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1. INTRODUCTION

For the class of undiscounted convex models of optimal growth, it has been known since Gale (1967)
that existence of optimal (in the sense of overtaking) solutions cannot be proved in general if the
“golden rule” capital stock is not unique. Soon, however, it turned out that uniqueness is not sufficient
for the existence of an optimal solution. Brock (1970), indeed, proved existence under this condition,
but used the weaker optimality criterion know as maximality (or weak overtaking optimality) and
presented an example of a maximal steady state that is not optimal. Peleg (1973) then pointed out
that the same example can be used to prove non-existence of optimal paths, implying that, without
additional assumptions, it is not possible to strength Brock’s existence theorem.

There are only few published examples of non-existence: the Brock-Peleg one, one reported in
Khan & Piazza (2010), one contained in a paper by Leizarowitz (1985) and finally the one provided
in a paper by Fabbri et al. (2015). While the first two relate to different two-sector one capital
good discrete models, the last two are in continuous time. Still, the two-dimensional Leizarowitz
(1985) example is framed in reduced form, while that in Fabbri et al. (2015), explicitly relating to
a growth model, has an infinite-dimensional state space. So, while it has been already established
that in discrete time non-existence is possible even with a one-dimensional state space, it is not clear
which is the minimum dimension for non-existence for continuous time models'. We here report a
new example showing that this minimum dimension is 2. In other words, our example confirms the
conjecture advanced in Brock & Haurie (1976) p. 345 for optimal growth models:

We have mot yet constructed an erample where the steady state T is unique but no overtaking optimal
program exists from some 9 while a weakly overtaking optimal program exists from our x°. Such an example
will take some work to construct because it seems that the state space will have to be two dimensional whereas
in discrete time as shown in Brock (1970) we can get by with a one-dimensional output space.

2. THE MODEL

We consider the (n + 1)-sector single-technique case of the discrete capital model introduced
in Bruno (1967). In the system, there are n + 1 commodities: n pure capital goods and a pure
consumption good. The services of a primary factor of production, labor, are combined with the
services of the stocks of capital to produce the n+1 commodities. Technology is of the discrete type,
and only n + 1 processes, one for each good, are available.

The superscript 7' denotes transposed matrices, (-,-) represents the internal product in R™. A
unit of the j-th capital good needs to be produced a;; units of the i-th capital good and ¢; units
of labour, whereas one unit of the consumption good needs «; units of the i-th capital good and £,
units of labour, so that the technology is described by a vector and a matrix of capital coefficients
A= [aij]?,j:lv a = [al,ag,...,an]T, and a vector £ and a scalar £, of labor input coefficients
0= [0, 0y, ... 0], b, Let k(t) = [k1(t), ka(t), ..., kn(t)]" represent the stock of capital goods at a
given time t > 0, and z(t) = [z1(t), 22(t): ..., 2, (t)]" , and z.(t) be the intensities of activation of
the production processes at that time, chosen by the social planner. Assuming that the flow of new
capitals is accumulated and that capitals decay at a constant depreciation rate § > 0 (the same for
all capital goods), and that the initial state of the system is kg > 0, then the state equation is given
by the n-dimensional system

(1) k(t) = —0k(t) + z(t), t > 0; k(0) = ko.

Assume that the labour flow available at every t is constant and normalized to 1, and that every
unit of capital good instantaneously provides one unit of production services. Then the production
is subject to the following set of constraints, holding for all ¢ > 0:

(2) Azx(t) + z.(t)a < k(t),

Tt is known (see e.g. Example 4.1 of Leizarowitz, 1985 or Example 4.4 of Carlson et al., 1991) that optimal
trajectories exist for continuous time scalar systems.
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(3) (6, 2(t) + we(t)le < 1,
(4) (t) 2 0,z.(t) = 0.

Assuming a linear utility and a discount factor p > 0, the problem is that of maximizing

+oo
6)  Hewak)= [ e
0
over the set of admissible controls
X (ko) = {(v,2.) € Li,o(0,400; RYTY) ¢ (1) — (4) hold at all ¢ > 0}.

