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Abstract

We provide axiomatic characterizations for measures of polarization in profiles of prefer-

ences that are represented as rankings of alternatives. Polarization is seen as the extent to

which opinions are opposed. We provide characterizations for an extension of this simple in-

tuition on the pairs of alternatives to the cases with more than two alternatives. Our primary

generalization allows for different treatment among issues, i.e., pairs of alternatives. Secondly,

we show that the characterization result continues to hold when preferences are allowed to

attain indifferences. Finally, we show that we can also impose a domain restriction that only

allows for single-peaked preferences and retain our characterization. Our results point to a fun-

damental feature of measures on profile of preferences that are based on pairwise comparisons

of alternatives.
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1 Introduction

The concept of polarization is prevalent in literatures across social sciences. Although there is

no unique definition of polarization even within certain formally well-defined contexts, a common

understanding of it can be stated as the extent to which opinions are opposed. And this feature

of distributions of opinions in our societies matter for the success of collective decision-making

processes.

The greater the extent to which opinions move toward opposing modes, the more likely it is

that social conflict will arise and the less likely it is that a political system maintains a healthy rep-

resentation (see DiMaggio et al. (1996)). Negotiation failures and policy gridlocks in governments

are argued to stem from polarization (see Barber and McCarty (2015)) and voters are discouraged

to vote in high polarization (see Hetherington (2008))1. In social choice framework, as argued by

Lepelley and Valognes (2003), manipulability of voting rules might be dependent on how homoge-

nous, and hence on how polarized, preferences are. In matching theory, Ha laburda (2010) looks at

the affects of similarity among preferences on the stability of matchings in a two-period model of

two-sided matching markets.

In search of a first formal approach to the measurement of polarization in social choice settings

with ordinal preferences, Can et al. (2015) study measuring polarization in profiles of preferences

that are represented as rankings of alternatives. The major premise of their analysis is to extend a

basic intuition in case of a pair of alternatives to the cases with more than two alternatives, while

keeping within the limits of ordinality of preferences. Namely, when there are two alternatives,

the most polarized case is when half of the society prefer one alternative to the other, and the

other half have the opposite preference. The least polarized case is when everyone has the same

preference ordering, whatever it happens to be. If the straightforward application of this notion

to social choice problems with more than two alternatives is pursued, a measure that normalizes

the summation of the extents of disagreements over all pairs is obtained. This measure can be

characterized by a set of axioms.

In this paper, we generalize this approach in several directions. In certain contexts of collective

decision-making, a strict impartiality regarding alternatives is not necessarily desired. Hence our

primary generalization is towards allowing different issues (comparisons within pairs of alternatives)

to have different weights in the measurement of polarization. We show that this generalization of

1For a review of the studies on the measurement, causes, and consequences of polarization (in American politics),
see Hetherington (2009).
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our previous measure can be characterized by two axioms, one being a regularity axiom and the

other a rather technical one emphasizing additivity.

Furthermore, in our initial approach we restricted attention to the cases where individuals can

clearly distinguish any two alternatives in their preferences. We show that allowing indifferences

in preferences does not harm the applicability of our generalized measure, in the sense that in

this wider domain of preferences, we still have the same characterization result hold. Finally, we

consider a domain restriction. Single-peaked preferences are long thought to be the most relevant

type of preferences when one thinks about a society composed of rational individuals facing a

clearly distinguishable set of alternatives. Following his discussion on deliberation-induced single-

peakedness in preferences, List (Forthcoming) argues that preferences can be both single-peaked

and polarized. We show that our characterization continues to hold under this domain restriction.

1.1 Related literature

In social choice literature, similar concepts can be found. Consensus as in Herrera-Viedma et al.

(2011), assent as in (Baldiga and Green, 2013), and cohesiveness as in Alcalde-Unzu and Vorsatz

(2013) are immediate examples. Consensus, as formulated firstly in Bosch (2006), can be measured

with mappings that assign to any profile of preferences a value in unit interval, which has the

following two properties necessarily: first, the value given to a profile is highest, namely 1, if and

only if all individuals agree on how to rank alternatives and second, the same value given to any two

profiles if the only difference in between them is the names of either the alternatives or individuals.

Karpov (2016) surveys research in this line, Alcalde-Unzu and Vorsatz (2008) deliver axiomatic

characterizations, and Garćıa-Lapresta and Pérez-Román (2011) analyze properties of a class of

consensus measures that are based on the distances in between preferences.

