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Abstract

We investigate the possibility for governance authorities to avoid a large part of reg-
ulatory costs, by simply backing up social norms with a threat of collective punishment.
Specifically, we consider the case of fisheries in which the regulatory cap is to sustain
an optimal conservation level. We identify a mandatory regulation such that, when it
is used as a threat, it ensures that the cap is voluntarily implemented. The mandatory
scheme is based on a incentive mechanism which secures the returns of the harvester, and
a tax on potential capacity. From the status of mere threat, this mandatory regulation
takes time to be enforced though. We show that such a tax scheme, even if it is applied
randomly after the first occurrence of a deviation from the optimal conservation level,
ensures voluntary compliance, provided a suitable choice of the capacity tax. We study
the properties of this tax scheme and build an example using data on the scallop fishery
in the Saint-Brieuc Bay (France) to illustrate our point.

Key words: Voluntary agreements, Fisheries, Conservation Policies
JEL classification: Q22, Q28

✩One of the authors starts this research in the economics department of the University of Washington
(UW). She thanks Prof. Greg Ellis for his welcoming at UW and for his precious advice. Both authors
also thank the conference participants at LAGV-16, Aix-Marseille, and at the Montpellier Workshop on
"Environmental and Natural Resources Conservation", the seminar participants at CIRED and INRA
Versailles-Grignon. Of course the usual claim applies. The financial support of the Labex AMSE (ANR-
11-IDEX-0001-02) and the ANR GREEN-Econ (ANR-16-CE03-0005) are also gratefully acknowledged.
∗Corresponding author
Email addresses: annesarah.chiambretto@univ-amu.fr (Anne-Sarah CHIAMBRETTO),

hubert.stahn@univ-amu.fr (Hubert STAHN)
1P-mail address: GREQAM, Centre de la Vieille Charité, 2, rue de la Charité, 13236 Marseille, France
2P-mail address: GREQAM, Chateau Lafarge, Route des Milles, 13290 Les Milles, France

Preprint submitted to DT-AMSE April 2, 2017



1. Introduction

Collective voluntary approaches commonly refer to commitments of groups of firms,
possibly an entire industry, to cutting voluntarily their polluting emissions1. These proac-
tive behavior may be motivated by a background regulatory threat, whether enacted2 or
merely potential (Glachant [21]). While both cases fall under the particular denomina-
tion of voluntary-threat (V-T) approaches (Segerson and Miceli [47],[48]), the present
work strictly focuses on the latter.
Regulatory threats are, in the prolific theoretical literature on voluntary approaches

to environmental protection, only one reason among many why firms behave proactively.
For instance, a second explanation suggests3 it allows them to build a green reputation
and reach the new markets for eco-friendly goods and services. Another points out4

strategical signaling (in order to trigger tougher regulation) as a motive for overcompliance
to environmental standard.
But voluntary approaches do not solely differ in terms of driving forces : most im-

portantly, strongly depending on preexisting regulatory structures, they come in as many
forms as institutional and legal backgrounds. A widely adopted classification distinguishes
between three main categories5, set on the basis of the regulatory agency involvement level
(OECD Report [37]) : (i) public voluntary programs (the agency elaborates engagements,
to which the firms may voluntarily subscript) ; (ii) negotiated agreements (the engage-
ments are collaboratively elaborated by the voluntary firms and the agency) ; and (iii)
unilateral commitments (the engagements are elaborated by the voluntary firms).
While, in theory, V-T policies may possibly assume each of the three institutional forms

aforementioned, in the field, they turn out to be most often related to policies scenarios
of type (i) and (ii), with collective liability rules. Indeed, when potential enactments are
sectoral, responsibility naturally emerges as collective (as well as the free-riding incentives
that come along, see for instance Brau and Carraro [9]).
In this study, we choose to present a V-T policy with an environmental standard set by

the regulator alone, as in type (i), and a punishment which applies to the group regardless
of individual voluntary efforts. So far, such collective V-T approaches have been mainly
studied as de facto arrangements in standard contexts of pollution regulation (e.g. see
Segerson and Wu [49], Dawson and Segerson [17], or Brau and Carraro [9]). The aim of
the present work is therefore twofold. First, it shifts toward a normative perspective (as
in the recent Suter et al. [51], Chiambretto and Stahn [14]), by parametrizing the threat

1Two examples are the EPA 33/50 Program (evaluated by Arora-Cason [2]), and the ACEA agreement,
pursued in the US and EU respectively.

2E.g. when used in a policy mix coupled with command and control, see Borkey et al. [8])
3E.g. Arora and Gangopadhyay [3]; Cavaliere [12]; Bagnoli and Watts [5]; Ahmed and Segerson [1].

See Lyon and Maxwell [35] for a comprehensive review of articles based on this explanatory hypothesis.
4E.g. Denicolo [18]; Fleckinger and Glachant [19].
5Some classifications may also include direct negotiations or Cosean bargaining (e.g. Rhoads and

Shogren [41]) as a fourth category, and consider information disclosure along with eco-certification schemes
(for fisheries see Brécard et al. [10]) as a distinct kind of voluntary approaches.
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so as to ensure it becomes an effi cient mechanism. Second, it suggests extending the
analysis to the regulation of dynamic externalities that are peculiar to common property
resources (CPRs) management issues. Specifically, we consider the case of renewable fish
stocks and the regulation of its persistent overexploitation.

The tragedy of the commons (Hardin [27]) with respect to fisheries has been investi-
gated in an extensive theoretical literature, subsequent to the seminal works of Gordon
[22] and Clark and Gordon [15]. Combining dynamic and game-theoretic approaches with
the biological specificities of fish stocks, it provides us with a wide range of open access
resource games and describes the underlying incentive structure as follows. When several
agents exploit a same resource, the quantity they decide to harvest affects other agents’
payoffs in two ways : (i) it affects the unit return of harvesting for all harvesters at the
current period and (ii) it impacts the size of the fringe to harvest for the future periods
resulting in a variation in harvest unit cost. Via harvesters’incentive to free-ride on re-
sponsible behaviors of others, these two externalities may lead to the underprovision of
what can be considered as a public good: stock conservation.
Supported by case studies6, a growing strand of theoretical literature exhibits cooper-

ative equilibria for CPRs (see Ostrom [38] for a review) that implement socially desirable
outcomes, which amounts someway (refering to our previous terminology) to study vol-
untary agreements of types (iii). This problem has already been explored in several
directions. Indeed, game theory (see Bailey et al. [6] for a review) helps to delineate
situations in which the cooperative outcome can be obtained as a competitive subgame
perfect equilibrium (Polasky et al. [39], Tarui et al. [53]) or, taking more a coopera-
tive view (see Pintassilgo et al [40] for a review), studies bargaining solutions, standard
coalitional games (see Lindroos et al. [33] for a review), and even coalition formation (es-
pecially the case of international agreements). Other works investigate the consequences
of the introduction of context dependant behaviors, like conditional cooperation moti-
vations (Richter and Grasman [42]) or status seeking behaviors (Long and McWhinnie
[34]). Finally another branch of contributions points out the specific social norms and/or
institutional background necessary for these equilibria to emerge (Vincent [54], Gutiérrez
et al. [26], Basurto and Coleman [7]).

However, despite initiatives for governance, the depletion of marine resources remains
a pervasive phenomenon, as shown by several empirical studies (e.g. McWhinnie [36]), and
witnessed by actual efforts of international organizations like The United Nation (UN) for
relevant global agreements to be reached. In particular, the Doha Round’s negotiation for
an improved discipline on fisheries subsidies (Swartz and Sumaila [52]), or the Immediate
Plan of Action agenda of the Food and Agriculture Organization (FAO)’s Fisheries and
Aquaculture Department (2009-2011), are recent international acknowledgement of the
need for aligned regulations by external authorities.
The UN Fish Stocks Agreement of 1995 and the apparatus of command and control

tools available to Regional Fisheries Organizations (RFOs), do make sustainability of

6For recent case studies see for instance Haynie et al [29], Cavalcanti et al. [11] or Sarker et al.[43].
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marine resources attainable. Several types of regulation mechanism were implemented
in the last twenty years. They ranged from standard command and control measures
(restrictions on targeted species or fish size, gears, areas or seasons of extraction etc.)
to concessions-managed fisheries with or without limited tenure (Costello and Kaffi ne
[24], Costello, Querou and Tomini [25]). We may as well cite market-based instruments
like Individual Transferable Quotas (Costello et al [23]), or the developement of marine
protected areas (Smith and Willem [50]). All these various regulation mechanisms clearly
prevent the fishery collapse mentioned above and, in some cases, even contribute to the
development of conscious practices. But are such policies sustainable in themselves ?
This undoubtedly raises the old question of “the cost of fishery management" (Schrank
et al.[45]). Even if the risk of fishery collapse or the argument of population restoration
can be advocated in the short term to validate the social cost, a long term conservation
policy should also try to minimize this burden. This is exactly one of the ambitions of
voluntary regulation schemes.

