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Abstract

In a polarized committee, majority voting disenfranchises the mi-

nority. By allowing voters to spend freely a fixed budget of votes over

multiple issues, Storable Votes restores some minority power. We study

a model of Storable Votes that highlights the hide-and-seek nature of

the strategic game. With communication, the game replicates a clas-

sic Colonel Blotto game with asymmetric forces. We call the game

without communication a decentralized Blotto game. We characterize

theoretical results for this case and test both versions of the game in

the laboratory. We find that, despite subjects deviating from equi-

librium strategies, the minority wins as frequently as theory predicts.

Because subjects understand the logic of the game – minority voters

must concentrate votes unpredictably – the exact choices are of sec-

ondary importance. The result is an endorsement of the robustness of

the voting rule.
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1 Introduction

How should political power be shared? Majoritarian democracy is desirable

under many criteria (Condorcet, 1785; May, 1952; Rae, 1969) but suffers

from an obvious logical difficulty: the minority has no power under major-

ity rule. Political philosophy has long recognized that the tyranny of the

majority poses a fundamental challenge to the legitimacy of majority voting

(Dahl, 1991).

In practice, the minority’s lack of power becomes problematic in polar-

ized societies, where the same group is on the losing side on all essential

issues. Polarization can exist in rich as well as poor countries, in old as well

as new democracies, and can pre-exists the democratic institutions or be

generated by the institutions themselves. For instance, polarization can rest

on the exogenous divide of the population in two main religions, eventually

leading to religious civil wars. But it can also result from electoral com-

petition in a winner-take-all system, in otherwise very different countries;

see Jacobson (2008); Fiorina et al. (2005) for the US case, or Reynal-Querol

(2002); Eifert et al. (2010); Kabre et al. (2013) for African cases. Emer-

son (1998, 1999), having in mind Northern Ireland, the Balkans, and other

places plagued by civil wars, claims that majority rule is the problem, not a

solution, and that more consensual rules exist and should be implemented.

The main tool for power-sharing in modern democracies is representa-

tion. The complexity of the political agenda, which unfolds over time and

allows changing coalitions, logrolling, and compromises makes representa-

tion in Parliament valuable even to a minority. When group barriers are

permeable, the minority can occasionally belong to the winning side. When

instead preferences are fully polarized and the power of a cohesive majority

bloc is secure – a scenario we summarize as marked by a systematic minority

– the minority remains disenfranchised.
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In some instances, therefore, power-sharing is enforced directly and the

constitution grants executive positions to specific groups, typically on the

basis of their ethnic or religious identity.1 The problem is that constitutional

provisions of this type are difficult to enforce and heavy-handed, unsuited to

changing realities. We argue that power-sharing in polarized societies could

be achieved in a more subtle and more flexible manner via the design of

appropriate voting rules.2

The Storable Votes (henceforth SV) mechanism does just that: it allows

the minority to prevail occasionally and yet is anonymous and treats every-

one identically (Casella, 2005). In a setting with a finite number of binary

issues, the SV mechanism grants a fix number of total votes to each voter

with the freedom to divide them as wished over the different issues, knowing

that each issue will be decided by simple majority. SV can apply to direct

democracy in large electorates, or to smaller groups, possibly legislatures or

committees formed by voters’ representatives, as in the model we study in

this paper.

Although easy to describe, SV poses a challenging strategic problem:

how should the votes best be divided? Testing whether voters are in fact

be able to use SV profitably is thus central to recommending its use in

concrete applications. Previous analyses have studied models in which voters

have cardinal intensities of preferences, and because such intensities are

assumed to be uncorrelated across voters and private information, a voter’s

optimal strategy is to cast more votes on issues that the voter consider higher

priorities (at given state). This is both a feature of the equilibrium and an

empirical regularity in the laboratory (Casella et al., 2008).

But by describing an environment where the intensity of one’s own pref-

erences is naturally focal, the modeling approach simplified the strategic

problem and side-stepped a central ingredient of the SV mechanism: the

1For example, in Lebanon (Picard, 1994; Winslow, 2012), in Mauritus (Bunwaree and
Kasenally, 2005), and occasionally elsewhere (Lijphart, 2004).

2Note that neither vetoes or supermajority requirements, nor log-rolling can overcome
the problem posed by a systematic minority. If on each issue there is a fixed majority
of, say, 60 percent, versus a fixed minority of 40 percent, then vetoes and supermajorities
stall all voting, and logrolling has not role because the majority is always winning.
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hide-and-seek nature of the game between majority and minority voters. If

the majority spreads its votes evenly, then the minority can win some issues

by concentrating its votes on them, but if the majority knows in advance

which issues the minority is targeting, then the majority can win those too.

This is not a point of minor theoretical interest: considerations of this type

come to the fore immediately if priorities are correlated or publicly known.

In this paper then we study the SV mechanism as a possible solution to the

tyranny of the majority in a model in which such hide-and-seek game takes

central place. Does SV still perform well? In theory? In the laboratory?

We assume that each issue is judged equally important by all. The as-

sumption may reflect the lack of clear priorities, either because the different

issues are indeed equally important, or because voters are unable to rank

them. More generally, it is the modeling device we employ to give full weight

to the strategic complexity described above. One could argue that minority

victories are not justified on normative utilitarian terms in our setting, but

the perspective would be very narrow. The fairness requirement of some

minority representation is well captured by a social welfare function that is

concave in individual utilities, with the degree of concavity mirroring the

strength of the social planner’s concern with equality (Laslier, 2012; Ko-

riyama et al., 2013)3.

The strategic interaction in our SV’s model is studied in the literature

under the name of Colonel Blotto game. In the original version of the

game (Borel and Ville, 1938; Gross and Wagner, 1950) the armies have to

attack/defend a certain number of battlefields and the army leaders have

to decide how many soldiers to deploy on each battlefield. Each battlefield

is won by the army with the larger total number of soldiers. Each colonel

could win if he knew the opponent’s plan. At equilibrium, choices must be

random.

The SV’s model is identical to the classical Colonel Blotto situation,

with “issues” and “votes” instead of “battlefields” and “soldiers”, but with

3As pointed out in these papers, a normative basis for fairness also arises from in-
dividual utility functions which are concave with respect to the individual frequency of
wins.
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two additional features. (a) The game is not symmetric: one party has more

soldiers/votes than the other. (b) It is a decentralized Blotto game: multiple,

individual lieutenants in each of the two armies control, independently, a

number of troops to distribute over the different battlefields. Channels of

communication may be closed, with each lieutenant making the decision

alone, or open, in which case coordination can be achieved within each

army.

To our knowledge, the decentralized Blotto game has not been studied

theoretically before. With communication within each army, lieutenants can

coordinate their strategies and the game reduces to the centralized Blotto

game studied in Hart (2008). Without communication, although the inter-

ests of all lieutenants within each army are perfectly aligned, decentralizing

the centralized solution is generally not possible: the centralized solution

requires centralized randomization and thus cannot be replicated in the ab-

sence of communication. The decentralized Blotto game can be of interest

beyond the specific application to SV’s, and we discuss some possible appli-

cations briefly in the conclusion.

Because the decentralized game is new, we begin by developing the the-

oretical results we then use to analyze the experimental data. The game has

many equilibria, but if the difference in size between the two groups is not

too large, the minority is expected to win occasionally in all equilibria. We

then identify a class of simple strategies, neutral with respect to the issues

and symmetric within each group, and characterize conditions (which hold

in the experiment) under which profiles constructed with such strategies are

equilibria. Their common feature is that each minority member concentrates

her votes on a subset of issues, randomly chosen, again implying a positive

expected fraction of minority victories in equilibrium. In fact, the result

is stronger and holds off equilibrium too: if minority members concentrate

their votes and do so randomly, the minority can guarantee itself a positive

probability of victories, for any strategy by the majority, whether coordi-

nated or not, and regardless of whether or not the minority voters choose

precisely the same strategy.

We test these predictions in the laboratory, as well as predictions from
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the centralized Blotto game developed in Hart (2008) in a treatment in

which subjects can communicate within their group. In both treatments,

the essential logic of the game – the minority needs to concentrate and

randomize its votes – is immediately clear to minority players in the lab. It is

also clear to majority subjects, although the choice of how to respond is less

straightforward: majority subjects appear to alternate between exploiting

their size advantage by covering all issues, and mimicking minority subjects.

Be it with or without communication, the strategies of both groups deviate

from the precise predictions of the theoretical equilibria, and yet the fraction

of minority victories we observe is very close to equilibrium, varying from 25

percent in treatments in which the minority is half the size of the majority,

to 33 percent, when the minority’s relative size increases to two thirds. We

read these findings as endorsement of the robustness of the voting rule to

strategic mistakes. As in the off-equilibrium theoretical result described

above, as long as minority voters recognize the importance of concentrating

and randomizing their votes, as long as the logic of the hide-and-seek game is

apparent, the exact choices are of secondary importance: whether votes are

concentrated on two or on only one issue, whether they are split equally or

unequally, all this affects minority victories only marginally. This conclusion

is the main result of the paper.

