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1 Introduction

Endogeneity issues are pervasive in empirical estimation of econometric models. For example,
consider a typical wage equation where the logarithm of the wage rate of a worker is linearly
explained by education level and some other explanatory factors. The latter factors are often
considered to be independent of the error term. In contrast, the independence of the education
variable and the error is generally disputed, for example because some unobservable genetic ability
may be simultaneously related to both wage and education. In that case, the model may be subject
to the endogeneity problem.

The typical Hausman test of endogeneity in linear models is based on comparing OLS estimates
with 2SLS estimates (Hausman, 1978). Developments in Hausman-type tests used for endogeneity
analysis have attracted interest in the recent literature.1 However, with the typical exogenous
tests in the literature, small perturbations of the distribution of the error terms in the model
can have arbitrary large effects on the power and on the asymptotic level of these tests. This
shortcoming stems from test statistics based on estimators that have unbounded influence functions.
We contribute to this literature by exploring for this kind of test the use of quantile regressions,
which are robust to heavy tail errors.

Specific kinds of robustness properties have already been the object of investigation in the
literature. On the one hand, exogeneity tests that are robust to heteroskedasticity have been
proposed (Wooldridge, 1995), and the robustness of exogeneity tests to the weakness of some
instruments and to the degree of endogeneity of instruments have been studied (Tchatoka and
Dufour, 2008). However, to our knowledge, there are no precise results for robustness of exogeneity
tests to outliers.

On the other hand, another literature examines the general ‘robustification’of tests, by basing
them on statistics that are robust to heavy tails, notably for M-estimators (Peracchi, 1991). We
follow this suggestion by using quantile regression, which is an estimation method robust to outliers,
and applying them to exogeneity tests. To the exception of Chernozhukov and Hansen (2006)’s
test, which we discuss below, no exogeneity test based on bounded-influence statistics seems to be
available. We close this gap.

The issue of endogeneity in the context of quantile regression has long been recognized, and
many techniques to deal with this issue have been proposed.2 However, not much attention has
been paid to the issue of testing for the presence of endogeneity in conditional regression models by
using quantile regression. In this paper, the use of quantile regression for this is motivated by the
robustness of this method when the error terms exhibit a heavy tail. Chernozhukov and Hansen
(2006) propose an exogeneity test for instrumental quantile regression based on approximating
the orthogonality of transformed structural errors and regressors (IVQR estimator).to be more
precise about quant C&H do A drawback of their approach is that the computation times of
the test statistic and of its critical value may be huge for more than a few endogenous regressors.
On the other hand, our proposed method can accommodate as many endogenous regressors as
possible, and is free from such a computational problem.

Robustness estimators are sometimes justified by non-normality since in the Gaussian case the

1Hahn and Hausman (2002), Butler (2000), Chmelarova and Hill (2010), Lavergne and Ngimkeu (2011), Lee and
Okui (2012).

2To name just a few, see Amemiya (1982), Powell (1983), Chen and Portnoy (1996), Kemp (1999), Sakata (2007),
Arias et. al. (2001), Garcia et. al. (2001), Chen, Linton, and van Keilegem (2003), Hong and Tamer (2003), Kim
and Muller (2004, 2012), Chernozhukov and Hansen (2005, 2006, 2008), Ma and Koenker (2006), Horowitz and Lee
(2007), and Lee (2007).
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non-robust OLS estimates in the linear model is the maximum likelihood estimator and outliers
are rare. The issue of weak endogeneity in linear simultaneous systems is also sometimes seen as
originated from non-normality. As it happens, the use of quantile regressions can also be motivated
by non-Gaussian errors since they may be preferable in that case to least-square estimators that
are effi cient exclusively under normality. As a result, in non-Gaussian settings with endogeneity
issues, quantile regression emerges as a robust alternative to LS-based estimation methods, even
when the main interest is in the central tendency of the response variable.

We use the fitted-value approach of quantile regression under endogeneity, which is inexpensive
to compute, even with several endogenous variables. However, in this approach, which corresponds
to the independence of the reduced-form errors from regressors, the slope coeffi cients of the struc-
tural model must be the same for different quantiles3. Nevertheless, using quantile regression is
still useful even when the slope coeffi cients do not vary across quantiles, if the errors exhibit heavy
tails. Indeed, quantile regression can provide a protection against outliers in the errors. As a
matter of fact, only one quantile can be selected to construct the test, which makes the variation
of coeffi cients across quantiles irrelevant.

In this paper, we propose a feasible and robust exogeneity test based on quantile regression,
easy to compute with many endogenous regressors. Our test statistic is based on a quadratic
distance between two estimators, which are both robust to outliers. The first estimator is the
standard quantile regression estimator, which is consistent only under the null hypothesis of ex-
ogeneity at the considered quantile. The second estimator is the double-stage quantile estimator
(DSQR) developed in Kim and Muller (2004), which remains consistent regardless of the presence
of endogeneity. Note, as shown in Kim and Muller (2004), that the two estimators converge in
probability to the same limit, despite their semi-parametric restrictions being respectively imposed
on the structural and reduced-form errors. This feature stems from applying the typical results of
the fitted-value approach, as discussed in Amemiya (1982) and Powell (1983), and exhibited below.
Under exogeneity, quantile regresssion and DSQR estimate the same thing, which corresponds to
a given quantile of the structural error term.

