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Abstract. In order to investigate strategic interactions between a “global north” and
a “global south” we introduce a two-country extension of the model in Golosov et al.
(2014). We consider different transfers between the two regions, including transfers that
can improve the abatement technology. Our model can accommodate several kinds of
heterogeneity, including in preferences, time discount rates, and damages resulting from
the stock of accumulated GHG. We solve for both planner’s solutions and non-cooperative
equilibria. We then calibrate our model in order to study quantitative differences between
these solutions and to quantitatively explore the role of heterogeneity and Knightian un-
certainty. We characterize emissions, damages, consumption, transfers, and welfare by
computing the Nash equilibria of the associated dynamic game. We then compare these
to efficiency benchmarks. Further, we investigate how (deep) uncertainty affects climate
outcomes. We develop a general model for the study of optimal control and differential
games that are linear-in-state, which we term the Integral Transformation Method (ITM),
which encompasses several existing models as special cases.

Keywords: Integral Transformation Method, Analytical integrated assessment model, dif-
ferential game, climate policy, robust control

JEL classification: C7, Q5, Q54, D62, H23.

We thank participants at the 2025 SAET meetings in Ischia, Italy, the 2024 Paris Conference on Dynamic Games and

Applications, the 2024 INFER Conference at La Sapienza University of Rome, the 2024 UMI Climate Group, at Luiss, Roma,

the 2024 SPOC Workshop at Politecnico di Milano, the 2024 Ecolysm workshop at Università di Roma La Sapienza, the 2024
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2023 Workshop DATA at Università di Torino, the 2023 Viennese Vintage Workshop at TU Wien, the FIRE conference

2023 in Lyon, the 2023 Time-Space Evolution of Economic Activities workshop in Rome, the 2022 Viennese Conference

on Optimal Control and Dynamic Games at TU Wien, and seminar participants at Université Bretagne Occidentale (FR),
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1. Introduction

Anthropogenic climate change is unprecedented. Its effects will be experienced over a
long horizon, and are expected to affect different regions in disparate ways. Consequently,
incorporating time, heterogeneity, strategic interactions, and (deep) uncertainty consider-
ations is at least as important in climate economics as in any other economics subfield.
Differential games have been the framework of choice in many early modeling attempts
in the field in the 1990s and early 2000s. However, certain limitations have led to this
approach being somewhat less represented in the more recent literature, which often also
abstracts from dynamic considerations altogether. Harstad (2012b), for example, points to
the economic implications of restrictive linear-quadratic (LQ) specifications.1 Such assump-
tions can rule out economically meaningful non-linear effects, and often lead to implausible
equilibria driven by bang-bang solutions. They can also result in multiplicity of equilib-
ria, often leading researchers to concentrate on a (generally unique) linear Markov Perfect
Equilibrium (MPE) even though more efficient non-linear MPE might co-exist. More re-
cently, Bernhard (2024) has questioned the conceptual relevance of the latter nonlinear
MPE, which are typically constructed in the presence of constraints on either the controls
or the state. The class of games tackled here are free of state constraints and our treatment
of control constraints is standard in optimization theory, see for example Krastanov and
Ribarska (2025). In a recent promising contribution to this literatureJaakkola et al. (2023)
consider discontinuous Markovian strategies. Their framework allows them to obtain the
entire set of symmetric Markov-perfect Nash equilibria. Importantly, they confirm that the
best equilibria in their model are superior in terms of welfare to those which the previous
literature has focused on. In this paper, we propose a direct optimization method which
allows for the presence of different types of discontinuities in the optimization problems
involved. As our setup involves heterogeneous players, the room for asymmetric equilibria
is much larger in our case and we do not attempt to compute the entire set of (symmetric)
MPE as in Jaakkola et al. (2023).