In this paper we thus investigate the possibility for regulatory authorities to avoid
a large part of regulatory costs, by simply backing up social norms with a threat of
collective punishment, when a mandatory regulation is expected to be diffi cult to enforce.
Specifically, we consider, in a conservation rational, the case in which the regulatory cap is
to sustain a stationary extraction level, after it was first reached by a mandatory regulation
policy. Moreover, focusing on voluntary approaches of type (i), we identify a mandatory
regulation such that when it is used as a threat, the cap is ensured to be voluntarily
implemented, while limiting the administrative requirements to the monitoring process of
the total stock level. This perspective differs from the discussion on fishing regulation and
imperfect monitoring since we feature a device involving no legislative or administrative
implementation step of any sort. In particular, it is structurally dissimilar to mandatory
regulations with 0-monitoring, sometimes mentioned as benchmark case in this literature.
Our contribution also substantially differs from the prolific literature about cooperative
equilibria previously mentioned, in which self-regulation relies on harvesters’threats to
punish each other and not on the intervention of an external regulating body.

To our knowledge, very few papers explicitly mention voluntary conservation agree-
ments in a fishery context. Langpap-Wu [31] and Langpap [30] address the question of
the conservation of endangered species but their approach mainly covers terrestrial species
living on private lands. Specifically, they consider the likelihood of a negotiated V-T pol-
icy (i.e. of type (ii) in our previous terminology) in a two period model with uncertainty
on the survival of the species, irreversible investment in conservation, and in which, when
negotiations fail, there is some probability that a mandatory policy is implemented. In
contrast, our analysis considers a continuous time setting without uncertainty and con-
sider V-T approaches of type (i). In addition, we explicitly assume that the mandatory
policy takes some random time to activate after a deviation from the optimal conservation
level was observed. The complex political processes (due to lobbying, legislature, etc.7)

7See Lyon and Maxwell [19] or again Glachant [21] for examples of the modeling of such processes.
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and the practical enforcement itself, mainly explain this delay and its randomness8 in our
model.
Finally, Cave [13] proposes an hybrid approach mixing history-dependent strategies

and bargaining theory, in the standard discrete harvesting model of Levhari and Mirman
[32]. It exhibits the emerging cooperative equilibria under a threat to reverse to the
competitive outcome if one harvester defects from cooperation, knowing there will be room
for renegociation in a further step. Again, Cave’s work refers to agreements that are not
preemptive in nature, but purely voluntary. Such agreements emerge from harvesters’
incentive to overcome the tragedy of the commons, and they do not primarily aim at
avoiding a potential enactment. Conversely, our setting relies on a collective tax-threat
which, at most, could also be interpreted as a substitute for the lacking social norms
and/or institutional background necessary for cooperation to take shape within harvesters.

To be more specific, as will be detailed in the main text, the threatened sanction is a
two-part scheme : first, an insurance mechanism, indexed on stock level, guarantees that
the cap is implemented when it is enforced, while ensuring a stationary profit level to
harvesters whatever the actual level of fish stock at the starting time of implementation
may be ; second, a tax on excess capacity discourages unilateral deviations from the
stationary standard. We then show how such a tax threat should be optimally design for
the standard to be voluntarily met by harvesters (normative approach), and specifically
that it must depend on the enforcement delay of the mandatory scheme.

The rest of the article is organized as follows. The basic framework is described in the
next section. Section 3 sets the regulator’s environmental target. In section 4, we present
the collective V-T policy, and derive some useful properties in section 5. Section 6 studies
the problem of a candidate to deviation under the collective V-T policy. In section 7,
a suffi cient condition on the tax threat for the standard to be voluntary met is stated
along with a budget balance condition. Both conditions are illustrated in the numerical
example from section 8, before section 9 concludes. Technical proves are relegated to the
appendix.

2. A simple bio-economic model

Consider N>1 symmetrical agents, indexed by i, who jointly harvest a common prop-
erty renewable resource over an infinite horizon, [0,+∞[. The resource stock at time t,
measured in units of biomass, is denoted by S(t). Our analysis builds upon the widely
used Gordon-Schaefer model of fisheries (see among others Clark [16]). Accordingly, S(t)
is assumed to evolve over time due to natural growth and harvest. Stock growth is con-
strained by K, the carrying capacity of the resource, so that S(t) ∈ [0, K]. The maximal
harvest per capita at time t is given by qS(t), where q is a coeffi cient of catchability which

8Here, it is the duration of the delay, as opposed to whether the mandatory regulation is eventually
implemented or not, that is random.
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reflects both the size and the maximal extraction capacity of one player’s fleet. A mea-
sure of excess capacity is provided by comparison with the individual effective harvesting,
qS(t)ei(t). The effort variable, ei(t) ∈ [0, 1], captures the combined flow of labour and
capital services raised by i for purpose of extraction. It is therefore assumed that the
actual yield is linear in effort. The resource grows at a natural rate r(S) which decreases
with the size of the biomass, r′(S) < 0, and stops growing when K is reached, r(K) = 0.
We furthermore assume that the maximal growth rate r(0) is bounded and that r”(S) ≤ 0,
meaning that the rate of growth decreases over [0, K] at an increasing rate. From these
observations, we can define the dynamics of the biomass as follows:

Ṡ(t)

S(t)
= r(S(t))− q

(∑N

i=1
ei(t)

)
, with S(0) = S̄ the initial state. (1)

Still in the Gordon-Schaefer ([22], [44]) tradition, we assume that the yields are sold on
a competitive market and that the instantaneous profit of each harvester is proportional
to his effort. We denote by π(S) the profit per unit of effort, and assume that there
exists a minimal biomass stock, Smin, for which this profit becomes positive9. It must
also be noticed that a same extraction rate qei(t), leads to higher captures if applied to
a larger biomass. This implies, at least under a pure competition, that the profit per
unit of effort increases with the biomass, π′(S) > 0. We nevertheless assume that the

elasticity, επ(S) =
(
π′(S)S
π(S)

)
, of this function decreases for all S > Smin. In particular,

a same proportional increase of the biomass has less than a proportional impact on the
profit for a larger biomass10. Each agent, then, seeks to maximize the present value of
its instantaneous profit derived from harvesting the resource. With ρ > 0 denoting the
discount rate, harvester i’s present return is given by:

Ri(S(t), ei(t)) =

∫ +∞

0

exp(−ρt)π (S(t)) ei(t)dt. (2)

Finally, let us notice that the catchability coeffi cient q can also be viewed as the
individual maximal rate of depletion of the resource. Since the present paper aims at
considering endangered resources, we assume that the total rate of depletion is larger than
the growth rate of the biomass for which it becomes profitable to harvest, nq > r(Smin).
Such an hypothesis clearly brings the question of the relationship between the maximal
harvesting effort and the optimal conservation target, which will be studied in the next
section.

9This is, for instance, the case, if the fish stock is sold at a competitive price p and the marginal cost
c per unit of effort is constant since π(S) = (pqS − c).
10This property is, for instance, satisfied if π(S) is concave and if the average profit rate is, on [Smin,K],

lower than the marginal profit rate. But in its present form, this assumption does not imply these two
restrictions.
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3. The optimal conservation target

Before we start presenting the mechanism of voluntary biomass regulation, let us define
the endogenous optimal conservation level to be targeted by the policy. In our framework,
we implicitly assume that the fish market is competitive, which involves, in particular, that
over-exploitation is a consequence of common property solely. The optimal conservation
level can therefore be viewed as the steady state that solves the joint-rent maximization
problem. Let us denote by S∗ this steady state, and write the optimization program as
follows:

max
(ei(t))Ni=1∈[0,1]N

∫ +∞

0

exp(−ρt)
(
π(S(t))

(∑n

i=1
ei(t)

))
dt (3a)

st. Ṡ(t) = S(t)
(
r(S(t))− q

(∑n

i=1
ei(t)

))
, S(0) = S̄ > 0. (3b)

Since the instantaneous return as well as the dynamics are linear in the total harvesting
effort, it can even be expressed as the following variational problem:

max
Ṡ(t)

∫ +∞

0

exp(−ρt)
q

(
π(S(t))

(
r(S(t))− Ṡ(t)

S(t)

))
︸ ︷︷ ︸

f(S(t),Ṡ(t),t)

dt (4)

with Ṡ(t)
S(t)
∈ [r(S(t))− nqS(t), r(S(t))] . (5)

From the Euler-Lagrange condition, we know that:

∂f

∂S
=

d

dt

∂f

∂Ṡ
⇔
(
ρ
S
− r′(S)

)
π(S)− π′(S)r(S)︸ ︷︷ ︸

:=φFB(S)

= 0 (6)

and it can be shown that:

Lemma 1. There exists a unique solution S∗ ∈ (Smin, K) to Eq.(6) and ∀S ∈ [Smin, K]
if S < S∗ (resp. >) then φFB(S) < 0 (resp. >).