Remark 2.1 Since from (1) one derives k(t) = e %%k + fot e~ 9(t=%)z(s)ds, the solution k is in the
space VVI{)C1 (0, 400; R™), and trajectories k are always nonnegative. Moreover, if vector ¢ is strictly
positive, we may define ¢ := (3} 6_2)1/2 and check that ||k(t)|| < [|ko|| + ¢/d, V&t > 0, that is,

i=1%
trajectories are uniformly bounded by a constant depending only on k. O
Due to (3) and (4), when p > 0 the utility is finite for all admissible controls but, on the contrary,

when p = 0 it may be infinite valued. We take into consideration the following criteria of optimality.
Definition 2.2 A control (z*,z}) in X (ko) is optimal (or overtaking) at ko if

T

lim inf / e Pk (t) — z.(t))dt >0
T—+oco 0

for every other control (x,z.) in X (ko). If k* is the trajectory starting at ko and associated to

(x*,x%), then (k*; (x*,x¥)) is an optimal couple.

Definition 2.3 A control (x*,x%) in X (ko) is mazimal (or weakly overtaking) at ko if

T
lim sup / e P (xk(t) — zo(t)) dt > 0.
0

T—+o0

for every other control (x,z.) in X(ko). If k* is the trajectory starting at ko and associated to
(z*,2%), then (k*; (z*, %)) is a mazimal couple.

Every optimal control is maximal but the viceversa is false in general.
We here list the assumptions that will be used throughout the paper.

Hypothesis 2.4 1. The matriz A is semipositive, that is, a;; > 0 for all i and j and there is
at least a strictly positive element;
2. The vector a is semipositive, that is, « > 0 and «; > 0 for at least one i.
3. The vector £ is positve, that is, £; > 0 for all i; also ¢, > 0.
4. A is indecomposable;?

2.1. Golden Rules

The aim of this section is to define golden rules, that is, stationary solutions supported by station-
ary prices. Some properties of Hamiltonian functions will prove useful for the arguments developed
afterwards. We define the current value Hamiltonian associated to the problem as the function

2In economic terms, this assumption means that each capital good enters directly or indirectly into the production
of all capital goods. Since the vector « is semipositive, this also implies that each capital good enters directly or
indirectly into the production of all goods. Indecomposable semipositive square matrices have some useful properties:
they have a strictly positive maximal eigenvalue p (the Perron Frobenious eigenvalue), right and left eigenvectors
associated to this root are unique (up to multiplication by a scalar), and (I —AA)~! > 0, whenever \ is a nonnegative
scalar such that puX\ < 1 (see e. g., Kurz & Salvadori, 1995, Theorem A.3.5).
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h : R} x Ry x R} x Ri — R given by h(k,\,z,2.) = x. + (A, 2—0k) and the mazimal value
Hamiltonian as

(6) H(k,\) =sup{h(k,\,z,z.) : (z,2.) >0, Ax + zeax < k, ({, ) + zle < 1}.

The maximization process through which H is computed, corresponds to solving the following linear
programming problem

(7) max[(\, z) + x.]
subject to
(8) Az +z.a <k, {lz)+zxl.<1, (z,x.)>0.

which has feasible region
U(k) ={(z,z.) € R x Ry : (8) holds}.
The corresponding dual problem is
(9 minl(g k) + ]
subject to
(10) A< ATq+wet, 1< (o, q)+wle., q>0,w>0,

where (q,w) € R™ x R are dual control variables having the meaning, respectively, of rental rates
of capital goods and wage rate (i.e., the multiplier associated to the constraint of availability of
labour). We denote the feasible region of the dual problem by

V(A) = {(q,w) € R} x R : (10) holds}.

Remark 2.5 The set U(k) is nonempty and compact as a consequence of Hypothesis (2.4.4), for
every given and positive k, so that the maximum is attained at some (z*,z}) and, equivalently (see
e. g., Franklin, 2002, Section 1.8), there exists an optimal solution (¢*,w*) of the corresponding dual
problem, moreover

(11) <)\,1’> +'1:C S <k7q> + w, V'T’axCaQ7w
Aa®) + ol = (k,q") +w”.

