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Abstract

We study the design of voting rules for international unions when countries’ participation

is voluntary. While efficiency recommends weighting countries proportionally to their stakes,

we show that accounting for participation constraints entails overweighting some countries,

those for which the incentive to participate is the lowest. When decisions are not enforceable,

cooperation requires the satisfaction of more stringent constraints, that may be mitigated

by granting a veto power to some countries. The model has important implications for

the problem of apportionment, the allocation of voting weights to countries of differing

populations, where it provides a rationale for setting a minimum representation for small

countries. (JEL: F53, D02, C61, C73)

“You may if you wish go home from this Conference and say that you have defeated the veto. But

what will be your answer when you are asked: Where is the Charter?” —U.S. Senator Tom Connally at

the 1945 San Francisco Conference.

1 Introduction

In 1787, the founding fathers of the US Constitution faced a contentious challenge: how to ac-

commodate a fair representation of states at the federal level, while preserving a say to small

states in the new institutions? This issue was resolved by the so-called Connecticut Compro-

mise, under which states received a weight proportional to their populations in the House,

∗We would like to thank Alessandra Casella, Ernesto Dal Bó, Andreas Kleiner, Jean-François Laslier, Michel
Lebreton, Aniol Llorente-Saguer and Sharun Mukand for useful comments, as well as audiences from Berkeley,
Copenhagen, Glasgow, Odense, Paris, Saint-Étienne and Toulouse.
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but an equal weight in the Senate. The resulting distribution of seats at the Electoral Col-

lege appears as a compromise between the notions of proportionality, conducing to efficiency,

and equality, conducing to acceptability. This distinctive feature of the US Constitution was

decisive in its adoption and has remained unchanged until now.

The tension between the efficiency of a multi-party institution and its acceptability by

all parties is not limited to the anecdotal episode of the Constitutional Convention. In fact,

such a tension is also inherently present for many intergovernmental organizations and con-

federations, when a group of sovereign states voluntarily commits to collectively decide on

one or several policy areas. One prominent example is the Council of the European Union

(EU), one of its main decision-making bodies, whose decision rules have often been changed

after fierce debates. The Treaty of Lisbon established the latest rule: a reform is adopted

if it is approved by at least 55% of the Member States representing at least 65% of the EU

population.1 This rule exhibits again a compromise between proportionality and equality,

which ensures its acceptability by the smallest Member States. Another important example

is the UN Security Council, in which the five permanent members can veto any resolution,

and consequently benefit from a disproportionate power. When the Charter of the UN was

ratified at San Francisco in 1945, “the issue was made crystal clear by the leaders of the

Big Five: it was either the Charter with the veto or no Charter at all” (Wilcox, 1945).2 In

that case, the acceptability of the rule entailed not only overweighting some countries, but

ensuring them a veto power.

The goal of the present paper is to shed light on the tension between the efficiency of a

voting rule and its acceptability, in the context of international organizations. Should coun-

tries be weighted according to their populations, or should small countries be overweighted?

Should some important countries benefit from a veto power? To address these questions,

we take a second-best approach to institutional design, by looking for normatively appealing

rules among those that are politically feasible when countries’ participation is voluntary.

Our model features a group of countries choosing whether to delegate some of their compe-

tences to a supranational entity.3 The choice to transfer a competence is made unanimously4

ex-ante, before a decision is taken. If cooperation is agreed upon, the decision is made collec-

tively according to a predetermined voting rule. If cooperation is rejected, countries remain

1The rule applies for most policy areas. Additionally, a proposal cannot be blocked by less than four Member
States.

2The quote is also cited in Bouton et al. (2014).
3For instance, the European Union has exclusive competence over custom unions, competition policy, mon-

etary policy (for countries in the Eurozone), common fisheries policy, and common commercial policy. The EU
also holds shared competence (member states cannot exercise competence in areas where the EU has done so)
over various other domains such as the internal market, agricultural policy, environmental policy, and consumer
protection. See Treaty of Lisbon (2007b).

4The fact that all EU competences must be voluntary transferred by its member states is known as the
principle of conferral (Treaty of Lisbon, 2007a).
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sovereign and they retain an associated stand-alone utility.

Our core assumption is that the choice to delegate reflects a trade-off between the efficiency

gains from cooperation and a reduced control over decisions. Making collective decisions is

profitable for many reasons: it generates coordination externalities (Loeper, 2011), allows

for economies of scale (Alesina et al., 2005), increases bargaining power (Moravcsik, 1998),

strengthens commitment (Bown, 2004), etc. However, by forfeiting the right to make their

own decisions, countries also loose some decision power. As a result, countries may reject

cooperation if they expect to disagree too frequently with the collective decision. The voting

rule, which determines how much influence each country exerts on the collective decision,

thus plays a critical role in generating cooperation.

We consider in turn the cases of enforceable and non-enforceable collective decisions.

When decisions are enforceable, countries commit to accepting the outcome of these decisions

even if they end up disagreeing. In that case, we show that cooperation can be established if

the voting rule satisfies a set of participation constraints. This leads us to study a constrained

optimization problem: determining which rule delivers the highest (ex-ante, utilitarian) wel-

fare, subject to the participation constraint of all countries. Our first result asserts that the

optimal rule is a weighted majority rule, whereby each country is assigned a fixed voting

weight and a reform is adopted if the total weight of favorable countries exceeds a certain

threshold. Furthermore, we show that the weight of a country should be equal to its efficient

weight, the weight it would receive absent any participation constraint, unless its participation

constraint is binding, in which case it should be larger. This result thus offers a justification

for overweighting countries that have the lowest (endogenous) incentive to participate.

We then relax the assumption of enforceability of collective decisions, as this property

is not likely to be satisfied in the context of intergovernmental organizations (Maggi and

Morelli, 2006). We define a notion of self-enforcing cooperation, by considering a repeated

version of the previous decision game: it requires that countries choose to cooperate at each

stage, and also comply with the collective decision even when they disagree. We show that

a rule is self-enforcing if it satisfies a set of endogenous constraints: countries with a veto

must satisfy their participation constraint, while countries without a veto must satisfy a

more stringent “compliance” constraint. Building on this result, we show that self-enforcing

rules take the form of weighted majority rules. Similar to the enforceable case, the weight

of a country should be equal to its efficient weight, unless its utility falls below a specific

benchmark level of utility, in which case it should be larger. Furthermore, we show that some

of the overweighted countries may also benefit from a veto power. The result thus provides

a rationale for the use of veto power: compliance can sometimes be best achieved by giving

some “negative power” to a country (i.e. a veto power), rather than by compensating it with

too much additional “positive power” (i.e. overly large weight).
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Finally, we consider a simpler model in which the heterogeneity between countries is gov-

erned by a single parameter, such as the country’s population. This model can be interpreted

as addressing the apportionment problem: how should countries’ populations be translated

into voting weights of representatives in an international committee? We obtain sharper re-

sults in that model: countries must receive weights proportional to their populations, except

for the smallest ones, which must all be weighted equally. The result thus offers a rationale

for a minimum representation of smaller countries, as required explicitly in the Treaty of Lis-

bon (Treaty of Lisbon, 2007a). It also echoes the distribution of weights at the US Electoral

College, where each state is allocated a baseline of 2 seats plus a number of seats proportional

to its population. Then, we investigate the implication of self-enforceability in this simplified

model, and show that it never leads to recommending veto power for a subset of countries:

either the rule must be a weighted majority rule with no veto or it must be the unanimity

rule. We further show that the former case prevails when the efficiency gain is high and/or

the discount factor is high. We also show that, in that case, the minimum representation

threshold decreases with the efficiency gain and the discount factor.

1.1 Relation to the literature

Our paper combines both a normative and a positive approach to voting rules in international

unions. On the normative side, we follow the literature on apportionment, which studies the

allocation of weights to nations (states) of different sizes in international unions (federations).