Building on an understanding of conflict between two individuals as the disagreement in their top

choices, Baldiga and Green (2013) use an aggregate-assent maximizing approach to the selection of

the choice rule, where the assent between preferences is the probability that these preferences would

be conflictual on a random feasible set. In another work, the level of similarity among preferences

in a profile is taken by Alcalde-Unzu and Vorsatz (2013) as cohesiveness, which is then shown to

be measured by classes of functions that are characterized by a set of plausible axioms.

Hashemi and Endriss (2014) study measuring the degree of diversity in the preferences by

formalizing it in three different ways. In first, diversity is seen as the range of distinct views held,

in second, it is the aggregate distance between individual views, and in thirds, it is the distance of
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the society’s views to a single compromise view. Compromise based preference diversity indices, as

defined in Hashemi and Endriss (2014), are closely related to the characterized measure in Can et al.

(2015). Finally, Costantini et al. (2016) introduces a measure of polarization, in a similar vein, for

a setup where individuals report ballots that are binary responses to a set of issues. This measure

takes into account the correlation between issues and uncertainty regarding whether individuals

tend to take opposite views on issues.

In the following section we introduce basic notations and formal definitions regarding our ax-

iomatic model. Section 3 provides our major result that is related to the weighted polarization

measure for linear preferences. Section 4 is devoted to preferences with indifferences, while Section

5 delivers our results regarding single-peaked preferences. We conclude in Section 6.

2 Model

Let A be a finite and nonempty set of m alternatives. For any finite and nonempty set of individuals

N , and for any individual i in N , let p(i) denote the preference of i in terms of a weak order, i.e.,

a complete and transitive binary relation on A. Furthermore, p indicates a profile, a combination

of such individual preferences. L denotes the set of all preferences that are linear orders on A,

whereas W denotes the set of all weak orders. So L is the set of antisymmetric weak orders, hence

we have L ⊂ W. Individual i’s weak preference of alternative a above alternative b is indicated by

the ordered pair (a, b) being in relation p(i). We will mostly write ordered pairs as ab instead of

(a, b) from now on.

Given a profile p, the following basic notations are used throughout the paper. The weak

pairwise comparisons matrix (m×m) related to p is denoted by p and defined at cell ab by

pab = #{i : 1 ≤ i ≤ n and ab ∈ p(i)},

the number of agents weakly preferring a to b. The strict pairwise comparisons matrix related to p

is denoted by p and defined at cell ab by

pab = #{i : 1 ≤ i ≤ n and ba /∈ p(i)},

the number of agents strictly preferring a to b. For an ordered pair of alternatives ab, abp =

max{pab − pba, 0} denotes the size of the pairwise majority for a above b at profile p, in case a is
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prefered by a majority to b. It is zero when b is preferred to a by a majority.

For two profiles p and q of two disjoint sets of individuals, say N1 and N2 respectively, let (p, q)

denoted the united profile, say r, such that r(i) = p(i) if i is in N1 and r(i) = q(i) if i is in N2. This

naturally extends to more than two profiles and we write (p, q) and p+q interchangeably. Similarly

define p2 = (p′, p′′), where p′ ∈ LN ′ and p′′ ∈ LN ′′ , to be a replication of p if there are bijections

σ′ : N ↔ N ′ and σ′′ : N ↔ N ′′ such that p(i) = p′(σ′(i)) and p(i) = p′′(σ′′(i)) for all i ∈ N . This

naturally extends to define p3, p4, .. accordingly.

For a preference R, let RN denote the unanimous profile where all individuals in N have prefer-

ence R. Let −R = {yx : xy ∈ R} be the preference where all pairs in R are reversed. If π denotes

a permutation on A, then the permuted preference of R is πR = {(π(a), π(b)) : ab ∈ R} which

naturally defines the permuted profile πp in a coordinate-wise manner, i.e., (πp)(i) = π(p(i)).

Two profiles p and q are said to be conflict free if there is no ab ∈ A × A, where a 6= b, such

that abp > 0 and baq > 0. That is there are no two different alternatives a and b such at p there is

a strict majority for a against b and at q there is a strict majority for b against a. So, per pair of

alternatives between p and q there are no conflicting majority comparison outcomes.

Let p and q be two profiles in LN . We say that p and q form an elementary change from ab to

ba whenever there is an individual i in N who ranks a and b consecutively in p and furthermore

q(i) =
(
p(i) ∪ ba

)
\ ab and for all j in N \ {i}, p(j) = q(j). This means that q(i) can be obtained

from p(i) by only reversing the ordered pair ab.