Two recent articles have studied laboratory experiments of the asym-

metric Colonel Blotto game. In line with Avrahami and Kareev (2009) and

Chowdhury et al. (2013), we observe that the minority concedes some bat-

tlefields in order to win others. However, the key difference in out setting is

the decentralization of decisions in the non-communication treatment, which

renders the game more complex. Rogers (2015) introduces some decentral-

ization in a related game, whose payoffs differ from classical Blotto payoffs

along several dimensions4. One side consists of two players fighting against

a single opponent, a structure that we examine in one of our treatments.

Contrary to the conclusions of that paper, we observe that decentralization

4Some battlefields are easier to win for one side, some for the other side; a bonus is
added for the side winning a majority of battlefields; a bonus (resp. malus) is added for
each winning (resp. losing) battlefield according to the margin of victory (resp. defeat).
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need not be detrimental to the divided side.

Arad and Rubinstein (2012) identify several salient strategy dimensions

in the Colonel Blotto game and argue that subjects use multi-dimensional

hierarchical reasoning in deciding their behavior. Our environment with

multiple heterogeneous players is more complex, but we borrow some of

the salient strategy dimensions and use them to define the class of simple

strategies that we test in the experiment.

The paper is organized as follows. After the introduction, Section 2

presents the model. Section 3 discusses two preliminary remarks on the

distinction between centralized and decentralized games. The theory for the

decentralized game is presented in Section 4. We then turn to observations.

Section 5 describes the experimental protocol, and Section 6 presents the

experimental results. Section 7 concludes. Proofs are in the Appendix

(Section A). A copy of the experimental instructions is provided in an

online Appendix.

2 The Model

A committee of N individuals must resolve K ≥ 2 binary issues: they must

decide whether to pass or fail each of K independent proposals. The set

of issues is denoted by K = {1, . . . ,K}. The same M individuals are in

favor of all proposals, and the remaining N −M = m are opposed to all,

with m ≤ M . We call M the majority group, and m the minority group,

and we use the symbol M (m) to denote both the group and the number of

individuals in the group. The specific direction of preferences is irrelevant,

what matters is that the two groups are fully cohesive and fully opposed.

We summarize these two features by calling m a systematic minority.

Each individual receives utility 1 from any issue resolved in her preferred

direction, and 0 otherwise. Thus each individual’s goal is to maximize the

fraction of issues resolved according to her - and her group’s - preferences.

Individuals are all endowed with K votes each, and each issue is decided

according to the majority of votes cast. If each voter is constrained to cast

one vote on each issue, M wins all proposals. This tyranny of the majority is
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our point of departure: with simple majority voting, a systematic minority

is fully disenfranchised. The conclusion changes substantively if voters are

allowed to distribute their votes freely among the different issues. Each issue

is then again decided according to the majority of votes cast - which now,

crucially, can differ from the majority of voters. Voting on the K issues is

contemporaneous, and all individuals vote simultaneously. Ties are resolved

by a fair coin toss. The voting rule is then a specification of Storable Votes,

with votes on all issues cast at the same time.5

A specific welfare criterion (a specific degree of concavity in the social

welfare function) will capture the society’s normative concern with minority

representation. If we call pm the expected fraction of minority victories,

such a concern will translate into an optimal p∗m(M,m). Here we do not

specify the welfare criterion and limit ourselves to measuring pm.

We suppose that the parameters of the game are common knowledge, in

particular each voter knows exactly the size of the two groups, and thus both

her own and everyone else’s preferences. Our framework is thus a one-stage,

full information game.

With undominated strategies voters vote sincerely: they never cast a

vote against their preferences. We simply assume that all m voters never

vote in favor of a proposal and all M voters never vote against. We focus

instead on each voter’s distribution of votes among the K issues.

The action space for each player is:

S(K) =

{
s = (s1, . . . , sK) ∈ NK

∣∣∣ K∑
k=1

sk = K

}

where sk is the number of votes cast on issue k. Let the minority players be

ordered from 1 to m. For each minority-profile s = (s1, . . . , sm) ∈ S(K)m,

where the bold font indicates a vector of allocations, the number of votes

5As in chapters 5 and 6 in Casella (2012). See also Hortala-Vallve (2012).
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allocated by the minority to issue k is denoted by:

vmk (s) =

m∑
i=1

sik.

We denote by vm(s) = (vmk (s))k∈K ∈ S(mK) the allocation of votes by the

minority side associated to the minority-profile s.

Similarly, let the majority players be ordered from 1 to M . Denoting

by t = (t1, . . . , tM ) ∈ S(K)M , the majority profile, the number of votes

allocated by the majority to issue k is denoted by:

vMk (t) =

M∑
i=1

tik,

and we denote by vM (t) = (vMk (t))k∈K ∈ S(MK) the allocation of votes by

the majority side associated to the majority-profile t.

For a given profile (s, t) ∈ S(K)m×S(K)M , the payoffs for each member

of the two groups, called gm and gM , are given by

gm(s, t) =
1

K

K∑
k=1

(
1{vmk (s)>vMk (t)} +

1

2
1{vmk (s)=vMk (t)}

)

gM (s, t) =
1

K

K∑
k=1

(
1{vMk (t)>vmk (s)} +

1

2
1{vMk (t)=vmk (s)}

)
= 1− gm(s, t)

where 1 is the indicator function.

Finally, we denote by Σ(K) = ∆ (S(K)) the set of all probability mea-

sures on S(K), i.e. the set of mixed strategies. Then the expected payoff

to the minority E [gm] equals pm, the expected fraction of minority victo-

ries, and is defined on Σ(K)m×Σ(K)M as the multi-linear extension of gm.

Two (mixed strategy) group profiles (σ, τ ) ∈ Σ(K)m × Σ(K)M naturally

define two probability measures (V m, VM ) on the minority and majority

allocations of votes (vm, vM ) ∈ S(mK)× S(MK). Then we will also write,

with abuse of notation, pm(V m, VM ). Our goal is to study this game, both

theoretically and experimentally. Formally, our scenario corresponds to a
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decentralized Blotto (DB) game, in contrast to the traditional, centralized

Colonel Blotto (CB) game, in which the “minority” colonel directly chooses

vm ∈ S(mK), while the “majority” colonel chooses vM ∈ S(MK).

3 Two Preliminary Remarks

With incentives fully aligned within each group, a natural question is whether

the decentralized Blotto game actually differs from the centralized game. We

provide a positive answer in our first remark. We say that an equilibrium of

the CB game is replicated in the DB game if there exists an equilibrium of

the DB game which induces the same distribution on the total minority and

majority allocations of votes (vm, vM ). The most complete characterization

of equilibria of the CB game with discrete allocations is due to Hart (2008)6.

Remark 1 For any K and m, none of the equilibria of the CB game in

Hart (2008) can be replicated in the DB game if M is larger than a finite

threshold M(K).

The intuition is straightforward: with the exception of knife-edge cases,

equilibrium strategies in the centralized game must be such that the marginal

allocation of forces on any given battlefield follows a uniform distribution.

But the sum of independent variables cannot form a uniform distribution

in general: unless the randomization is centralized, the strategy cannot be

replicated.

In many applications, the assumption of no communication may be too

strong. With fully opposed and fully cohesive subgroups, each may try

to coordinate its voting, and if its size is not too large, the obstacles to

communication could be overcome. Consider then a modification of the

model above where, before casting votes, each voter can exchange messages

freely with all other members of her group. The messages are costless and

6Hart (2008) does not characterize optimal strategies for all parameter values. Rober-
son (2006) provides general results for the CB game with continuous allocations. In our
problem, we did not see obvious advantages from abandoning the more realistic case of
discrete votes.
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non-binding (they are cheap talk), and we impose no constraint on their

content. With communication, the logic behind Remark 1 breaks down. It

then becomes possible, and advantageous, for each group to coordinate its

actions, and more precisely to randomize over the possible allocations at the

central level, and then decentralize the realized allocations. This leads us to

our second remark.

Remark 2 With communication, any equilibrium of the centralized Colonel

Blotto game can be replicated. Other equilibria exist, including chattering

equilibria replicating the equilibria of the no-communication game7.

In this paper we study two different versions of the game, without and

with communication. The first version corresponds exactly to the model

described in the previous section: each voter must allocate the votes at

her disposal on her own, without coordination with the other voters in her

group. Because this game has not been analyzed in the literature, we begin

by deriving some theoretical results for this case. We then use them as

reference for the treatment without communication in the experimental part

of the paper. The equilibria of the CB game in Hart (2008) will provide the

theoretical benchmark for the second treatment, with communication.