This (singular) solution S∗ will be identified to the long term sustainable biomass. More-
over, from the dynamics (see Eq.(3b)), we deduce the symmetric individual effort level
which maintains the resource at S∗. This sustainable effort e∗ is:

∀i, e∗i = e∗ =
r(S∗)

nq
∈ (0, 1) (7)

It is no surprise e∗ must be strictly lower than one since we consider the case of endangered
species, i.e. r(S∗) > r(Smin) > nq. Finally, if this optimal conservation target is met, the
current long term profit of a harvester will be:

vFB = π(S∗)r(S∗)
nq

= π (S∗) e∗ (8)
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We can even go one step further. Following Hartl and Feichtinger [28] or Sethi [46], we
know that the optimal solution of this program is given by the most rapid approach path
(hereafter referred to as the MRAP) to S∗. As a result, if the initial stock S0 falls below
S∗, the optimal approach to the stationary state involves no extraction during a recovery
period, until S∗ is reached at some switching-time. Then, the steady state is sustained
by the regular effort levels, e∗. Conversely, if the trajectory is initiated in S0 ≥ S∗, the
maximal harvesting effort is required from each harvester until S∗ is reached, and from
which they must collectively reverse to e∗. More precisely, it can be stated that:

Proposition 1. Under our assumptions, the path of the biomass that is solution to prob-
lem (3a), is given by SFB(t, S̄), the MRAP to the optimal conservation level, S∗. The
latter is reached in finite time T (S̄) and is supported by an individual optimal Markovian
effort eFB(S(t)), which is either 0 or 1 depending whether S(t) ≶ S∗, and switches to e∗i ,
the sustainable effort, when S(t) = Sc.

Remark 1. We observe for later use that the previous optimization problem can be con-
sidered as starting at time T and state S. In this case, the optimal stationary levels of
resource and effort remain identical to S∗ and e∗ respectively, while the optimal state tra-
jectory becomes SFBT (t, S) := SFB(t−T, S). The same Markovian rule, eFB(S(t)), gener-
ates the optimal state trajectory. Finally, the switching time is given by T ′(S) := T+T (S).

It is a well known result of fisheries bioeconomics that the path described in proposition
1 cannot be reached competitively11 without the implementation of some suited regulation.
Indeed, whatever the initial state of the biomass, each harvester may, at some point,
benefit from a unilateral deviation by choosing a harvesting effort higher than eFB(S(t)) <
1. In particular, let us assume that the optimal conservation level S∗ has been reached
through the implementation of a short-term drastic policy as, for instance, open access
or moratorium, depending whether S(t) ≶ S∗. Then, some long-term regulation policy is
still needed to sustain S∗. The main question therefore becomes : how can we design a
long term voluntary conservation policy based on a potential legislative threat ?

4. The V-T conservation mechanism

Let us assume, from now on, that the optimal conservation level is reached, i.e. for-
mally S0 := S∗. The conservation mechanism works as follows: a regulator, who monitors
the biomass S(t), makes an ex-ante announcement that a mandatory policy will be im-
plemented if harvesters fail in voluntarily sustaining S∗. The mandatory policy relies on
a threefold scheme : once it becomes effective, it (i) provides incentives to restore and
to maintain the biomass at the optimal conservation level, but it also introduces (ii) a

11It is not a purpose of the present paper to re-state this result of the tragedy of the commons in
the canonical fishery setting used here. See Clark [16] for a detailed computation of the competitive
equilibrium, as well as a proof it leads to a smaller stationary state and a higher symmetrical individual
effort than the sole owner solution.
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threat, specifically a long lasting taxation on the exceeding harvesting capacities, and (iii)
a provision for fisheries return to ensure political acceptability. The purpose behind such
an announcement is obviously to enhance ex ante voluntary compliance without having
to actually carry out the threat, but, to some extent, it can be viewed as initiating a co-
ordination device. Finally, as an announcement, it must be credible to the harvesters, as
well as ratifiable by a legislative body, if necessary, through some political process. In this
paper, we do not explicitly model such a process or credibility issues, since the regulator
is not exactly a player (conversely to Glachant ([21]), for instance), and endogeneity is
confined to our true focus, which is how harvesters collectively face the threat. Instead,
we directly include some specific constraints into the design of the mandatory regulation,
so that the main aspects related to implementability are dealt with.

We first assume that the mandatory regulation scheme takes some time to be active
after the deviation occurrence at date tdev. The length of this delay is uncertain, since
it depends on complex and interdependent political processes such as lobbying and leg-
islature, besides the practical enforcement process itself. From the point of view of the
deviator, there is therefore some random delay ∆̃ during which he can benefit the devi-
ation from the optimal conservation effort. We denote by F (t) = P

[
∆̃ ≤ t− tdev

]
the

cumulative distribution of this delay, where t > tdev. For the sake of simplicity, we say
that the probability the mandatory regulation becomes active between t and t+ dt, given
that it was not implemented before t, is constant. This means, for dt small, that the
instantaneous rate of occurrence of the policy is given by:

δ(t) = lim
dt→0

P
[
t ≤ tdev + ∆̃ ≤ t+ dt

∣∣∣ ∆̃ ≥ tdev + t
]

dt
=

Ḟ (t)

1− F (t)
= δ (9)

and implies that this random delay variable ∆̃ is exponentially distributed, with cumula-
tive distribution:

∀t ≥ tdev, F (t) = P
[
∆̃ ≤ t− tdev

]
= 1− e−δ(t−tdev), (10)

As a consequence, (1− F (t)) = e−δ(t−tdev) is the probability that the mandatory regulation
is not implemented after a delay of (t− tdev).
Now, let us call tm some realization of the starting date of the mandatory regulation.

As tm > tdev, the tax scheme must contain an incentive part which restores the optimal
conservation level of the biomass. It corresponds to the sum of the profits that the
(n − 1) other harvesters would obtain by harvesting the current biomass stock S(t) if
they all followed the recommendation of the regulator to provide the first best Markovian
harvesting effort, eFB(S):

I (S) = (n− 1)π (S) eFB(S) (11)

It seems relevant to also introduce a lump-sum tax which neutralizes I (S)’s wealth
effects. This may however create a problem of political acceptability. Remember that the
tax scheme is simply announced by the regulator and becomes effective only if needed,

8



after some political bargaining process that we do not model implicitly. In order to ensure
the credibility of the announcement, we assume that this lump-sum transfer does more
than just balancing the incentive subsidy. Specifically, it is design so as to guarantee
each harvester a remuneration corresponding to the individual profit that he would have
made if no deviation had occurred beforehand. In particular, consider any deviation
causing the biomass stock to stand below its optimal conservation level in tm. In this
case, the optimal management strategy (see proposition 1) would require, at least in the
short term, a moratorium. Then, during this period, our incentive scheme secures the
current harvester returns to π(S∗)e∗, which are the long run instantaneous returns under
compliance. So, denoting by SFBtm (t, Stm) the first best biomass path starting a date tm
with a initial stock of Stm (see remark 1), this lump-sum tax with secured returns is given
by:

L (S∗, t) = nπ
(
SFBtm (t, Stm)

)
eFB

(
SFBtm (t, Stm)

)
− π(S∗)e∗ (12)

Such a transfer policy is obviously insuffi cient per se to encourage the harvesters to
opt for the ex-ante voluntary compliance. The full mandatory regulation scheme must
therefore include some mechanism which deterministically deters deviation, even though
the implementation starting date is actually random. We suggest adding a taxation on
the potential profits that could be derived from the harvesting capacities that exceed the
capacity level maintaining the biomass at its optimal conservation level. Specifically, we
know the catchability coeffi cient induces an individual maximal harvest of qS∗ at the
optimal conservation level, while the fishing capacity that actually sustains this level is
given by qe∗S∗ = r(S∗)S∗

n
. Now, remark that the profit function π(S) is expressed per unit

of effort, hence such an excess capacity taxation rule can be written as:

T (S∗, τx) = π(S∗)

(
1− r(S∗)

nq

)
τx, (13)

where τx is endogenously determined so as to guarantee consistency of the voluntary
mechanism in two ways. First, it should convince the fisheries to meet the regulation
cap voluntarily, i.e. without any need to implement the mandatory regulation scheme.
Second, it should also be set at a level such that the mandatory regulation scheme is
credible. Indeed, any potential deviator may reasonably expect that this long lasting
capacity taxation covers the costs generated by the secured return principle, so that the
regulator will not come back on his decision to implement the regulatory scheme. To
be more specific, the deviator’s expectations on the evolution of the biomass due to his
new effort choice must be, at each instant, consistent with a potential activation of the
mandatory regulation which should be, at least, budget balancing.