We present the model and discuss its estimation in Section 2. In Section 3, we propose and
analyze the test statistic and we derive its asymptotic distribution. In Section 4, we study the finite
sample properties of our test using Monte Carlo simulations. Finally, Section 5 concludes.

2 The Model and the Estimation Method

We are interested in the parameter (α0) in the following structural equation for T observations:

yt = x′1tβ0 + Y ′t γ0 + ut (1)

= Z ′tα0 + ut,

where [yt, Y
′
t ] is a (G+ 1)-rows vector of possible endogenous variables, x′1t is a K1-rows vector of

exogenous variables, Zt = [x′1t, Y
′
t ]′, α0 = [β′0, γ

′
0]′ and ut is an error term. We denote by x′2t the

row vector of K2(= K −K1) exogenous variables absent from (1). The first element of x1t is set to
be one to allow for an intercept in the model.

Estimating α0 for the θth-conditional quantile of yt, for a given θ ∈ (0, 1), can be achieved
through the following minimization program:

min
α

T∑
t=1

ρθ(yt − Z ′tα) (2)

3Except if one allows for inconsistencies for some coeffi cients (Kim and Muller, 2016).
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and ρθ(z) = zψθ(z) where ψθ(z) = θ − 1[z≤0] and 1[.] is the Kronecker index. We denote the
solution of (2), α̃, the ‘one-stage quantile regression estimator’for α0. The one-stage estimator α̃
is consistent if the following zero conditional expectation condition holds:

E(ψθ(ut)|Zt) = 0. (3)

This condition is the assumption that zero is the given θth-quantile of the conditional distribution of
ut. It identifies the coeffi cients of the model once a given quantile index θ ∈ (0, 1) has been chosen.
Even though the slope coeffi cients in (1) may not vary across different quantiles, the intercept
coeffi cient, which is the first element of β0, should vary with θ to satisfy (3) in the absence of
endogeneity. However, the condition (3) is violated if there is endogeneity in Yt, which can actually
be defined as corresponding to E(ψθ(ut)|Zt) 6= 0. In this case, α̃ is inconsistent. As it happens,
function ψθ, once normalised and removing the factor xt from the FOCs, can also be seen as
characterizing the influence function of the quantile regression estimator.4 As a matter of fact, its
normalized gross error sensitivity is equal to γ∗ = max {θ, 1− θ}. Since it is finite, the quantile
estimator is B-robust, for fixed values of the regressor xt. The fact that function ψ is bounded
between θ and 1− θ ensures that no outlier in the error terms can have an exaggerated impact on
estimation. Exploiting this property, we develop a procedure to test robustly for exogeneity in Yt
at a given quantile θ. The notion of exogeneity of interest is the independence of ut and Zt. As
usual for exogeneity tests, we only formally test for a consequence of exogeneity, which is here the
orthogonality of ψθ(ut) and Yt, for any given θ.

We assume that Yt can be linearly predicted from the exogenous variables:

Y ′t = x′tΠ0 + V ′t , (4)

where x′t = [x′1t, x
′
2t] is a K-rows vector, Π0 is a K × G matrix of unknown parameters, and V ′t is

a G-rows vector of unknown error terms. By assumption, the first element of x1t is 1 to allow for
an intercept in the model. Using (1) and (4), yt can also be expressed as:

yt = x′tπ0 + vt, (5)

where

π0 = H(Π0)α0 with H(Π0) =

[(
IK1

0

)
,Π0

]
(6)

and vt = ut + V ′t γ0.

As mentioned before, our test statistic is based on the double-stage quantile regression in Kim and
Muller (2004), which is described below and is another robust estimation method with bounded
influence function. This estimator has here several advantages over other approaches. First, the
calculus involved in simultaneously comparing the asymptotic representations of the two considered
estimators is tractable in that case, in a setting familiar to most applied researchers. Second, both
estimators can avoid the need for grid search and is free from the curse of dimensionality, which
would otherwise restrict the empirical analyses to models including only a few endogenous variables.
Third, and most importantly, both estimators are robust to heavy tails of errors.

4Let be an estimator νT of a parameter ν, which is defined by the moment conditions
T∑
t=1

xtψ(yt−x′tν) = 0, where

ψ is a non-constant differentiable real function. Then, its influence function corresponds to IC = xtψ

−
∫ ∂ψ
∂ν
F (dy)

, where

F is the cdf of y. See for example Huber (1981).
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Equations (4) and (5) are the basis of the first-stage estimation that yields the consistent
estimators π̂, Π̂, respectively, of π0, and Π0. Specifically, π̂ and Π̂j (the jth column of Π̂; j =
1, . . . , G) are the first-stage estimators obtained by:

min
π

T∑
t=1

ρθ(yt − x′tπ) (7)

and min
Πj

T∑
t=1

ρθ(Yjt − x′tΠj), (8)

where π and Πj are K × 1 vectors and Yjt is the (j, t)th element of Y . Estimating π will be
useful later for calculating an estimate of the residual v̂t, which is a component of the estimator
of the variance-covariance matrix that occurs in the formula of the test statistics. Based on these
first-stage estimators, the second-stage estimator α̂ for α0 is denoted as the double-stage quantile
estimator (DSQR) and is obtained by:

min
α

T∑
t=1

ρθ(yt − x′tH(Π̂)α).