The natural conditions of optimality associated to the problem are the following:

k(t) = —0k(t) + z(t), t>0
k(0) = ko
(12) A(t) = (p+ 6)A() — q(t), t>0

x(t), z.(t)) € argmax{(A(t),x) + zc : (z,x.) € U(k(t))}, t>0

q(t),w(t)) € argmin{(k(t),q) + w : (¢, w) € V(A())}, t>0

As a consequence of the previous remarks, we define golden rules as follows.

Definition 2.6 A golden rule® is a stationary solution (k,Z,Z.,\, 0, q) of (12).

3Golden rules are sometimes called modified golden rules when p > 0.
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3. SUFFICIENT CONDITIONS OF OPTIMALITY

We briefly discuss sufficient conditions of optimality for the problem, showing in particular that
when p > 0 the golden rule is overtaking optimal, while when p = 0 it is maximal. In the last section,
where the main example is presented, we will show that the golden rule is not optimal when p = 0.

3.1. The discounted case

Assume now that p > 0. The following theorem holds.

Theorem 3.1 Let Hypothesis 2.4 be satisfied. Assume also ko € R}, (z*,27) € X(ko), and that
there exists \*,q* : Ry — R} and w* : Ry — Ry, with \* absolutely continuous, ¢* and w*
measurable and locally bounded, so that (kK*, \*,x* x%, ¢*,w*) satisfies (12) for almost every t > 0.
If in addition

(13) lim e™** (k*(t), \*(t))= 0

t——+oo

then (k*; (z*,2%)) is an optimal couple.
The proof is standard and we omit it for brevity.

Theorem 3.2 Assume Hypothesis 2.4. Denote by ji the Perron-Frobenius eigenvalue of A. Suppose
that § < p~ and 0 < p < u~' —§. Then there exists a unique golden rule (k, T, Tq, \, 0, q), given by
Zo=[6(6,(I =64 a) + )7, & =06zl —5A)"
k=2 — §4)a, @ = [(5 +p)(a, [ — 6+ p)AT] 0+ ec}
A= [I-(5+p)AT] e, g=(p+0)A

-1

Moreover, for p >0, (k,Z,Z.) is optimal.

Remark 3.3 Note that the assumption § < p~! says that the system is vital, meaning that the
production can be strictly greater than mere reproduction of capital goods after decay. As a conse-
quence, the matrix (I — JA) is invertible, with positive inverse (I —§A)~!, as A is indecomposable.
Similarly 0 < p < p~! —§ implies (I — (64 p)AT) is invertible with positive inverse (I —(6+p)AT) ™1
PROOF OF THEOREM 3.2: We show first that (12) is uniquely satisfied (among stationary solu-
tions) by (k,Z,Z., \,w, ). Note that the first and third equation in (12) imply Z(t) = = dk, and
g(t) = ¢ = (p+ ). Note also that the argmax/argmin conditions in (12) coincide with (8) (10). We
then multiply the first inequality in (8) by ¢, the second by w and sum them up

(14) (AZ,q) + T(a, @) + (6, 2)0 + Tlew < (k,q) + 0.
Similarly, we multiply the first inequality in (10) by Z, the second by Z. and sum them up
(15) (A7) + 2 < (7, ATQ) + Tefo, @) + (6, 2)0 + Telew.

By (11), the right hand side in (14) coincides with the left hand side in (15), so that all inequalities
hold as equalities. As a consequence, any golden rule needs to be a solution (k,Z., A, w) of the
following simplified system

Ak +z.a <k, (6Ak+Z.a—k,\) =0

SULR) + Tl <1, (0(l,k) + Tl — 1w =0
(16) AS(@B+p)ATAN+wl, A= (5+p)ATN—wl, k) =
1<+ p) Ny +wle, (1—(5+p)la,)+ 1I)€)53
>0, Z.>0, A>0, w>0.