To summarize this discussion, we can say:

Definition 1. The V-T conservation mechanism, M(S, S∗, t, τx) = I (S) − L (S∗, t) −
T (S∗, τx), is announced by the regulator and implemented after a random delay (tm−tdev)
that follows the first deviation (Eq.(10)). It relies on an incentive part (Eq.(11)), a lump-
sum transfert which secured returns for political acceptability (Eq.(12)) and a deterrent
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part based on an endogenous taxation of the excess harvesting capacity (Eq.(13)). The
tax rate, τx, is chosen so that the optimal conservation level is met voluntarily and the
credibility of the mechanism is ensured.

5. The properties of the background mandatory scheme

Let us assume, in this section, that the regulator has observed a deviation from the
optimal conservation level S∗ and that we are eventually at tm, i.e. when the mandatory
scheme is activated given the current state, Stm , of the biomass. We have now to check
whether the mandatory tax scheme does perform as design. At that date, the present
value of the profit of each harvester is:∫ +∞

tm

e−ρ(t−tm) (π(S(t))ei(t) +M (S(t), S∗, t, τx)) dt (14)

and one should first expect, if the mechanism is effi cient, that it restores, in an harvesting
game starting at tm, the first best extraction path SFBtm (t, Stm) starting in state Stm (see
remark 1). As planned, this is exactly what the pure incentive part (see Eq.(11)) of the
tax scheme seems doing. Indeed, if each harvester receives a state dependent subsidy of
(n−1)π (S) eFB(S), he internalizes the externalities that drive the tragedy of the common.
Moreover, since the other parts ofM (S, S∗, t, τx), namely the lump-sum transfer and the
capacity taxation, are independent of the current biomass and the harvesting effort, each
harvester chooses his optimal effort by solving:

max
ei(t)

∫ +∞

tm

e−ρt
(
π(S(t)ei(t) + (n− 1) eFB (S(t))

)
dt (15)

Ṡ(t)

S(t)
= r(S(t))− q

(
ei(t) + (n− 1) eFB (S(t))

)
, S(tm) = Stm

Again, this program can be transformed into the following variational problem:

max
Ṡ(t)

∫ +∞

tm

e−δt

q

(
π(S(t))

(
r(S(t))− Ṡ(t)

S(t)

))
dt (16)

with Ṡ(t)
S(t)
∈
[
r(S(t))−

(
1 + (n− 1) eFB (S(t))

)
, r(S(t))− (n− 1) eFB (S(t))

]
.

It remains to notice this singular problem leads to the same Euler-Lagrange condition (see
Eq.(6)) as the optimal conservation problem (Eq.(4)). As a consequence, the stationary
conservation level will be S∗ and each player will adopt a MRAP strategy in order to reach
this steady state, i.e. choose the first best harvesting effort eFB (S). We can therefore
state:

Proposition 2. The first best harvesting effort, eFB (S), played by all harvesters, is a
Markovian equilibrium of the harvesting game starting at tm, i.e. after the activation of
the mandatory policy.
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The mandatory part of the tax scheme, while it is implemented, thus ensures the
optimal conservation path is restored. However, the primary function of such a tax-
scheme is to work as a background threat, which deters the harvesters to deviate from
the optimal conservation level. It is therefore crucial to know what a deviator can expect
to gain when the policy is enforced : let us then define his current profit after tm. As
it drives him to play the Markovian equilibrium strategy, eFB (S), the incentive part of
M (S, S∗, t, τx) that includes the lump-sum transfer simply guarantees to each harvester
an instantaneous return of π(S∗)e∗, which corresponds to the profit he obtains under
compliance. Then, recalling he also bears a tax over exceeding capacity (see Eq.(13)), his
instantaneous profit after tm is given by:

vM(τx) = π(S∗)e∗ − π(S∗)
(

1− r(S∗)
nq

)
τx (17)

= π(S∗)
(
r(S∗)
nq

(1 + τx)− τx
)

which one can immediately notice to be constant across time, and independent of the state
of the biomass at which the policy is implemented. Such an observation will be helpful in
the next section, in which we study the potential gain of a deviator during [tdev, tm].

6. The potential gain from a deviation

We now consider the decision that some harvester i may make, at date tdev, to play
ei(tdev) 6= e∗ while the collective V-T policy is enforced. In order to assess the expected
gain of this deviation, he has to make some conjectures on the behavior of the (n − 1)
other harvesters. In the Nash tradition, we assume he conjectures the other players follow
the prescription of the policy maker by selecting an harvesting effort of e∗. Then, he also
knows from the ex-ante announcement, that if he deviates, a legislative process will be
triggered, and thereby, the mandatory regulation scheme will become enforceable after
some random delay. He therefore expects, from this random date, his opponents to change
their behavior and adopt the equilibrium strategy eFB (S(t)) induced by the mandatory
scheme, as depicted in proposition 2. In this situation, the best response of the deviator
is also to be compliant and his current payoff is given by vM(τx) (see Eq.(17)).
Given these conjectures on the behavior of the other harvesters, the deviator evaluates

his payoff as follows : before tdev, he obtains the long term current first best return vFB
described in Eq.(8), whereas after tdev, his return becomes uncertain. He thus either
obtains the payoff vM(τx) induced by his best reply to the mandatory policy, or the profit
generated by his optimal effort choice as long as the policy is not implemented. Since he
also knows the probability (1− F (t)) that the policy in not implemented before t > tdev,
his expected payoff will be of:

V (e(t)t>tdev , τx, tdev) = (18)∫ tdev

0

exp(−ρt)vFBdt+

∫ +∞

tdev

exp(−ρt) [π(S(t)ei(t) (1− F (t)) + vM(τx)F (t)] dt

11



Then, the largest gain Vdev(τx, tdev) that he obtains from a deviation (ei(t))t≥tdev after
date tdev, actually maximizes, as long as the mandatory scheme is not implemented, the
previous quantity under the following expected change of the biomass:

Ṡ(t)
S(t)

= r(S(t))− q (e(t) + (n− 1) e∗) , S(tdev) = S∗ (19)

Now, observe that not only the equilibrium payoff vM(τx) resulting from the application
of the mandatory regulation scheme but also the first best current payoff vFB are both
independent from the harvesting effort and the biomass stock. So if we want to know his
optimal deviation strategy, it simply remains to solve:

Vdev(τx, tdev) := max
(e(t))t≥tdev

∫ +∞

tdev

exp(−ρt)π(S(t))e(t) (1− F (t)) dt (20)

s.t Ṡ(t)
S(t)

= r(S(t))− q (e(t) + (n− 1) e∗) , S(tdev) = S∗ (21)

This problem can again be transformed in a variational problem and from the Euler-
Lagrange condition, we know that the singular state now solves:

φdev(S) = π(S)
(
ρ+δ
S
− r′ (S)

)
− π′(S) (r (S)− (n− 1) qe∗) = 0 (22)

We can even say:

Lemma 2. There exists a unique solution Sdev < S∗ to φdev(S) = 0 with the property
that S < Sdev (resp. >) we have φdev(S) < 0 (resp. >).