We need the two following regularity assumptions in order to derive the asymptotic distributions
of α̃ and α̂. Let h(·|x), f(·|x), and gj(·|x) be the conditional densities, respectively, for ut, vt, and
Vjt.

Assumption 1 The sequence {(x′t, ut, V ′t )} is independent and identically distributed.

Assumption 1 facilitates the presentation of our results. It arises, for example, when the sources
of uncertainty in the data come from randomly sampling the observations. Assumption 1 could be
relaxed to allow for serial correlation and heteroskedasticity.

Assumption 2 (i) E(||xt||3) <∞ and E(||Yt||3) <∞, where ||a|| = (a′a)1/2.
(ii) H(Π0) is of full column rank.
(iii) There is no hetero-altitudinality: h(·|x) = h(·), f(·|x) = f(·) and gj(·|x) = gj(·), where h(·),
f(·) and gj(·) are assumed to be continuous. Moreover, all densities are positive when evaluated at
zero: h(0) > 0, f(0) > 0, and gj(0) > 0.
(iv) There exist constants λh, λf , and λj such that h(·) < λh, f(·) < λf , and gj(·) < λj .
(v) The matrices Qx = E(xtx

′
t) and Qz = E(ZtZ

′
t) are finite and positive definite.

(vi) E{ψθ(vt) | xt} = 0 and E{ψθ(Vjt) | xt} = 0 (j = 1, . . . , G), for a given quantile θ.

Assumption 2(i) is necessary for obtaining the stochastic equicontinuity of the relevant empir-
ical process in the dependent case which is used for deriving the asymptotic representation of our
estimators. We also use it to limit the asymptotic variance-covariance matrix of the estimators. As-
sumption 2(ii) is the usual identification condition for simultaneous equations models. Assumption
2(iii) allows us to simplify the asymptotic variance-covariance matrix of the double-stage quantile
regression estimator. However, combined with imposing that the slope coeffi cients do not vary
across quantiles, Assumption 2(iii) becomes close to the independence between the error terms and
the exogenous regressors. It could be relaxed at the cost of using more complicated formulae for the
asymptotic variance-covariance matrix of the DSQR estimator, and, as a consequence, for the test
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statistics and its distribution. Assumption 2(iv) limiting the densities simplifies the demonstration
of convergence to zero for the remainder terms in the calculus of the asymptotic representation.
Assumption 2(v) is the counterpart of the usual condition for OLS under which the sample sec-
ond moment matrix of the regressor vectors converges towards a finite positive definite matrix. It
ensures that E(xtYt) 6= 0 and E(ZtYt) 6= 0 . Finally, Assumption 2(vi) imposes that zero is the
θth-quantile of the conditional distributions of vt and of each Vjt.5 It identifies the coeffi cients of
the model. For example θ = 0.5 would correspond to LAD estimator and a central tendency. When
error terms and regressors are independent, Assumption 2(vi) would be satisfied for any θ. In that
case, the corresponding intercept coeffi cient should vary with θ to satisfy the conditions, given that
the slope coeffi cients are fixed across quantiles. Note that the restrictions in Assumption 2(vi) are
applied to the reduced-form errors (vt and Vjt) instead of the structural error (ut). This is typical
of the fitted-value approach, originally proposed by Amemiya (1982) for LAD estimators, and still
alllows for consistent estimation of the structural model. It is also possible to stick to one quantile
only, which is the approach of this paper whose emphasis is on robustness.

The asymptotic representation of the quantile regression estimator α̃ is well known:

T 1/2(α̃− α0) = Q−1
z T−1/2

T∑
t=1

Ztε1t + op(1), (9)

where ε1t = h(0)−1ψθ(ut). From (9), it is clear that α̃ is consistent if T−1
∑T

t=1 Ztε1t vanishes in
probability. Given that the probability limit E(Ztε1t) is zero in the absence of endogeneity, we have
in that case

T 1/2(α̃− α0)
d→ N(0, σ11Q

−1
z ),

where σ11 = E(ε21t) = h(0)−2θ(1 − θ) and Qz = E(ZtZ
′
t). The covariance term σ11Q

−1
z can

be consistently estimated by σ̂11Q̂
−1
z , where Q̂z = T−1

∑T
t=1 ZtZ

′
t and σ̂11 = T−1/2

∑T
t=1 ε̂

2
1t =

ĥ(0)−2θ(1−θ) with ε̂1t = ĥ(0)−1ψθ(ût), ût = yt−Ztα̂. Here, ĥ(0) can be any consistent kernel-type
non-parametric estimator of density h, calculated at zero.

A corresponding result can be obtained for the double-stage estimator α̂ (see Kim and Muller,
2004):

T 1/2(α̂− α0) = Q−1
zz H(Π0)′T−1/2

T∑
t=1

xtε2t + op(1), (10)

where Qzz = H(Π0)′QxH(Π0), Qx = E(xtx
′
t), and ε2t = f(0)−1ψθ(vt) −

∑G
i=1 γ0igi(0)−1ψθ(Vit).