4 Theory: no communication

4.1 Equilibria

The game is a normal-form game with m + M players and finite strategy

spaces. Therefore, a Nash equilibrium always exists. In addition, it is easy

to see that the voting rule fulfills its fundamental purpose: if the size of the

two groups is not too different, the smaller one must win occasionally.

Theorem 1 If M < m + K, the expected share of minority victories is

strictly positive at any Nash equilibrium.

7Other types of equilibria exist too. For example, asymmetric equilibria in which com-
munication is ignored by one group but not by the other, and thus one group coordinates
its strategy while the other does not.
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The coordination problem within each of the two groups results in many

equilibria. We do not aim to characterize them all; rather in this section we

focus on equilibria that either stress the difference between the decentral-

ized and the centralized version of the game, or that have a simple enough

structure to provide a plausible theoretical reference for the experiment.

4.1.1 Equilibria in pure strategies

We begin by remarking that the condition in Theorem 1 is tight: if M ≥
m+K, the profile of strategies such that every player allocates one vote per

issue is an equilibrium, and the expected share of minority victories is zero.

This same profile of strategies is also an equilibrium if M = m, in which

case pm = 1/2. More generally, we establish the existence of an equilibrium

in pure strategies when the committee is large enough.

Proposition 1 If M ≥ m ≥ 2 and M + m ≥ (K + 1)2/K, a pure-strategy

equilibrium always exists.

This result clearly indicates that the DB game differs from the CB game,

in which pure-strategy equilibria generically fail to exist8. The equilibria we

construct are such that the two groups target different issues: the major-

ity only votes on a subset KM of issues, while the minority votes on the

remaining subset Km = K\KM . As each voter is small in a large commit-

tee, no voter can upset the outcome of any given issue, and thus gain from

deviating.

We note one surprising effect of decentralization: in these equilibria, it is

possible for the minority to win more frequently than the majority, whereas

no such outcome exists in the CB game.

Example 1 If m = 4, M = 5 and K = 3, there exists an equilibrium in

which the minority wins two of the three issues.

8In the CB game, the profile for which every player allocates one vote per issue is an
equilibrium only when M = m = 1 or M > mK. Beyond these special cases, if K > 2,
the CB game has no equilibria in pure strategies. A pure-strategy equilibrium may exist
in a non-zero sum variant in which the two sides attribute heterogeneous and asymmetric
values to the different issues (Hortala-Vallve and Llorente-Saguer, 2012).
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We also note that pure-strategy equilibria may not exist for small com-

mittees. The following example describes a parametrization we use in the

experiment.

Example 2 If m = 1, M = 2 and K = 4, there exists no pure-strategy

equilibrium.

The fact that, unexpectedly, pure strategy equilibria may exist is inter-

esting. How empirically plausible they are, however, is open to question.

The equilibria obtained in Proposition 1 require a large extent of coordina-

tion, both within and across groups. In addition, not only in those equilibria,

but also in the “trivial” equilibrium with M ≥ m+K, each voter has only

a weak incentive not to deviate. This seems particularly problematic when

M ≥ m+K and the minority loses all decisions, under the equilibrium pro-

file in which each player allocates one vote per decision. Even non-strategic

minority members seem likely to realize that some concentration is called

for.

4.1.2 Symmetric equilibria in mixed strategies

If several minority members concentrate votes on a given issue, the minority

may be able to win it. But only if the majority does not know which

specific issue is being targeted. Thus, minority members need not only to

concentrate their votes but also to randomly choose the issues on which the

votes are concentrated. Mixed strategies allow them to do so.

In this section, we focus on a family of simple strategies that treat each

issue symmetrically and we assume that all voters within the same group

play the same strategy. For any c factor of K, we define the strategy σc

(noted τ c for a majority player) as follows: choose randomly K/c issues9,

and allocate c votes to each of the selected issues. Suppose for example

K = 4, a value we will use in the experiment. Then σ4 corresponds to

casting all four votes on one single issue, chosen randomly; σ2 to casting

two votes each on two random issues; σ1 to casting one vote on each of the

9I.e. choose each subset of K/c issues with equal probability 1/
(

K
K/c

)
.
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four issues. Note that, in this family, the parameter c can be interpreted as

the degree of concentration of a player’s votes.10 We denote by σc (resp.

τ c) the subgroup profile for which each minority (resp. majority) player

plays σc (resp. τ c).

Intuitively, we expect the minority to concentrate its votes, so as to

achieve at least some successes, and the majority to spread its votes, be-

cause its larger size allows it to cover, and win, a larger fraction of issues.

The intuition is confirmed by the following two propositions, characterizing

parameter values for which strategy profiles with such features are supported

as Nash equilibria: when the difference in size between the two groups is as

small as possible - either nil or one member - or when it is very large.

Proposition 2 Suppose K even and M is odd. Then (σ2, τ 1) is an equi-

librium if M ≤ m+ 111, with

pm =

{
1
2 if M = m
1
2 −

1
2m+1

(
m
m/2

)
if M = m+ 1

What is remarkable in Proposition 2 is that when the difference in size

between the two groups is as small as possible – at most a single member

– equilibrium strategies can be quite different: while each majority voter

simply casts one vote on each issue, each minority voter concentrates all

votes on exactly half of the issues, chosen randomly, and casts two on each.

Numerically, the minority payoff is significant at this equilibrium, starting

from 1/4 when (m,M) = (2, 3) and converging to 1/2 for large m and M .

10Arad and Rubinstein (2012) suggest that subjects faced with the Colonel Blotto game
intuitively organize their strategy according to three dimensions, decided sequentially: (i)
the number of targeted issues (ii) the apportionment of votes on targeted issues (iii) the
choice of issues. The class of strategies (σc)c factor of K is particularly easy to describe with
respect to these three dimensions: (i) the number of targeted issues is K

c
(ii) the votes are

equally split on all targeted issues (iii) the choice of targeted issues is random, with equal
probability for each issue. This class of strategies has been independently introduced by
Grosser and Giertz (2014), who refer to them as pure balanced number strategies.

11The strategies in the proposition are also an equilibrium if M ≥ 2m+K−1. This is a
“trivial” equilibrium in which the majority’s much larger size allows it to win all proposals
(pm = 0). For K ≥ 4 and M < 2m+K − 1, one can show that (σ2, τ1) is an equilibrium
if and only if M ≤ m+ 1.
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When the difference in size between the two groups is larger, we expect

minority members to concentrate their votes even further. Indeed, as the

next result shows, at large M/m there exist equilibria in which each minority

voter concentrates all of her votes on a single issue. Majority voters continue

to spread their votes.

Proposition 3 Suppose M is divisible by K. Then (σK , τ 1) is an equilib-

rium if and only if M ≥ mK
2 . In such an equilibrium:

pm =

{ ∑m
p=M/K+1

(
m
p

) (K−1)m−p

Km + 1
2

(
m

M/K

) (K−1)m−M/K

Km if M ≤ mK
0 if M > mK

Predictably, the minimum ratio M/m at which the equilibrium is sup-

ported must increase with K: recall that K is both the number of proposals

and the number of votes with which each voter is endowed; with majority

voters spreading all their votes evenly, in equilibrium vkM = M for all k ∈ K,

and thus, for given M/m, a minority voter’s temptation to spread some of

the votes increases at higher K.

Propositions 2 and 3 characterize pm, the expected fraction of minority

victories. But does the minority always win at least one of the issues, i.e.

does it win at least one issue with probability one? And the majority? The

following remark provides the answers.

Remark 3 When the individuals use the equilibrium strategies identified in

Propositions 2 and 3:

• the minority may win no proposal

• the majority always wins at least one proposal.

4.2 Beyond equilibrium: positive minority payoff with con-

centration and randomization.

The equilibrium strategies characterized in Propositions 2 and 3 combine

features that appear very intuitive (concentration and randomization for

minority voters; less concentration for majority voters) with others that are
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most likely difficult for players to identify (the exact number of issues to

target, the exact division of votes over such issues), or to achieve in the

absence of communication (the symmetry of strategies within each group).

The question we ask in this section is how robust minority victories are to

deviations from equilibrium behavior in these last two categories.

We introduce a definition of neutrality of a strategy to capture the ran-

domization across issues. The notion of neutrality is appealing in this game

because the issues are identical ex-ante. For example the family of strategies

{σc} introduced in the previous section satisfies this property.

Definition 1 A strategy σ is said to be neutral if for any permutation of

the issues π and any allocation s ∈ S(K), we have: σ(s) = σ(sπ), where

sπ = (sπ(1), . . . , sπ(K))
12.

We assume that each minority voter concentrates her votes on a subset

of issues, chosen randomly and with equal probability. However, we do not

precise the number of issues targeted, do not require that votes be divided

equally over such issues, and do not impose symmetry within the minority

group. In addition, we evaluate the probability of minority victories by al-

lowing for a worst-case-scenario in which the majority jointly best responds.