However, this does not necessarily mean that the optimal effort induced by the MRAP
dynamics is feasible. Such a property requires indeed that the long term effort edev, which
sustains the steady state of the biomass, Sdev, belongs to [0, 1], or, in other word, from
Eq.(21), that:

edev = 1
q
r(Sdev)− (n− 1) e∗ ∈ [0, 1] (23)

Since the biomass grows faster at Sdev < S∗ than at the optimal conservation level, and
the other harvesters maintain e∗, it is straightforward edev > e∗ > 0. The deviator should
therefore harvest more in order to get the biomass to stationate at Sdev, but has he a
suffi ciently large harvesting capacity ? If the answer is yes, he plans, as he deviates, to
harvest at full capacity until the state Sdev is reached and then to switch to edev. But this
requires, from Eq.(23), that:

r
(
Sdev

)
− (n−1)

n
r(S∗) ≤ q (24)

In the opposite case, he plans to maintain his effort at the highest level over the whole
horizon starting at tdev, and this optimal strategy causes the fish stock to slowly decrease,
until the policy is implemented, from S∗ to a long term steady state S̄dev, given by:

r(S̄dev) = q (1 + (n− 1) e∗) (25)
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A biomass stock with belong, if condition (24) is not satisfied, to
(
Sdev, S∗

)
.

From this discussion, we can even conclude that any deviation should occur imme-
diately, i.e. at tdev = 0. Indeed, let us differentiate Vdev(τx, tdev) with respect to the
deviation date:

∂Vdev(τx, tdev)
∂tdev

exp(ρtdev) = (26)

(vFB − [(π(S(tdev))ei(tdev)) (1− F (tdev)) + vM(τx)F (tdev)])

Then, notice that when the deviation starts, (i) the probability of occurrence of the
mandatory scheme is F (tdev) = 0, (ii) the biomass stock corresponds to the optimal
conservation level, S(tdev) = S∗ and (iii) the harvesting effort is, in any case, of ei(tdev) = 1.
From the early definitions of vFB (Eq.(8)) and of vM(τx) (Eq.(17)), we thus obtain:

∂Vdev(τx, tdev)
∂tdev

exp(ρtdev) = π(S∗) (e∗ − 1) < 0 since e∗ < 1 (27)

To conclude, we can say:

Proposition 3. If a harvester decides to deviate from the announced conservation policy,
he does not wait, i.e. tdev = 0, he harvests at capacity, edev(t) = 1, and switches to
edev(t) = edev if condition (24) holds, before finally selecting the first best effort when the
policy becomes mandatory. At date tdev, his expectation on the evolution of the biomass are
given by Sdev(t), a decreasing path starting at S∗ which either reaches Sdev in finite time
or S̄dev at infinite (depending on condition (24)). His expected gains from this deviation
are:

Vdev(τx) =

∫ +∞

0

exp(−ρt) [π(Sdev(t))edev(t) (1− F (t)) + vM(τx)F (t)] dt (28)

7. The capacity tax and the average delay

Moving to the last step of our analysis, we now consider the tax rate on excess capacity.
It should be set, as further detailed, at a level ensuring it is credible to the deviator, and
any deviation is deterred ex-ante. We provide a general characterization of such a tax
rate, before studying its relationship with the average delay of the mandatory policy
implementation.

7.1. Characterization
Let us first focus on the deterrent property of the capacity taxation. We ask wether

there exists a minimal tax rate, denoted τ incx , such that the individual return derived when
no harvester deviate is equal to the expected return of a potential deviator, Vdev(τx) (see
Eq.(28)). As current profits under compliance (see Eq.(8)) are constant, the expected
additional gain from deviation is given by:

ψ(τx) = Vdev(τx)−
1

ρ
π (S∗) e∗. (29)
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We even observe that ψ(τx) is decreasing, since from Eqs. (28) and (17), it can be stated:

ψ′(τx) =
(
Vdev

)′
(τx) = (vM)′ (τx)

∫ +∞

0

exp(−ρt)F (t)dt = − δ
ρ(ρ+δ)

π(S∗)(1−e∗) < 0. (30)

This means that the minimal tax rate solves ψ(τ incx ) = 0, which yields:

τ incx = ρ(ρ+δ)
δ

∫ ∞
0

exp(−ρt)
[
π(Sdev(t))edev(t)− π(S∗)e∗

π(S∗)(1− e∗)

]
︸ ︷︷ ︸

R(t)

(1− F (t)) dt (31)

In other words, it directly depends on the average ratio of the instantaneous deviation gain
to the excess capacity tax base. Since Sdev(t) < S∗, edev(t) ≤ 1 and π(S) is decreasing,
we notice:

0 ≤ π(Sdev(t))edev(t)− π(S∗)e∗

π(S∗)(1− e∗) ≤ π(S∗)− π(S∗)e∗

π(S∗)(1− e∗) = 1 (32)

which implies that the minimal deterrent tax rate is smaller than ρ
δ
. Moreover, from our

assumption on the occurrence of the mandatory policy F (t), the average delay is given
by 1

δ
, meaning that the tax rate is always bounded from above by the the discount rate

factored by the average delay. For instance, provided an average delay of 2 years and a
discount factor of 5%, this tax rate will be lower than 10%.

We now examine the credibility condition. As already mentioned in section 4, cred-
ibility resolves itself into a mere budget condition in this framework. The intuition is
simple. Any harvester, while considering his decision to deviate, has to be ensured the
regulator will not rescind the mandatory tax. Otherwise, as a threat, it would loose the
deterrent property defined above. The tax revenue generated by τx must therefore cover
the cost of the secured return principle. Most importantly, this requirement must hold
ex-ante, whatever the duration of the political process. Since he plans to act as described
in proposition 3, any potential deviator expects the biomass to be given by Sdev(t). As
a consequence, we have to find a minimal tax rate, τmx , such that a mandatory policy
starting in any state within

[
max

{
Sdev, S̄dev

}
, S∗
]
, satisfies the budget requirement.

To begin with, let us initiate the mandatory policy at date tm, with a biomass stock
S ∈

[
max

{
Sdev, S̄dev

}
, S∗
]
. As planned, the regulator secures the returns of the harvester

until the optimal conservation level is reached at date tm + T (S) (see remark 1), while
collecting the capacity tax over the whole horizon. He thus does not run into a deficit if:

−n
∫ tm+T (S)

tm

exp(ρ(t− tm)π(S∗)e∗dt+ n

∫ ∞
tm

exp(ρ(t− tm)π(S∗) (1− e∗) τxdt ≥ 0, (33)

which requires a minimal tax rate of:

τx (S) =
e∗

1− e∗ (1− exp(−ρT (S))) . (34)
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Then, remark that this minimal tax rate does not even depend on the mandatory policy
implementation starting date. The only variable of interest is T (S), which is the delay
necessary to restore the optimal conservation level by means of a moratorium. Since this
delay is increasing with the level of depletion of the resource, it simply remains to set:

τmx = τx
(
max

{
Sdev, S̄dev

})
(35)

in order to ensure the credibility of the policy for any time tm at which the mandatory
policy starts. In other words, τmx is either equal to τx

(
Sdev

)
or τx

(
S̄dev

)
, depending

whether the optimal deviation corresponds to some feasible MRAP to Sdev, or to the
maximal effort with a smooth convergence to S̄dev (see condition (24) and proposition 3).
To summarize all these observations, we can say:

Proposition 4. If, as depicted in section 3, the regulator threatens the harvesters with
a mandatory regulation which features a tax rate τx = max {τ incx , τmx } on excess capacity,
the optimal conservation level of biomass will be sustained. Such a tax rate deters any
deviation, and is credible.

7.2. Impact of the average delay
Let us now further examine the average delay of the occurrence of the mandatory

policy, 1
δ
. Indeed, understanding how δ relates to τx requires to study the way this average

delay impacts the deviation. Proposition 3 clearly points out that two scenarii may occur:
either Sdev(t) converges to S̄dev at a maximal harvesting level, or this path has a MRAP
characterized by a convergence to Sdev and an effort switch, in finite time, from 1 to edev.
These scenarii depend whether r

(
Sdev

)
R q+ (n−1)

n
r(S∗) (see Eq.(24)). Moreover, observe

from Eq.(22) that Sdev depends on the average delay, with dSdev

d(1/δ)
> 0 (see E). Since the

biomass growth rate, r(S), is decreasing it is now obvious that: for a short average delay,
1
δ
< 1

δ̄
, the deviator will choose a maximal harvesting strategy that converges to S̄dev,

while for a longer delay 1
δ
> 1

δ̄
, he will care, in some sense, of conservation by adopting

a MRAP path which contains a switching to some less aggressive harvesting behavior.
The reader should nevertheless notice both scenarii only happen when lim 1

δ
→∞ r(S

dev) <

q + n−1
n
r(S∗), which does not depend on the delay. In the opposite case, only the first

scenario occurs like, for instance, in the example of the next section.