Note that the error ε2t is bounded for any arbitrarily large errors vt since ψθ is bounded, which
ensures robustness to outliers in errors. By ‘inverting’the expansion (10) and applying a CLT, we
have:

T 1/2(α̂− α0)
d→ N(0, σ22Q

−1
zz ),

where σ22 = E(ε22t). As before, σ22 and Qzz can be consistently estimated as follows: Q̂zz =
H(Π̂)′Q̂xH(Π̂) with Q̂x = T−1

∑T
t=1 xtx

′
t and σ̂22 = T−1/2

∑T
t=1 ε̂

2
2t with ε̂2t = f̂(0)−1ψθ(v̂t) −∑G

i=1 γ̂0iĝi(0)−1ψθ(V̂it), where f̂(0) and ĝi(0) are kernel-type estimators of f(0) and gi(0), respec-
tively, and v̂t and V̂it are the residuals from the first-stage regressions in (7) and (8).

5Note that in the iid case, the term f(F−1(θ))−1 typically appears in the variance formula of a quantile estimator
(Koenker and Bassett, 1978). However, due to Assumption 3(iv), F−1(θ) is now zero so that in this case, we instead
have f(0)−1.
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3 The Exogeneity Test

3.1 The test

The null hypothesis we consider is:

H0 : There is no endogeneity in the given θth quantile,

which is equivalent to:
H0 : E(ψθ(ut)|Zt) = 0. (11)

Given that slope quantile estimators are consistent regardless of the value of θ, we use the
slope estimators only to construct a test statistic (denoted by KM). Moreover, the default in
Hausman test procedures implemented by popular software (e.g., Stata) is to exclude the intercept
in the comparison. This is seen as appropriate for models in which the constant does not have
common interpretation across the models. Specifically, let α0(1) and α0(2) be the intercept and
slope coeffi cients respectively, and let us decompose the quantile estimators α̃ and α̂ accordingly;
that is, α̃′ = (α̃(1), α̃

′
(2)) and α̂

′ = (α̂(1), α̂
′
(2)). The principle driving the test is that both slope

estimators α̃(2), α̂(2) for a given θ are consistent and asymptotically normal under the null hypothesis
of no endogeneity, while only the slope estimator α̂(2) is consistent under the alternative hypothesis
of endogeneity at quantile θ. Thus, a quadratic distance between α̃(2) and α̂(2) can be used to test
consistently the null hypothesis of exogeneity.

If we wished to place ourselves in the original Hausman test setting (Hausman, 1978), in a
strict sense, α̃(2) should be effi cient under H0. However, quantile regression is not generally as-
ymptotically effi cient, even under exogeneity.6 As a consequence, we cannot use the difference
of asymptotic variance-covariance matrices of the two estimators as equivalent to the asymptotic
variance-covariance matrix of the gap α̃(2) − α̂(2), as in the usual Hausman test. Indeed, we must
calculate the joint covariance of the two estimators, which will be obtained from considering to-
gether their asymptotic representations. That is: we allow for ineffi cient estimators by dealing
with the joint distribution of the estimators without invoking orthogonality conditions between the
estimators. To recap, under the null hypothesis of exogeneity at the given θth quantile, both the
quantile regression and the double quantile regression converge to the same values. On the other
hand, under the alternative hypothesis of endogeneity at the given θth quantile, the gap of the two
slope estimators diverges. These features ensure that our test is consistent.

We first show that the variance-covariance matrix of α̃(2) − α̂(2) is R(2)C
−1R′(2), where R(2)

is the matrix composed of the last (K1 + G − 1) rows in R =
[
IK1+G : −IK1+G

]
and C is

defined in Theorem 1 below. This justifies to consider a preliminary and ancillary statistic is
T (α̃(2) − α̂(2))[R(2)C

−1R′(2)]
−1(α̃(2) − α̂(2)), when the variance-covariance matrix is invertible. In a

second stage, we deal with the estimation of the core matrix in the preliminary statistics to produce
the final test statistics. Theorem 1 reports the null distribution of the preliminary statistic. The
proof is provided in the Appendix.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then,
(a) under the null hypothesis of no endogeneity at quantile θ, we have:

T (α̃(2) − α̂(2))[R(2)C
−1R′(2)]

−1(α̃(2) − α̂(2))
d→ χ2(G),

6However, they may be effi cient is some particular cases. For example, LAD regressions are effi cient under errors
following a Laplace distribution law.
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where

C =

[
σ11Q

−1
z σ12Q

−1
z QzxH(Π0)Q−1

zz

σ12Q
−1
zz H(Π0)′Q′zxQ

−1
z σ22Q

−1
zz

]
and Qzx = E(Ztx

′
t) and σ12 = E(ε1tε2t).

(b) The generalized inverse can be used whenever the matrix is not full rank.

In practice, C can be replaced with a consistent estimator ĈT without affecting the limiting distri-
bution. The following consistent estimator for C is obtained by applying the plug-in principle:

ĈT =

[
σ̂11Q̂

−1
z σ̂12Q̂

−1
z Q̂zxH(Π̂)Q̂−1

zz

σ̂12Q̂
−1
zz H(Π̂)′Q̂′zxQ̂

−1
z σ̂22Q̂

−1
zz

]
,

where

Q̂zx = T−1
T∑
t=1

Ztx
′
t and σ̂12 = T−1

T∑
t=1

ε̂1tε̂2t.