|
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We claim that w > 0. Indeed, assume by contradiction @ = 0 and let e,, be the eigenvector associated

with the Perron-Frobenius eigenvalue p. Then, from the third line in (16) we derive (e,,\) <
w(p + 8){eu, A), which implies 1 < p(p + §), in contradiction with the assumptions. Now @ > 0
imply that the inequality in the second line of (16) holds as equality. Moreover, since (11) implies
T, = w+p(\, k), also Z. > 0, so that the fourth line of (16) holds as equality. Next we show that k& > 0.
In fact, as (I —0A)~! is positive, the first inequality in (16) is equivalent to k > Z.(I — 6 A)~a > 0.
The fact that k > 0 implies that the inequality in the third line of (16) is satisfied as equality. Then,
from Remark 3.3, A = w(I — (6 + p)AT) "1, so that also A > 0. As a consequence, the first line of
(16) is satisfied as equality, that is k = Z.(I — §A)~'a. Summing up, the unique solution of (16) is
obtained by solving as equalities the inequalities of the system, that is

=z.(I —54) 1a, 60 k) +Tcle =1
=w(l — (6 +p)AT)" 1, 1= (5+p)la,\) + 0 L.

which has as unique solution that described in the claim of the theorem. When p > 0, (13) is trivially
satisfied by (k, A), and the golden rule is optimal for Theorem 3.1. Q.E.D.

3.2. The undiscounted case

Throughout this subsection we assume p = 0. In this case, the application of the results by Brock
& Haurie (1976) (see also Carlson et al., 1991, chapter 4) provide the existence of a maximal couple
starting at a kg from which the steady state k can be reached in finite time. Some preliminary work
is needed.

Proposition 3.4 Assume p = 0. The Hamiltonian H defined by (6) has a unique saddle point at
(k, ), in particular H(-,\) has a mazimum at k, and H(k,-) has a miminum at \.

The proof is standard and we omit it for brevity. Now, we define the compact, convex, and possibly
empty set V(k,v) = {(z,z.) : (z,z.) € U(k),z = dk + v}, and

| max{z.: (z,z.) € V(k,v)} V(k,v)#0
L(k,v) = { PSS Vik,v) =10

and the value-loss function as
(18) 0(k,v) = L(k,0) — L(k,v) — (A, v).

Remark 3.5 Lemma 4.3 in Carlson et al. (1991) implies £(k,v) is concave in both variables.
Moreover,* the arguments at pages 64-65 (in particular (4.84)) there contained imply #(k,v) > 0 for
all (k,v) in R™ x R™.

The original problem is paired with the associated Lagrange Problem (briefly, ALP) of minimiz-
ing the integral of the value-loss function along (k(t), k(t)). A solution is defined as an absolutely
continuous function k* : [0,00) — R™, such that k(0) = kg, and

T
(19) 1mmé[mmﬁmfmwmm»ﬁzo

T—o0

Theorem 3.6 Assume ko € R?, and that k is reachable from ko, along an admissible trajectory,
in finite time. Then:
(@) there exists a solution of the ALP;
(it) all solutions of ALP are mazximal trajectories for the original problem. In particular the golden
rule is a mazimal solution.

4Note that the golden rule stock is also the unique stationary solution of the maximization problem (4.34)
defined in Carlson et al. (1991), moreover our H coincides with the Hamiltonian # there defined in (4.81),
H(kv )‘) = SuvaRn {E(k,’l)) + <)‘7 U>}
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PROOF: The proof of (i) follows from Theorem 4.7 in Carlson et al. (1991), as L(k,v) is concave,
and (k, \) is a saddle point for the Hamiltoninan H. Moreover the set of velocities ¢ (k) = {z — Jk :
(x,z.) € U(k)} is a compact and convex set. The proof of (ii) can be deduced from the proof
of Theorem 4.9 p.69, where the fact is shown under Assumption 4.5 (and not 4.4 as erroneously
reported there) p.64. Q.E.D.

Good controls defined below are important as they yield a finite integral of value-loss.

