfare, it is essential to prove Lemma 3.

Lemma 3: xpa
1 > xsim

1

Under simultaneous protocol, agent A1’s equilibrium action xsim
1 is given by the following FOC

(from Lemma 2),
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θ̄sim(xsim
1 )∫

θ̄

U1

(
φ1
(

xsim
1 , xsim

2 (t, mpool)
)

, t
)

φ1
1dF +

1∫
θ̄sim(xsim

1 )

U1

(
φ1
(

xsim
1 , k̄

)
, t
)

φ1
1dF = 0 (10)

A1’s equilibrium action is given by the FOC from differentiating equation 3. That is, xpa
1 solves,

θ̄pa(x1)∫
θ̄

U1

(
φ1 (x1, xpa

2 (t, x1)
)

, t
)

.
[

φ1
1 + φ1

2.
dx2

dx1

]
dF +

1∫
θ̄pa(x1)

U1

(
φ1 (x1, k̄

)
, t
)

φ1
1dF = 0 (11)

Evaluating the above equation 11 at xsim
1 gives,

θ̄pa(xsim
1 )∫

θ̄

U1

(
φ1
(

xsim
1 , xpa

2 (t, xsim
1 )

)
, t
)

.
[

φ1
1 + φ1

2.
dx2

dx1

]∣∣∣∣
x1=xsim

1

dF+

1∫
θ̄pa(xsim

1 )

U1

(
φ1
(

xsim
1 , k̄

)
, t
)

φ1
1dF

(12)

But at x1 = xsim
1 , it holds that θ̄pa(xsim

1 ) = θ̄sim(xsim
1 ) and xpa

2 (t, xsim
1 ) = xsim

2 (t, mpool). The
second expression follows from the fact that the agent’s equilibrium action mimics the simul-
taneous protocol action xsim

2 (t, mpool) as there is an unique type θ for which φ2(k̄, xsim
1 ) = φ̄θ.

Further, this implies that when x1 = xsim
1 under sequential protocol, the cutoff after which A2

always allocates k̄ corresponds with θ̄sim(xsim
1 ), resulting in the first equality. Substituting these

expressions into equation 12 and rearranging gives,

θ̄sim(xsim
1 )∫

θ̄

U1

(
φ1
(

xsim
1 , xpa

2 (t, xsim
1 )

)
, t
)

φ1
1dF +

1∫
θ̄sim(xsim

1 )

U1

(
φ1
(

xsim
1 , k̄

)
, t
)

φ1
1dF

+

θ̄sim(xsim
1 )∫

θ̄

U1

(
φ1
(

xsim
1 , xpa

2 (t, xsim
1 )

)
, t
)

.φ1
2.

dxpa
2

dx1

∣∣∣∣∣
x1=xsim

1

dF

However, the first two expressions are equal to the LHS of equation 10, and therefore equal to
zero. The only expression left is the last one given by,
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θ̄sim(xsim
1 )∫

θ̄

U1

(
φ1
(

xsim
1 , xpa

2 (t, xsim
1 )

)
, t
)

.φ1
2.

dxpa
2

dx1

∣∣∣∣∣
x1=xsim

1

dF

Notice that U1
(
φ1 (xsim

1 , xpa
2 (t, xsim

1 )
)

, t
)

< 0 for A1 on this interval since A2 always mod-
erates its action in order to achieve φ̄2

t , but this results in over-allocation for agent A1, ie
φ1 (xsim

1 , xpa
2 (t, xsim

1 )
)
> φ̄1

t . Given Assumption 2, φ1
2 > 0 and from Assumption 3, dx2

dx1
< 0

implying that the above integral is always positive.

θ̄sim(xsim
1 )∫

θ̄

U1

(
φ1
(

xsim
1 , xpa

2 (t, xsim
1 )

)
, t
)

.φ1
2.

dxpa
2

dx1

∣∣∣∣∣
x1=xsim

1

dF > 0 (13)

Since the expected utility for A1 in the sequential protocol is increasing at xsim
1 and U11 < 0, it

follows that xpa
1 > xsim

1 . This completes the proof of the lemma.
Given xpa

1 > xsim
1 , it is straightforward to see that equilibrium welfare is higher under sequential

protocol. By mimicking xsim
1 , A1’s expected utility is the same as in the simultaneous protocol,

on the pooling interval. However, from equation 13, we have established that the expected
utility is increasing at x1 = xsim

1 . More formally, the following equations hold:

Eθ

[
U
(

φ1 (x1, xpa
2 (θ, x1)

)
, θ
)]∣∣∣

x1=xsim
1

= Eθ

[
U
(

φ1
(

xsim
1 , xsim

2 (θ, mpool)
)

, θ
)]

dEθ

[
U
(
φ1 (x1, xpa

2 (θ, x1)
)

, θ
)]

dx1

∣∣∣∣∣
x1=xsim

1

> 0

These above two equations guarantee that agent A1, by mimicking the simultaneous protocol
action can guarantee an expected payoff equal to that under the simultaneous protocol and
therefore does better by increasing its action such that xpa

1 = xsim
1 .