The consistency of ĈT is stated in Lemma 1, whose proof is in the Appendix.

Lemma 1. Suppose that the kernel-type density estimators ĥ(0), f̂(0), and ĝi(0) are respectively
consistent for h(0), f(0) and gi(0), i = 1, ..., G. Then, under Assumptions 1 and 2, we have

ĈT
p→ C.

Theorem 2. Suppose that the kernel-type density estimators ĥ(0), f̂(0), and ĝi(0) are respectively
consistent for h(0), f(0), and gi(0), respectively. Then, under Assumptions 1 and 2, we have

KM = T (α̃(2) − α̂(2))[R
−1
(2)Ĉ

−1
T R′(2)]

−1(α̃(2) − α̂(2))
d→ χ2(G).

The result of Theorem 2 easily follows from Theorem 1 and Lemma 1. Although non-robust
density estimators are still likely to yield improved results, it is advisable to choose robust density
estimators. In that case, the statistic KM is robust to heavy tail errors since it is exclusively
composed of robust terms. In the next section, we examine the finite-sample performance of the
KM test by using Monte Carlo simulations.

4 Monte Carlo Simulations

The results obtained in the previous section hold in large samples. In this section, the finite sample
size and power of the KM test are studied through Monte Carlo simulations. We investigate the
degree of robustness of the KM test in finite samples, notably as compared to that of the standard
Hausman test.

We use a simultaneous equation system composed of two equations. The first equation, which is
the equation of interest, contains two endogenous variables at a given quantile θ, and two exogenous
variables, including a constant. In total, four exogenous variables are present in the whole system.
The structural simultaneous equation system can be written

B

[
yt
Yt

]
+ Γxt = Ut, (12)

8



where
[
yt
Yt

]
is a 2 × 1 vector of endogenous variables, and xt is a 4 × 1 vector of exogenous

variables with the first element equal to one. The error term Ut =

[
ut
wt

]
is a 2 × 1 vector

of error terms. We specify the structural parameters as follows: B =

[
1 −0.3
δ 1

]
and Γ =[

−1 −0.2 0 0
−1 0 −0.4 −0.5

]
. The system is overidentified by the zero restrictions Γ13 = Γ14 =

Γ22 = 0.
We generate the error terms Ut using some bivariate distributions (Gaussian, Student, contami-

nated Gaussian). Then, we draw the second to fourth elements xt from the normal distribution with
mean (0.5, 1,−0.1)′, variances equal to 1 for normalization, cov(x2t, x3t) = 0.3, cov(x2t, x4t) = 0.1
and cov(x3t, x4t) = 0.2, where x2t, x3t and x4t are the non-constant elements of xt. Once xt and Ut
are generated, the endogenous variables yt and Yt are obtained through (12). The first structural
equation is

yt = 0.3 Yt + 1 + 0.2 x2t + ut, (13)

where the presence of endogeneity depends on the δ parameter in the second equation.
Note that if δ = 0, there is no endogeneity at any quantile index θ in (13). On the other hand,

endogeneity at θ occurs if δ 6= 0. To save space, the simulations are shown only for θ = 0.5, which
corresponds to LAD estimator. Because the magnitude of δ determines the strength of endogeneity,
we can use it to analyse the empirical power of the KM test. We select a few values for δ: 0, 0.05,
0.1, 0.15, 0.2, 0.25, and 0.3. For each of the values, we simulate the rejection probabilities by
the KM test and the standard Hausman test, for the null hypothesis of exogeneity, at the 5 %
significance level and based on 3,000 replications.

First, we draw the error terms ut in (13) from the standard normal density N(0, 1). This
constitutes a benchmark for comparison since it is expected in that case that the standard Hausman
test will outperform the KM test because there should be few outliers and thererefore little need for
robustness. The results are displayed in Tables 1(a) to 1(c) for T = 200, 300 and 500 respectively.
For δ = 0, the simulated rejection probability turns out in each case to be reasonably close to the
nominal 5 % level, although the test appears to be slightly undersized when the sample size is
small. As expected, when it comes to power with δ 6= 0, the Hausman test is more powerful than
the KM test for any considered positive values of δ. For example, when T = 300, the empirical
power of the Hausman test is almost twice that of the KM test.

Next we turn to cases in which robustness may be needed because the data are contaminated.
We use three different methods to generate the contaminated error terms ut in (13): (i) from the
student-t distribution t(k) with k = 1, which is the Cauchy distribution, (ii) from N(0, 1) as in the
benchmark case, while allowing for a single outlier as in Kim and White (2004), (iii) from N(0, 1)
as in the benchmark case, while allowing for a fraction of outliers. That is: a given fraction of the
error terms is contaminated, as in Maronna and Yohai (1995).