So let us first consider a short average delay, i.e. 1
δ
≤ 1

δ̄
. In this case, Sdev ≤ S̄dev

where S̄dev defines as a stationary state of:

Ṡ(t)

S(t)
= r(S(t))− q (1 + (n− 1) e∗) with S(0) = S∗ (36)

Since this motion does not depend on the delay, the same holds for the credible tax rate,
τmx ,(see Eqs.(34) and (35)). It is not the case for the deterrent tax rate, τ

inc
x (see Eq.(31)).

Even if we know that ∀t, edev(t) = 1 and Sdev(t) solves Eq. (36) meaning that Sdev(t) is
independent of the delay and converges to S̄dev, we have:

dτ incx

dδ
= −ρ2

δ2

∫ ∞
0

exp(−ρt)R(t) (1− F (t)) dt+ ρ(ρ+δ)
δ

∫ ∞
0

exp(−ρt)R(t)∂(1−F (t))
∂δ

dt (37)
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Furthermore, ∂(1−F (t))
∂δ

= −δ (1− F (t)), so it can be said, from Eq. (32), that dτ incx

dδ
< 0,

or equivalently, that the deterrent tax rate τ incx is increasing with the average delay of the
policy. Finally, remember that the tax rate announced is given by τx = max {τ incx , τmx }.
Thus we can state it is non-increasing with the average delay of the mandatory policy as
long, of course, the latter remains small enough.

If the average delay is large enough, i.e. 1
δ
> 1

δ̄
, then Sdev(t) which solves Eq. (36)

reaches Sdev > S̄dev in finite time, which we denote t(Sdev). After this period, edev(t)
switches to edev, but Sdev(t) and δ remain independent for t < t(Sdev). A first consequence
is that τmx now depends on the average delay, since the maximal time, T (Sdev), necessary
to restore the biomass under the mandatory policy, depends on Sdev:

dτmx
d(1/δ)

= − e∗

1−e∗ρ exp(−ρT (Sdev)) dT
dS

∣∣
S=Sdev

dSdev

d(1/δ)
(38)

Then remark that the time necessary to restore the biomass from S < S∗ to S∗ under
an optimal (mandatory) policy, decreases with S, and that dSdev

d(1/δ)
> 0 . Both imply that

the tax rate which ensures the credibility of the policy decreases with the average delay
of occurrence of the mandatory policy, dτmx

d(1/δ)
> 0. A second consequence is that the

relationship between the deterrent tax rate, τ incx , and the delay, becomes less obvious.
Indeed, both the switching time, t(Sdev), and the instantaneous profits after this switch,
π(Sdev)edev, depend on the delay. It can however be shown (see E) that the intuition
which suggests that the deterrent tax rate is increasing with the delay is still relevant. To
summarize all these observations, we can say:

Proposition 5. If the expected delay of the implementation of a mandatory policy in-
creases, then:
(i) the deterrent tax rate, τ incx , also increases because each deviator benefits from a larger
average window within which there is an opportunity to benefit from the deviation;
(ii) the credible tax rate, τ incx , is constant for a low average delay 1

δ
≤ 1

δ̄
, while it increases

for a large average delay since the maximal time, T (Sdev), to restore the biomass and to
secure the returns of the harvesters increases;
(iii) by definition of the max, the tax announced by the regulator, τx = max {τ incx , τmx },
also increases.

8. A illustration: the scallop fishery in the bay of Saint-Brieuc

We use a numerical example to illustrate our V-T policy12. In particular, we apply
it to the case of the common scallop (pecten maximus) fishery, located in the Bay of
Saint-Brieuc on the northern coast of Brittany (France). Apart from being the second
largest scallop fishery in France, it is also, most remarkably, known to be one of the
most regulated fishing industry. To begin with, first access is limited in two ways. A
numerus clausus licence policy limits the number of boats to n = 250, while the fishery

12Detailed computations performed with Maple are available upon request.
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only opens 45 minutes two days a week during the fishing season. Hence, the number of
vessels is constant and the maximal fishing effort is clearly identified. Secondly, as access
restrictions did not suffi ce to preserve the scallop population, the regulatory agency has
added some command and control measures (harvesting quotas per vessel and mesh size
restrictions). The purpose of this example is to point out that these costly additional
command and control policies can be replaced by a V-T policy. Specifically, we suggest
a set of capacity tax rates, depending on the average policy implementation delay, which
ensures optimal conservation.

The data and the functional forms of this example are mainly borrowed from Frésard
and Ropars-Collet [20]. We thus assume a logistic growth rate function r(S) = µ(1−S/K),
with a unit profit per effort given by π(S) = (pqS − c). The parameters values are
summarized in Table 1.

Parameter Description Value
r Intrinsic growth rate 0.649
K Carrying capacity 54252 (tons)
p Ex-vessel unit price 2000 (€ per ton)
q Catchability coeffi cient 2.961× 10−3

c Unit cost of fishing effort 4746 (€ per boat)
n Number of vesselst 250
ρ Discount ratet 0.05

Table 1: The scallop fishery in the Bay of Saint-Brieue

As in Frésard and Ropars-Collet [20], we choose a discount rate ρ = 0.05 and a number
of players n = 250 (defined by the numerus clausus). But in their paper, the effort is
counted in fishing hours per year, and not as a proportion of the maximal capacity. So,
using the threshold that implies, de facto, the access regulation previously described, we
set it to 42 hours. It corresponds to a season of seven months with 1.5 fishing hours per
week, which we normalize to one so as to fit our model. Then, we adjust in consequence
the unit effort cost, c, and the catchability coeffi cient, q. Under these assumptions, table
2 describes the first best stationary outcomes.

Variable Description Value
S∗ Optimal biomass stock 25503 (tons)
Smin Minimal stock condition for positive profit 801.418 (tons)
nS∗qe∗ Total catch per season 8779 (tons/year)
e∗ Individual optimal effort 0.465

Equivalent harvesting hours 19.5 (hours)
S∗qe∗ Individual catch per season 35.1 (tons/year)
π(S∗)e∗ Individual stationary profits 67961.87 €/year

Table 2: The first best stationnary conservation target
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Table 2 clearly shows that access control is not suffi cient to achieve the first best
stationary level of biomass. The regulated number of fishing hours is twice the optimal one,
and the numerus clausus set at n = 250 makes extraction possible at a rate larger than
the maximal growth rate compatible with non negative profits, i.e. n > dr(Smin)/qe =
215. This result confirms the current mandatory regulation actually mainly relies on the
existence of non-transferable quotas and mesh control.

In order to understand how to set the capacity tax, let us first assume our voluntary
mechanism is implemented and look at the potential deviation. From proposition 3, we
know that two kinds of behaviours may occur depending whether the deviator has or not
a suffi cient fishing capacity to reach Sdev(δ) (see Eq.(24)). In the Saint-Brieuc case, this
discussion is useless since:

∀δ, r
(
Sdev(δ)

)
≥ r

(
Sdev(0)

)
' 0.5142 > 0.3455 ' q + (n−1)

n
r(S∗) (39)

This means that the deviator always plan to harvest at full capacity during the deviation,
i.e. edev(t) = 1 . Thus, his expectation on the evolution of the biomass is, under our
specifications, given by:

Sdev(t) '
104975831200

4137789.013− 21501.65105 exp (−0.1182344857t)
, (40)

a path which converges to S̄dev ' 25370.03 tons. For a given random delay of the policy
and an announced capacity tax τx, the deviator knows that his instantaneous expected
gains amount to:

vdev(t, δ, τx) ' e−δt (5.922Sdev(t)− 4746) +
(
1− e−δt

)
(78318.24τx − 67961.87) (41)

For instance, figure 1 illustrates, for an average implementation delay of two years, such
profits as a function of the capacity tax threat stringency. The black flat surface depicts
the profit under compliance (i.e. at the first best conservation level).