A polarization measure Ψ assigns to each profile p a non-negative real number Ψ(p). Can et al.

(2015) characterize with a set of axioms the polarization measure Ψ∗ that is defined for a profile p

of linear preferences by

Ψ∗(p) =
∑

(a,b)∈A×A
a6=b

min{pab, pba}
2n
(
m
2

) .

As seen in its axiomatic characterization as well, under Ψ∗, polarization between alternatives are

normalized equally over all pairs. For a more inclusive approach, consider a weight function ω

assigning weights ω(ab) ≥ 0 to an ordered pair ab of alternatives, such that ω(ab) = ω(ba) and

ω(aa) = 0. Then the pairwise weighted polarization measure Ψω is defined by

Ψω(p) =
∑

(a,b)∈A×A

ω(ab)×min{pab, pba}
n

.

Hence, Ψ∗ can be written as Ψω∗ , where ω(ab) = 1

2(m
2 )

for all a, b ∈ A with a 6= b. An important
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axiom for a polarization measure is its regularity, which is defined as follows.

Regularity : Ψ(p) ∈ [0, 1] for all p ∈ LN and furthermore Ψ(RN ) = 0 and Ψ(RN1 , (−R)N2) = 1

for all preferences R and all finite and nonempty sets N1 and N2 of individuals such that N1 and

N2 are disjoint and equal in size, i.e., #N1 = #N2.

Lemma 1 Ψω satisfies regularity if and only if
∑

ab∈A×A

ω(ab) = 2.

Proof. Consider a profile p = (L,−L) for some linear order L, hence pab = 1 for all different

alternatives a and b. It follows that for weighed polarization measures regularity Ψω implies that we

have
∑

ab∈A×A

ω(ab) = 2. And reversibly in case these weights add up to 2 it follows that for profiles

(n · L, n · (−L)) polarization

Ψ(n · L, n · (−L)) =
∑

ab∈A×A

ω(ab) ·min{nab(p), nba(p)}
n

=
∑

ab∈A×A

ω(ab) · n
2 · n

=
∑

ab∈A×A

ω(ab)

2
= 1.

So the polarization measure is regular.

Given any profile p and any permutation on individuals s : N ↔ N , let sp ∈ LN denote the

permuted profile, i.e., sp(i) = p(s(i)) for all i ∈ N . Then, a rule Ψ satisfies anonymity whenever

Ψ(sp) = Ψ(p) for all profiles p and all permutations s. Another important axiom is of replication

invariance, which is defined as follows.

Replication invariance : Ψ(2 · p) = Ψ(p) for all profiles p.

In this paper, we define the major property through the additivity axiom as follows.

Additivity : For any two conflict free profiles p and q,

Ψ(p, q) =
np

np + nq
Ψ(p) +

nq
np + nq

Ψ(q).

Following remark is an immediate observation.

Remark 1 Additivity implies replication invariance and therewith anonymity.

That replication invariance implies anonymity is proven in Proposition 1 of Can et al. (2015) and

the first part of the claim is straightforward as

Ψ(p, p) =
1

2
Ψ(p) +

1

2
Ψ(p) = Ψ(p).
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3 Linear Orders

Here we consider polarization measures on linear orders. In fact we show that both not the strong

variety of regularity and global pairwiseness are redundant conditions in previous characterizations.

Theorem 2 Let Ψ be a polarization measure for profiles on linear orders. Then Ψ is regular and

additive if and only if Ψ is a weighed polarization measure, say Ψω, such that
∑

ab∈A×A

ω(ab) = 2.

Proof. The proof consist of 6 major steps. Step 1 is on a fundamental betweenness result. In

step 2 we determine the weights. Step 3 shows that the theorem holds for two agents profiles and

step 4 that it holds for three agents profiles. By induction on the number of agents we show that

the argument holds for profiles on any number of agents. Step 5 deals with the induction basis and

step 6 with the induction step.

Step 1 Betweenness

Let R1, R2, and R3 be three linear orders such that R3 is in between R1 and R2, i.e.,

R1 ∩R2 ⊆ R3 ⊆ R1 ∪R2.

Claim 1 Ψ(R1, R2) = Ψ(R1, R3) + Ψ(R3, R2).