The results for the Cauchy distribution case are reported in Tables 2(a)-2(c) for T = 200, 300
and 500, respectively. As Table 2(a) shows, unlike the previous Gaussian case, the finite sample
properties of the KM test are greatly improved, even with T = 200. The empirical power of the test
rapidly converges to 100% as δ increases. This convergence accelerates as the sample size increases,
as shown in Tables 2(b) and 2(c). In contrast, still with T = 200, the Hausman test is characterized
by some strange behavior in Table 2(a). Its empirical power instantly reaches its top as soon as δ
deviates from the null value of zero, and then it gradually decreases as δ moves farther away from
zero. Moreover, this peculiar phenomenon does not vanish as the sample size increases, as shown
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in Tables 2(b) and 2(c).
Tables 3(a)-3(c) report the results for the single outlier case. For this, we first generate random

numbers u1, u2, ..., uT . Then, we multiply the quartile of these numbers by a constant m = 48.62.7

The result is then used as an outlier. The KM test turns out to be fairly robust to the outlier:
Namely, the finite sample performance of the KM test is hardly changed. On the other hand, the
Hausman test is severely affected with its empirical powers much lower than those of the KM test,
regardless of the sample size. However, unlike the previous Cauchy distribution case, the behavior
of the Hausman test remains regular with its empirical power increasing as δ increases, although it
increases at a very slow rate.

We turn to the final case with a fraction of outliers. It is natural to conjecture that the finite
sample performance of each test should worsen as the contaminated fraction increases, and that
the deterioration will be worse for the Hausman test than the robust KM test. To save space, we
report only two cases; (i) 5% contamination in Table 4, and (ii) 20% contamination in Table 5. In
the 5% contamination case, the KM test is affected, but only moderately, whereas the Hausman
test is massively degraded with an empirical power not much exceeding its nominal 5% size. For
example, the empirical power is any 11% for the Hausman test with δ = 3 and T = 300, while it
reaches a substantial 40% for the KM test. Moreover, increasing the sample size does not seem to
help much for the Hausman test, which has an empirical power with T = 500 of only 16%. On
the contrary, the empirical power of the KM test improves a lot, from 40% to 66%. Although,
the 20% contamination case, may be deemed as less realistic, it illustrates what may happen to a
non-robust test. Table 5 shows that the KM test is also somewhat affected in this extreme case,
while it behaves regularly with its power increasing, as either δ or T increases. On the other hand,
the Hausman test can be hardly used as a test in this case. Its empirical power does not differ
much from its 5% nominal size, and increasing the sample size does not seem to generate any
improvement.

5 Conclusion

In this paper, we have proposed a robust test of exogeneity in linear models. The test statistics is
based on a quadratic norm between a quantile regression estimator that is consistent only under
exogeneity at a given conditional quantile, and another quantile regression estimator that is con-
sistent regardless of the presence of endogeneity. The derived asymptotic null distribution of the
test statistic is the usual Chi-square distribution. Monte Carlo simulations indicate that the test
has excellent robustness properties, as opposed to the usual Hausman test of exogeneity.

7Readers are referred to Kim and White (2004) for how the value of m is determined.
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Appendix

Proof of Theorem 1: Let δ̂ = (α̃′, α̂′)′ and δ0 = (α′0, α
′
0)′. Using (9) and (10), we have

T 1/2(δ̂ − δ0) =

[
Q−1
z T−1/2

∑T
t=1 Ztε1t + op(1)

Q−1
zz H(Π0)′T−1/2

∑T
t=1 xtε2t + op(1)

]

= DT−1/2
T∑
t=1

St + op(1), (14)

where

D =

[
Q−1
z 0
0 Q−1

zz H(Π0)′

]
and St =

[
Ztε1t
xtε2t

]
. (15)

Let us now consider (14). Vector St is iid by Assumption 1, and E(St) = 0 under the null hypothesis
of exogeneity at θ and Assumption 2(vi). Hence, in order to apply the Lindeberg-Levy CLT to
T−1/2

∑T
t=1 St, it is suffi cient to show that var(St) is bounded. The moment conditions on xt and

Yt in Assumption 2(i) are suffi cient for this purpose because ψθ(·)2 is bounded from above and all
the densities evaluated at zero are positive.

Given that

var(St) = Ω =

[
σ11Qz σ12Qzx
σ12Q

′
zx σ22Qx

]
, (16)

where σij = Cov(εit, εjt), we have T−1/2
∑T

t=1 St
d→ N(0,Ω), which implies that

T 1/2(δ̂ − δ0)
d→ N(0, C), where C = DΩD′.

Note first that (i) the constant matrix D in (14) identical to that of the standard Hausman
test statistic; and second, that (ii) the covariance matrix Ω of St in (14) is also identical to the
corresponding covariance matrix of the Hausman test statistic, except that the scalar terms σij are
different.8

Noting that T 1/2(α̃(2) − α̂(2)) = R(2)T
1/2(δ̂ − δ0), we have

T 1/2(α̃(2) − α̂(2))
d→ N(0, R(2)CR

′
(2)),

which, in turn, implies that

T (α̃(2) − α̂(2))[R(2)C
−1R′(2)]

−
(α̃(2) − α̂(2))

d→ χ2(G),

where the generalized inverse can be used when the core matrix is not invertible.
The fact that the degrees of freedom to use in the test are equal to G can be seen from the

form of the formula within brackets, above (14). This is because the (upper) rows of T 1/2(δ̂ − δ0)
corresponds to the components of explanatory variables in Zt that are also in the instruments xt.
These rows are identical, up to op(1), to the (lower) rows of T 1/2(δ̂ − δ0) that correspond to the
same variables in xt. This identity occurs whether there is endogeneity at the given θ or not.