We find that the probability of minority victories is surprisingly robust.

Proposition 4 For all M ≤ mK, there exists a number k ∈ {1, . . . ,K}
such that if every minority player’s strategy: (i) is neutral, and (ii) allocates

votes on no more than k issues with probability 1, then for any strategy profile

of the majority τ ,

pm(σ, τ ) > 0.

The result of Proposition 4 is important because it is very broad, and

its wide scope makes us more optimistic about the voting rule’s realistic

chances of protecting the minority. The game is complex, and, if appli-

cations are considered seriously, robustness to deviations from equilibrium

behavior should be part of the evaluation of the voting rule’s potential. The

12Note that neutrality does not require that votes be cast in equal number on each issue.
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result will indeed play a role in explaining our experimental data. In this

particular game, studying deviations from equilibrium is made easier by the

intuitive salience of some aspects of the strategic decision (concentration and

randomization), and the much more difficult fine-tuning required by optimal

strategies (how many issues? How many votes?)13.

Proposition 4 allows us to conclude that with randomization and suffi-

cient concentration, the minority can expect to win some of the time, even

off equilibrium. But how frequently? We can assess the magnitude of the mi-

nority payoff through simulations, under different assumptions over the rules

followed by each minority and majority voter. As an example, we report

here results obtained if the minority adopts the neutral σc strategies de-

scribed in the previous section. We set K = 4, M = 10, and m ∈ {1, .., 10},
and consider two cases, with increasing concentration: c = 2 (each minority

voter casts two votes each on half of the issues, chosen with equal probabil-

ity), and c = 4 (each minority voter casts all votes on a single issue, again

chosen randomly with equal probability). To establish plausible bounds on

the frequency of minority victories, we consider two rules for the major-

ity: either each majority voter casts his votes randomly and independently

over all issues (an upper bound on pm) or all majority voters together best

respond to the minority rule (the lower bound)14. Figure 1 reports such

bounds for each value of m (on the horizontal axis) under minority rules σ2

(in blue) and σ4 (in green).

As expected, pm increases with m. In addition, strategy σ4, allocating

all votes on a single issue, outperforms σ2 for all values of m < M . As

long as m > 2 (a threshold that corresponds to the condition M ≤ mK

in the proposition), σ4 always results into a positive frequency of minority

victories. Even for relatively large differences in size between the two groups,

the expected fraction of minority victories is significant: in a range between

0.14 and 0.21 when m = 6, and between 0.20 and 0.28 when m = 7 (that is,

13Note, for comparison, that Proposition 4 holds under the identical condition M ≤ mK
for the centralized game (with both discrete and continuous allocations).

14We compute pmwhen the majority jointly best responds by considering all possible
allocations of the MK majority votes, and then selecting the minimum pm.
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Figure 1: Minority payoffs for two minority rules (M = 10).

when the minority is either 60 or 70 percent of the majority).

Note that the condition M ≤ mK in Proposition 4 is tight. The remain-

ing case M > mK refers to a committee of extreme asymmetry, in which

the average number of votes of the majority per issue (M) is larger than the

total amount of votes of the minority (mK). In this case, it is natural for

majority players to spread their votes, and we should expect no minority

victories: for any minority-profile σ, pm(σ, τ 1) = 0.

5 The Experiment

5.1 Protocol

We designed the experiment to focus on two treatment variables: the size of

the two groups, m and M , and the possibility of communication within each

group. Each experimental session consisted of 20 rounds with fixed values

of m and M ; the first ten rounds without communication, and the second

ten with communication.

All sessions were run at the Columbia Experimental Laboratory for the

Social Sciences (CELSS) in April and May 2015, with Columbia University

students recruited from the whole campus through the laboratory’s Orsee
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site (Greiner, 2015). No subject participated in more than one session.

In the laboratory, the students were seated randomly in booths separated

by partitions; the experimenter then read aloud the instructions, projected

views of the relevant computer screens, and answered all questions publicly.

Two unpaid practice rounds were run before starting data collection.

At the start of each session, each subject was assigned a color, either Blue

or Orange, corresponding to the two groups. Members of the two groups

were then randomly matched to form several committees, each composed

of m Orange members and M Blue members. Every committee played the

following game. Each subject entered a round endowed with K balls of her

own color. She was asked to distribute them as she saw fit among K urns,

depicted on the computer screen, knowing that she would earn 100 points

for each urn in her committee in which a majority of balls were of her color.

In case of ties, the urn was allocated to either the Blue or the Orange group

with equal probability. Figure 2 reproduces the relevant computer screen in

one of our treatments, for a Blue voter who has already cast one ball.

Figure 2: The Allocation screen.

After all subjects had cast their balls, the results appeared on the screen

under each urn: the number of balls of each color in the urn, the tie-break
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result if there was a tie, and the subject’s winnings from the urn (either

0 or 100). The session then proceeded to the next round. The first ten

rounds were all identical to the one just described. Subjects kept their color

across rounds, but committees were reshuffled randomly. After the first

round, subjects could consult the history of past decisions before casting

their balls. By clicking a History button, each subject accessed a screen

summarizing ball allocations and outcomes in previous rounds, by urn, in

the committee that in each round included her.

After ten rounds, the session paused and new instructions were read for

the second part. Parameters and choices remained unchanged and subjects

kept the same color, but now a chatting option was enabled: before cast-

ing their balls, subjects had two minutes to exchange messages with other

members of their committee who shared their color. They could consult the

history screen while chatting. The second part of the session again lasted ten

rounds, and again committees were reshuffled after each round but subjects

kept the same color.15 Thus each subject belonged to the same group, m or

M , for the entire length of the session, a design choice we made to allow for

as much experience as possible with a given role. Each session lasted about

75 minutes, and earnings ranged from $18 to $44, with an average of $33

(including a $10 show-up fee).

The experiment was programmed in ZTree (Fischbacher, 2007), and a

copy of the instructions for a representative treatment is reproduced in the

online Appendix.

We designed the experiment with two goals in mind. First, we wanted

to learn how substantive are minority victories in the lab and how well the

theory predicts subjects’ behavior. Second, we wanted to compare results

with and without communication. Does communication helps or hinders

the relative success of the minority? As summarized in Table 1, we ran the

experiment with and without the chat option for three sets of m, M values.

We have thus six treatments, denoted by mMD without chat, and mMC

15In all sessions, we ran first the ten rounds without the chat option, to prevent subjects
from learning a coordinated strategy in the first part of the session, and then trying to
replicate it in the second, in the absence of communication.
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with chat.

Sessions m,M # Subjects # Committees # Rounds (no chat, chat)

s1, s2, s3 1, 2 12 × 3 4 × 3 10, 10

s4, s5, s6 2, 3 15 × 3 3 × 3 10, 10

s7, s8, s9 2, 4 18 × 3 3 × 3 10, 10

Table 1: Experimental Design.

5.2 Parameter values and theoretical predictions

We chose the values for m and M according to three criteria. First, given

the complexity of the game, we kept the size of the committee small enough

to maintain the possibility of conscious strategic choices by inexperienced

players. Second, we chose group sizes so as to have variation in the relative

minority size m/M , keeping constant the absolute difference M−m (sessions

s1-s3 and s4-s6), and to have variation in the absolute difference M − m,

keeping constant the relative size m/M , (sessions s1-s3 and s7-s9). Finally,

we chose parameter values such that equilibria of the decentralized game

exist in the family of simple profiles (σc, τd), symmetric within groups, and

within this family are unique. We select such equilibria as theoretical refer-

ence for the experiment because of their intuitive simplicity. We know that

asymmetric equilibria exist for some of the experimental parameters, and

we do not rule out other symmetric equilibria with more complex mixing,

but their emergence seems unlikely in our experimental environment, with

random rematching and inexperienced subjects16.

The theoretical predictions for our design are summarized in Table 2

and Table 3. Table 2 refers to the decentralized game: in both treatments

12D and 23D, (σ2, τ 1) is an equilibrium; in treatment 24D, the symmetric

equilibrium is (σ4, τ 1).17 In all three treatments, the expected fraction of

16Note that the pure strategy equilibria identified in Proposition 1 do not appear in our
experimental treatments as (K + 1)2/K = 25/4 > 5.

17Proposition 2 applies to M odd, and thus does not cover treatment 12D. However,

21



minority victories is 1/4.

Treatment Simple symmetric equilibrium pm

12D (σ2, τ 1) 1/4

23D (σ2, τ 1) 1/4

24D (σ4, τ 1) 1/4

Table 2: Symmetric equilibria of the decentralized game.