In this paper we build on the simplified version of Nordhaus’s three-reservoir model de-
veloped in Golosov et al. (2014). In order to investigate strategic interactions, we introduce
a two-country extension, which we interpret as a stylized model of interactions between a
“global north” and a “global south.” Following the general approach in Nordhaus and Boyer
(2003) and Nordhaus (2018), the model accounts for climate damages created by economic
activity.2 We assume that input use in production creates a flow of GHG emissions, and
the accumulated GHG emissions damage each country’s payoff function. We will impose a
utility damage specification that is linear in the stock of greenhouse gas emissions (GHG),
which will be the key state variable in the model. Although this assumption is restrictive,

1See, for example, Dutta and Radner (2004, 2006, 2009).
2See, for example, Weyant (2017) and the references therein for a review and Traeger (2023) for a more

recent discussion. Recent climate modeling in economics assumes a simplified climate dynamics; see, for
example, Dietz and Venmans (2019), Hänsel et al. (2020), and Dietz et al. (2021), and Vosooghi et al.
(2022). Our findings do not depend on the details of the climate model employed, and we use the model in
Golosov et al. (2014) as an illustration.



DIFFERENTIAL CLIMATE GAMES WITH HETEROGENOUS PLAYERS 3

it is a reasonable approximation for modest increases in the GHG stock; see, for example
Dietz and Venmans (2019).

We incorporate a general non-linear abatement technology that allows for a reduction of
GHG in the atmosphere. This captures, for example, investing in reforestation, as well as
in carbon-capture technologies that can directly affect the GHG stock. We then investigate
the role of a variety of transfer schemes, including technological transfers. A country-
specific climate sensitivity parameter is used to capture factors that can make it more
vulnerable to climate change due to, for example, geography, or the ability to engage in
adaptation. Each country chooses an abatement effort towards reducing the stock of GHG
emissions. As with the climate sensitivity parameter, the abatement technology can capture
reforestation efforts, carbon capture and storage systems, etc. We model the interactions
between North and South through transfers and standard non-linear catching-up equations.
We consider different transfers between the two regions, including transfers that can improve
the abatement technology. The model can accommodate several kinds of heterogeneity,
including in preferences, time discount rates, and damages. The main contribution in
Golosov et al. (2014) is in deriving a simple intuitive expression for the optimal carbon tax.
We are able to solve for both planner’s solutions and non-cooperative equilibria. We then
calibrate our model in order to study quantitative differences between these solutions in
terms of emissions, damages, and output and to explore the role of heterogeneity. Finally,
we study an extension of the model that incorporates the effects of Knightian uncertainty.

Nash equilibria of the dynamic game in our model correspond to the solution of temporary
games indexed by time. Open-loop Nash equilibria are also MPE. The uniqueness of MPE
in the class of affine feedbacks is also discussed. To obtain comparisons between equilibrium
outcomes and the efficient frontier, we distinguish between a social planner problem without
country sovereignty constraints, where a “global planner” can relocate production from
one country to another, as well as the more realistic case of a “restricted planner,” who
is subject to a resource constraint for each country. In the special case of logarithmic
utility, linear production function, and a non-linear abatement function, we derive various
comparisons between the equilibrium and the efficient values of variables of interest, such as
consumption, abatement effort, and transfers between the two countries. We then calibrate
our model to illustrate the role of heterogeneity in time-discounting and climate vulnerability
between the two countries, as well as the role of the intertemporal elasticity of substitution.
Finally, we extend our model to a robust control framework; see, for example, Hansen and
Sargent (2008), as well as in a game-theoretic framework in order to investigate the effects
of uncertainty on various non-cooperative equilibrium outcomes.