Furthermore, the op(1) in these asymptotic representations are negligible as compared to a
χ2(G) random variable, which is Op(1) as any non-degenerate random variable.

8 In the Hausman test specification, one would have instead: σ11 = var(ut), σ22 = var(vt), and σ12 = cov(ut, vt).
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The above vector asymptotic representation can be written as

T 1/2(δ̂ − δ0) =

[
T 1/2

(
Q−1
z Zε1

Q−1
zz H(Π0)′xε2

)
+ op(1)

]
,

where Zε1 denotes the empirical mean of the Ztε1t, and xε2 denotes the empirical mean of the
xtε2t.

In this expression we want to factorize a term aso as to exhibit the identity (up to op(1)) of the
lines involving the same x1t, which will cancel out when applying matrix R. Let us examine the
shape of Qzz.

Qzz = H(Π0)′QxH(Π0) =

[
IK1 0

Π1′
0 Π2′

0

] [
x1x

′
1 x1x

′
2

x2x
′
1 x2x2′

] [
IK1 Π1

0

0 Π2
0

]
+ op(1)

=

[
IK1 0

Π1′
0 Π2′

0

] [
x1x

′
1 x1x

′
1Π1

0 + x1x
′
2Π2

0

x2x
′
1 x2x

′
1Π1

0 + x2x2′Π
2
0

]

=

[
x1x

′
1 x1x

′
1Π1

0 + x1x
′
2Π2

0

Π1′
0 x1x

′
1 + Π2′

0 x1x
′
2 ...

]
.

Because Yt = x′1tΠ
1
0 + x′2tΠ

2
0 + Vt and E (Vt|xt) = 0, we have:

x1Y
′ = x1x

′
1Π1

0 + x1x
′
2Π2

0, and similar results for the other terms of matrix Qzz.
We obtain

Qzz =

[
x1x

′
1 x1Y

′

Y x′1 Y Y ′

]
+ op(1), which is also valid for Qz.

Therefore, Q−1
zz = Q−1

z + op(1), as the inverses can be constructed for the terms of each matrix
and the + op(1) can be collected together.

It remains to incorporate H(Π0)′ =

[
IK1 0

Π1′
0 Π2′

0

]
in the above asymptotic representation as a

right factor of Q−1
zz . But if we limit our attention to the K1 first lines of the empirical processes

in the parenthesis, that is: to the terms in x1t, we can see that these terms are not changed by
applying matrix IK1 . Therefore, the lines in x1t in the above asymptotic representation will cancel
out, up to op(1), when matrix R is applied.

Therefore, in the calculus of the difference of these rows in the formula of the test through
matrix R, the corresponding difference components collapse, and the rank of matrix RC−1R′ is
asymptotically equal to K1 +G minus the number of collapsing components (i.e. K1), which yields
a singular matrix of rank G. This also implies to use a generalised inverse matrix for RC−1R′. This
completes the proof. QED.

Proof of Lemma 1: Under Assumptions 1 and 2, the cross-product estimators Q̂z, Q̂zx, and
Q̂x are consistent almost surely due to the Kolmogorov law of large numbers. The consistency
of Q̂zz and H(Π̂) stems from the consistency of Π̂. Hence, it remains to show the consistency of
σ̂11 = T−1

∑T
t=1 ε̂1tε̂1t, σ̂22 = T−1

∑T
t=1 ε̂2tε̂2t and σ̂12 = T−1

∑T
t=1 ε̂1tε̂2t. The detailed proof is

shown only for σ̂12, since that the same kind of arguments are used for σ̂11 and σ̂22.
Recalling the definition of σ12 = E(ε1tε2t), applying directly the Kolmogorov law of large

numbers, yields: σ̃12 − σ12
p→ 0,where σ̃12 = T−1

∑T
t=1 ε1tε2t. This is possible because (i) ε1tε2t is

iid from Assumption 1, and (ii) E(|ε1tε2t|) <∞ because function ψθ(·) is bounded. Hence, we just
need to show σ̂12 − σ̃12

p→ 0 to prove that σ̂12 − σ12
p→ 0. We have:

|σ̂12 − σ̃12| ≤ aT + bT + cT ,

where aT = θT−1
∑T

t=1 |1[v̂t≤0] − 1[vt≤0]|, bT = θT−1
∑T

t=1 |1[ût≤0] − 1[ut≤0]|
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and cT = T−1
∑T

t=1 |1[ût≤0]1[v̂t≤0] − 1[ut≤0]1[vt≤0]|. The proof for both aT
p→ 0 and bT

p→ 0 can
be found in the proof of Proposition 3 in Kim and Muller (2004). Hence we only need to show that
cT

p→ 0, which is done by majoration as follows

cT ≤ T−1
T∑
t=1

|1[ût≤0]| × |1[v̂t≤0] − 1[vt≤0]|+ T−1
T∑
t=1

|1[vt≤0]| × |1[ût≤0] − 1[ut≤0]|

≤ T−1
T∑
t=1

|1[v̂t≤0] − 1[vt≤0]|+ T−1
T∑
t=1

|1[ût≤0] − 1[ut≤0]|

≤ θ−1(aT + bT )
p→ 0.

QED.