A first branch of the literature focuses on how to best approximate proportionality when

weights are constrained to be integers, as for the allocation of seats in a parliament (Balinski

and Young, 1982). A second branch of the literature questions the desirability of proportion-

ality, arguing instead for a principle of degressively proportionality, which requires weights

to increase less than proportionally with states’ populations.5 Our paper follows this second

strand, building in particular on the utilitarian approach6 proposed by Barberà and Jackson

(2006) to study voting rules in two-tier democracies, where citizens elect representatives that

vote on their behalf. They show in a general framework that an efficient voting rule must

5The literature on degressive proportionality has focused in particular on the square-root law, which rec-
ommends weights that are proportional to the square-root of each state’s population. Arguments in favor of
the square-root law are developed by Penrose (1946); Felsenthal and Machover (1999); Barberà and Jackson
(2006), on the grounds of (respectively) equalizing each citizen’s influence, minimizing the mean majority deficit
(extent of disagreement with the federation-wise majority rule), or following the utilitarian principle. These
works are extended by Beisbart and Bovens (2007) and Napel et al. (2016), who show the fragility of the law
to the introduction of a small degree of correlation in citizen’s preferences. Finally, Koriyama et al. (2013)
offers a different rationale for degressive proportionality, based on the utilitarian principle, when citizens exhibit
decreasing marginal utility. See Laslier (2012) for a survey.

6The ex-ante utilitarian approach to binary voting rules was initiated by Rae (1969), to provide an argument
for the majority rule.
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weight each state proportionally to its stake in the decisions.7 Depending on the assumption

made on the correlation of preferences within states, the stake of a state coincides either with

its population or with the square root of its population.

We depart from this literature by adding political feasibility constraints. Such a positive

approach to voting rules has been introduced in a couple of important papers. Barberà and

Jackson (2004) consider the stability of a voting rule with respect to a constitutional rule: a

voting rule is stable if it is not overthrown by another voting rule. In contrast, we study the

stability of a rule with respect the composition of the union, and require that a rule induces

the cooperation of all of its members. Note that the optimal rules and optimal self-enforcing

rules that we identify are self-stable8 among those satisfying the same feasibility constraints,

as they are obtained from a welfare-maximization program. Our focus on self-enforceability

of collective decisions is inspired by the pioneering paper of Maggi and Morelli (2006). They

consider a union of homogeneous countries and prove that the optimal self-enforcing rule

is either a (qualified) majority or the unanimity. Our section on self-enforceability extends

their analysis to the case of an heterogeneous union: we show that the optimal rule may give

a veto power to a strict subset of countries in general, as hinted in the conclusion of their

paper. However, we prove that if the heterogeneity is controlled by a single parameter, like

the population of a country, then the veto power should either be given to all countries or

none.

The premise of our paper is that countries’ participation to an international union is

voluntary. Starting with the same assumption, but inspired by the formation of monetary

unions, Casella (1992) shows that a two-country partnership may require overweighting (in

the welfare function of the partnership’s decision-maker) the country most tempted to remain

sovereign. As mentioned in the conclusion of that paper, generalizing the argument requires

analyzing this trade-off in a voting game, and that is what our first result on overweighting

achieves.

Finally, our main assumption in this work is that a country’s decision to cooperate results

from a trade-off between the efficiency of collective decisions and the loss of power in the

union. Following the seminal paper of Alesina and Spolaore (1997) on the (endogenous)

size of nations, several papers have explored this rationale for cooperation between countries.

Alesina et al. (2005) explores the composition and size of international unions, when efficiency

gains stem from externalities in public good provisions. Renou (2011) studies the effect of

the stringency of the supermajority rule on the endogenous composition of the union. Similar

to Renou (2011), our paper emphasizes the importance of the voting rule on the stability of

7A similar result is provided by Azrieli and Kim (2014) in a mechanism design context. See also Brighouse
and Fleurbaey (2010) for a discussion of this idea on the level of political philosophy.

8With respect to the unanimity rule, taken as the benchmark constitutional rule.

5



the union, but differs in that we take into account the heterogeneity of countries. Finally, let

us note that some authors have provided other rationales for international cooperation, such

as information aggregation (Penn, 2015), or even pure preference aggregation (Crémer and

Palfrey, 1996).

1.2 Example

Consider a union of 5 countries which must decide, repeatedly, whether to impose embargoes

on tax havens. A sanction is only effective if implemented by all countries. Countries are

uncertain about whether to support the embargoes. Country 1 is generally unfavorable, and

has a probability 1/3 of supporting a sanction, while countries 2 to 5 are generally favorable,

and have a probability 2/3 of supporting the sanctions. Preferences are independent across

countries and across decisions. Ex-post, if the embargo is effective, country 1 gets a utility of

1 if it is favorable and a disutility of 2 if it is unfavorable. In contrast, countries 2 to 5 get a

utility of 2 if favorable and a disutility of 1 if unfavorable. If the embargo is not effective, all

countries get a utility of 0.

Before preferences over future decisions are realized, countries must decide whether to

sign a cooperation treaty, i.e. agree to take all embargo decisions collectively with all other

countries in the union, or remain sovereign, i.e. take all embargo decisions independently of

other countries. The treaty is only effective if signed by all countries in the union and is

assumed enforceable.

Under sovereignty, the embargo is implemented effectively only when all countries are

favorable, which happens with a very small probability 16/35. Ex-ante, country 1 gets a

utility U = 16/35, while all other countries get utility U = 32/35 from any decision. Social

welfare is equal to 144/35.

In contrast, under cooperation, the embargo may be implemented effectively even if some

countries are unfavorable since they must all accept the collective decision. Ex-ante, the

utility of each country depends both on the preferences of other countries and on the decision

rule used to make the collective decision after preferences have realized.

Here, because all countries have the same stake in the collective decision, the efficient

voting rule consists in adopting the embargo at the simple majority (Theorem 1). Ex-ante,

countries 2 to 5 get a utility:

U2,3,4,5 =
4

3
P(emb. adopted | fav.)− 1

3
P(emb. adopted | unfav.) =

228

35
>

32

35
,

and are thus much better off than under sovereignty. In contrast, country 1, which tends to
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disagree with the four other countries, is now much worse off:

U1 =
1

3
P(emb. adopted | fav.)− 4

3
P(emb. adopted | unf.) = −120

35
<

16

35
,

which means it would not agree to cooperate ex-ante. Here, the only way to ensure cooperation

is to give some additional voting power to country 1. The optimal decision rule (Theorem 2)

consists in overweighting country 1 just enough so that its participation constraint becomes

binding: the embargo is adopted either if country 1 and at least one other country are in

favor or if all but country 1 are in favor. This voting rule can be represented as a weighted

majority rule with weights (9, 3, 3, 3, 3) and threshold 1/2. Country 1 gets exactly its stand-

alone utility U = 16/35, while countries 2 to 5 now get a reduced utility U = 146/35. Social

welfare is reduced from 792/35 (under the efficient decision rule) to 600/35, but still much

larger than under sovereignty.

If collective decisions cannot be enforced, countries may choose not to adopt the embargo

even if this has been decided collectively. In that case, looking at the previous one-shot game

is not sufficient, as countries have no incentive to abide by collective decisions if the game

ends right away. We thus consider the infinitely repeated version of that game where countries

decide at each stage whether to cooperate, and in case of cooperation, whether to implement

the collective decision. Let δ = 5/6 be the common discount factor. In order for the voting

rule to be self-enforcing (i.e. induce cooperation and compliance on the equilibrium path),

the benefit of not implementing the embargo for unfavorable countries must be outweighed

by the long-term cost of not sustaining cooperation. The associated compliance constraints

turns out to be more stringent than the participation constraints (Proposition 2). As a result,

the previous optimal rule cannot be self-enforcing since country 1’s participation constraint

was already binding. Self-enforcement can only be achieved by granting a veto power to

country 1 (Theorem 3). The optimal self-enforcing voting rule is such that the embargo is

adopted if and only if country 1 and and at least two other countries are in favor. This voting

rule can again be represented as a weighted majority rule, and we observe that country 1

benefits from a veto power under this rule, as it can block any proposal. Country 1 gets

utility U = 72/35 > U0
1 , while countries 2 to 5 now get an even reduced utility of U = 84/35.

Social welfare is reduced from 600/35 (under the optimal rule) to 408/35. Note that even

though collective decisions cannot be enforced, social welfare is still much larger under the

optimal self-enforcing rule than under sovereignty. The following table summarizes the rules

and utilities obtained in each of the four considered benchmarks (to simplify the expressions,

utilities are multiplied by a factor 35).
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Benchmark Sovereignty Efficient Optimal Optimal Self-Enforcing

Voting rule Simple Majority 1 overweighted 1 has veto power

U1 ∝ 16 −120 16 72

U2,3,4,5 ∝ 32 228 146 84

Welfare ∝ 144 792 600 408

Table 1: Summary of the example.

1.3 Outline

The model is introduced in Section 2. The main result, deriving the optimal voting rule,

is provided in Section 3 and is followed by a discussion on the social cost of participation

constraints. Section 4 explores the condition of self-enforceability, and derives the optimal

self-enforcing rule. Then, the model is applied in Section 5 to a simple environment in which

states differ only in their populations.