We find that when the marginal abatement efficiency gains are small relative to the
marginal emissions created by production, it is not efficient to subsidize abatement in the
global south. Under logarithmic payoffs we find that in the Nash equilibrium there is over-
consumption both in the global north and (provided that technological differences between
the two are not too large) in the global south. The global south receives lower abatement-
technology transfers and under-invests in abatement relative to the social optimum. Global
emissions are higher and welfare is lower as a result. Our calibration points to some inter-
esting implications of heterogeneous climate vulnerability. Global emissions are higher in
the non-cooperative outcome than in the planner’s solution. In the Nash outcome under
asymmetric damages, the north emits more than the south, reflecting the higher resilience
to damages in the north. In contrast, in the symmetric case, the emissions in the south
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are closer to those in the north. As in the case without model uncertainty, non-cooperative
equilibria fall short of the planner’s solution when model-uncertainty is introduced. How-
ever, in the presence of model uncertainty, the planner’s and the non-cooperative solutions
are closer, as more cautious behavior provides a form of insurance towards adverse climate
outcomes. Indeed, we find that losses associated with Knightian uncertainty are asymmet-
ric in the following sense. If a planner uses a “worst case scenario,” while actual data is
generated by the benchmark (approximate) model, this obviously leads to some welfare
losses. But the losses are far larger in the reverse scenario, where data is generated by a
worst case distribution, while the planner optimizes according to the approximate model.
Thus, the cost of more conservative climate action can be thought of as paying insurance
against far worse climate outcomes.

A second contribution of our paper is in developing an abstract general model for “linear-
in-state” control problems and differential games. Studies related to the analytical tractabil-
ity of differential games in the optimization literature trace back to the 1980s; see, for
example, Dockner et al. (1985) for an early contribution and Mart́ın-Herrán and Zaccour
(2005) for a more recent discussion. In the former paper, conditions on the associated
Hamiltonian system are stated for the differential system to obtain explicit or implicit-form
solutions. There are several instances where the special structure of linear-in-state models
has been explored in the literature. Leading examples include Dutta and Radner (2004),
Chander (2017), Harstad (2012b), Harstad (2016), Harstad (2023), Battaglini and Harstad
(2016), Battaglini and Harstad (2020), and Boucekkine et al. (2022a). Our methodological
contribution consists of proposing an abstract framework for linear-in-state models, which
we term the “Integral Transformation Method” (ITM), that encompasses the equilibrium
analysis in many of the existing models.

We build on the game-theoretic setup in Dockner et al. (1985). Two important properties
of their setup are that the corresponding Hamiltonians are linear in the state variables, and
that the second-order cross-derivatives with respect to the state and control variables are nil
(additive separability). Importantly, this allows for non-linearity in the control variables,
thus reducing the scope for bang-bang solutions. Unlike Dockner et al. (1985) and Mart́ın-
Herrán and Zaccour (2005), we do not employ the Pontryagin principle. Rather, using
the linearity in the state, the original intertemporal optimization problem is transformed
into an equivalent class of temporary optimization problems in which, at each time, the
decision-makers take into account the marginal future contributions of the evolution of the
state variables to their intertemporal payoffs.3 Thus, despite the fact that the optimization
involved is “temporary” at each time t, the objective function at that date incorporates the
full expected future dynamics of the state variables.

The ITM has several mathematical and economic advantages over standard Hamiltonian
or dynamic programming approaches, including the ability to conveniently handle nec-
essary and sufficient conditions, discontinuities, infinite-dimensional variables, non-linear-
quadratic specifications, heterogeneity, and non-autonomous features, such as exogenous
technological progress.4 Finally, the ITM can be applied to discrete-time settings.

3Here we use the term “temporary” in parallel with the concept of temporary equilibrium in Grandmont
(1977).

4This does not speak to the issue of multiplicity of equilibria. The analysis of repeated games displaying a
unique symmetric MPE often uses specific linearity and separability assumptions; see, for example, Harstad
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The paper proceeds as follows. After a brief literature review, we provide a formal
treatment of the ITM in Section 2, prior to introducing our main application. Section 3
introduces our main topic, which is the application of the ITM to an analytical integrated
assessment model. Section 4 studies the non-cooperative outcomes and two normative
benchmarks, while in Section 5 we present some quantitative findings from the calibrated
model. Section 6 introduces Knightian uncertainty and apply the ITM in the context of
robust control. A brief conclusion follows. The Appendices contain the details of the
proofs, as well as other findings derived for special cases of interest and possible additional
applications.