Proof of Claim 1 Because R3 is in between R1 and R2, we have that the profiles (R3, R3) and

(R1, R2) are conflict free as well as the profiles (R1, R3) and (R3, R2). So, additivity implies

Ψ(R1, R3, R3, R2) =
1

2
Ψ(R1, R3) +

1

2
Ψ(R3, R2) and

Ψ(R1, R3, R3, R2) =
1

2
Ψ(R1, R2) +

1

2
Ψ(R3, R3).

By regularity the latter equation implies

Ψ(R1, R3, R3, R2) =
1

2
Ψ(R1, R2).

Combining this and the former yields the desired result.

End of Proof of Claim 1

Step 2 The Weights

For two alternatives a and b consider four preferences Rab, Qab, Rba and Qba in L such that

Rab\Rba = Qab\Qba = {ab} and Rba\Rab = Qba\Qab = {ba}. That is both Rab with Rba and
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Qab with Qba form an elementary change from ab to ba. The following claim essentially defines the

weights.

Claim 2 Ψ(Rab +Rba) = Ψ(Qab +Qba). By applying Claim 1 we have

Ψ(Rab, Qba) = Ψ(Rab, Rba) + Ψ(Rba, Qba) and

Ψ(Rab, Qba) = Ψ(Rab, Qab) + Ψ(Qab, Qba).

So,

Ψ(Rab, Rba) + Ψ(Rba, Qba) = Ψ(Rab, Qab) + Ψ(Qab, Qba).

Similarly we have

Ψ(Qab, Rab) + Ψ(Rab, Rba) = Ψ(Qab, Qba) + Ψ(Qba, Rba).

Adding anonymity and simplifying now yields

Ψ(Rab, Rba) = Ψ(Qab, Qba).

End of Proof of Claim 2

We define the weights ω(ab) = Ψ(Rab, Rba). For a linear order R we now have by Claim 1

Ψ(R,−R) =
∑
ab∈R

ω(ab).

Regularity implies ∑
ab∈A×A

ω(ab) = 2.

Hence we have that Ψ(R + (−R)) = 1. Note that by anonymity, weights are symmetric, i.e.,

ω(ab) = ω(ba).

Step 3 The Two Agents Case

Let R and Q be two linear orders. It is sufficient to prove that

Ψ(R,Q) = Ψω(R,Q)

=
∑

ab∈A×A

ω(ab)

2
,
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where ω(ab) is defined as the polarization of a pair of linear orders forming an elementary change

from ab to ba. By Claim 1 it follows that

Ψ(R,Q) =
∑

ab∈R\Q

ω(ab)

=
∑

ab∈A×A

ω(ab)

2
.

Step 4 The three Agents case

For a profile p on an arbitrary number of agents let Tp = {ab ∈ A × A : pab > 0}, which is

antisymmetric by definition. Let p−S denote the profile p restricted to N\S for any S ⊆ N .

Claim 3 Let p be a profile such that Tp is complete. Then Tp−i ⊆ Tp for all agents i. Therewith

p−i and p−j are conflict free for all agents i and j.

Proof of Claim 3 If Tp is complete, for all distinct alternatives a and b with ab /∈ Tp we

have ba ∈ Tp. This implies (p−i)ab ≤ (p−i)ba for all agents i. So, ab /∈ Tp−i which proves the first

inclusion. The statement on p−i and p−j being conflict free for all agents i and j now follows readily

as ab ∈ Tp−i ⊆ Tp, Tp−j ⊆ Tp and Tp is anti-symmetric imply that ba /∈ Tp−j . So, (p−i)ab > 0 implies

(p−j)ab ≥ 0.

End of Proof of Claim 3

To prove step 4 consider a profile p on three agents say 1, 2 and 3. We want to prove that

Ψ(p) = Ψω(p). As the number of agents is odd we have that Tp is complete. So, by additivity and

Claim 3 we have that

Ψ(p) = Ψ(2 · p)

=
1

3
Ψ(p−1) +

1

3
Ψ(p−2) +

1

3
Ψ(p−3).

As p−i is a profile on two agents for all agents i in {1, 2, 3}, we have by step 3 that

Ψ(p) =
1

3
Ψ(p−1) +

1

3
Ψ(p−2) +

1

3
Ψ(p−3)

=
1

3
Ψω(p−1) +

1

3
Ψω(p−2) +

1

3
Ψω(p−3)

= Ψω(p).