2 Model

An international union N is made of n countries. Each country has one representative who

takes decisions on the behalf of its citizens. Representatives must decide whether to remain

sovereign or to cooperate, and if so, whether to implement a reform or to stick with the status

quo. This is modeled as a game with four stages.

2.1 The decision game

In the first stage, each country i ∈ N decides to remain sovereign (di = 0) or to cooperate

(di = 1). If at least one country wants to remain sovereign, cooperation is aborted, and each

country i derives a stand-alone utility U∅i ≥ 0. If all countries decide to cooperate, the game

continues and countries have to make a decision on the adoption of a proposed reform.

In the second stage, countries learn the realization of their preferences for the proposed

reform. A vector of utilities u = (ui)i∈N is drawn from a distribution µ. The number

ui measures country i’s aggregate utility if the reform is adopted by all countries. The

utilities (ui) are independent across countries, and such that for all i ∈ N , Pµ[ui > 0] > 0,

Pµ[ui = 0] = 0 and Pµ[ui < 0] > 0. Each country i privately observes its own utility ui, and

the prior µ is common knowledge. If the reform is not adopted by all countries, each country
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derives a utility of 0.

The third stage is a voting stage. Each country reports a message mi ∈ {0, 1}, where

mi = 1 is interpreted as a vote in favor of the reform, and countries follow a pre-determined

voting rule v. To keep the model flexible, we define a voting rule as a non-decreasing function

v : {0, 1}N → [0, 1], where v(m) denotes the probability of accepting the reform, given the

vector of messages m.9 We denote by v̂(m) ∈ {0, 1} the realized collective decision, i.e. a

random variable v̂(m) such that P[v̂(m) = 1] = v(m). For a given profile of votes m, v̂(m) = 0

indicates that countries must keep the status quo and v̂(m) = 1 means that countries must

implement the reform.

In the fourth stage, each country i takes an action ai ∈ {0, 1}, taking value 1 if country

i implements the reform, and value 0 otherwise. If collective decisions are enforceable, each

country must abide by the collective decision, ai = v̂(m) for all i ∈ N . If collective decisions

are not enforceable, then countries may choose to go against the collective decision.

The game thus defined is denoted by Γe(v) if decisions are enforceable and by Γne(v) if

decisions are not enforceable. In this paper, we particularly focus on the cooperative profile

of the game, i.e. the profile such that, for all i ∈ N , di = 1, mi = 1ui>0 and ai = v̂(m). The

expected aggregate utility to country i associated to this profile is given by:

Ui(v) = Eµ[v((1uj>0)j∈N )ui].

A common theme of the article will be to identify conditions for which this cooperative

profile can be implemented as an equilibrium. Section 3 tackles this question when decisions

are enforceable, and Section 4 studies the non-enforceable case. Before incorporating such

strategic constraints, we introduce the notions of weighted rules, vetoes, welfare, and (first-

best) efficient voting rules.

2.2 Weighted majority rules and vetoes

In practice, decision rules used by international committees often take the form of a weighted

majority whereby each country is assigned a fixed voting weight and a reform is approved

if the total weight of countries in favor exceeds a given threshold (e.g. IMF or Council of

the EU before 2014). Formally, a rule v is a weighted majority rule if there exist a vector

of weights w = (wi)i∈N ∈ RN and a threshold t ∈ [0, 1] such that, for any profile of votes

9This expression allows for probabilistic decisions, in order to break possible ties.
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m ∈ {0, 1}N , 
∑
i|mi=1

wi > t
∑
i∈N

wi ⇒ v(m) = 1∑
i|mi=1

wi < t
∑
i∈N

wi ⇒ v(m) = 0.

We say that the rule v is weighted and can be represented by the vector of weights [w; t].10

Among the class of weighted voting rules, some rules mechanically grant a veto power to some

countries (e.g. UN Security Council). Formally, we say that a country i ∈ N has a veto power

under a rule v if v(m) = 0 whenever mi = 0. We denote by V E(v) ⊆ N the set of countries

having a veto power under the rule v:

V E(v) = {i ∈ N | mi = 0 ⇒ v(m) = 0}.

2.3 Welfare and efficient voting rule

For any voting rule v, we define the welfare associated to the cooperative profile under v as:

W (v) = Eµ

[
v((1uj>0)j∈N )

∑
i∈N

ui

]
=
∑
i∈N

Ui(v).

We say that a rule is efficient if it achieves the maximum welfare at the cooperative profile,

this is, absent any incentive constraint. Following the analysis of Barberà and Jackson (2006),

it is useful to define country i’s expected utility from a favorable reform w+
i = Eµ[ui|ui > 0]

and its expected disutility from an unfavorable reform w−i = −Eµ[ui|ui < 0]. From these

two numbers, we define country i’s stake in the decision as wei = w+
i + w−i , and its efficient

threshold as tei = w−i /w
e
i .

Theorem 1. (Barberà and Jackson, 2006; Azrieli and Kim, 2014) Any efficient voting rule

ve is a weighted majority rule. It is represented by [we; te], where the threshold te is defined

by:

te =

∑
i∈N

wei t
e
i∑

i∈N
wei

.

Therefore, we will refer to wei as country i’s efficient weight, and the threshold tei is efficient

in the sense that it is the threshold of an efficient rule if all countries have the same “efficient

threshold”. Note that the result focuses on first-best efficiency, and that the cooperative

10Note that the definition is agnostic with respect to the tie-breaking rule. Note also that the representation
of v may not be unique, even after re-scaling the weights w by a common factor.
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profile may not be an equilibrium of the decision game. Incorporating such constraints is the

main goal of our paper, it is the object of the following two sections.

As we want to understand how these constraints shape optimal rules, we will assume,

without substantial loss of generality, that efficient rules are well-behaved. The following

assumption guarantees that no country has a veto power under an efficient rule.11

Assumption 1. For any country i ∈ N , w−i <
∑
j 6=i

w+
j .

3 Enforceable decisions

We start the analysis by considering the case where decisions prescribed by the voting rule

v are enforceable: each country i ∈ N commits to follow the action plan ai = v̂(m) for any

realization of the messages m, whenever they cooperate. We are interested in voting rules

that induce cooperation (in the first stage) at equilibrium.

Proposition 1. The cooperative profile is a perfect Bayesian equilibrium of the game Γe(v)

if and only if each country satisfies the participation constraint: Ui(v) ≥ U∅i for all i ∈ N .

We denote by PC the set of voting rules satisfying the participation constraints.

3.1 Optimal Voting Rules

We look for voting rules maximizing the social welfare when participation is voluntary. We say

that a voting rule is optimal if it is a solution12 of the maximization problem maxv∈PCW (v).

The following theorem describes optimal voting rules.

Theorem 2. Any optimal voting rule is a weighted majority rule. Countries for which the

participation constraint is binding are overweighted relative to their efficient weight, while

remaining countries receive their efficient weight.

Any optimal voting rule v∗ is such that a country i which gets strictly more than its stand-

alone utility receives its efficient weight wei , while countries which do not strictly benefit from

cooperation may receive more than their efficient weight. We say that these countries are

11Indeed, under Assumption 1, we have:∑
j∈N

w−j <
∑
j 6=i

wej , thus
∑
j 6=i

wej > te
∑
j∈N

wej .

It follows from Theorem 1 that for any efficient rule ve, i /∈ V E(ve).
12Note that the existence of a solution is guaranteed as the objective function is linear, and the set of voting

rules PC is a closed subset of [0, 1]2
N

.
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overweighted. Formally, v∗ can be represented by a vector of weights [w; t] such that for each

country i ∈ N : {
Ui(v

∗) = U∅i ⇒ wi ≥ wei

Ui(v
∗) > U∅i ⇒ wi = wei ,

and the threshold t is a weighted average of countries’ efficient thresholds:

t =

∑
i∈N

wit
e
i∑

i∈N
wi

.

At one extremity, if stand-alone utilities are low enough, all countries are willing to co-

operate under the efficient voting rule. In that case, the constraints are inoperative, and the

efficient rule coincides with the optimal rule. As stand-alone utilities become larger however,

the constraint starts to bind for some countries. The result asserts that, in comparison to the

efficient benchmark, these countries should be overweighted, and that the threshold t should

be closer to their efficient thresholds. This is illustrated in the example of section Section 1.2,

where the optimal voting rule [(9, 3, 3, 3, 3), 1/2] is such that country 1 is overweighted, while

countries 2 to 5 get their efficient weight. Country 1’s utility 16/35 is equal to its stand alone

utility, while countries 2 to 5’s utility 146/35 is larger than their stand alone utility 32/35.