For A2, xpa
1 > xsim

1 implies that θ̄pa > θ̄sim. That is, for a greater measure of types on the pooling
interval, the constraint is not binding, ∀t ∈ (θ̄, θ̄pa] : xpa

2 (t, xpa
1 ) ≤ k̄ =⇒ φ2 (xpa

2 (t, xpa
1 ), xpa

1

)
=

φ̄2
t . As before, I will write down the residual welfare on the interval (θ̄sim, 1] under both proto-

cols.
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Wsim
2 (θ̄) =

θ̄pa∫
θ̄sim

U
(

φ2
(

k̄, xsim
1

)
, t, b

)
f (t)dt +

1∫
θ̄pa

U
(

φ2
(

k̄, xsim
1

)
, t, b

)
f (t)dt

Wpa
2 (θ̄) =

θ̄pa∫
θ̄sim

U
(

φ̄2
t , t, b

)
f (t)dt +

1∫
θ̄pa

U
(

φ2 (k̄, xpa
1

)
, t, b

)
f (t)dt

Pairwise comparison yields,

θ̄pa∫
θ̄sim

U
(

φ̄2
t , t, b

)
f (t)dt >

θ̄pa∫
θ̄sim

U
(

φ2
(

k̄, xsim
1

)
, t, b

)
f (t)dt (14)

1∫
θ̄pa

U
(

φ2 (k̄, xpa
1

)
, t, b

)
f (t)dt >

1∫
θ̄pa

U
(

φ2
(

k̄, xsim
1

)
, t, b

)
f (t)dt (15)

Clearly, equation 14 follows from noting that A2 achieves φ̄2
t under the ex-post commitment

on the interval (θ̄sim, θ̄pa] and therefore cannot do better. Equation 15 holds because on the
interval where there is under-allocation, ie (θ̄pa, 1], φ2 (k̄, x1

)
< φ̄2

t =⇒ U1(.) > 0 for A2. Since
xpa

1 > xsim
1 , from Assumption 2 it follows that A2 is better off under sequential protocol for all

types in (θ̄pa, 1]. Therefore, Wpa
2 (θ̄) > Wsim

2 (θ̄). This completes the proof. QED

A.9 Proof of Proposition 7

The key to proving this is to look at all pairs of actions (x1, x2) that achieve the first best
for A2, in order to satisfy its IC constraint. Given Assumption 1 and Assumption 2, for any
θ ∈ [0, 1], there are different contribution pairs (x1, x2) such that φ2(x2, x1) = φ̄2

θ . I proceed by
constructing the set of φ1 that corresponds with all admissible pairs (x1, x2) such that for any
θ, φ2(x2, x1) = φ̄2

θ . The following defines this admissible set:

∀θ ∈ [0, 1], (x2, x1) ∈ V : Aθ =
{

φ1(x1, x2) : φ2(x2, x1) = φ̄2
θ

}
Therefore, the commitment rule becomes one of choosing an appropriate pair from Aθ such
that it maximizes the expected utility of A1.

Claim 1: From previous arguments, on the interval [0, θ̄] the incentive compatible action rule
that maximizes A1’s expected utility is the one that mimics the unconstrained action x̄1(θ).
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Specifically, the action pair (x̄1(θ), x̄2(θ)) is such that φ1 (x̄1(θ), x̄2(θ)) ∈ Aθ and φ1 (x̄1(θ), x̄2(θ)) =

φ̄1
θ ≡ argmax

φ1
U(φ1, θ). This proves Claim 1.

To show claims 2,3 and 4, I will impose further structure on the set Aθ for the interval mpool.
From continuity property of φ1(.) and φ2(.), the setAθ is compact. Further, let supAθ = φ1

sup(θ)

and infAθ = φ1
in f (θ).