1.1. Relation to the Literature. There is extensive literature on international climate
and environmental agreements. Early papers include van der Ploeg and de Zeeuw (1992),
Long (1992), Tahvonen (1994), Xepapadeas (1995), and Hoel (1997). More recent surveys
include, for example, Kolstad and Toman (2005), and Aldy and Stavins (2009). Jorgensen
et al. (2010) provide a detailed survey focusing on the differential game approach to pollution
control. 5

Long (1992) investigated transnational emissions using a differential game between two
countries. As in our model, the open-loop Nash equilibrium is time-consistent although
in general not subgame perfect. Hoel (1997) considered a dynamic game with asymmetric
countries and global emissions, and studied the feasibility of an international (uniform)
carbon tax.6 Tahvonen (1994) concentrated on numerical simulations and emphasized the
need to balance short-term versus long-term costs and benefits in the evaluation of climate
agreements. In contrast, several recent papers abstract from dynamics; see, for example,
Weitzman (2017), and McEvoy and McGinty (2018).

Following Tahvonen (1994) and Xepapadeas (1995), our work studies dynamic interna-
tional climate policy in a model where countries are heterogenous. As in Xepapadeas (1995),
we will emphasize the technological divergence across countries. Our framework is closer
to the one in Tahvonen (1994). He builds a differential game based on the DICE model;
see Nordhaus (2018), which includes different geopolitical regions. To obtain closed-form
solutions, Tahvonen (1994) assumes that each region’s objective is linear in both tempera-
ture and the global stock of emissions. In contrast to Xepapadeas (1995), Tahvonen does
not consider endogenous technical progress or optimally derived regional abatement efforts.
His main finding, obtained from simulations of his model, is that the cooperative solution7

is beneficial for developing countries, but it is more costly for the developed ones com-
pared with the non-cooperative Nash solution. The study of political processes related to
climate agreements typically concentrates on the design of efficient international climate ne-
gotiation schemes; see, for example, Dutta and Radner (2009) and Harstad (2012b, 2016).
Other studies emphasize coalition-formation and the stability of coalitions participating in
international agreements; see, for example, de Zeeuw (2008), or related voting schemes; see

(2012b). Differential games that are linear in the state variables can offer additional insights regarding non-
linear MPEs; see, for example, Mart́ın-Herrán and Zaccour (2005), who study the credibility of equilibrium
strategies.

5Another body of environmental differential games is devoted to natural resources; see, for example,
Dockner et al. (1989) and, more recently, Colombo and Labrecciosa (2019).

6See Insley and Forsyth (2019) for a more recent reference.
7The cooperative solution corresponds to the efficient solution when all regions are given the same weight.

We will follow the same convention in what follows.
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Weitzman (2015, 2017). However, since Xepapadeas (1995), few researchers have focused
on the role of technological asymmetries between countries on climate agreements.8