In contrast with efficient weights, which can be computed independently for each country,

optimal voting weights may not be obtained separately since they each depend on the complete

probability distribution µ and on the vector of stand-alone utilities (U∅i )i∈N . A country may

be overweighted at the optimum if it gains relatively little from cooperation or if it disagrees

often with the (efficient) collective decision (as in the example of Section 1.2). The level of

heterogeneity across countries, both in stakes and preferences, thus plays a crucial role in

determining the optimal rule.

Inducing all countries to cooperate may turn out costly if some countries do not bene-

fit enough from cooperation or if they disagree too often with the (endogenous) collective

decision. Mechanically, the cost of participation, the loss of welfare from having to satisfy

the participation constraints,13 increases with each country’s stand-alone utility: decreasing

a country stand-alone utility means relaxing its participation constraint, and thus improving

the welfare reached at the optimal rule. However, understanding the effect of other aspects

of the model (such as the probability distribution µ) on the cost of participation is more

difficult, due to the simultaneous effect on the participation constraints and on the efficient

decision rule. This ambiguous interplay may lead to counter-intuitive effects. For example,

an increase in the efficiency of cooperation may actually increase the cost of cooperation.

13That is, the difference in welfare between the efficient and the optimal rules.
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Consider for instance a situation where the efficient decision rule is optimal, and assume that

the stake of one country increases (thus increasing the overall efficiency of cooperation). As

the new efficient rule weights this country more, other countries, whose (ex-ante) preferences

are opposite to the first country’s, may end up with a reduced utility. Such countries may

then require some additional voting power to cooperate, thus leading to an increase in the

cost of participation (from zero to positive). Similarly, an increase in the degree of preference

homogeneity may actually increase the cost of participation. Again, starting from a situation

where the efficient rule satisfies the participation constraints, raising the homogeneity of pref-

erences may change the efficient voting rule, leading one country’s participation constraint to

be violated.14 A more homogeneous union may thus induce a larger cost of participation.

4 Non-enforceable decisions

We have assumed so far that collective decisions were fully enforceable under cooperation.

In fact, enforceability is a major concern for most international organizations, as countries

always retain some form of sovereignty and full enforceability is never really achieved. Fol-

lowing Maggi and Morelli (2006), we thus relax the assumption of enforceability and consider

an infinitely repeated version of our decision game where countries must repeatedly decide

whether to cooperate and, if so, whether to respect the collective decisions. In that frame-

work, we show that inducing self-enforcing cooperation is harder than inducing cooperation

under enforceability. Then, we characterize the optimal self-enforcing rule, which occasionally

entails giving a veto power to some countries, but not necessarily all countries.

4.1 Repeated Game

When decisions are not enforceable, considering the one-shot game Γne(v) is not sufficient, as

countries have no incentive to abide by collective decisions in the fourth stage of the game, if

the game ends right away. A notion of self-enforcing cooperation can instead be introduced

if we repeat the decision game. We thus consider the δ-discounted infinite repeated game

Γδne(v). At each stage t ∈ N, each country i ∈ N decides whether to participate dti ∈ {0, 1}.
Preferences for the reform proposed at stage t, ut, are drawn from µ, independently of the

previous stages. Each country i ∈ N reports a message mt
i ∈ {0, 1}, observes the action plan

v̂t(mt), and takes an action ati ∈ {0, 1}, that can differ from v̂(mt). At each stage, dt, mt,

14Consider for example a union of three countries, and assume that the simple majority rule is both efficient
and optimal. The probability of favoring the reform are 1/2 for country 1, q ∈ (1/2, 1) for country 2, and 1 for
country 3. As q increases, the union is more homogeneous, as the probability of any two (or three) countries
agreeing is either constant or increasing. However, as U1 decreases with q (the efficient rule is independent of q,
and q only affects the probability of approving the reform when 1 is unfavorable), country 1 may require to be
overweighted for high q, and this leads to a positive cost of participation.
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v̂t(mt) and at are publicly observed. All countries are characterized by the same discount

factor δ ∈ (0, 1].

For a given value of the discount factor δ, we say that a voting rule v is self-enforcing

if there exists a perfect public equilibrium15 of Γδne(v) such that the cooperating profile is

played at each stage of the game on the equilibrium path. To construct such an equilibrium,

we consider the profile of strategies for which each country follows the cooperative strategy

absent any deviation, and ceases to cooperate forever after any (publicly observed) deviation

by a single country i, of the form dti = 0 or ati 6= v̂t(mt) for some t.

We observe that, under such a profile, a deviation is most profitable for a country when

the committee approved a reform the country wanted to block. In that case, a deviation yields

a short-term benefit for not complying at the current stage, in addition to the stand-alone

utility at the subsequent stages. Compared to the one-shot game, the repeated game thus

creates an extra-incentive to leave the union, that can only be mitigated by giving a veto

power to the country tempted to exit.

We define the maximal disutility that country i may suffer from a decision by

wDi = −min {w ∈ R | Pµ(ui = w) > 0 } .

Note that wDi ≥ w−i > 0. We say that a country i ∈ N satisfies the compliance constraint if

Ui(v) ≥ U∅i +
1− δ
δ

wDi .

Proposition 2. A voting rule v is self-enforcing if and only if for all i ∈ N either i has

a veto power and satisfies the participation constraint, or i does not have a veto power and

satisfies the compliance constraint.

We denote by SE the set of self-enforcing rules. The result establishes the equivalence

between the notion of self-enforceability and a set of endogenous constraints. Indeed, the

constraint that a country i should satisfy under a rule v is contingent on i having a veto

power under v. Moreover, we observe that the compliance constraints are more stringent

than the participation constraints. As a result, if a voting rule is self-enforcing then it also

satisfies the participation constraints. Note that the extreme case δ = 1 coincides with the

model of enforceable decisions.

15The notion of public perfect equilibrium is a generalization of subgame perfection for games of incomplete
information, commonly employed to analyze games of the type of Γδne(v), as for instance in Athey and Bagwell
(2001) or Maggi and Morelli (2006).

14



4.2 Optimal self-enforcing rules

We say that the voting rule v is optimal self-enforcing if it maximizes the social welfare

among self-enforcing rules, i.e. if it is a solution of maxv∈SEW (v). From Proposition 2, we

immediately get that the social welfare is lower under the optimal self-enforcing rule than

under the optimal voting rule since SE ⊆ PC. The following theorem describes optimal

self-enforcing rules.

Theorem 3. Any optimal self-enforcing rule is a weighted majority rule. Countries for which

the compliance constraint is not satisfied are strictly overweighted and have a veto power.

Countries for which the compliance constraint is binding are weakly overweighted. Countries

for which the compliance constraint is satisfied but not binding receive their efficient weight

and do not have a veto power.

Formally, an optimal self-enforcing rule v∗ can be represented by a vector [w; t], such that

for all i ∈ N : 
Ui(v

∗) < U∅i +
1− δ
δ

wDi ⇒ wi > wei and i ∈ V E(v∗)

Ui(v
∗) = U∅i +

1− δ
δ

wDi ⇒ wi ≥ wei

Ui(v
∗) > U∅i +

1− δ
δ

wDi ⇒ wi = wei and i /∈ V E(v∗),

and

t ≥
∑

i∈N wit
e
i∑

i∈N wi
,

with an equality if no country has a veto power, and a strict inequality otherwise.

Theorem 3 differs from Theorem 2 in two main respects. First, the benchmark level of

utility U∅i that separates overweighted countries from non-overweighted countries is increased

by an additional (1 − δ)wDi /δ.
16 Countries who fall strictly below this augmented utility

threshold are strictly overweighted, while countries who fall strictly above receive their efficient

weight. Second, in contrast with Theorem 2, the benchmark utility also separates countries

who benefit from a veto power from countries who do not. This is illustrated in the example

of section Section 1.2, where the optimal self-enforcing rule grants a veto power to country 1,

but not to countries 2 to 5. Country 1’s utility 72/35 ≈ 0.30 falls below its augmented utility

threshold 16/35 + 2/5 ≈ 0.47, while countries 2 to 5’s utility 84/35 ≈ 0.35 falls above their

augmented utility threshold 32/35 + 1/5 ≈ 0.33. The fact that the optimal self-enforcing rule

may grant a veto power to only a strict subset of countries is a major difference with Maggi

16When δ = 1, this additional term equals 0 so that SE = PC.
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and Morelli (2006), in which either all countries have a veto or no country has a veto, and

this stems from the generality of our model which allows for heterogeneous countries.17

5 A Model of Apportionment

In this section, we consider a more specific model of apportionment where utilities are binary

and countries differ only in their population size, which allows for more tractable results.