Definition 3.7 A control (z,x.) is good if the associated trajectory k satisfies

T
(20)  liminf / [£k(e) k(1)) — £(R,0)] dt > —oc.
T—oo Jo

Remark 3.8 Observe that [ L(k(t),k(t) — L(k,0)dt equals [} —0(k(t), k(t))dt +
(A k(0) = k(T)). Since Remark 2.1 implies k(T) is uniformly bounded in T, and Remark 3.5
implies 0(k(t), k(t)) > 0 for any ¢, the condition (20) is verified if and only if the following milder
condition holds: limsupp_, o fOT L(kt), k(1)) — L(k,0)dt > —oc.

Lemma 3.9 Assume that kg € R”} is such that there exists an admissible control stirring ko to k
in finite time. Then any maximal (in particular, optimal) control at ko is good.

PROOF: Assume (z,x.) is a maximal admissible control at ko, and let k be the associated trajectory.
Consider (y,y.) admissible at ko, with (y,y.) stirring ko to k in a time Tj and then coinciding with
(Z,%.) in (Tp, +00). Then for all T' > T:

T T, To T
/O (2e(t) — welt)) dt = / (e(t) — ye(t)) dt — / (e(t) — Zo)dt + / (we(t) — ) dt
To To T . _
< / (2o(t) — yo(8)) dt — / (2o(t) — 2)dt + / [£(k(0). k(1)) — £(5,0)] at

The limsup as T tends to 400 of the left hand side is nonnegative, as (x,z.) is maximal, and the
first two addenda in the right hand side are bounded. As a consequence, (k(t), k(t)) satisfies (20) in
view of Remark 3.8.

Q.E.D.

4. THE EXAMPLE OF NONEXISTENCE

We introduce the following example and study the behaviour of specific solutions both in the
discounted and undiscounted case. We set

(21) n—275—§,ec—1,A—“ﬁ %g} Q—Hﬁ] e—“],

so that Hypothesis 2.4 is verified, and A has eigenvalues (/57 4+ 11)/16, with =1 > 2/3. Theorem
3.2, implies the golden rule is (independent of p and) given by

23 23
9 63 _ 12
(22)  Fe=-, I= . k=
9 26 13
63 1

with associated support prices depending on p:

56—60p 56—60p

(23) _ 72p* —300p + 56 5 279484 o4 p | T
w = , = , _

81p? + 252 24p+112 1 3 24p+112

27p%+84 27p2+84
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Now consider system (1) and choose the admissible controls that satisfies (2) (3) as equalities.
By inverting those relations, one obtains

oo [)=[F 1Y)

which substituted into (1) imply

(25) ka(t) = —gkm Tha(t) + 5
ka(t) = Gh(t) + % 2(t) — -
The system has purely imaginary eigenvalues so that one obtains the periodic solutions
2\/ Tt 2\/ Tt 4 23
+ 42

(26) kl(t) = C1 cos =5~ — cpsin
ko (t) = 3 (e + 3\fcl) sin 2ft 1 (3v/Teg — e1) cos 2—‘” + 33

where the constants ¢; and ca depend on ko = (k9 k9):

- - 1
(27) k? - kl = (1, kg - kQ = %ﬁCQ — gcl.

The associated controls (Z, Z.) can also be computed by means of (24):

21(t) = %(Cl - 2\ﬁ02) CcoS ZT\ﬁt - % (202 + Q\ﬁcl) sin%‘ﬁt + %
(28) Bo(t) =1 (561 + \ﬁCQ) cos 2ft % (\ﬁcl — 502) sin %‘ﬁt + %
(\[02—761 ) cos 2ft + 3 (Tea+ VTer) sinzT‘ﬁt+%.