Definition 3 Let xin f
1 (θ) be such that φ2

(
k̄, xin f

1 (θ)
)
= φ̄2

θ .

Lemma 4 ∀θ ∈ mpool : φ1(xin f
1 (θ), k̄) = φ1

in f (θ)

Proof. Note that x2 varies from k to k̄ and x1 is just the residual contribution that ensures
φ2(.) = φ̄2

θ . Applying total differentiation to φ2, we get the following:

dφ2 =
∂φ2

∂x2
.dx2 +

∂φ2

∂x1
.dx1

Since φ2(.) = φ̄2
θ , a constant in Aθ, dφ2 = 0. Substituting this in the above equation and

rearranging, ∣∣∣∣dx1

dx2

∣∣∣∣ = ∂φ2

∂x2

∂φ2

∂x1

> 1

Similarly,

dφ1 =
∂φ1

∂x2
.dx2 +

∂φ1

∂x1
.dx1

dφ1

dx2
=

∂φ1

∂x2
+

∂φ1

∂x1
.
dx1

dx2
=

∂φ1

∂x2
−
∣∣∣∣dx1

dx2

∣∣∣∣ .
∂φ1

∂x1
(16)

=⇒ dφ1

dx2
<

[
∂φ1

∂x1
−
∣∣∣∣dx1

dx2

∣∣∣∣ .
∂φ1

∂x1

]
=

∂φ1

∂x2
.
[

1−
∣∣∣∣dx1

dx2

∣∣∣∣] < 0 (17)

Equation 17 follows from imperfect substitutability in that ∂φ1

∂x1
> ∂φ1

∂x2
. Lemma 4 establishes that

φ1 is decreasing in the actions of A2. This implies that the infimum of the set Aθ corresponds
with the pair of actions in which A2 takes the maximal action k̄ and A1, the residual xin f

1 (θ).

Lemma 5 ∀θ ∈ mpool : φ1
in f (θ) > φ̄1

θ

Proof. From lemma 4 it is clear there is an ordering over φ1. Specifically, φ1
sup(θ) > ...... >

φ1
in f (θ). Suppose φ1

in f (θ) > φ̄1
θ were not true. Then, either φ1

sup(θ) > ..... > φ̄1
θ > ... > φ1

in f (θ) or
φ̄1

θ > φ1
sup(θ) > ..... > φ1

in f (θ). If the former was true, then A2 can achieve first best by truthfully
revealing the state θ. That is, A2 could have revealed truthfully up to some higher threshold θ̄,
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which violates the most informative threshold equilibrium θ̄. The latter cannot be true because
of the imperfect substitutability assumption and a positive conflict of interest. Therefore it must
hold that φ1

sup(θ) > ...... > φ1
in f (θ) > φ̄1

θ .
From Lemma 5, it is clear that on the interval mpool, there is over-allocation for agent A1 as long
as A2 achieves first best. However, precisely for this reason, it implies that U1 < 0 and therefore
the following holds:

∀θ ∈ mpool : φ1
in f (θ) ≡ argmax

φ1∈Aθ

U(φ1, θ) (18)

That is, of all contribution pairs (x1, x2) that satisfy A2’s IC constraint for truth-telling, the
one that maximizes A1’s utility is the one that minimizes this miscoordination problem, which
coincides with x2 = k̄. I proceed now to prove Claim 2,3 and 4.

Claim 2: Suppose the claim weren’t true and say A1, wlog, allocates x f a
1 (θ) = z, ∀θ ∈ mpool.

There are two possible cases to consider.

Case i) z = x f a
1 (θ̄) = x̄1(θ̄)

In this case, A2 allocates x2 = k̄ for every possible type in mpool. If this is so, then ∀θ ∈ mpool :
φ1(x̃1(θ̄), k̄) = φ̄1

θ̄
< φ̄1

θ . This implies that the expected marginal utility of A1 is less than zero

and given U11 < 0, there is an incentive for A1 to increase her actions. Therefore, z 6= x f a
1 (θ̄).

Case ii) z > x f a
1 (θ̄)

If this were true, then there exists some types such that A2 allocates less than k̄ and still achieves
first best. That is,

∃T ⊂ mpool, ∀t ∈ T : x f a
2 (t, z) < k̄

Such a set T must exist from the continuity property of U(.) and φi(.). Specifically, when
z > x f a

1 (θ̄), then there is always a cutoff type θz (from Lemma 2) such that x f a
2 (θz, z) = k̄.