Of special note are several influential papers by Harstad, emphasizing different strategic
and dynamic aspects of climate negotiations. Harstad (2007) studies conditions under which
side payments across countries are efficient in internalizing externalities. Harstad (2012a)
considers the possibility of countries purchasing other countries’ “dirty” assets (or the right
to develop such assets). In a dynamic setup closer to ours, Harstad (2012b) studies a
discrete-time dynamic game where players contribute to the provision of public goods when
contracts are incomplete. The paper assumes linear abatement investment costs and addi-
tive benefits of technology. Under full commitment, the first-best can be implemented. If
countries cannot contract on their investments, a “hold-up” problem emerges because if one
country develops a better technology for cutting emissions, it will be expected to pay a higher
share of the burden to reduce collective emissions in the future. Harstad (2016) develops an
intertemporal framework in which countries pollute and can invest in green technologies.
The basic model involves a dynamic version of the common-pool problem. Without a cli-
mate treaty, the countries over-pollute and invest too little. Short-term emission-reduction
agreements can reduce participant countries’ payoffs since countries will under-invest if they
anticipate future negotiations. Chen and Shi (2022) study a dynamic game version of Nord-
haus’s Regional Integrated model of Climate and the Economy (RICE). Their analysis is
based on simulations used to compare Nash versus efficient outcomes. Vosooghi et al. (2022)
use an integrated assessment model with heterogeneous countries to study climate coalition
formation. They find that, given sufficient patience, the equilibrium coalition formation has
a specific mathematical form, which involves participation by several countries, and comes
close to internalizing the social cost of carbon. Jaakkola and Van der Ploeg (2019) intro-
duce breakthrough clean technologies in a multi-country world under different degrees of
international cooperation. They find that spillover effects would lead to double free-riding,
over-pollution, and underinvestment in clean technologies.

2. The Integral Transformation Method

Here, we elaborate on the Integral Transformation Method (ITM) to optimal control and
differential game models. Under certain conditions, a solution to such linear-in-state dy-
namic problems can be found through the solution of a family of “temporary” optimization
problems parametrized by time and including at any time, t, the expected future evolution
of the state variables and their marginal contribution to the respective objective functions.
As mentioned earlier, there are several instances in the existing literature where this struc-
ture is used in the context of specific models. Here we provide a a sufficiency theorem
in the context of a general framework that can be applied in various applications. More
precisely, we present a set of sufficient conditions for the ITM to apply in any determinis-
tic continuous-time, infinite-horizon, finite-dimensional control problem or non-cooperative
differential game. The ITM can easily be adapted to cases involving discrete-time, finite-
horizon, uncertainty, and infinite-dimensional variables; see Boucekkine et al. (2022a) for an

8Another stream in the differential game literature concerns the study of deforestation when the North
corresponds to a set of nations who wish to have as much tropical forest as possible, while the South has to
arbitrage between the exploitation of its forests (timber production) and agricultural activities. For example,
Fredj et al. (2004) consider subsidy schemes, which are similar in spirit to the transfer policies we study in
our paper.
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earlier application to a specific infinite-dimensional problem. We first develop our method
for the single-player optimal control and for the N -player Nash cases. An extension to the
case of Knightian uncertainty is discussed in Section 6.

In what follows, all finite-dimensional subsets and the functions involved are implicitly
assumed to be Borel-measurable. We will use ⟨·, ·⟩ to denote the inner product in Rn and | · |
to denote the norm of (finite-dimensional) vector spaces. Bold symbols will denote vector-
valued or, more generally, operator-valued objects. The key ITM properties are given in
Proposition 2.2 and Theorem 2.4. As the proofs are instructive, they are given in the main
text. The proofs of the subsequent results are shown in Appendix A.

2.1. The single-player case: optimal control. Consider the following optimal control
problem. Let X = Rn denote the state space and let U = Rk denote the control space.
Time is continuous and the time variable is denoted by t ∈ R+. We denote the state/control
trajectories by x(·) and u(·), respectively; thus, x(t) ∈ X and u(t) ∈ U. We assume that
the state equation is linear in the state variable, taking the form:

x′(t) = A(t)x(t) + f(t,u(t)), x(0) = x0 ∈ X, (1)

where9 A : R+ → L(X) and f : R+ × U → X. When, for a given u(·) : R+ → U, the
state equation is well posed, in the sense that it admits a unique global solution over R+,
we denote the latter by xx0,u(·)(·), or simply by x(·) when no confusion is possible.

We impose possibly time-inhomogenoeus constraints on the control variables as follows.
Given p ∈ N \ {0} and l : R+ ×U → Rp, the control trajectory must satisfy the constraint:

l(t,u(t)) ≤ 0, ∀t ∈ R+.