5.1 Model

Under sovereignty, the representative of each country chooses which reform(s) to implement.

In each country, for any given reform, a (randomly chosen) fixed fraction q > 1/2 of citizens

agrees with the representative and get a utility of 1, while the rest of the population disagrees

and get a disutility of −1. Ex-ante, the utility of country i with population pi is thus equal

to:

U∅i = qpi − (1− q)pi = (2q − 1)pi.

Under cooperation, proposals are determined exogenously. Ex-ante, each country’s repre-

sentative has a probability 1/2 of agreeing with any of the proposed reforms, independently

of each other. In each country, for any given reform, a fixed fraction q > 1/2 of citizens agrees

with the opinion of its country’s representative. If the reform ends up being implemented

effectively (by all countries), favorable citizens get a utility of e, while unfavorable citizens

get a disutility of −e. The parameter e can be interpreted as a per-capita efficiency gain from

cooperation, and we assume that e > 1.18 If the reform is not adopted effectively, all citizens

get a utility of 0. The probability distribution µ associated to this model is such that:

∀i ∈ N, Pµ (ui = (2q − 1)epi) = Pµ (ui = −(2q − 1)epi) =
1

2
.

The efficient weight of country i ∈ N is thus given by w+
i = w−i = wei /2 = (2q− 1)pi, and its

efficient threshold is tei = 1/2.

17Note that the possibility of having only a strict subset of veto countries at the optimal self-enforcing rule
does not hinge on countries having biased preferences (as assumed in the example of Section 1.2). For example
consider N = {1, 2, 3, 4, 5}, µ such that Pµ(u1 = 2) = Pµ(u1 = −2) = Pµ(u2−5 = 1) = Pµ(u2−5 = −1) = 1/2,
U∅1 = 0.8 and U∅2−5 = 0. Then for δ = 0.95, an optimal self-enforcing rule is such that a proposal is accepted
(i) with probability 1 whenever country 1 and at least 2 of the remaining countries are in favor and (ii) with
probability 0.45 whenever country 1 and one of the remaining countries are in favor. That voting rule gives
country 1 a veto power.

18Note that cooperation is assumed to increase the utility from a favorable reform and the disutility from
an unfavorable one, by the same factor e, consistent with the view that the collective action goes further in
the desired/undesired direction. In a previous version of the paper, it was assumed that the disutility of an
unfavorable reform was multiplied by a factor e−, below or above 1. With that alternative (and more general)
assumption, the subsequent Theorem 4 remains valid, with a suitable adaptation of the threshold of the optimal
rule.
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In that more specific model, countries thus vary in their stakes wei , which are proportional

to their population pi, but are otherwise identical.19 In particular, they have the same ex-ante

probability of agreeing with a given reform, equal to 1/2. Note that Assumption 1 boils down

to pi < (
∑

j∈N pj)/2 for all i ∈ N , which means that any country accounts for less than half

of the total population.

5.2 Optimal Voting Rules

We now obtain sharper predictions for the optimal voting rule: first, overweighted countries

are those with the lowest populations; and second, these countries must be given the same

voting weight.

Theorem 4. In the model of apportionment, any optimal voting rule is a weighted majority

rule represented by [w; 1/2] such that wi = max(pi, p) for all i ∈ N , for some p ∈ R.

Figure 1: Optimal voting weights in the model of apportionment

population pi

optimal weight wi

p

The optimal apportionment rule is illustrated in Figure 1. We first note that the distribution

of weights is degressively proportional : weights increase with country’s populations, but less

than proportionally. A sizable literature on apportionment has already argued in favor of

this property,20 but on different grounds than the one we put forth here. In particular,

our argument focuses on the bottom of the distribution, and supports overweighting small

countries, that may otherwise have almost no say in the collective decisions. By contrast,

19Note that we have assumed that the per-capita efficiency gain from cooperation, e, is the same for all
countries. This assumption is maintained throughout the section to keep the interpretation of the results simple.
However, with varying gains ei, all the results remain valid by replacing pi by eipi in the subsequent Theorem 4
and Theorem 5.

20Laslier (2012) offers a review of the different arguments in favor of such rules.
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previous models recommend degressively proportional rules that have noticeable implications

for medium to larger states, often with weights in the order of pα with 1/2 ≤ α ≤ 1.21

The requirement that smaller countries shall be given a minimal and equal representation

is actually found explicitly in the Treaty Lisbon, which specifies a set of constraints for the

composition of the European Parliament.22 Indeed, article 14.2 states that “Representation

of citizens [at the European Parliament] shall be degressively proportional, with a minimum

threshold of six members per Member State” (Treaty of Lisbon, 2007a). Our paper thus offers

a theoretical rationale for such minimal representation threshold.

Finally, the apportionment formula proposed here combines in a simple manner the no-

tions of proportionality and equality, which is reminiscent of several prominent examples.

In particular, the overweighting of smaller states echoes the distribution of seats in the US

Electoral College where each state is allocated a baseline of 2 seats plus a number of seats

proportional to its population. The 8 smaller states are allocated the same number of 3

seats,23 representing 4.5% of the seats for only 1.9% of the total population. The same type

of apportionment formula has also been proposed for the allocation of seats at the European

Parliament, under the name of Cambridge Compromise.24

5.3 Optimal Self-Enforcing Rules

We also obtain sharper predictions for the optimal self-enforcing rule: either no country has a

veto power or all countries have it, and we can map these two cases on a graph parametrized

by the per-capita efficiency gain e and the discount factor δ.

Theorem 5. In the model of apportionment, any optimal self-enforcing rule is either the

unanimity rule or a weighted majority rule, for which no country has a veto power. There

exists a threshold e > 0 and two non-increasing functions δc, δeff : R+ → R+, with for all

e ∈ R+, δc(e) ≤ δeff (e) and lime→∞ δ
eff (e) < 1, such that:

(i) if δ ≥ δeff (e), any optimal self-enforcing rule is an efficient weighted majority rule,

(ii) if δc(e) ≤ δ < δeff (e), any optimal self-enforcing rule is a weighted majority rule, with

overweighting of small countries,

21For instance, in the model of Barberà and Jackson (2006), the optimal α is approximately equal to 1/2
in the fixed-size block model, and equal to 1 in the fixed-number-of-blocks model. See also Beisbart and Bovens
(2007).

22For a discussion of the application of the model to the allocation of seats in a federal parliament, rather
than voting weights in a federal council, see Koriyama et al. (2013).

23Alaska, Delaware, District of Columbia, Montana, North Dakota, South Dakota, Vermont, Wyoming.
24The Cambridge compromise was the result of an academic initiative by the European Parliament, which

aimed at formulating a transparent and fair allocation of the seats at the European Parliament. The proposed
allocation is based on a similar base + prop formula as in the US Electoral College, whereby each country is
allocated a base of 6 seats plus a number of seats proportional to its population. See Grimmett (2012).
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(iii) if δ < δc(e) and e ≥ e, the optimal self-enforcing rule the is unanimity rule,

(iv) if δ < δc(e) and e < e, there is no self-enforcing rule.

Moreover, for δc(e) ≤ δ < δeff (e), there exists a minimal weight p(e, δ), non-increasing in

both e and δ, such that an optimal self-enforcing rule is represented by [w; 1/2], defined by:

for all i ∈ N, wi = max
(
pi, p(e, δ)

)
.

Theorem 5 defines four regions in the space (e, δ), that yield different (or no) optimal

self-enforcing rules, as represented in Figure 2 below.

Figure 2: Optimal self-enforcing rule in the model of apportionment

e

1
Weighted majority (efficient)

Weighted majority (overweighting)

UnanimityNo cooperation

per-capita efficiency gain e0

discount factor δ

δc(e)

δeff (e)

The figure can be interpreted either horizontally or vertically. First, the line δ = 1 depicts

the results we obtain for enforceable decisions. If the per-capita efficiency gain e is too small,

there is no rule inducing cooperation. If the per-capita efficiency gain e is large enough, the

efficient voting rule induces cooperation and is therefore optimal. However, for intermediate

values of e, the optimal rule involves overweighting small countries, and the extent to which

small countries are overweighted decreases with e.