With communication within each group, the strategies in Table 2 remain

equilibria if communication is ignored – the standard chattering equilibria of

cheap talk games. But coordination around the equilibria of the centralized

Blotto game is also possible. As established by Hart (2008), with discrete

allocations the value of the Blotto game (and thus pm at equilibrium) is

unique, but the optimal strategies are not, even in the special cases of our

experimental parameters. And yet such strategies share a common intuitive

structure. In the continuous Blotto game, where allocations need not be

integer numbers, optimal strategies must be such that the marginal distri-

bution of forces allocated to any one battlefield is uniform: M allocates to

any urn a number drawn from a uniform distribution over [0, 2M ]; m allo-

cates to any urn either no balls, with probability (1 −m/M), or a number

of balls drawn from the uniform distribution on [0, 2M ] (Roberson, 2006).

With integer numbers, the uniform requirement cannot be matched exactly,

but is approximated. Using Hart’s notation, we define as Uµo the uniform dis-

tribution over odd numbers with mean µ (i.e. over {1, 3, .., 2µ− 1}), Uµe the

uniform distribution over even numbers with mean µ (i.e. over {0, 2, .., 2µ}),
and Uµo/e the convex hull of Uµo and Uµe (i.e. the set λUµo + (1 − λ)Uµe , for

all λ ∈ [0, 1]). Table 3 reports the marginal allocations (on each urn) asso-

ciated to Hart’s optimal strategies for our experimental parameters, as well

as pm. Note that the optimal strategies in Hart (2008) may not be unique;

one can verify immediately that (σ2, τ1) is an equilibrium for treatment 12D when K = 4.
In fact, if K = 4, Proposition 2 extends to M even.
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for example we identified new ones in the treatment 12C18.

Treatment Optimal strategies: marginal allocations pm

12C
m : 1/2{0}+ 1/2(U2

o/e); 1/2{0}+ 1/2{2}; any combination

M : U2
o ; {2}; any combination

1/4

23C
m : 1/3{0}+ 2/3(U3

o/e)

M : U3
o

1/3

24C
m : 1/2{0}+ 1/2(U4

o/e)

M : U4
o

1/4

Table 3: Equilibria of the centralized game.

The strategies can be implemented in different ways, as long as the equal

probability restriction embodied by the marginal distribution is satisfied.

For example, the majority strategy in 23C must correspond to mixing uni-

formly over {1, 3, 5} for each urn, satisfying the budget constraint: in terms

of specific allocations per urn, and keeping in mind that each urn is chosen

with equal probability, one such strategy is (1/3)(3, 3, 3, 3)+(2/3)(1, 1, 5, 5);

another is (2/3)(1, 3, 3, 5)+(1/3)(1, 1, 5, 5); in fact any combination of these

two strategies also satisfies the requirement. The important point of the

table is that optimal strategies are such that the marginal distributions on

the targeted urns must be uniform distributions or combinations of uniform

distributions, for both groups, a relatively easy requirement to check on the

experimental data.

6 Experimental Results.

We see no evidence of learning in the data, either in terms of strategies or

outcomes, and thus report the results below aggregating over all rounds of

the same treatment.

18The strategies involving {2} in treatment 12C are not identified by Hart because they
are not optimal strategies of the General Lotto game. See Hart (2008).
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6.1 Minority victories

Is the minority able to exploit the opportunity provided by the voting sys-

tem? This is the main question of the paper, and thus we begin our analysis

of the experimental data by addressing it. Figure 3 plots the realized frac-

tions of minority victories in the six treatments – the percentage of urns

won by an orange team. The orange columns correspond to the experimen-

tal data, and the grey columns to the theoretical equilibrium predictions.

Figure 3: Fractions of minority victories.

Whether with or without communication, the fraction of minority vic-

tories in the data is non-negligible, ranging from a minimum of 0.24 (in

treatment 24D) to a maximum of 0.33 (in treatment 23C). Even more re-

markable, realized values are very close to the theoretical predictions, al-

though the difference is more sizable in treatment 23D19.

19The difference is not statistically significant. In treatment 23D there is an asymmetric
equilibrium in which pm = 11/32 ≈ 0.34 (v/s 0.33 in the data): all m members play σ4,
one M member plays τ1, and two play τ2. However, we do not see this equilibrium in
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Are the experimental subjects really adopting the rather sophisticated

strategies suggested by the theory?

6.2 Strategies

6.2.1 No communication

Ball allocations In the absence of communication, equilibrium strategies

are defined at the individual level. Figure 4 reports the observed frequency

of different ball allocations, across individual subjects, in the treatments

without communication. The horizontal axis lists all possible allocations –

with four balls and four urns there are five – and the vertical axis reports

the frequency of subjects choosing the corresponding allocation, over all

rounds, committees, and sessions of the relevant treatment.20 The panels are

organized in two rows, corresponding to the two groups, with the minority

in orange in the upper row, and the majority in blue in the lower row. The

allocation denoted in bold and surrounded by two stars, on the horizontal

axis, corresponds to the equilibrium strategy in Table 2.

The figure teaches three main lessons. First, there is substantial devi-

ation from equilibrium strategies: in all treatments and in both groups, at

least forty percent of all individual allocations do not correspond to equi-

librium strategies. However – and this is the second lesson – equilibrium

predictions have some explanatory power for minority subjects. In all treat-

ments, the most frequently observed allocation for minority subjects corre-

sponds to the equilibrium strategy, a particularly clear result in treatment

12D and 24D, where more than half of all observed allocations correspond

to the predictions21. Equilibrium predictions are noticeably less useful for

majority subjects.

Third, the theory’s qualitative predictions are mostly satisfied, both

the data. As mentioned above, random rematching at each round means that subjects in
general cannot coordinate on an asymmetric equilibrium.

20Thus, for example, the column corresponding to “0112” reports the frequency of
subjects casting two balls in one urn, and one ball each in two other urns.

21This need not be a best response, given the variability in the data and the more
random behavior of majority subjects.
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Figure 4: Frequency of individual ball allocations (no-chat treatments).

across treatments and between the two groups. In all treatments, the distri-

bution of minority allocations is shifted to the right, relative to the majority

distribution. We have ordered the five possible ball allocations with con-

centration increasing progressively from left to right. Thus the observation

says that, predictably and in line with the theory, minority members tend

to concentrate balls more than majority members do. In all treatments, the

fraction of minority subjects casting one ball in each urn, the left-most col-

umn in each panel, is negligible: the need to concentrate the number of balls

cast is clear to all minority subjects since the very beginning of the game.

Similarly, the fraction of majority members casting all balls in a single urn,

the right-most column in each panel, is negligible in treatments 12D and

23D, although it surprisingly rises to 12 percent in treatment 24D. Focusing

on minority subjects, a shift to the right in the distribution of allocations

is also evident as we move from treatment 12D to 23D, and finally to 24D.

The shift between 12D, and 24D is again in line with the theory, as the

equilibrium strategy shifts from σ2 to σ4; the distribution in 23D appears

intermediate between these two cases. For majority subjects, on the other
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hand, the change in distribution across treatments is difficult to rationalize

on the basis of the theory.

Individual subjects Our theoretical results establish that the minority

can guarantee itself a positive expected fraction of victories, even when

individual minority members follow different strategies, as long as each con-

centrates her votes on a sufficiently small subset of urns and casts them

randomly. According to Proposition 4, on not more than k urns, where

k = 2 in all our experimental treatments. We look in more detail at the

subjects’ behavior in the lab, keeping this result in mind.

Figure 5 plots individual subjects’ average ball allocations in the three

treatments with no communication. The vertical axis in the figure is the

average largest number of balls cast in any one urn, a number that we

denote by x4 and that ranges from 1 to 4; the horizontal axis is the average

second largest number, denoted by x3 and ranging from 0 to 2. Each dot

in the figure is a single subject’s average ball allocation over the 10 rounds

played, summarized by the subject’s average x4 and x3
22. Orange dots

denote members of the minority, and Blue dots members of the majority.

The vertices of each triangle in the figure correspond to three feasible

allocations: (0, 4), at the upper end, corresponds to casting all balls in a

single urn; (1, 1), at the lower end, corresponds to casting one ball in each

urn, and (2, 2), at the right end, corresponds to dividing the balls equally

over two urns.23 In all three panels, the equilibrium strategy for majority

subjects is the (1, 1) vertex (marked by the large blue circle); for minority

subjects it is the (2, 2) vertex in the first two panels and the (0, 4) one in

the third (marked by the large orange circle).

The upper edge of the triangle, uniting (0, 4) and (2, 2), is the line seg-

ment described by x4+ x3 = 4, conditional on x4 ≥ x3: all dots lying along

this line represent subjects who in every round divided their balls over at

22For instance, if a subject plays 0022 on half of the rounds, and 0004 on the other half,
her average allocation will be represented with x4 = 3 and x3 = 1.