Note that (27) imply that ¢; and ¢y are small for small differences of ko from k. As a consequence,
for ¢; and ¢y small enough: a) the whole trajectory is contained in a ball, centered at k& and of
arbitrarily small radius; b) (£, Z.) is also cycling at an arbitrarily small neighborhood of (Z, Z.); ¢)
since for kg = k the trajectory k(t) = k satisfies strictly the positivity constraints (4), that remains
true also for kg close enough to k; hence, the constraints on the associated dual variables (the argmin
condition in (12)) hold unchanged, and support prices associated to k,Z,%. coincide with ), g, @

_Assume now p > 0. As a consequence of the previous arguments, for ko close enough to k,
(k, (#,2c), A, @, w) satisfy the assumptions of Theorem 3.1 and is hence optimal. We have then proved
the following result.
Proposition 4.1 Let kg > 0. The system (1)(2)(3)(4), with data (21), has a periodic solution
(k,(2,2.)) given by (26)(28). For p > 0 and for ko sufficiently close to k, the admissible couple
(12:, (&,2.)) is optimal at ko, and it is supported by stationary prices (X, q, ).

Now we prove that, in the specific case here described, any initial condition kg > 0 can be driven

to the steady state k in finite time by means of an admissible control.

Lemma 4.2 Let ko € R?, kg > 0. Then there exists T(ko)>0 and a control (z,%.) € X(ko) such
that the associated trajectory k(t) starting at ko reaches k at time T (ko).

2>
Q
—
~
~—
Il
Wl w

PRrROOF: We first consider the case in which kg = ok, for a 79 > 0. If 49 = 1, there is nothing to
prove. If vy > 1, we choose &(t) = 0, Z.(t) = 0, for all > 0, so that the constraints are trivially
satisfied. With the choice T'(ko) = 6" In~g, we obtain k(T(ko)) = k.

If instead 79 < 1, we choose Z.(t) = 0, and &(t) = gk(t), for all £>0.] As it can be shown by
direct proof, with the choices T'(ko) = (9 —6)"'In(1/7), (2/3) < g < (23/31) the pair (k, (z,%.))
is admissible and k(T (ko)) = k.

Now assume ko ¢ {vk : 70 € RT}, kg = (ko1, ko2) and that, for instance, koa/ko1 > k2/k1. We
define (y,y.), and the associated trajectory kY, as follows y.(t) = 0, y1(t) = gki(t), and y2(t) =
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0, for all t> 0, with g a positive constant. The trajectory kY reaches {yk : v € R*} at time

= (1/g)In (kog k1 (ko Eg)_l) > 0, and the chosen control (y,y.) is admissible when 0 < g <
min {6, (a11)7 1, ko(kragy) ™1, (Elklo)_l}. Once on {7k : v € R*}, we may stir the trajectory to k
by making use of the control (&, %) built in the first part of the proof, pulled back of the time Ty,
and reach the steady state in time T'(ko) = Tp + T (k¥ (T0)). Q.E.D.

4.1. The undiscounted case

We use the previous example to show that the golden rule given by Definition 2.6 may fail to
be optimal when the discount p is null. More in general, we will prove that when p = 0 the cycles
described by (26)(28) are maximal but fail to be optimal for all ko close enough to k, and derive as
a particular case that the golden rule (k,Z,Z.) is maximal and not optimal at k.

Remark 4.3 Regardless the initial condition, when p = 0 the utility yielded by the control Z.(t)
described in (28) in a time interval of a period length equals the utility yielded by Z. in the same
time span. Note that the period of the cycle is P = 37/+/7, moreover

- % g
/ Zo(t)dt = / " Todt = 2—\1[#, Vo > 0.

Lemma 4.4  For all initial capital stocks ko € R, there exists a mazimal couple starting at ko. In
particular, the cycles described by (26)(28) and the golden rule (k,Z,T.) are maximal.

ProoF: In order to apply Theorem 3.6 it is enough to show that cycles described by (26) are
minimizers of the integral of losses described in (19). Note that

O(h(1), k(t)) = Zo — 2o(t) — (A a(t) - ok(r)).

Moreover, since (k, #,2.) are supported by the same prices ), g, w of the golden rule, (11) implies

+(NT) = [(k,q) +w] =0= 2c(t) + (N &(t) K > }

Subtracting the third term from the first term in the previous equalities, and recalling that ¢ = oA
and T — dk = 0, one has

(20) 0= —aelt) - (N a(t) - k(1) ) = 00h(2), k(t)).

Then cycles k are minimizers for ALP and (l;;, #,%.) is a maximal couple. Q.E.D.