However, this implies that for all types t ∈ (θ̄, θz), it must be that x f a
2 (t, z) < k̄. That is

T = (θ̄, θz) exists. But if this set exists, then A1 is not maximizing its expected utility since
it can always reduce actions and make A2 contribute more, specifically, k̄. To see this, consider
the following alternate action rule:

∀t ∈ T : x f a
1 (t) = xin f

1 (t) such that φ1(xin f
1 (t), k̄) = φ1

in f (t) ∈ At
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∀t ∈ mpool \ T : x f a
1 (t) = z

Clearly, on the interval subset T, A1 now achieves a greater expected utility since ∀t ∈ T,
U
(

φ1(xin f
1 (t), k̄), t

)
> U

(
φ1(z, x f a

2 (t, z)), t
)

. Further, this action rule is also incentive compat-
ible in that A2 cannot do better by misreporting. Therefore, there cannot be a flat segment on
mpool such that A1 commits to a communication independent action. This proves Claim 2.

Claim 3: Suppose instead there was a strictly increasing interval (θ1, θ2) ∈ mpool such that

∃t ∈ (θ1, θ2) : x f a
2 (t, x f a

1 (t)) < k̄. Then, given IC must be satisfied, φ1
(

x f a
1 (t), x f a

2 (t, x f a
1 (t))

)
∈

At. But clearly, from Lemma 4, Lemma 5 and Equation 18 A1 can always instead choose to
allocate xin f

1 (t) such that x f a
2 (t, xin f

1 (t)) = k̄. This satisfies IC of A2 since φ1(xin f
1 (t), k̄) ∈ At

and increases the payoff to A1 since U
(

φ1(xin f
1 (t), k̄), t

)
> U

(
φ1(x f a

1 (t), x f a
2 (t, x f a

1 (t))), t
)

. This
proves Claim 3.

Claim 4: Suppose, instead there exists a flat segment followed by a strictly increasing segment
in mpool. Say, wlog, the flat segment is on (θ1, θ2] such that ∀t ∈ (θ1, θ2] : x f a

1 (t) = z, and let the
strictly increasing segment be on (θ2, θ3). From Claim 3, it holds that A2 must take an action k̄
on this interval and further, IC constraint must be satisfied in that ∀t ∈ (θ2, θ3) : φ2(k̄, xin f

1 (t)) =
φ̄2

t . Take the type θ2. For this type it must be that the IC is satisfied on the flat segment, i.e.
φ2(x f a

2 (θ2, z), z) = φ̄2
θ2

. If not, A2 can always deviate and report t ∈ (θ2, θ3) and increase its

expected payoff. This implies that z must be such that x f a
2 (θ2, z) = k̄, since otherwise A1 is

not payoff maximizing, again from previous arguments. When A2 contributes k̄, A1’s residual
contribution must be in the set Aθ2 and equal to,

z = xin f
1 (θ2) such that φ1(xin f

1 (θ2), k̄) = φ1
in f (θ2) ∈ Aθ2

But clearly, if z = xin f
1 (θ2), then for all types t ∈ (θ1, θ2), it must also hold that x f a

2 (t, z) < k̄, from
single crossing condition. However, if x f a

2 (t, z) < k̄, then A1 can always decrease its actions on
this interval, and extract more from A2 whilst satisfying the IC constraint of A2 (Lemma 4 and
Lemma 5). This proves Claim 4.

Together, the four claims imply the following rules hold:

1. Claim 1 =⇒ On the separating interval [0, θ̄], the optimal ex-ante action rule mimics the
simultaneous protocol actions, x̄1(θ).

2. Claim 2 and Claim 3 =⇒ There is an interval (θ̄, θ̄ f a) ∈ mpool in which agent A1’s

action decisions are dependent on communication and given by x f a
1 (θ) = xin f

1 (θ), while
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x f a
2 (θ) = k̄ such that φ2(k̄, xin f

1 (θ)) = φ̄2
θ and φ1(xin f

1 (θ), k̄) ∈ Aθ.

3. Finally, Claim 4 =⇒ On the interval [θ̄ f a, 1], A1’s action is independent of communication

and is equal to x1 = xin f
1 (θ̄ f a) = x f a

1 (θ̄ f a).