Reading Figure 2 vertically reveals how Theorem 5 extends the main result of Maggi and

Morelli (2006). In that paper, countries are homogeneous, and there exists a threshold δ,

below which the optimal self-enforcing rule is the unanimity, and above which the optimal

self-enforcing rule is the (efficient) majority rule. In our model, for e ≥ e, there are two

thresholds: δeff (e) and δc(e). As in the homogeneous model, the efficient rule is the optimal

self-enforcing rule when the discount factor is high (δ ≥ δeff (e)), and the unanimity rule is the

optimal self-enforcing rule when the low discount factor is low (δ < δc(e)). What is new here
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is that we obtain a region of intermediate values of the discount factor (δc(e) ≤ δ < δeff (e)),

for which the optimal self-enforcing rule is a weighted majority rule with overweighting of

small countries. Moreover, the extent to which small countries are overweighted decreases

with the per-capita efficiency gain e and with the discount factor δ.
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6 Appendix: proofs

6.1 Proof of Proposition 1

In the game Γe(v), the only relevant beliefs are given by the prior µ at the first stage, and

by µ(ui, ·) for a player i at the third stage. Thus, the only condition to check to see if the

cooperating profile is a perfect Bayesian equilibrium is that of sequential rationality.

First, it is clear that sending mi = 1ui>0 is always rational in the third stage, as v is

non-decreasing. Second, playing di = 1 at the first stage is rational if and only if the expected

outcome of the game under cooperation is no worse than under sovereignty (obtained if

di = 0). The result follows.

6.2 Proof of Theorem 2

In this proof, and in the subsequent proofs, we abuse notation and we write v(M) for v(m),

where M ⊆ N denotes the coalition of countries that vote in favor of the proposal: M =

{i ∈ N |mi = 1}. Let v∗ be an optimal voting rule. We claim that v∗ is a solution of the

following maximization problem (note that in the problem, the function v is not assumed to

be non-decreasing):

(P) :

∣∣∣∣∣∣∣
max

{v(M)}M⊆N∈[0,1](2N )

∑
i∈N

Ui(v)

s.t. ∀i ∈ N, Ui(v) ≥ U∅i .

It suffices to show that any solution of (P) is non-decreasing. For that, let v be a solution of

(P) such that v(M) > v(M ′) with M ⊂ M ′. It is straightforward that the rule v′, obtained

from v by permuting M and M ′, will increase the expected utility of some countries, while

decreasing the expected utility of no country. Hence, v′ improves the welfare and satisfies the

constraints, a contradiction.

Note that the probability distribution µ defines a probability distribution P on the coali-

tion M of countries favoring the reform (under truthful voting), formally:

∀M ⊆ N, P (M) = Pµ ({i|ui > 0} = M) .

By assumption, we have that for all M ⊆ N , P (M) > 0. As countries’ utilities are indepen-

22



dent, the expected utility of a country i ∈ N under a rule v writes

Ui(v) = Eµ[v((1uj>0)j∈N )ui]

=
∑

M,i∈M
P (M)v(M)Eµ [ui|ui > 0] +

∑
M,i/∈M

P (M)v(M)Eµ [ui|ui < 0]

=
∑

M,i∈M
P (M)v(M)w+

i −
∑

M,i/∈M

P (M)v(M)w−i .

The Lagrangian of the problem (P) writes

L(v) =
∑
i∈N

Ui(v) +
∑
i∈N

λi[Ui(v)− U∅i ] +
∑
M⊆N

[ηMv(M) + νM (1− v(M))].

Its partial derivative with respect to v(M) (one of the 2n variables) is

∂L
∂v(M)

(v) = P (M)

(∑
i∈M

(1 + λi)w+
i −

∑
i/∈M

(1 + λi)w−i

)
+ ηM − νM .

As v∗ is a solution of (P), we can apply the first-order conditions of the Kuhn-Tucker theorem

(the constraints are affine functions). There exist non-negative coefficients (λi, ηM , νM ) such

that 
(i) ∀M ⊆ N,

∂L
∂v(M)

(v∗) = 0

(ii) ∀i ∈ N, λi[Ui(v
∗)− U∅i ] = 0

(iii) ∀M ⊆ N, ηMv∗(M) = 0

(iv) ∀M ⊆ N, νM (1− v∗(M)) = 0.

By the last two lines, ηM and νM cannot be simultaneously positive. Therefore, we have{
ηM − νM < 0 ⇒ νM > 0 ⇒ v∗(M) = 1

ηM − νM > 0 ⇒ ηM > 0 ⇒ v∗(M) = 0.

By (i), and the formula for the derivative of the Lagrangian, we have that

ηM − νM < 0 ⇔
∑
i∈M

(1 + λi)w+
i >

∑
i/∈M

(1 + λi)w−i

⇔
∑
i∈M

(1 + λi)(w+
i + w−i ) >

∑
i∈N

(1 + λi)w−i

⇔
∑
i∈M

(1 + λi)wei >

∑
i∈N (1 + λi)w−i∑
i∈N (1 + λi)wei

∑
i∈N

(1 + λi)wei .

We conclude by setting wi = (1 + λi)wei and

t =

∑
i∈N (1 + λi)w−i∑
i∈N (1 + λi)wei

=

∑
i∈N wit

e
i∑

i∈N wi
.
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6.3 Proof of Proposition 2

The proof is divided in two steps. First, we construct a profile of the repeated game, with

cooperation at each stage on the equilibrium path, and we show that it is a perfect pub-

lic equilibrium if the constraints of the proposition are satisfied. Second, we show that if

one constraint is not satisfied, no perfect public equilibrium can sustain cooperation on the

equilibrium path.

Assume first that the constraints are satisfied under the rule v. We consider the following

profile of strategies:

• play at each step t the cooperating profile of the game Γne(v)

• if exactly one country is observed to deviate at time t (either dti = 0 or ati 6= v̂t(mt)),

then choose sovereignty at each stage t′ > t.

Consider a potential deviation from the previous profile, for some country i, and assume it is

a (strict) best reply. We note (d0i ,m
0
i , a

0
i ) the first stage of this deviation.

If d0i = 0, the deviation yields a stage payoff U∅i , and a future payoff U∅i (given the trigger

strategies employed by other players). As Ui(v) ≥ U∅i (each country satisfies at least the

participation constraint), this deviation is not profitable.

If d0i = 1, if the deviation is such that ∃ui ∈ R,m0
i (ui) 6= 1ui>0, then it is (weakly)

dominated by the strategy (d0i ,1ui>0, a
0
i ). Indeed, as the rule v is non-decreasing, lying only

makes it more likely for the action plan v̂(m) to go against the country’s will, which is never

beneficial, and it doesn’t changes what happens at subsequent stages at it cannot be detected.

We may thus assume that m0
i = 1ui>0.

Let ui ∈ R and m−i ∈ {0, 1}N\{i} be such that µ(ui) > 0 and a0i 6= v̂(1ui>0,m−i). As

the deviation will be detected, it must yield a stage-payoff of more than v̂(1ui>0,m−i)ui +
δ

1− δ
(Ui(v)−U∅i ) (because of the trigger strategies). This deviation can only be profitable if

ui < 0, and we distinguish two cases:

• if i has a veto, as 1ui>0 = 0, we have v̂(1ui>0,m−i) = 0. Therefore, the deviation is not

profitable.

• if i has no veto, we have v̂(1ui>0,m−i)ui +
δ

1− δ
(Ui(v)− U∅i ) ≥ −wDi +

δ

1− δ
(Ui(v)−

U∅i ) ≥ 0, because i satisfies the compliance constraint. Therefore, the deviation is not

profitable.

Finally, the proposed profile of strategies is a perfect public equilibrium.

Now suppose that there exists i ∈ V E(v) such that Ui(v) < U∅i . Consider a profile such

that cooperation is chosen at any stage, and (v̂t(1uti>0)i∈N ) is always implemented. Country

i’s expected utility is Ui(v). Therefore, playing dti = 0 for all t is a profitable deviation.
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Alternatively, suppose that there exists i /∈ V E(v) such that Ui(v) < U∅i +
1− δ
δ

wDi .

Consider a profile such that cooperation is chosen at any stage, and (v̂t(1uti>0)i∈N ) is always

implemented. Consider the following deviation of player i: follow the first profile, and if there

exists some t such that ui = −wDi , then play ati = 0, and dt
′

i = 0 for all t′ > t. The event

{uti = −wDi } occurs almost surely in finite time (for t < +∞), and yields a superior payoff

when it occurs. This is thus a profitable deviation.