We finally turn to characterizing the minimal capacity tax rate which credibly deters
any deviation. If we consider the deterrent part, this consists in, referring for instance to
figure 1, finding the level of tax rate such that the present value of the deviation expected
instantaneous gain is equal to the present value of compliance, i.e.∫∞

0
vdev(t, δ, τx)e

−0.05tdt ' 1
0.05

67961.87 ' 1359237 (42)

As regards the scallop fishery in the Saint-Brieuc bay, the relation between the average
policy delay and the capacity tax rate is described in table 3.

Average delay (in years) .5 1 1.5 2 2.5 3 3.5 4 4.5 5
Deterent capacity tax .025 .049 .075 .099 .124 .149 .174 199 .224 .249

Table 3: Average policy delay and deterent capacity tax
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Figure 1: Instantaneous profit after deviation for an average policy delay of two years.

Finally, it simply remains to verify that these tax rates are also credible. This is not
really a problem in our example. In fact, under the access restriction, the recovery of the
biomass is quite fast, so that the length of the moratorium included in our mechanism
is rather short. In other words, a very small long lasting capacity tax easily covers the
short run spending to secure the harvesters’returns. In our example, this tax rate, τmx ,
is roughly .0007.

9. Concluding remarks

In this paper we have devised a voluntary conservation policy to manage fisheries,
which relies on a mandatory tax scheme such that, when it is used as a threat, com-
pliance yields higher expected profits than any deviation. Moreover, when enforced, the
mandatory scheme credibly implements the first best and guarantees the first-best station-
ary profits to harvesters. The part of the mandatory policy that actually deters harvesters
from deviating is a tax on excess capacity, τx = max {τ incx , τmx }, the level of which is shown
to depend on the average enforcement delay. Specifically, we find that 1/δ impacts : (i)
the deterrent level of tax-rate, τ incx , since the average delay always influences the expected
gains of deviation, via the expected length of the deviation window, and indirectly, via
the deviator extraction behavior during the deviation, (ii) the credible tax rate, τ incx , i.e.
the level of tax rate such that the mandatory policy is ensured to be budget balanced, via
the recovery costs’upper bound. Nevertheless, when this average delay is short enough,
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the credible tax rate may be constant. The ranking of τ incx and τmx eventually depends
on the population biological dynamics, the discount rate, the unit price of catch and the
cost of effort. In the case of the scallop fishery in the bay of Saint-Brieuc, the deterrent
capacity tax is greater than the credible one, even for small average delays.
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Appendix

A. Proof of Lemma 1

Existence is immediate. Since π(Smin) = 0, we know from the definition of φFB(S) (see Eq.(6))
that φFB(Smin) = −π′(Smin)r(Smin) < 0 (remember that π′(S) > 0 and r(Smin) > 0) while φFB(K) =(
ρ
S − r

′(K)
)
π(K) > 0 since r(K) = 0 and r′(S) < 0. The result then follow from the continuity of

φFB(S).
Uniqueness relies on the idea that if (φFB)

′
(S)maintains its sign at each solution, then this solution

is unique. So, let us first observe that:

(φFB)
′
(S) =

(
− ρ
S2 − r”(S)

)
π(S) +

(
ρ
S − r

′(S)
)
π′(S)− π”(S)r(S)− π′(S)r′(S) (43)

If we evaluate this derivative at a solution S∗ of Eq.(6), we know that ρ
S = r′(S∗) + π′(S∗)

π(S∗) r(S
∗) and we

obtain, after computation, that:

(φFB)
′
(S∗) = −

(
π′(S∗)r′(S∗) + r′(S∗)π(S∗)

S∗ + r”(S∗)π(S∗)
)

︸ ︷︷ ︸
=A

(44)

− r(S∗)
(
π′(S∗)
S∗ − (π′(S∗))

2

π(S∗) + π”(S∗)

)
︸ ︷︷ ︸

=B

Since we have assumed that ∀S ∈ (Smin,K), π(S), π′(S) > 0, r′(S), r”(S) < 0, we can claim that A > 0.
Now let us observe that:

B = 1
S∗π(S∗)

(
(π′(S∗) + π”(S∗)S∗)π(S∗)− S∗ (π′(S∗))

2
)

= π(S∗)
S∗

d
dS (επ(S∗)) < 0 (45)

In other words, that B is negative since the elasticity επ(S) of the profit function decreases on (Smin,K).
We conclude that (φc)

′
(S∗) > 0, meaning that the solution to φFB(S) = 0 is unique.

Sign of φFB(K). From the previous property, it is obvious that ∀S ∈ [Smin,K] if S < S∗ (resp. >)
then φFB(S) < 0 (resp. >).

B. Proof of Proposition 1

Following Hartl and Feichtinger ([28]: Theorem 3.1) and lemma 1, it remains to verify that:
The biomass path is feasible. This means that the control eFB(S) ∈ [0, 1]. This is typically the

case before the steady state is reached because eFB(S) is, in this case, either 0 or 1. It thus remains to
verify that e∗ ∈ [0, 1]. But remember that the specis is endangered and the growth rate is decreasing, i.e.
r(S∗) < r(Smin) < nq, hence e∗ = r(S∗)

nq ∈ (0, 1).

The transversality condition is verified. This one is given by limt→+∞ e−ρt
∫ S∗
S(t)

(
−π(σ)

qσ

)
dσ ≥

0, for any feasible trajectory S(t). Let us first observe that we can, by the the non-negativity condition
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of the instantaneous profit, restrict the set of feasible paths to those belonging to [Smin,K]. On this set,

the quantity
(
−π(S)

qS

)
is, by continuity, bounded. It follows that any path S(t) ∈ [Smin,K] is such that∫ S∗

S(t)

(
−π(σ)

qσ

)
dσ is bounded for all t. We can therefore claim that limt→+∞ e−δt

∫ S∗
S(t)

(
−π(σ)

qσ

)
dσ = 0.

C. Proof of Lemma 2

Existence. Since π(Smin) = 0, Eq.(22) says that φdev(Smin) = −π′(Smin) (r (Smin)− (n− 1) qe∗).
Now remember, from Eq.(7), that qe∗ = r(S∗)

n and that r′(S) < 0. This implies that (r (Smin)− (n− 1) qe∗) >
1
nr(S

∗) > 0 so that φdev(Smin) < 0. Moreover, from the early definition of S∗ (see Eq.(6)), φdev(S∗) =

π(S∗) δ
S∗ +π′(S∗) (n− 1) qe∗. This quantity is positive since for S > Smin, we know that π(S), π′(S) > 0.

Existence follows by continuity of φdev.
Uniqueness is obtained as in the proof of Lemma 1. So let us first observe that:

(φdev)
′
(S) =

(
−ρ+δS2 − r”(S)

)
π(S)+

(
ρ+δ
S − r

′(S)
)
π′(S)−π”(S) (r (S)− (n− 1) qe∗)−π′(S)r′(S) (46)

If we now introduce Eq.(22), we obtain, after computation, that:

(φdev)
′
(Sdev) = −

(
π′(Sdev)r′(Sdev) + r′(Sdev)π(Sdev)

Sdev
+ r”(Sdev)π(Sdev)

)
︸ ︷︷ ︸

=A′

(47)

−
(
r
(
Sdev

)
− (n− 1) qe∗

)(π′(Sdev)
Sdev

− (π′(Sdev))
2

π(Sdev)
+ π”(Sdev)

)
︸ ︷︷ ︸

=B′

It remains to observe, since r′(S) < 0, that r
(
Sdev

)
− (n− 1) qe∗ > r (S∗)− (n− 1) qe∗ = r(S∗)

n > 0 and
to use similar arguments as in in the proof of Lemma 1 in order to sign A′ and B′.

The sign of φdev(S) follows from the two previous results.