This proves step 4.
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Step 5 Basis of the induction

Let R̃ be a linear order. For alternatives a and b let rab denote a profile such that ab... = rab(1)

and ...ab = rab(2), where xy ∈ rab(1) iff yx ∈ rab(2) iff xy ∈ R̃ for all xy ∈ (A × A)\{ab, ba}. Let∑
= {
∑

xy∈A×A k
xy ·rxy : kxy is an non-negative integer and kxx = 0 for all different alternatives x

and y}. With induction on np we prove Ψ(p,Σ) = Ψω(p,Σ) for profiles p on L and profiles Σ ∈
∑

.

Taking kab = 0 for all ab ∈ A × A, then yields the desired result. Take Σ =
∑

ab∈A×A k
ab · rab.

Profile Σ can be split into two parts Σ = Σ1 + Σ2, such that Σ1 =
∑

ab∈A×A max{kab− kba, 0} · rab

and Σ2 =
∑

ab∈A×A min{kab, kba} · rab. Call kab1 = max{kab − kba, 0} and kab2 = min{kab, kba}.
Then we have that kab1 = 0 or kba1 = 0. Also we have kab2 = kba2 for all ab in A × A. So, Σ1 and

Σ2 are conflict free and additivity implies Ψ(Σ) = Ψ(Σ1) + Ψ(Σ2) and Ψω(Σ) = Ψω(Σ1) + Ψω(Σ2).

Regularity implies that Ψ(Σ2) = 1 = Ψω(Σ2). As all rab in Σ1 having a positive kab1 are conflict free

it follows by the equality of Ψ and Ψω on two agents profiles and additivity that Ψ(Σ1) = Ψω(Σ1).

So, we have that Ψ(Σ) = Ψω(Σ). This proves the induction statement for np = 0.

Next we prove the induction statement for np = 1. So, let R be a linear order on A and

consider R+ Σ for some Σ ∈
∑

. It is sufficient to show that Ψ(R + Σ) = Ψω(R + Σ). Let

T = {ab ∈ A × A : kab > kba}. Take h =
∑

ab∈T r
ab and g =

∑
ab∈A×A k

ab
3 · rab, where kab3 = kab

if ab /∈ T and kab3 = kab − 1 else. Note that by construction h + g = Σ and also R+ h and

g are conflict free. To see this latter statement note that if ab ∈ T , then (R+ h)ab ≥ 0 and

kab3 = kab − 1 ≥ kba = kba3 which means that gab ≥ 0. Similarly, if ba ∈ T, then (R+ h)ba ≥ 0

and gba ≥ 0. Finally, if ab /∈ T and ba /∈ T, then gab = gba. So, additivity implies Ψ(R + Σ) =

Ψ(R+h)+Ψ(g) and Ψω(R+Σ) = Ψω(R+h)+Ψω(g). As g ∈
∑

it is therefore sufficient to prove that

Ψ(R + h) = Ψω(R + h). Let h1 =
∑

ab∈V r
ab and h2 =

∑
ab∈T\V r

ab, where V = {ab ∈ T : ab /∈ R
and ba ∈ R}. Then (R + h1) and h2 are obviously conflict free. So, by additivity it is sufficient to

prove that Ψ(R + h1) = Ψω(R + h1). Now Ψ(R + h1) = Ψ(2 · (R + h1)). As (2 ·R+ h1)ab = 2 =

(2 ·R+ h1)ba, (h1)ab = 2 and (h1)ba = 0 for ab ∈ V and as (h1)xy = (h1)yx = 1 for x and y such

that xy /∈ V and yx /∈ V, we have 2 ·R + h1 and h1 are conflict free. So, there are α1 and α2 such

that

Ψ(R+ h1) = Ψ(2 · (R+ h1))

= α1 ·Ψ(2 ·R+ h1) + α2 ·Ψ(h1).

Similarly we have

Ψω(R+ h1) = α1 ·Ψω(2 ·R+ h1) + α2 ·Ψω(h1).
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Therefore, as Ψ(h1) = Ψω(h1), it is sufficient to prove that Ψ(2 · R + h1) = Ψω(2 · R + h1). Let

v = #V. Note that 2 ·R+ h1 and 2(v − 1) ·R are conflict free. So, by additivity there are some β1

and β2 such that

Ψ(2v ·R+ h1) = β1 ·Ψ(2(v − 1) ·R) + β2 ·Ψ(2 ·R+ h1).

Further, note that 2 · R + rab and 2 · R + rxy are conflict free for all ab and xy in V. So, there are

γxy, such that

Ψ(2v ·R+ h1) =
∑
xy∈V

γxyΨ(2 ·R+ rab).