This completes the proof. QED

A.10 Proof of Proposition 8

Consider the following commitment strategy. The uninformed agent A1 commits to an ex-ante
action rule on mpool such that:

∀t ∈ (θ̄, θ̄pa) : x f a
1 (t) = xin f

1 (t)

∀t ∈ [θ̄pa, 1] : x f a
1 (t) = xpa

1 (mpool) ≡ xpa
1

The above action rule exactly replicates the ex-post commitment protocol in that it provides
A2 first best joint coordination φ̄2

t on the interval (θ̄, θ̄pa]. Clearly, this action rule is IC for A2

and provides the same expected welfare compared to sequential protocol case. Further, on the
interval [θ̄pa, 1], A1’s welfare is same as under the sequential protocol.
However, ∀t ∈ (θ̄, θ̄pa), A1 actually does better since A2’s action is maximal (k̄) on this interval
and this minimizes the inefficiency from miscoordination, as shown in Lemma 4 and Lemma 5
in the proof of Proposition 7. That is,

∀t ∈ (θ̄, θ̄pa) : U
(

φ1
(

xin f
1 (t), k̄

)
, t
)
> U

(
φ1 (xpa

1 , x2(t, xpa
1 )
)

, t
)

Therefore by following an IC commitment rule that is strictly increasing on (θ̄, θ̄pa) and flat on
[θ̄pa, 1], A1 achieves a higher ex-ante welfare while A2 is indifferent compared to the case of
sequential decision making.
Now consider the sequence of actions

{
xin f

1 (t)
}

t∈(θ̄,θ̄pa)
and checking the marginal utility of A1

for each type t,

U1

(
φ1 (xpa

1 , x2(t, xpa
1 )
)

, t
)
< U1

(
φ1
(

xin f
1 (t), k̄

)
, t
)

(19)

Equation 19 follows from noting that utility of A1 is decreasing in φ1 on this interval and since
U11 < 0 and φ1 (xpa

1 , x2(t, xpa
1 )
)
< φ1

(
xin f

1 (t), k̄
)
= φ1

in f (t). Now, on the interval [θ̄pa, 1], since

x f a
1 (t) = xpa

1 , the ex ante commitment rule provides the same expected marginal utility as
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sequential protocol for A1. Summing the marginal utilities under the ex-ante action rule with
the sequence

{
xin f

1 (t)
}

t∈(θ̄,θ̄pa)
and

{
xpa

1

}
t∈[θ̄pa,1], it is clear that,

θ̄pa∫
θ̄

U1

(
φ1
(

xin f
1 (t), k̄

)
, t
)

.
[

φ1
1 + φ1

2.
dx2

dx1

]
dF +

1∫
θ̄pa

U1

(
φ1 (xpa

1 , k̄
)

, t
)

φ1
1dF (20)

Since x f a
2 (t) = k̄, it follows that dx2

dx1
= 0 under this action rule. The above equation simplifies

to,

θ̄pa∫
θ̄

U1

(
φ1
(

xin f
1 (t), k̄

)
, t
)

.φ1
1dF +

1∫
θ̄pa

U1

(
φ1 (xpa

1 , k̄
)

, t
)

φ1
1dF > 0 (21)

The above inequality follows from Equation 19. Therefore, the marginal utility of A1 from
following the above ex-ante commitment rule is less than zero, and given U11 < 0, this fur-
ther implies that under a fully autonomous protocol, A1 can satisfy A2’s first best above this
threshold. From Equation 21, it therefore follows that:

θ̄ f a > θ̄pa

A1’s welfare

The increase in agent A1’s welfare is driven by the fact that the mimicking strategy provided A1

a higher expected utility under ex-ante commitment and further, marginal utility is increasing
at θ̄pa (from Equation 21). Therefore, the expected utility from the commitment rule where
θ̄ f a > θ̄pa is greater compared to sequential protocol.

A2’s welfare

On the interval [0, θ̄ f a], A2 achieves first best levels of joint action in that ∀t ∈ [0, θ̄ f a] : φ2(.) = φ̄2
t

under the equilibrium ex-ante commitment rule. Further, on t ∈ (θ̄ f a, 1], it must be that x f a
1 (t) =

x f a
1 (θ̄ f a) > x f a

1 (θ̄pa), since x f a
1 (θ̄pa) = xpa

1 and θ̄ f a > θ̄pa. However, on this interval, there is

under-allocation of actions for A2 and therefore it must hold that U
(

φ2
(

k̄, x f a
1 (θ̄ f a), t

)
, t
)
>

U
(
φ2 (k̄, xpa

1 , t
)

, t
)
. Therefore, the overall expected ex-ante welfare is greater with the commit-

ment mechanism. This completes the proof. QED
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