D. Proof of Proposition 3

Case 1 : r
(
Sdev

)
− (n−1)

n r(S∗) ≤ q
In this case, there exists a unique effort edev ∈ (e∗, 1] which sustains Sdev as a steady state. So,

following Hartl and Feichtinger ([28]: Theorem 3.1) and from Lemma 2, the MRAP approach applies

if the following transversality condition limt→+∞ e−ρt
∫ S∗
S(t)

(1− F (t))
(
−π(σ)

qσ

)
dσ ≥ 0 is met. Since

(1− F (t)) ∈ [0, 1], this is a straightforward consequence of the proof of proposition 1.
Case 2 : r

(
Sdev

)
− (n−1)

n r(S∗) > q
In this case, the dynamics of S (see Eq.(21)) associated to an effort e(t) = 1 admits a steady state

S̄dev given by r
(
S̄dev

)
= q + (n−1)

n r(S∗) which belongs to
(
Sdev, S∗

)
since r′(S) < 0. Moreover, let us

denote by S̄dev(t) the biomass path that solves Eq.(21) with e(t) = 1. It remains to show that this path
is optimal. So let us take any path S(t) starting at S∗ at t = tdev and which satisfies the feasibility
condition given by the following differential inclusion:

Ṡ(t) ∈ [(r(S(t))− (1 + (n− 1) e∗))S(t), (r(S(t))− (n− 1) e∗)S(t)] (48)

Let us also observe from the dynamics of the biomass (Eq.(21)) that:

e(t)dt =

(
r(S(t))

q
− (n− 1)e∗

)
dt− 1

qS(t)
dS (49)
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In this case for any admisible path S(t) and any finite T > tdev, the value of the objective (Eq.20) can
be viewed as a line integral. More precisely:

J(S(·), T ) =

∫ T

tdev

exp(− (ρ+ δ) t)π(S(t))e(t)dt

=

∫
S

exp(− (ρ+ δ) t)π(S)
(
r(S)
q − (n− 1)e∗

)
︸ ︷︷ ︸

=M(S,t)

 dt+

− exp(− (ρ+ δ) t)π(S)
qS︸ ︷︷ ︸

=N(S,t)

 dS
Now, let us compute ∆(T ) = J(S̄dev(·), T ) − J(S(·), T ) for all admissible path S(·). From Anaya et al.
([4] remark 2.1), we can say that, for an initial condition given by S∗, S̄dev(t) is the lowerst bound of
the paths that verifies the differential inclusion given by Eq.(48). Since S(·) 6= S̄dev(·), this means that
we only observe two typical configurations: either S(t) > S̄dev(t) on an open subinterval of [tdev, T ] or
S(t) > S̄dev(t) for (t′, T ] (see figure 1).

-
t

6S
HHHHHHHHHHHHHHHHHH

tdev

��
��

��

T

s
A s

B s
C s

D

sE

S̄dev(t)

S(t)

S(t)

D1

D2

Figure 2: Paths of S̄dev(t) and S(t)

So even if configuration ABA can occur several time, we can say that ∆(T ) is typically of the form of:

∆(T ) =
(∮
ABA

M(S, t)dt+N(S, t)dS
)

+
(∮
CDEC

M(S, t)dt+N(S, t)dS
)

(50)

−
(∮
DE

M(S, t)dt+N(S, t)dS
)

Moreover from Green’s theorem, we know that:{ ∮
ABA

M(S, t)dt+N(S, t)dS =
∫∫
D1

(
∂N
∂t (S, t)− ∂M

∂S (S, t)
)
dSdt∮

CDEC
M(S, t)dt+N(S, t)dS =

∫∫
D2

(
∂N
∂t (S, t)− ∂M

∂S (S, t)
)
dSdt

(51)

and by computation, we can say:(
∂N
∂t (S, t)− ∂M

∂S (S, t)
)

= exp(−(ρ+δ)t)
q φdev(S) (52)

Since any S in D1,D2 is larger than Sdev, we can say, by lemma 2, that the two first line integrals of Eq.
(50) are strictly positive. Moreover, for the last one dt = 0, it follows that:

∆(T ) > −
(∫ S(T )

S̄dev(T )

N(S, t)dS

)
= exp(− (ρ+ δ)T )

∫ S̄dev(T )

S(T )

π(S)
qS dS (53)

Finally, from case 1, we know that
∫ S̄dev(T )

S(T )
π(S)
qS dS is bounded for any admissible path belonging to

[Smin,K], so that limT→∞∆(T ) > 0 which shows that S̄dev(t) is an optimal solution.

26



E. Delay and taxation

Delay and deviation:

(i) Sdev increases with the average delay, i.e.
dSdev

d (1/δ)
> 0. This follows from the application of the

implicite function theorem to Eq.(22) since a direct computation shows that ∂φdev
∂δ

∣∣∣
S=Sdev

= π(Sdev)
Sdev

> 0.

and from C, we know that ∂φdev
∂S

∣∣∣
S=Sdev

> 0. It follows that dS
dev

dδ < 0 or equivalently that dSdev

d(1/δ) > 0.

(ii) Sdev(t) is independant from δ for all t or all t < t(Sdev) depending whenever 1
δ ≶

1
δ̄
. In fact

Sdev(t) solves Eq.(36) for ∀t or ∀t < t(Sdev) depending whenever 1
δ ≶

1
δ̄
and Eq.(36) is independent of δ,

hence ∂Sdev(t)
∂δ = 0 ∀t or ∀t < t(Sdev) respectively.

(iii) For 1
δ >

1
δ̄
, we have dt(Sdev)

dSdev
=
(
r(Sdev)− q (n− 1) e∗ − q

)−1
Sdev. In fact t(Sdev) is given by

Sdev = Sdev(t) and Sdev(t) solves Eq.(36) solves. This implies that dSdev = Ṡ(t)
∣∣∣
Sdev

dt. The result

follows from the definition of the dymanics (Eq.(36)).

Properties of R(t) = π(Sdev(t))edev(t)−π(S∗)e∗

π(S∗)(1−e∗)
(iv) R(t) ∈ [0, 1] (see Eq. (32)

(v)
∂R(t)

∂δ
= 0 for ∀t or ∀t < t(Sdev) depending whenever 1

δ ≶
1
δ̄
. This result follows from (ii) and

the fact that edev(t) = 1 in both cases.

(vi) For 1
δ >

1
δ̄
and ∀t > t(Sdev),

∂R(t)

∂δ
=

(ρ+ δ)π
(
Sdev

)
qSdevπ(S∗)(1− e∗)

dSdev

dδ
. In fact, let us first observe

that for ∀t > t(Sdev), Sdev(t) = Sdev and edev(t) = edev, so that ∂R(t)
∂δ = 1

π(S∗)(1−e∗)
dπ(Sdev)edev

dδ . Moreover

using the definition of edev (see Eq.(23)), we can say that:

dπ(Sdev)edev

dδ
=
dSdev

dδ
1
q

(
π′
(
Sdev

) (
r(Sdev − q (n− 1) e∗

)
+ π

(
Sdev

)
r′(Sdev)

)
and from the definition of Sdev (see Eq. 22), we conclude that

dπ(Sdev)edev

dδ
= (ρ+δ)

q

π(Sdev)
Sdev

dSdev

dδ
Deterrent tax rate and large delay

From Eq.(31), and point (v), we can say that:

dτ incx

dδ
= −ρ

2

δ2

∫ ∞
0

R(t) exp(− (ρ+ δ) t)dt

+ρ(ρ+δ)
δ

(∫ t(Sdev)

0

R(t)(−t) exp(− (ρ+ δ) t)dt+ dt(Sdev)
dδ (R(t) exp(− (ρ+ δ) t))t=t(Sdev)−

)
ρ(ρ+δ)
δ

(∫ ∞
t(Sdev)

(
∂R(t)
∂δ − tR(t)

)
exp(− (ρ+ δ) t)dt− dt(Sdev)

dδ (R(t) exp(− (ρ+ δ) t))t=t(Sdev)+

)
After simplifications by using our previous observations (especially point (vi), we get:

dτ incx

dδ
= −ρ

2

δ2

∫ ∞
0

R(t) exp(− (ρ+ δ) t)dt− ρ(ρ+δ)
δ

∫ ∞
0

tR(t) exp(− (ρ+ δ) t)dt︸ ︷︷ ︸
≤0 since R(t)∈[0,1]

+ ρ(ρ+δ)
δ


dt(Sdev)

dSdev
dSdev

dδ
exp(− (ρ+ δ) t(Sdev))

π(Sdev)
(
1− edev

)
π(S∗)(1− e∗)

+
(ρ+ δ)π

(
Sdev

)
qSdevπ(S∗)(1− e∗)

dSdev

dδ

∫ ∞
t(Sdev)

exp(− (ρ+ δ) t)dt


︸ ︷︷ ︸

A
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Moreover, by rearranging and using point (iii), A can be written as:

A =
dt(Sdev)

dSdev
dSdev

dδ

exp(− (ρ+ δ) t(Sdev))π(Sdev)

qπ(S∗)(1− e∗)
(
q − qedev + r(Sdev)− q (n− 1) e∗ − q

)
= 0

since by construction edev equates ṠS = 0 in Eq.(36). We can therefore conclude that τ incx increases with
the average delay 1

δ .
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