Note that rab and 2·R+rab are conflict free so τ1 ·Ψ(2·R+rab)+τ2 ·Ψ(rab) = Ψ(2·(R+rab)) = Ψ(R+

rab) for some τ1 and τ2. As R+ rab is a three agent profile we have that Ψ(R+ rab) = Ψω(R+ rab).

But then as Ψ(rab) = Ψω(rab) it follows that Ψ(2 ·R+ rab) = Ψω(2 ·R+ rab). Because

Ψω(2v ·R+ h1) =
∑
xy∈V

γxyΨω(2 ·R+ rab),

we have that Ψω(2v ·R+h1) = Ψ(2v ·R+h1). Now because Ψ(2(v− 1) ·R) = 0 = Ψω(2(v− 1) ·R)

and

Ψω(2v ·R+ h1) = β1 ·Ψω(2(v − 1) ·R) + β2 ·Ψω(2 ·R+ h1),

it follows that Ψ(2 ·R+ h1) = Ψω(2 ·R+ h1).

Step 6 Induction step

Let p be an N agents profile with np ≥ 2. Let Σ ∈
∑

. It is sufficient to prove that Ψ(p+ Σ) =

Ψω(p+Σ). We choose Σ1 ∈
∑

such that on the one hand (n−1) ·(p+Σ) and Σ+n ·Σ1 are conflict

free and on the other hand all p−i+Σ+Σ1 are conflict free for all i in N. Take V an asymmetric and

weakly complete relation on A, such that ab ∈ V if (p+ Σ)ab > 0 or if (p+ Σ)ab = (p+ Σ)ba and

Σab > 0. So, incase (p+ Σ)ab = (p+ Σ)ba and Σab = Σba we just choose freely either ab or ba in V,

but in that case not both. Now take Σ1 =
∑
ab∈V

kab · rab. Where kab = Σba − Σab if (p+ Σ)ab > 0

and Σba > 0 and in all other cases kab = 1.

First we prove that (n−1) ·(p+Σ) and Σ+n ·Σ1 are conflict free. In case (n− 1) · (p+ Σ)ab > 0

then (p+ Σ)ab > 0 and by construction (Σ + n · Σ1)ab > 0. In case (Σ + n · Σ1)ab > 0 by construc-

tion (p+ Σ)ab ≥ 0 which proves that these two profiles are conflict free.

Next we prove that p−i + Σ + Σ1 and p−j + Σ + Σ1 are conflict free for all i, j ≤ np. In
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case (p+ Σ)ab > 0 we have that both (p−i + Σ + Σ1)ab ≥ 0 and (p−j + Σ + Σ1)ab ≥ 0. So, it

cannot happen that (p−i + Σ + Σ1)ab > 0 and (p−j + Σ + Σ1)ab < 0. In case (p+ Σ)ab = (p+ Σ)ba

and Σab > Σba then (Σ1)ab > 0 and (p−i + Σ + Σ1)ab ≥ 0 and (p−j + Σ + Σ1)ab ≥ 0. In case

(p+ Σ)ab = (p+ Σ)ba and Σab = Σba we may without loss of generality assume that (Σ1)ab > 0

and again this yields both (p−i + Σ + Σ1)ab ≥ 0 and (p−j + Σ + Σ1)ab ≥ 0.

As (n− 1) · (p+ Σ) and Σ + n · Σ1 are conflict free, additivity implies that for some α1 and α2

Ψ((n− 1) · (p+ Σ) + Σ + n · Σ1) = α1 ·Ψ(p+ Σ) + α2 ·Ψ(Σ + n · Σ1) and

Ψω((n− 1) · (p+ Σ) + Σ + n · Σ1) = α1 ·Ψω(p+ Σ) + α2 ·Ψω(Σ + n · Σ1).

As (p−i + Σ + Σ1) and (p−j + Σ + Σ1) are conflict free for all i and j in N, additivity implies that

there are βi such that

Ψ((n− 1) · (p+ Σ) + Σ + n · Σ1) =
∑
i∈N

βi ·Ψ(p−i + Σ + Σ1) and

Ψω((n− 1) · (p+ Σ) + Σ + n · Σ1) =
∑
i∈N

βi ·Ψω(p−i + Σ + Σ1).

The induction hypothesis now implies that Ψ(p+ Σ) = Ψω(p+ Σ). This concludes the proof of the

theorem.