23The other two possible allocations, 0013 and 0112, correspond to points (1, 3) and
(1, 2) in the figure, and are, respectively, along the upper edge of the triangle, and along
the line dividing the dark and light grey areas.
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Figure 5: Individual subjects’ average ball allocations (no-chat treatments).

most two urns. Dots lying to the interior of the line, on the other hand,

represent subjects who in at least some rounds cast balls in more than two

urns. The boundary between the two grey areas corresponds to the line

segment x4 + 2 x3 = 4, again conditional on x4 ≥ x3. Dots below that line

correspond to subjects who must have cast balls in all four urns in at least

some rounds.

Figure 5 can now be read at a glance and reveals several regularities.

First, in all three treatments, minority subjects almost unanimously con-

centrate balls in only two urns. Only 2 out of 12 minority subjects in

treatment 12D, 2 out of 18 in 23D, and 3 out of 18 in 24D ever cast balls

in more than two urns, and in 4 of these 7 cases the dots are close to the

upper edge, implying that this occurred in a small number of rounds. Not

only do minority subjects follow the intuitive prescription of concentrating

balls in a subset of urns; they also target not more than two urns. Second,

there is much more variability in the number of target urns among majority

subjects. In all treatments, a non-negligible number of subjects casts balls

in all urns, but an equally large number casts balls in two or three urns only.

A possible reading is that majority subjects are divided between exploiting

their larger size by covering all urns (as equilibrium predicts), and second-
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guessing the minority, in the logic of the hide-and-seek game. The role of

this latter motivation is supported by the right-most panel in Figure 5, and

this is our third observation. Members of both groups tend to concentrate

their balls more in treatment 24D: although again there is large variability,

especially among majority subjects, the dots in the third panel tend to be

shifted upward along the outer edge, relative to the dots in the first two

panels, indicating that, among the two targeted urns, one is receiving an

increasingly disproportionate share of balls. Minority members’ incentive to

concentrate their allocations more in treatment 24D is intuitive and could

be the trigger for the majority subjects’ own more frequent concentration.

6.2.2 Communication

To what extent do allocations change when communication is allowed? The

messages exchanged while chatting show clearly that the opportunity to

communicate is actively exploited: the subjects are very involved in the

game, they send relevant messages on how to coordinate their actions, and

then follow through24. Thus we ignore the possibility of chattering equilibria

and compare the groups’ actions to the equilibrium strategies of the CB

game, summarized in Table 3. Note that only group-wide strategies are

identified.

Figure 6 reports, for each treatment, the frequency of urns holding dif-

ferent numbers of Orange and Blue balls (in orange and blue in the figure),

averaged over all sessions, groups and chat rounds of the same treatment.25

24For example, here is an edited but representative exchange between two minority
members in round 13 of session 6, treatment 23C (using italics to distinguish one indi-
vidual): “2200 for me. We can do 4400.”; “Or i could do 1030.”; “2200. So we can do
4400”; “And what the blues tend to be doing is just putting 3 in each.”; “i was checking
the history”; “2200”; “hi hi.” At the same time, the majority members in the same
committee were saying: “So, even for now. lets see what happens. if they get smarter we
will change next round.”; “i think theyve figured out they needa concentrate their balls
since they have fewer players.” ; “do even distribution. orange members not smart enough
to do 2 urns 4 balls.” Indeed, in this round and group the minority group played 4400,
the majority played 3333, and the minority won two urns.

25In principle, urns can contain up to MK majority balls in each treatment. However,
by truncating the figure at mK balls (the upper bound for the minority), we still report
99 percent of all majority data (for chat and no-chat treatments), while making the figure
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The figure includes in gray, as a matter of comparison, the same frequencies

computed for each of the no-chat treatments.

Figure 6: Frequency of group marginal allocations of balls.

As in the no-communication treatments, the minority does concentrate

its balls on a fraction of urns, and does so more than the majority. In all

treatments more than 40 percent of urns receive no minority balls, while less

than 10 percent receive no majority balls. The intuitive observation that a

small budget demands concentration is reflected in the data.

More precisely, in treatment 12C, the data are consistent with central-

ized equilibrium behavior. The minority targets 48 percent of the urns; it

casts two balls in two thirds of the targeted urns, and one or three balls

with very similar frequency, in line with the predictions of Table 3. Sim-

ilar observations hold for the majority: the frequency of 2-ball urns is 71

percent and the frequency of 1 and 3-ball urns is very similar, again in line

much more readable. Note that casting more than mK + 1 balls in one urn is a strictly
dominated strategy for the majority (and we observe it exactly once, out of a total of
1,200 urn allocations over the three chat treatments).

30



with Table 3.26 Such consistency with equilibrium predictions, however, is

not observed in the other two treatments. In 23C and 24C, according to

the optimal strategies in Table 3, the majority should never cast an even

number of balls, while the minority should cast two, four, and six balls with

the same frequency. For both groups, on the other hand, the data show a

peak at four balls.

In fact, in all three treatments, the modal number of balls cast by either

group is 2m. This coincides with optimal strategies in 12C, but does not

in 23C and 24C. One plausible conjecture is that the minority tends to

target two urns, and the majority mimics the minority. Although not always

optimal, the strategy matches well the hide-and-seek nature of the game.

6.3 Unpredictability and best replies

The theory makes predictions not only on how balls should be allocated

across urns but also on the randomness of the minority’s allocation. In

our experimental design, with rematching groups, an individual subject can

maintain unpredictability while making balls allocations that are correlated

over time. To a more limited extent this remains true at the group level,

since there are multiple rematching committees in each experimental session.

An alternative approach is to evaluate unpredictability indirectly, by

measuring the payoff gains available to each group, had it best responded

to the opposite group’s experimental actions. A fully predictable minority

strategy, for example, means that there exists a majority best response that

translates into zero minority victories.

By focusing on best responses, the approach we take here also allows us

to quantify the answer to a natural question: if the experimental subjects did

not play equilibrium strategies, how far were they from playing optimally?

26Note that in this treatment, for both groups the individual equilibrium strategies of
the decentralized game add up to a team equilibrium strategy of the centralized game.
Thus the comparison to the no-chat results is instructive. Communication is relevant
only for the majority group, and the minority strategy remains mostly unchanged. For
the majority, however, communication brings a clear change: the team plays 2222 in 65
percent of all rounds (versus 13 percent with no-chat), and the frequency of 2-ball urns
more than doubles (from 32 to 71 percent).
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Note that the answer can be read through two main perspectives. First, it

tells us whether a group replied accurately to the other: this is the best reply

perspective. Second, it reveals what payoff a group guaranteed to itself, by

considering the worst-case scenario in which the opposite group best replies

- as in in Proposition 4.

For treatment T and session S, we fix the observed distribution of minor-

ity group’s allocations V m
T,S , distinguishing across urns (with one observation

per group and per round): this is the “statistical strategy” of the minority.

Then, we compute the best reply of the majority BRM (V m
T,S) assuming that

majority members could coordinate, again distinguishing across urns. The

corresponding guaranteed payoff pm(V m
T,S , BR

M (V m
T,S)) is the minimal payoff

that the minority can obtain by playing statistically as in the experiment27.

We do the same exercise for both groups.

Figure 7 summarizes the results, reported in terms of pm. Because we

observe little variation across sessions, for each treatment the results in the

figure are averaged across sessions.
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Figure 7: Best-reply minority payoffs, computed for each group and treat-
ment, averaged across sessions.

The different panels correspond to the different treatments; the red lines

indicate the observed average frequency of minority victories in the data,

27For example, the three observations {(2, 1, 1, 0), (2, 2, 0, 0), (2, 0, 2, 0)} in treatment 1, 2
would correspond to the following statistical strategy: urn 1: 2 balls with probability 1,
urn 2: 0,1, or 2 balls, each with probability 1/3; urn 3: 0,1, or 2 balls, each with probability
1/3; urn 4: 0 balls with probability 1. The majority’s best response is (3, 2, 2, 1), implying
pm = 1/12.
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and the blue traits the predicted equilibrium frequency. In each panel, the

arrow on the left side indicates the value of pm when the majority best

replies, and the arrow on the right side when the minority best replies.

How should the figure be read? Consider for example treatment 12D,

with average pm = 0.26, slightly above the equilibrium prediction of 0.25.

Given what the minority statistically played, pm could have been as low as

0.22, had the majority best replied. Conversely, given what the majority

statistically played, pm could have been as high as 0.30. According to the

best reply perspective, the length of a group’s arrow measures the distance to

the best reply. We see that the two groups were quite effective in maximizing

their payoffs, with each group falling short of its best achievable payoff by

an amount of 0.04. Note that when the two arrows collapse, the profile is

an equilibrium of the centralized game. Thus, the length of the two arrows

is also a measure of the distance from such an equilibrium.

From the guaranteed payoff perspective, the effectiveness of a group’s

play is measured by the value corresponding to the opposite group’s best

reply. The minority guaranteed itself a payoff of 0.22, way above 0 and not

far from the equilibrium payoff of 0.25; while the majority guaranteed that

pm would stay below 0.30.