6.4 Proof of Theorem 3

Let v∗ be an optimal self-enforcing rule, and let V ∗ = V E(v∗) be its set of veto coun-

tries. By definition, v∗ is solution of the problem maxv∈SEW (v), which is equivalent to

maxV⊆N maxv∈SE,V E(v)=V W (v). Therefore, v∗ is solution of

maxv∈SE,V E(v)=V ∗W (v), and by the argument made at the beginning of the proof of Theo-

rem 2, this problem is equivalent to:

(PV ∗) :

∣∣∣∣∣∣∣∣∣∣∣

max{v(M)}V ∗⊆M⊆N
∑

i∈N Ui(v)

s.t. ∀i ∈ V ∗, Ui(v) ≥ U∅i

s.t. ∀i ∈ N\V ∗, Ui(v) ≥ U∅i +
1− δ
δ

wDi .

s.t. ∀M, V ∗ *M ⇒ v(M) = 0.

Now, by the arguments made in the proof of Theorem 2, if λi denotes the Lagrange multiplier

associated to country i’s constraint in (PV ∗), and if we note w0
i = (1 + λi)wei and t0 =∑

i∈N w
0
i t
e
i∑

i∈N w
0
i

, we obtain:

∀M ⊆ N, V ∗ ⊆M,

{ ∑
i∈M w0

i > t0
∑

i∈N w
0
i ⇒ v∗(M) = 1∑

i∈M w0
i < t0

∑
i∈N w

0
i ⇒ v∗(M) = 0.

Moreover, we know that V ∗ * M ⇒ v∗(M) = 0. Now, we define wi = w0
i + K1i∈V ∗ ,

where K is defined as a sufficiently large number, for instance K = 1 +
∑

i∈N w
0
i . We obtain

that if
∑

i∈M wi > t0
∑

i∈N w
0
i + K#V ∗, then V ∗ ⊆ M and

∑
i∈M w0

i > t0
∑

i∈N w
0
i , and

therefore v∗(M) = 1. We also have that if
∑

i∈M wi < t0
∑

i∈N w
0
i +K#V ∗, then V ∗ *M or
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∑
i∈M w0

i < t0
∑

i∈N w
0
i , and therefore v∗(M) = 0. Finally, we define

t =
1∑

i∈N wi

(
t0
∑
i∈N

w0
i +K#V ∗

)

=
1∑

i∈N wi

(∑
i∈N

w0
i t
e
i +K#V ∗

)

=
1∑

i∈N wi

(∑
i∈N

wit
e
i +K

∑
i∈V ∗

(1− tei )

)
≥
∑

i∈N wit
e
i∑

i∈N wi
.

Finally, we have obtained that:

∀M ⊆ N,

{ ∑
i∈M wi > t

∑
i∈N wi ⇒ v∗(M) = 1∑

i∈M wi < t
∑

i∈N wi ⇒ v∗(M) = 0.

This means that v∗ is represented by [w; t].

Finally, let i ∈ N be a country such that Ui(v
∗) < U∅i +

1− δ
δ

wDi . As we have assumed

that v∗ is self-enforcing, it must be that i ∈ V E(v∗). Then, by construction, we obtain that

wi > w0
i ≥ wei .

Conversely, let i ∈ N be a country such that Ui(v
∗) > U∅i +

1− δ
δ

wDi , we will show that i

has no veto power under v∗. By contradiction, suppose that i has a veto power: we have in

particular v∗(N\{i}) = 0. For ε > 0, consider now vε defined by:{
vε(N\{i}) = ε

∀M 6= N\{i}, vε(M) = v∗(M).

We have Ui(v
ε) = Ui(v

∗)− εP (N\{i})w−i and ∀j 6= i, Uj(v
ε) = Uj(v

∗) + εP (N\{i})w+
j . By

Assumption 1, we have W (vε) > W (v). Moreover, vε is self-enforcing for ε small enough,

hence a contradiction. We obtain that i /∈ V E(v∗). It follows that wi = w0
i = wei .

6.5 Proof of Theorem 4

We have:

Ui(v) =
(2q − 1)pie

2n

 ∑
M, i∈M

v(M)−
∑

M, i/∈M

v(M)

 .
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and U∅i = (2q − 1)pi. Let v∗ be an optimal rule. We know from Theorem 2 that v∗ is a

weighted majority rule with threshold t =
1

2
, and with weights (wi)i∈N satisfying25{

∀i ∈ N, wi = (1 + λi)pi ≥ pi

∀i ∈ N, λi[Ui(v
∗)− U∅i ] = 0.

Let S1 = {i ∈ N |Ui(v∗) > U∅i } and S0 = {i ∈ N |Ui(v∗) = U∅i }, so that N = S0 ∪ S1 is

a partition. From the previous system of equations, we have wi = pi for all i ∈ S1. If all

parameters λi are null, we have wi = pi for each country i ∈ N and the result is obtained.

If not, there are some countries in S0 for which wi > pi, and the following equation has a

unique solution p ∈ R (as illustrated in Figure 3):∑
i∈S0

max(pi, p) =
∑
i∈S0

wi.

Figure 3: Definition of p (total red length=total green length)

population pi

weights wi, w
∗
i

p

Let us show that v∗ is represented by the modified system of weights [w∗; 1/2] defined by:{
∀i ∈ S0, w∗i = max(pi, p)

∀i ∈ S1, w∗i = pi.

Note that the vector w∗ can be obtained from w by a finite sequence of (Pigou-Dalton)

transfers of the form (wi → wi+α,wj → wj−α) with i, j ∈ S0 and wi < wi+α ≤ wj−α < wj .

Let us show that if v∗ is represented by a vector [w; t], it is represented by the vector [w′; t],

25For simplicity, the weights obtained in the proof of Theorem 2 are re-scaled by a factor pi/w
e
i , independent

of i.
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when w′ has been obtained from w by such a transfer.

Note Q = t
∑

i∈N wi = t
∑

i∈N w
′
i and let T be a coalition such that

∑
k∈T w

′
k > Q. We

have two cases:

• In all cases but (i ∈ T, j /∈ T ), we have∑
k∈T

wk ≥
∑
k∈T

w′k > Q = t
∑
k∈N

wk,

and we get v∗(T ) = 1, as v∗ is represented by [w; t].

• If i ∈ T and j /∈ T , we may have
∑

k∈T wk ≤ Q. Let us show that v∗(T ) = 1. Assume

by contradiction that v∗(T ) < 1. Let σ : N → N be the transposition between i and j.

We have v∗(σ(T )) = 1 (by the previous argument, since j ∈ σ(T )). Moreover, since v∗

is represented by the system of weights [w; t] with wi < wj , we have for any coalition

M : 
i, j ∈M ⇒ v∗(σ(M)) = v∗(M) (since σ(M) = M)

i, j /∈M ⇒ v∗(σ(M)) = v∗(M) (since σ(M) = M)

i ∈M, j /∈M ⇒ v∗(σ(M)) ≥ v∗(M)

i /∈M, j ∈M ⇒ v∗(σ(M)) ≤ v∗(M).

We obtain:

Uj(v
∗)

U∅j
=

e

2n

v∗(σ(T )) +
∑

M, j∈M, M 6=σ(T )

v∗(M)−
∑

M, j /∈M

v∗(M)


≥ e

2n

v∗(σ(T )) +
∑

M, j∈M, M 6=σ(T )

v∗(σ(M))−
∑

M, j /∈M

v∗(σ(M))


>

e

2n

v∗(T ) +
∑

M, i∈M, M 6=T

v∗(M)−
∑

M, i/∈M

v∗(M)


>
Ui(v

∗)

U∅i
.

We get a contradiction with the assumption that i, j ∈ S0. Finally, it must be that

v∗(T ) = 1.

Similarly, one can show that
∑

k∈T w
′
k < Q implies v∗(T ) = 0. Finally, v∗ is represented by

[w′; t]. By induction, v∗ is represented by [w∗; 1/2].

Finally, let us show that w∗i = max(pi, p) for any i ∈ S1. Let i ∈ S1 and j ∈ S0. As
Ui(v

∗)

U∅i
>
Uj(v

∗)

U∅j
, and v∗ is represented by [w∗; 1/2], it must be that w∗i ≥ w∗j (by an argument

similar to the previous computation). We have w∗j = max(pj , p) ≥ p, and thus w∗i ≥ p. As

we already know that w∗i = pi, we can write w∗i = max(pi, p).
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6.6 Proof of Theorem 5

We introduce the notion of relative utility of a country under a rule v as the ratio between

its utility under v and the utility it would get if it was a dictator:

∀i ∈ N, ui(v) =
Ui(v)

wei /2
=

Ui(v)

(2q − 1)epi
=
Ui(v)

eU∅i
.