4 Weak Orders

In this section we consider profiles on weak orders.

Theorem 3 Let Ψ be a polarization measure for profiles on weak orders. Then Ψ is regular and

additive if and only if Ψ is a weighed polarization measure, say Ψω, such that
∑

ab∈AxA

ω(ab) = 2.

Proof. If part is left to the reader and we start with the two agents case.

Two agents case : Let R1 and R2 be two weak orders. We want to show that Ψ(R1 +R2) =

Ψω(R1 + R2). Let Lt ⊆ Rt be linear orders, such that R1 ∩ R2 ⊆ Lt for t ∈ {1, 2}. Then R1 + R2

12



and 2 · L1 are conflict free. So additivity and regularity imply

Ψ(R1 +R2 + 2 · L1) =
1

2
Ψ(R1 +R2) +

1

2
Ψ(2 · L1)

=
1

2
Ψ(R1 +R2).

Also R1 + L1 and R2 + L1 are conflict free. So by additivity we have

Ψ(R1 +R2 + 2 · L1) =
1

2
Ψ(R1 + L1) +

1

2
Ψ(R2 + L1).

As R1 and L1 are conflict free we may obviously by regularity and additivity conclude that Ψ(R1 +

L1) = 0. Hence all in all we have Ψ(R1 +R2) = Ψ(R2 + L1). But similarly we have Ψ(R2 + L1) =

Ψ(L2 + L1). So, Ψ(R1 +R2) = Ψ(L2 + L1) and the previous Theorem then implies Ψ(R1 +R2) =

Ψω(L2 + L1) = Ψω(R1 +R2).

The case of three or more agents : Like in the proof of the previous theorem it is sufficient

to prove by induction on np that Ψ(p+Σ) = Ψω(p+Σ) for profiles p on L and profiles Σ ∈
∑

. First

we prove the basis. Let R be a weak order and Σ ∈
∑

it is sufficient to prove that Ψ(R + Σ) =

Ψω(R + Σ). In view of the previous Theorem and additivity we may assume that Σ =
∑
ab∈V

rab

where V ⊆ {ba : ab /∈ R}. Take L a linear order such that L ⊆ R. Now R+L+ Σ and Σ are conflict

free and also R+ Σ and L+ Σ are conflict free. So, by additivity there are α1 and α2 such that

Ψ(R+ L+ 2 · Σ) = α1 ·Ψ(R+ L+ Σ) + α2 ·Ψ(Σ)

=
1

2
Ψ(R+ Σ) +

1

2
Ψ(L+ Σ).

Also R+ L+ Σ and R are conflict free as well as R+ L+ Σ and L. So, by additivity there are β1

and β2 such that

Ψ(R+ L+ L+ Σ) = β1 ·Ψ(R) + β2 ·Ψ(L+ L+ Σ)

= β1 ·Ψ(L) + β2 ·Ψ(R+ L+ Σ).

Because of regularity we may conclude from the latter that Ψ(L+L+ Σ) = Ψ(R+L+ Σ). By the

13



previous Theorem we have now

α1 ·Ψ(R+ L+ Σ) + α2 ·Ψω(Σ) =
1

2
Ψ(R+ Σ) +

1

2
Ψω(L+ Σ)

α1 ·Ψω(L+ L+ Σ) + α2 ·Ψω(Σ) =

and as similarly

α1 ·Ψω(L+ L+ Σ) + α2 ·Ψω(Σ) =
1

2
Ψω(R+ Σ) +

1

2
Ψω(L+ Σ)

we have Ψ(R + Σ) = Ψω(R + Σ). This proves the basis. With respect to the induction step we

remark that the proof of induction step at the previous theorem is valid for profiles on weak orders

because no specific information on linear orders is used.

5 Single Peaked Preferences

Let a1, a2, ..., am be a numbering of the alternatives in A. Given this fixed numbering, we call a

linear order L single peaked whenever for all 1 ≤ i < j < k ≤ m either ajak is in L or ajai is in

L. That is, for any triple of alternatives, the one in the middle according to the fixed order is not

ordered worst among these three by L. This condition is also known as value restriction. By this it

follows straightforwardly that there is an alternative, say al, which is ordered best at L, where

1 ≤ i < j ≤ l =⇒ ajai ∈ L and

l ≤ j < i ≤ m =⇒ ajai ∈ L.