The objective functional is given in the following integral form

J (x0;u(·)) :=
∫ ∞

0
e−ρt[⟨a(t),x(t)⟩+ h(t,u(t))]dt, (2)

where a : R+ → X and h : R+ ×U → R. We introduce the following.

Assumption 2.1
(i) The operator-valued map A : R+ → L(X) is locally integrable. We denote the family

of evolution operators10 generated by A by {ΦA(t, s)}t≥s≥0.
(ii) There exists C > 0 such that

|f(t,u)| ≤ C(1 + |u|), ∀t ∈ R+, u ∈ U;

(iii) The map

R+ → X, t 7→ b(t) :=

∫ ∞

0
e−ρτΦ∗

A(t+ τ, t)a(t+ τ)dτ, (3)

9We are using the following standard notation: given two finite dimensional vector spaces Y and Z, we
denote by L(Y,Z) the space of all linear operators from Y to Z. These can be identified with a spaces of
matrices with suitable dimensions. When Y = X, then one simply writes L(X) fo L(X;X).

10This family of operators is defined, for t ≥ s ≥ 0, as the unique solution to the operator-valued ODE{
d
dt
ΦA(t, s) = A(t)ΦA(t, s),

ΦA(s, s) = I.

See, e.g. (Bensoussan et al., 2007, Section 3.5).
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is well defined and bounded.

The above regularity assumptions are quite general. They allow us to rewrite the ob-
jective functional into a convenient form as the next proposition shows. In the following
by L1

ρ(R+;R) (or, more simply, by L1
ρ(R+)), we denote the space of functions f : R+ → R

such that
∫∞
0 e−ρt|f(t)|dt < ∞. By L1

loc(R+;R) we denote the space of locally integrable

functions; i.e., functions f : R+ → R such that
∫M
0 e−ρt|f(t)|dt < ∞, for each M > 0.

Similar notation will be used for vector-valued functions.

Proposition 2.2 Suppose Assumption 2.1 holds and let u(·) ∈ L1
ρ(R+,U). Then∫ ∞

0
e−ρt⟨a(t),x(t)⟩dt = ⟨b(0),x0⟩+

∫ ∞

0
e−ρt ⟨b(t), f(t,u(t))⟩ dt, (4)

the right-hand side being well-defined and finite. If, in addition, the map t 7→ h(t,u(t))
belongs to L1

ρ(R+), then the objective functional (2) is well defined and finite, and it can be
written as

J (x0;u(·)) = ⟨b(0),x0⟩+
∫ ∞

0
e−ρt [⟨b(t), f(t,u(t))⟩+ h(t,u(t))] dt. (5)

Proof. We first demonstrate that (4) holds. For simplicity, here we deal with the case when
A is constant; the general case is analogous. Let u(·) ∈ L1

ρ(R+,U). By Assumption 2.1(i),
we have

x(t) = eAtx0 +

∫ t

0
eA(t−s)f(s,u(s))ds.

Hence,∫ ∞

0
e−ρt⟨a(t),x(t)⟩dt =

∫ ∞

0
e−ρt⟨a(t), eAtx0⟩dt+

∫ ∞

0
e−ρt

〈
a(t),

∫ t

0
eA(t−s)f(s,u(s))ds

〉
dt.

Using the definition of b in (3), the first term simply rewrites as〈∫ ∞

0
e−ρteA

∗ta(t)dt,x0

〉
= ⟨b(0),x0⟩ .