With this notation, i’s compliance constraint can be written as: ui(v) ≥ 1

e
+

1− δ
δ

.

Claim 1 : The optimal rule is either unanimous or a weighted majority rule, represented

by [w; 1/2].

By application of Theorem 3, it suffices to show that the optimal self-enforcing rule v

cannot have a set of veto players V = V E(v) such that ∅ ( V ( N . Assume by contradiction

that it is the case, and take i ∈ V and j /∈ V . We have:

ui(v) =
1

2n

∑
M,V⊆M

v(M)

uj(v) =
1

2n

 ∑
M,V⊆M,j∈M

v(M)−
∑

M,V⊆M,j /∈M

v(M)

 .

Since j /∈ V , there exists a coalition M with V ⊆ M , j /∈ M and v(M) > 0. Therefore,

ui(v) > uj(v). As v is self-enforcing, we have ui(v) > uj(v) ≥ 1

e
+

1− δ
δ

: i’s constraint is not

binding. For ε > 0, consider now vε defined by:{
vε(N\{i}) = ε

∀M 6= N\{i}, vε(M) = v(M).

We have ui(v
ε) = ui(v) − ε

2n
and ∀j 6= i, uj(v

ε) = uj(v) +
ε

2n
. As pi <

∑
j 6=i pj , we have

W (vε) > W (v). Moreover, vε is self-enforcing for ε small enough, hence a contradiction.

Claim 2 : If simple majority is self-enforcing, the optimal self-enforcing rule is a weighted

majority rule, represented by [w; 1/2]. If unanimity is self-enforcing, but simple majority

is not, then unanimity is the optimal self-enforcing rule. If neither unanimity nor simple

majority is self-enforcing, there is no self-enforcing rule.

Let us note vm the simple majority rule. If vm is self-enforcing, as unanimity is strictly

welfare-dominated by vm, we get from Claim 1 that the optimal self-enforcing rule is a

weighted majority rule, represented by [w; 1/2].

If vm is not self-enforcing, note that no country satisfies the compliance constraint under

simple majority (simple majority yields the same relative utility for all countries, and they all

face the same constraint). We show that no weighted majority v can then be self-enforcing.
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Indeed, we have:

∑
i∈N

ui(v) =
1

2n

∑
i∈N

 ∑
M,i∈M

v(M)−
∑

M,i/∈M

v(M)


=

1

2n

∑
M⊆N

(∑
i∈M

v(M)−
∑
i/∈M

v(M)

)

=
1

2n

∑
M⊆N

(2#M − n)v(M)

≤
∑
i∈N

ui(v
m).

At least one country has a (weakly) lower relative utility under v than under vm, therefore v

cannot be self-enforcing (as v does not grant veto to any country, the endogenous constraints

are the same for v and vm). To conclude, if simple majority is not self-enforcing, the only

possible optimal self-enforcing rule is unanimity, and it can be optimal self-enforcing only

when it is self-enforcing.

Let um be the relative utility of any country under simple majority. It is easy to see that:

um =
1

2n−1
(
n−1
bn−1

2
c
)
. Simple majority is self-enforcing if and only if

um ≥ 1

e
+

1− δ
δ

⇔ 1

δ
≤ 1 + um − 1

e

⇔ δ ≥ 1

1 + um − 1

e

:= δc(e).

Let ueff > 0 be the relative utility of the smallest country under the efficient voting

rule. The (efficient) population-weighted majority rule is self-enforcing, and is therefore the

optimal self-enforcing rule, if and only if

δ ≥ 1

1 + ueff − 1

e

:= δeff (e).

By the proof of claim 2, it is easy to see that ueff ≤ um, thus δeff (e) ≥ δc(e). Moreover, as

ueff > 0, we have lime→∞ δ
eff (e) < 1.

Finally, unanimity is self-enforcing if and only if
1

2n
≥ 1

e
, that is if and only if e ≥ 2n := e.

Claim 3 : For δ ≥ δc(e), there exists a minimal weight function p(e, δ) non-increasing in

both e and δ, such that, for each e and δ, there exists an optimal self-enforcing rule represented

by [w; 1/2], with for all i ∈ N , wi = max
(
pi, p(e, δ)

)
.26

26The claim may seem obvious, as increasing e and/or δ relaxes the self-enforcing constraints. Note however
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We note k(e, δ) =
1

e
+

1− δ
δ

, this function is decreasing in both e and δ. Consider the

following problem:

(Pk) :

∣∣∣∣∣∣∣∣∣
max

{v(M)}M⊆N

∑
i∈N

piui(v)

s.t. ∀i ∈ N, ui(v) ≥ k

s.t. ∀M ⊆ N, 0 ≤ v(M) ≤ 1.

Following the proofs of Theorem 2 and Theorem 5, we can show that any solution v of

(Pk) is a weighted rule represented by [w; 1/2] with:

• for all i ∈ N , wi = max(pi, p)

• p is the solution27 of
∑

i∈N max(pi, p) =
∑

i∈N pi(1 + λi)

• for all i ∈ N , λi is the Lagrangian coefficient associated to the i’s constraint in the

problem (Pk).

With this definition, it is clear that p increases with
∑

i∈N piλ
i. Let us show that this last

quantity increases with k. The linear program (Pk) can be re-written as follows (we multiplied

each i’s constraint by a factor −pi):

(Pk) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
{v(M)}M⊆N

1

2n

∑
M⊆N

(∑
i∈M

pi −
∑
i/∈M

pi

)
v(M)

s.t. ∀i ∈ N, 1

2n

 ∑
M,i/∈M

piv(M)−
∑

M,i∈M
piv(M)

 ≤ −kpi
s.t. ∀M ⊆ N, v(M) ≤ 1

s.t. ∀M ⊆ N, v(M) ≥ 0.

The dual of (Pk) is the following linear program:

(Dk) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
{λi}i∈N ,{νM}M⊆N

∑
M⊆N

νM − k
∑
i∈N

piλ
i

s.t. ∀M ⊆ N,
1

2n

(∑
i/∈M

piλ
i −
∑
i∈M

piλ
i

)
+ νM ≥ 1

2n

(∑
i∈M

pi −
∑
i/∈M

pi

)
s.t. ∀i ∈ N, λi ≥ 0

s.t. ∀M ⊆ N, νM ≥ 0.

Now, consider the mapping Φ : ((λi), (νM )) 7→ (X =
∑

i∈N piλ
i, Y =

∑
M⊆N ν

M ). It is

that the welfare attached to a rule weighted by [w, 1/2], with wi = max(pi, p), may be non-monotonic as a
function of p. One can construct such an example with p = (2, 4, 4, 5) and p = 2 or 4 or 5.

27To be precise, p is defined in the proof of Theorem 5 as the solution of
∑

i∈S0 max(pi, p) =
∑

i∈S0 pi(1 +λi),

and it is shown at the end of the proof that for all i ∈ S1 = N\S0, max(pi, p) = pi = pi(1 + λi). Therefore, the
above definition is equivalent.
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a linear mapping from R2n × RN into R2, which transforms any convex polyhedron into a

convex polyhedron. Therefore, for any solution ((νM ), (λi)) of the program (Dk), there is

a corresponding solution (X, Y ) of a the 2-dimensional program (Dk)′ defined below with

X =
∑

i∈N piλ
i. The reduced program writes:

(Dk)′ :

∣∣∣∣∣∣∣∣∣∣∣

min
X,Y

Y − kX

s.t. (X, Y ) ∈ ∆

s.t. X ≥ 0

s.t. Y ≥ 0,

where ∆ ⊂ R2 is a convex polyhedron. It is clear (see Figure 4) that X increases as k

increases, in the following sense: there exists a non-decreasing function X(k) such that for

each k, X(k) is the first coordinate of a solution of (Dk)′.

Figure 4: Solutions of (Dk1)′ and (Dk2)′ for k2 > k1.

X

Y

∆ k1

X(k1)

k2

X(k2)

To conclude, there exists an non-decreasing function p(k), such that for each k, there

exists a solution of (Pk) represented by [w; 1/2], with for all i ∈ N , wi = max(pi, p(k)).
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