Denote the set of all single peaked linear orders by S. It is clear that a1a2...am = R̃ is in S. Given

any single peaked linear order, we may, by elementary changes, move other alternatives to the

top and obtain a new linear order in S. This essentially means that S is connected by elementary

changes.

Lemma 4 Let R and R̂ be two single peaked linear orders in S. Then there is a path in S of

elementary changes from R to R̂ of length |R\R̂|.

Proof. Let B be the greatest set of alternatives by inclusion such that RB = R̂B , B×(A−B) ⊆ R,
and B× (A−B) ⊆ R̂ . Let ai be the top alternative of RA−B and aj that of R̂A−B . Without loss of
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generality we may assume that i < j. Note that for any k > j we have ak /∈ B, as otherwise the value

restriction condition at R is violated. So, Baj ...ak... = R̂ and we know that the path of elementary

changes at which ai is moved one position to the front is in S. This yields Baiaj ...ak... = R. Actually

R is on a shortest path from R̂ to R. Evidently we are now done by an induction argument on the

#B.

We will prove that on profiles of such single peaked linear orders only weighed polarization

measures are regular and additive.

Theorem 5 Let Ψ be a polarization measure for profiles on single peaked linear orders. Then

Ψ is regular and additive if and only if Ψ is a weighed polarization measure, say Ψω, such that∑
ab∈AxA

ω(ab) = 2.

Proof. Here we prove the only-if-part and leave the proof of the if-part to the reader. Consider

the two agent case of the proof of Theorem 1. Claim 1 on betweenness holds also for this special

case of single peaked linear orders. Claim 2 holds as well. Therefore like in the proof of Theorem

1 we can define weights. By Lemma 4 we have therewith proved the Theorem for the two agents

case.

Let p be a profile of single peaked linear orders. It is well known that there exists a single

peaked linear order, say Lp, such that ab ∈ Lp whenever abp > 0. That is the pairwise majority

decision at p can be extended to a linear order which belongs to the class of single peaked linear

orders where all the individual preferences p(i) also belong to. Now np · Lp and p are conflict free

as well as p(i) + Lp and p(j) + Lp for all agents i and j. So, by additivity

Ψ(p+ np · Lp) =
1

2
Ψ(p) +

1

2
Ψ(np · Lp) and

Ψ(p+ np · Lp) =

np∑
i=1

1

np
Ψ(p(i) + Lp).

So, by regularity and the previous

Ψ(p) =

np∑
i=1

2

np
Ψω(p(i) + Lp).

As we similarly have that Ψω(p) =
∑np

i=1
2
np

Ψω(p(i) + Lp), it follows that Ψ = Ψω.
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6 Conclusion

In this paper, we have considered generalizations of the polarization measure that is characterized

as the summation of disagreements over all pairs of alternatives. This measure can be characterized

with regularity, neutrality, replication invariance, and support independence. Here, we retain regu-

larity and replace the latters with a single axiom of additivity. This change allows to assign different

weights to different pairs of alternatives in the aggregate polarization. Furthermore, we show that

the characterization holds when we allow preferences to attain indifferences as well. Finally, we

show that it also continues to hold in cases where preferences are restricted to be single-peaked.

We believe the major driving aspect of our results is the pairwiseness of the measures we consider.

For instance, our measures cannot distinguish between uniform profiles where all possible orders

appear in equal numbers and bipolar profiles where half of the society have the exact opposite of

the preference of the other half. Any measure, let it be of consensus, cohesiveness, polarization,

diversity, and the like, that bases its treatment on numbers of preferences over pairs of alternatives

is determined to regard uniform and bipolar profiles equally. Departures from pairwiseness might

have appealing directions depending on the context. For instance, in measuring polarization, one

might consider a political context where parties are represented by rankings and a distance notion

for rankings that is not necessarily pair-based is provided. In this case, one aspect of polarization is

how parties are distant from each other, while another aspect is how homogeneous the supporters

of each party are (as in the alienation-identification framework of Esteban and Ray (1994)). We

leave out this and other possible approaches for future research.

Another direction for future research is to relate the level of polarization in a society to social

choice outcomes. One might wonder how the societal outcomes of different preference aggregation

procedures are related to the level of polarization in preferences. Likewise, is it easier or harder to

individually manipulate a social choice function if polarization is higher? Finally, studying domain

restrictions that are defined by the highest possible polarization levels they allow can be considered

as an interesting inquiry.
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Herrera-Viedma, E., J. L. Garćıa-Lapresta, J. Kacprzyk, M. Fedrizzi, H. Nurmi, and
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