Reading the figure across all treatments, we are led to three main con-

clusions. First, in all treatments the minority was able to guarantee itself

a significant fraction of victories, ranging from a minimum of 0.16 in treat-

ment 24D to a maximum of 0.28 in 23C. Note that this observation does

not depend on experimental majority allocations; rather, it reflects the fact

that the minority was able to make its actions sufficiently unpredictable.

Second, the majority was also able to limit its losses, guaranteeing itself

an upper bound on pm that ranged between 0.43 in treatment 23D to 0.29 in

12C. These observations give us confidence on the robustness of the payoffs

found in the experiment: although, on the whole, subjects did not play

equilibrium strategies, both groups secured worst-case payoffs that were

close to actual payoffs28. The similarity of experimental and theoretical

28The largest difference appears for the majority in treatment 23D, where pm = 0.33
but could have been 0.44, had the minority best replied.
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payoffs observed in Figure 3 did not occur by chance: in precisely defined

payoff terms, experimental strategies were “close” to equilibrium.

Finally, for each minority and majority size, communication makes very

little difference not only to observed payoffs, but also to guaranteed payoffs.

In our experimental data, any difference between the two groups in the

ability to communicate effectively and coordinate is not reflected in payoffs.

7 Conclusions

We have investigated the ability of the SV mechanism to protect a minority

in a fully polarized committee. Both in theory and in a laboratory exper-

iment, we find that the mechanism is effective: in line with equilibrium

predictions, the fraction of minority victories observed in the experiment

varied from 25 percent in treatments in which the minority is half the size

of the majority, to 33 percent, when the minority’s relative size increases to

two thirds. Allowing voters to communicate before casting their votes does

not alter our conclusions.

A surprising aspect of our results is that experimental outcomes closely

replicate the theoretical predictions even though subjects often deviate from

equilibrium strategies. The reason is that the fundamental logic of the game

– its hide-and-seek nature, requiring minority voters to concentrate their

votes and to do so unpredictably – seems to be immediately clear to the

experimental subjects. Whether minority subjects concentrate votes on the

correct number of target issues, and whether majority voters are able to

best-respond to minority strategies, these finer strategic points are of sec-

ondary importance. We see this in the experimental results, and we establish

it theoretically by studying the robustness of predicted outcomes to plau-

sible off-equilibrium behavior: as long as each minority voter concentrates

her votes sufficiently and randomizes the target issues, minority victories

are guaranteed (in expectations). The conclusion holds even if the number

of target issues is not optimal, even if other minority voters choose different

degrees of concentration, and even if majority voters coordinate their strate-

gies and best-respond. We interpret this result as an encouraging check on
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the robustness of the voting mechanism and on its potential to overcome

the tyranny of the majority in realistic applications. SV treat all individ-

uals equally, avoid the inertia and obstruction of supermajority rules and

vetoes, and yet ensure that the minority voice is heard, even in the difficult

strategic environment studied here.

From a theoretical perspective, this paper has contributed a new ver-

sion of the classic Colonel Blotto game: a decentralized game where the

allocation of resources is deferred to multiple individual lieutenants within

each army. Although incentives are perfectly aligned, in the absence of

communication the decentralized game cannot replicate the equilibria of

the centralized Blotto game (because randomization needs to be central-

ized). Thus the paper can be of interest beyond the specific application

to SV, and opens the study of different problems as decentralized Blotto

games. Possible applications include patent races with multiple intra-firm

research teams; campaign spending in the US, with aligned and opposed

political action committees (PAC’s); or the fight against terrorism, with

limited communication across terrorist cells and more or less coordination

among international police forces.

A Appendix: proofs

A.1 Proof of Remark 1

With the parameters of our model, the number of votes of each group is

a multiple of the number of issues, K. In that case, optimal strategies for

the majority are identified in Hart (2008) if K is even and/or M is odd (by

combination of his Theorem 4 and Proposition 6). They are such that the

marginal distribution of majority votes on each issue is uniform over a set

of consecutive odd integers: ∀k ∈ K, VM
k ∼ U ({1, 3, . . . , 2M − 1}) .

Let us assume that this strategy is replicated by M independent lieu-

tenants. We denote by Si the allocation of lieutenant i on issue 1. We
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have:
M∑
i=1

Si = VM
1 ∼ U ({1, 3, . . . , 2M − 1})

As we have ∀i = 1 . . .M, 0 ≤ Si ≤ K and E[VM
1 ] = M , we obtain by

Hoeffding’s inequality (Hoeffding, 1963):

P
(
VM
1 −M ≥M − 1

)
=

1

M
≤ exp

(
−2(M − 1)2

MK2

)

This inequality can be written Me−
2(M−1)2

MK2 ≥ 1, which is equivalent to

K ≥
√

2(M − 1)√
M log(M)

:= K(M).

Hence, we get a contradiction if K < K(M). As we have ∂K
∂M > 0, the

function K is one-to-one, and we denote its inverse by M(K) := K
−1

(K).

As M is increasing, we have a contradiction if M > M(K). �

A.2 Proof of Theorem 1

Consider a profile of (possibly mixed) strategies such that the majority wins

all the decisions with probability one. Consider any pure-strategy profile

(s, t) played with positive probability. Consider any minority player i. For

each issue k ∈ K, let bk = vMk (t)− vmk (s) be the margin (bias) by which the

majority beats the minority on issue k, and let sik be the number of votes

allocated by i to issue k. As the average of the (bk)k∈K is M − m, while

the average of the (sik)k∈K is one, it follows that the average of the numbers

(bk + sik)k∈K is M −m+ 1. There must be an issue k′ ∈ K such that:

bk′ + sik′ ≤M −m+ 1.

Subtracting K from both sides:

bk′ − (K − sik′) ≤M −m+ 1−K
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The term (K − sik′) captures the amount by which i’s votes on k′ fall short

of the maximum possible, K. The left-hand side of the inequality equals

the majority’s vote margin on k′ when i allocates all her votes to k′. But if

M < m+K, M −m+1−K ≤ 0 , and the majority cannot be winning with

probability one. Either sik′ = K, and we have obtained a contradiction. Or

sik′ < K, and i has a profitable deviation; but then the initial profile is not

an equilibrium. �

A.3 Proof of Proposition 1

Assume that M ≥ m ≥ 2 and M + m ≥ (K + 1)2/K. We construct a

pure-strategy equilibrium for the DB game, based on a partition of the set

of issues K = Km ∪KM . We note Km = #Km and KM = #KM = K−Km.

Step 1. There exists a partition of the set of issues K = Km ∪ KM
satisfying Km ∈

[
max

(
K −

⌊
MK
K+1

⌋
, 1
)
,min

(⌊
mK
K+1

⌋
,K − 1

)]
.

As M ≥ m ≥ 2, it is immediate that⌊
mK

K + 1

⌋
≥ 1 and K −

⌊
MK

K + 1

⌋
≤ K − 1

As M +m ≥ (K+1)2/K, we get
mK

K + 1
≥ K+1− MK

K + 1
, and therefore

⌊
mK

K + 1

⌋
≥ K −

⌊
MK

K + 1

⌋
.

Step 2. For any such partition, any pure-strategy profile (s, t) for which{
vmk (s) ≥

⌊
mK
Km

⌋
if k ∈ Km

vmk (s) = 0 otherwise

{
vMk (t) ≥

⌊
MK
KM

⌋
if k ∈ KM

vMk (t) = 0 otherwise

is an equilibrium. In such equilibria, pm = Km/K.
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As Km ≤
⌊
mK
K+1

⌋
≤ mK

K+1 , we have K ≤ mK
Km
− 1, which leads to

K <

⌊
mK

Km

⌋
We conclude that a majority player cannot upset the outcome of an issue in

Km: she has no profitable deviation.

As Km ≥ K −
⌊
MK
K+1

⌋
, we have KM ≤

⌊
MK
K+1

⌋
. We conclude as before

that no minority player has a profitable deviation. �

A.4 Proof of Example 2

Note first that since 3 < 25/4, Proposition 1 does not apply. Consider an

arbitrary pure-strategy profile (s, t). For each issue k ∈ K, let bk = vMk (t)−
vmk (s), so that 1

4

∑4
k=1 bk = 1. Assume for simplicity that b1 ≤ b2 ≤ b3 ≤ b4.

We first remark that, if there is a tie, a majority player deviates. Assume

that for some issue k, bk = 0. Then, there must be some issue j for which

bj ≥ 2. At least one majority player can withdraw a vote from issue j and

allocate it to issue k. This is a profitable deviation.

We distinguish four cases:

(a) pm = 0. The average number of majority votes per proposal is 2. Thus,

the minority player can win a decision by allocating all her votes to

an issue with no more than 2 majority votes. This is a profitable

deviation.