Theorem 4.5 There exists a neighborhood U of k in R™, such that for all ko in U the cycles
(k,&,2.) starting at ko and described by (26)(28) are not optimal at ko. Moreover, with data (21),
there is no admissible control which is optimal at such k.

From the previous Theorem, we derive the following corollary.
Corollary 4.6 The golden rule (k,Z,%.) is not optimal at k,and there is no admissible control
which is optimal at k.

PROOF OF THEOREM 4.5: We start by proving that the cycles (k, (&,4.)) starting at ko are not
optimal, by building a control (y,y.) not overtaken by (Z,Z.). Assume 6 > 0 is such that for all
ko € B(k,20) the cycles described by (26)(28) starting at ko are supported by stationary prices
(A, g, W), then select kg € B(k,#). For an arbitrarily chosen 7 > 0, set

{ y(t) =0, y.(t) = 2.+ 86, t €[0,7]
y(t) =zt —71), y.(t) =2 (t—7), t€(1,400).
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By explicit calculations, one may see that there exist positive #; and 71 such that for all 0 < § < 6,
and 0 < 7 < 71 the constraints (2) (3) (4) are satisfied in [0,7] (for instance, 71 = 3/2, g; =
(26 — 7e)[42 (1 + 6¢e)]71). We assume also 7 < 72 where 75 > 0 is such that [|kY(m2) — kol < 6, so
that the cycle starting at kY(7) and described by (26)(28) is supported by stationary prices (X, g, o).
Note that (27) and (28) imply [ yc(t)dt > [J &c(t)dt + 76. By direct calculation one obtains (see
also Remark 4.3, where P is defined) that for all n € N

T+nP
(30) A (elt) — 2 (t))dt > 76 > 0,

so that (&, Z.) cannot be optimal.
Now we show that no admissible strategy can be optimal at kg. Assume by contradiction that there
exists (Z,Z.) € X (ko) optimal at ko. Then for e > 0, there exists T > 0 such that

T T
(31) / (Fo(t) — o(t))dt > —, and / (Fo(t) — ye())dt > —e, for all T > T.
0 0
Since T +— fOT(yc(t) — Z.(t))dt, is continuous and (30) holds, there exists v > 0 such that
T 70
/ (ye(t) — &c(t))dt > 2 for all T € [r,7 + v].
0
Set T,, = 7+ nP, and n. = min{n € N: T,, > T.}. Then, by periodicity
T T T -0
62 [ @) a0t = [ (el = o)t + [ (@) - gl = 5 -
0 0 0

for any T € [T),, T, + v], n > n.. We show first that

Th+v T U
(33)  liminf /O ( /0 (ic(t)ic(t))dt> ar > %

n—oo [, 4+ v

Note that, if * = fOT(i"C(t) — &.(t))dt, one may split the previous integral as follows, and use (31)
and (32) to derive

(34) /OTW (*)dT:/OTnE (>«<)dT+§; /TTH} (*)dT+§/Ti+l (x)dT

0

>/0Tne(ﬂk)dT—F(n—ng—i-l)(2 E)’U—(P—’U)E(n—ng)

1 Tntv OTv 1
7> 7Y -
Tn+v/0 (%) d Z5p €—|—0<n>

with o(1/n) tending to 0, as n tends to +oo. Then (33) holds when e < (67v)/(4P). On the other
hand, Remark 3.5 and (29) imply Z.(t) — &.(t) < (X, k(t) — k(t)) so that

(35) ;/OS (/OT (Fo(t) - aﬁc(t))dt> dT < (3, % /OS (k) ~ k(1)) az)

Note that both (Z,Z.) and (Z,Z.) are good controls in the sense of Definition 3.7 (the first by
the direct proof given in Lemma 4.4, the second by Lemma 3.9). Hence, by Lemma 4.7 p.69 in

Carlson et al. (1991) (see also Definition 3.7 and the remarks below) one has limg_, fos k(T)dT =
limg_, 00 fOS E(T)dT = k, so that passing to limits in (35) and comparing with (33) we derive a
contraddiction. Q.E.D.

so that
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