16



Table 1(a). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1), T = 200 

 

   KM Hausman 

Size 0.00  0.03  0.05  

 

 

Power 

0.05  0.04  0.07  

0.10  0.05  0.11  

0.15  0.09  0.21  

0.20  0.14  0.31  

0.25  0.19  0.44  

0.30  0.28  0.59  

 

Table 1(b). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1), T = 300 

 

   KM Hausman 

Size 0.00  0.04  0.05  

 

 

Power 

0.05  0.04  0.06  

0.10  0.07  0.14  

0.15  0.13  0.28  

0.20  0.21  0.42  

0.25  0.32  0.61  

0.30  0.45  0.76  

 

Table 1(c). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1), T = 500 

 

   KM Hausman 

Size 0.00  0.04  0.04  

 

 

Power 

0.05  0.05  0.09  

0.10  0.12  0.22  

0.15  0.22  0.42  

0.20  0.37  0.64  

0.25  0.56  0.82  

0.30  0.72  0.94  

 

 

 

 

 

 

 

 

 



Table 2(a). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: Cauchy distribution, T = 200 

 

   KM Hausman 

Size 0.00  0.02  0.05  

 

 

Power 

0.05  0.33  0.79  

0.10  0.74  0.75  

0.15  0.93  0.71  

0.20  0.99  0.61  

0.25  1.00  0.54  

0.30  1.00  0.49  

 

Table 2(b). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: Cauchy distribution, T = 300 

 

   KM Hausman 

Size 0.00  0.02  0.05  

 

 

Power 

0.05  0.47  0.87  

0.10  0.89  0.81  

0.15  0.99  0.69  

0.20  1.00  0.62  

0.25  1.00  0.56  

0.30  1.00  0.51  

 

Table 2(c). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: Cauchy distribution, T = 500 

 

   KM Hausman 

Size 0.00  0.03  0.05  

 

 

Power 

0.05  0.67  0.90  

0.10  0.98  0.81  

0.15  1.00  0.72  

0.20  1.00  0.63  

0.25  1.00  0.57  

0.30  1.00  0.51  

 

 



Table 3(a). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1) with a single outlier, T = 200 

 

   KM Hausman 

Size 0.00  0.03  0.06  

 

 

Power 

0.05  0.04  0.05  

0.10  0.06  0.06  

0.15  0.08  0.08  

0.20  0.14  0.09  

0.25  0.19  0.12  

0.30  0.27  0.15  

 

Table 3(b). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1) with a single outlier, T = 300 

 

   KM Hausman 

Size 0.00  0.03  0.05  

 

 

Power 

0.05  0.04  0.06  

0.10  0.09  0.08  

0.15  0.12  0.10  

0.20  0.21  0.14  

0.25  0.31  0.18  

0.30  0.45  0.25  

 

Table 3(c). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1) with a single outlier, T = 500 

 

   KM Hausman 

Size 0.00  0.04  0.04  

 

 

Power 

0.05  0.05  0.06  

0.10  0.12  0.11  

0.15  0.22  0.17  

0.20  0.37  0.26  

0.25  0.55  0.37  

0.30  0.73  0.51  

 

 



Table 4(a). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1) with 5% contamination, T = 200 

 

   KM Hausman 

Size 0.00  0.03  0.05  

 

 

Power 

0.05  0.03  0.05  

0.10  0.05  0.06  

0.15  0.06  0.07  

0.20  0.12  0.07  

0.25  0.17  0.08  

0.30  0.23  0.09  

 

Table 4(b). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1) with 5% contamination, T = 300 

 

   KM Hausman 

Size 0.00  0.03  0.05  

 

 

Power 

0.05  0.04  0.06  

0.10  0.07  0.06  

0.15  0.11  0.07  

0.20  0.17  0.08  

0.25  0.27  0.10  

0.30  0.40  0.11  

 

Table 4(c). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1) with 5% contamination, T = 500 

 

   KM Hausman 

Size 0.00  0.04  0.05  

 

 

Power 

0.05  0.04  0.05  

0.10  0.10  0.07  

0.15  0.18  0.07  

0.20  0.32  0.10  

0.25  0.49  0.13  

0.30  0.66  0.16  

 

 



Table 5(a). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1) with 20% contamination, T = 200 

 

   KM Hausman 

Size 0.00  0.02  0.05  

 

 

Power 

0.05  0.02  0.06  

0.10  0.03  0.06  

0.15  0.04  0.06  

0.20  0.05  0.06  

0.25  0.08  0.06  

0.30  0.11  0.07  

 

Table 5(b). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1) with 20% contamination, T = 300 

 

   KM Hausman 

Size 0.00  0.02  0.05  

 

 

Power 

0.05  0.02  0.05  

0.10  0.04  0.05  

0.15  0.05  0.05  

0.20  0.09  0.07  

0.25  0.15  0.06  

0.30  0.21  0.07  

 

Table 5(c). Rejection probabilities by the KM test and the Hausman test (with   = 0.5) for the null 

hypothesis of no endogeneity: N(0,1) with 2% contamination, T = 500 

 

   KM Hausman 

Size 0.00  0.03  0.05  

 

 

Power 

0.05  0.03  0.06  

0.10  0.06  0.06  

0.15  0.11  0.05  

0.20  0.17  0.07  

0.25  0.29  0.07  

0.30  0.40  0.08  
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