(b) pm = 1/4 and b1 ≤ −3. The average number of majority votes on is-

sues 2,3,4 is at most 8/3. Thus, one of these issues (say k = 2) receives

no more than 2 majority votes. The minority player can withdraw 2

votes from issue 1, and allocate them to issue 2 to obtain a tie. This

is a profitable deviation.

(c) pm = 1/4 and b1 ≥ −2. The average of the (bk)k=2...4 on the issues

won by the majority is at least 2. This means that one of the two

majority players can withdraw 2 votes from issues 2,3,4 at no cost. By
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allocating these 2 votes on issue 1, she obtains at least a tie. This is a

profitable deviation.

(d) pm ≥ 1/2. The minority wins issues 1 and 2. The average of the

(bk)k=3...4 is at least 3. A majority player can withdraw 2 votes from

issues 3 and 4, and cast the 2 votes on the issue with the lowest number

of minority votes among 1 and 2. On this issue, there cannot be more

than 2 minority votes, so the majority player obtains at least a tie.

This is a profitable deviation. �

A.5 Proof of Proposition 2

Deviations for an M-player We consider the point of view of an M -

player, denoted by i. On each issue k ∈ K, the total number of votes cast by

the other M -players is vM−1k = M−1. The total number of votes cast by the

minority is denoted by vmk . The random variable vmk /2 follows a binomial

distribution of parameters m and 1
2 .

Let aik be the number of votes cast by voter i on issue k, and pik(a
i
k) the

payoff of i on this issue29:

pik(a
i
k) = P

(
vM−1k + aik > vmk

)
+

1

2
P
(
vM−1k + aik = vmk

)
.

In what follows, we omit to mention the subscript k in the computations, as

all the strategies are symmetric across decisions. As M is an odd number,

we have for all a ∈ {1, . . . ,K}:

pi(a)− pi(a− 1) =
1

2
P (vm = M − 1 + a) +

1

2
P (vm = M − 2 + a)

=
1

2
P
(
vm

2
=
M − 1

2
+
a

2

)
+

1

2
P
(
vm

2
=
M − 1

2
+
a− 1

2

)
=

1

2
P
(
vm

2
=
M − 1

2
+
⌊a

2

⌋)
=

1

2m+1

(
m

M−1
2 +

⌊
a
2

⌋)1{M−1
2

+ba2c≤m}

29By convention, the payoff on issue k can take values between 0 and 1, and the overall
payoff is the mean of the payoffs over all the issues.
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For any a ∈ {1, . . . ,K}, we have M−1
2 +

⌊
a
2

⌋
≥ M−1

2 ≥ m
2 −

1
2 , this implies:(

m
M−1
2 +

⌊
a
2

⌋)1{M−1
2

+ba2c≤m} ≤
(

m
M−1
2

)
1{M−1

2
≤m}

Therefore pi(a)− pi(a− 1) ≤ pi(1)− pi(0). It follows that τ1 is a best reply

for player i.

Deviations for an m-player. We consider a player j in team m. On a

given decision, the payoff of j, playing a ∈ {0, . . . ,K} is:

pj(a) = P
(
vm−1 + a > vM

)
+

1

2
P
(
vm−1 + a = vM

)
where vM = M and vm−1/2 is a random variable following a binomial dis-

tribution of parameters (m− 1) and 1
2 . As M is an odd number, we have:

pj(a)− pj(a− 1) =
1

2
P
(
vm−1 = M − a

)
+

1

2
P
(
vm−1 = M + 1− a

)
=

1

2
P
(
vm−1

2
=
M − 1

2
−
⌊
a− 1

2

⌋)
=

1

2m

(
m− 1

M−1
2 −

⌊
a−1
2

⌋)1{0≤M−1
2
−ba−1

2 c≤m−1}

In particular, pj(2)− pj(1) = pj(1)− pj(0) = 1
2m

(m−1
M−1

2

)
1{M≤2m−1}.

As M ≤ m+ 1, for any a ∈ {3, . . . ,K}, we have M−1
2 −

⌊
a−1
2

⌋
≤ M−1

2 ≤
m−1
2 + 1

2 . Therefore, pj(a)− pj(a− 1) ≤ pj(2)− pj(1) = pj(1)− pj(0). As a

result, σ2 is a best reply for j. �

A.6 Proof of Proposition 3

We assume that M ≤ mK. Indeed, if M > mK, the profile (σK , τ 1) is

trivially an equilibrium in which the majority wins all the decisions.

Deviations of an M-player We write, as before, for any a ∈ {0, . . . ,K}:

pi(a) = P (M − 1 + a > vm) +
1

2
P (M − 1 + a = vm)

where vm/K follows a binomial distribution of parameters m and 1/K. We
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get:

pi(a)− pi(a− 1) =
1

2
P (vm = M − 1 + a) +

1

2
P (vm = M − 2 + a)

As M is a multiple of K, it is the only one in the set {M−2, . . . ,M−1+K}.
As vm must be a multiple of K, we obtain pi(2) − pi(1) = pi(1) − pi(0) =
1
2P (vm = M) and for all a ∈ {3, . . . ,K}, pi(a)− pi(a− 1) = 0. We conclude

that τ1 is a best reply for player i.

Deviations for an m-player We write as before, for a ∈ {0, . . . ,K}:

pj(a) = P
(
vm−1 + a > M

)
+

1

2
P
(
vm−1 + a = M

)
where vm−1/K follows a binomial distribution of parameters (m − 1) and

1/K. We get:

pj(a)− pj(a− 1) =
1

2
P
(
vm−1 = M − a

)
+

1

2
P
(
vm−1 = M + 1− a

)
There are two multiples of K in {M −K, . . . ,M}, namely M −K and M .

We obtain:

pj(1)− pj(0) =
1

2
P
(
vm−1 = M

)
∀a ∈ {2, . . . ,K − 1}, pj(a)− pj(a− 1) = 0

pj(K)− pj(K − 1) =
1

2
P
(
vm−1 = M −K

)
.

There are only two candidates for the best reply of voter j: playing one
vote on every issue or playing K votes on a single issue. It follows that the
strategy σK is a best reply for player j if and only if

pj(K) + (K − 1)pj(0) ≥ Kpj(1) ⇔ pj(K)− pj(1) ≥ (K − 1)
(
pj(1)− pj(0)

)
⇔ P

(
vm−1 = M −K

)
≥ (K − 1)P

(
vm−1 = M

)
We know that vm−1 = M (resp vm−1 = M −K) if exactly M/K m-players
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(resp. exactly M/K − 1 m-players) play K on the considered issue. Thus:

P
(
vm−1 = M

)
=

(
m− 1

M/K

)(
1

K

)M/K (
K − 1

K

)m−1−M/K

P
(
vm−1 = M −K

)
=

(
m− 1

M/K − 1

)(
1

K

)M/K−1(
K − 1

K

)m−M/K

We obtain

P
(
vm−1 = M −K

)
(K − 1)P (vm−1 = M)

=
M/K

m−M/K

The strategy σK is a best reply for player j if and only if this ratio is larger

than or equal to 1, or equivalently M ≥ mK/2. �

A.7 Proof of Remark 3

Under the equilibrium of Proposition 2, when M = m + 1, we have by as-

sumption m even. As each minority player allocates 2 votes on any targeted

issue, and as the average number of votes of the minority group per issue

is m, the scenario in which the minority group allocates exactly m balls on

each issue realizes with positive probability. In this scenario, the minority

wins no decision.

Under the equilibrium of Proposition 3, the number of majority votes

per urn is equal to M , and it is divisible by K, the number of votes that

each minority player allocates on her chosen issue. As the total number of

votes of the majority exceeds the total number of votes of the minority, a

possible scenario is one where the minority and the majority are tied on a

given number of issues, while the other issues receive a majority of majority

votes. If all ties are resolved in favor of the majority, the minority wins no

decision.

As the majority group has a larger amount of votes than the minority,

there must always be an issue with more votes from the majority than from

the minority. Therefore, the minority can never win all decisions. �
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A.8 Proof of Proposition 4

Assume that M ≤ mK, and define k ≡
⌊
Km
M

⌋
. Note that k ∈ {1, . . . ,K}.

Let σ be a minority profile satisfying the two conditions of the proposi-

tion. For each player, and each allocation played with positive probability,

there is at least one issue receiving at least K
k votes from this player. By

symmetry across issues, each player allocates with positive probability at

least K
k votes on each issue. As a result, each issue receives at least mK

k

votes from the minority with positive probability.

Let τ be a majority profile and let vM be a majority allocation played

with positive probability. There exists at least an issue k receiving no more

than M votes from the majority. Since k ≤ Km
M , it follows that mK

k ≥ M .

Hence the minority wins the issue k with positive probability: pm(σ, τ ) > 0.

�
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