Using Assumption 2.1(iii), and applying the Fubini-Tonelli Theorem to the second term,
we obtain that the map

R+ → R, t 7→ ⟨a(t),x(t)⟩
belongs to L1

ρ(R+;R) and that the second term may be rewritten as∫ ∞

0

∫ t

0
e−ρt

〈
a(t), eA(t−s)f(s,u(s))

〉
ds dt

=

∫ ∞

0

∫ t

0
e−ρ(t−s)e−ρs

〈
eA

∗(t−s)a(t), f(s,u(s))
〉
ds dt

=

∫ ∞

0
e−ρs

〈∫ ∞

s
e−ρ(t−s)eA

∗(t−s)a(t)dt, f(s,u(s))

〉
ds =

∫ ∞

0
e−ρs ⟨b(s), f(s,u(s))⟩ ds,

where, in the last step, we shifted the variable in the second integral. The claim on the
objective functional follows from the above arguments and from the additional integrability
condition. □
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The power of the transformation of the objective functional comes from the fact that the
state variable no longer appears in (5). All the relevant information about the evolution
of the state is now encoded in the coefficient b(t), which captures the forward-looking
component of the transformed problem. By construction, b(t) encompasses the relevant
information on the future evolution of the state variables (through the current and future
matrices A), as well as their marginal future impact on the intertemporal payoffs (through
the current and future vectors a). As we shall see later, depending on the application,
b(t) can admit a meaningful economic interpretation. Thus, the dynamic optimization
problem can be solved by rewriting the functional in a way that allows us to perform a
pointwise optimization of the integrand. The same simple transformation can be used in
cases involving linear-in-state problems with time-dependent systems, control constraints,
as well as generalizations to differential games.

In view of Proposition 2.2, we consider the following set of admissible control strategies
the set 11

U :=

{
u(·) ∈ L1

ρ(R+;U) : t 7→ h(t,u(t)) ∈ L1
ρ(R+); l(t,u(t)) ≤ 0, ∀t ∈ R+

}
. (6)

In the remainder of this section we impose Assumption 2.1 and restrict attention to the set
of admissible control strategies in (6). The standard notion of optimality is given in the
following.

Definition 2.3 An optimal control û(·) starting at x0 is a control strategy in the set U
such that

J (x0; û(·)) ≥ J (x0;u(·)), ∀u(·) ∈ U .
Given an optimal control û(·), the associated state trajectory x̂(·) := xx0,û(·)(·) is called
an optimal state trajectory starting at x0. We refer to the pair (x̂(·), û(·)) as an optimal
state/control trajectory or an optimal couple starting at x0.

In view of (5), the optimality of a control strategy does not depend on the initial datum.
Next, we will exploit the above result to demonstrate that the original dynamic problem is
equivalent to solving a t-by-t family of temporary optimization problems, where each time
t problem involves the expected future evolution of the state variables and their marginal
contributions to the objective function. To this end, we use the result in Proposition 2.2
and, for each fixed t ≥ 0, we consider the following temporary optimization problem:

max
u∈U: l(t,u)≤0

[
⟨b(t), f(t,u)⟩+ h(t,u)

]
. (7)

We can then establish the following equivalence result.

Theorem 2.4 (Optimal control)
(i) (Sufficient optimality conditions) If û(·) ∈ U is such that û(t) is a solution to the

temporary optimization problem (7) for a.e. t ∈ R+, then it is an optimal control.

11An equivalent way to proceed would be to take the set of admissible strategies to be the set of all
measurable maps u(·) : R+ → U, and to assign value −∞ to all strategies which are not in U(x0); also see
Krastanov and Ribarska (2025). In light of Bernhard (2024), we also note that our paper does not involve
state constraints.
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(ii) (Necessary optimality conditions) If u(·) ∈ U is an optimal control, then u(t) is a
solution to the temporary optimization problem (7) for a.e. t ∈ R+.

(iii) (Existence of optimal controls) If there exists a solution to the temporary optimization
problem (7) for a.e. t ∈ R+, that is,

arg max
u∈U: l(t,u)≤0

[
⟨b(t), f(t,u)⟩+ h(t,u)

]
̸= ∅, for a.e. t ∈ R+, (8)

then, all the single-valued (measurable) selections û(·) of the multivalued map12

R+ → P(U), t 7→ arg max
u∈U: l(t,u)≤0

[
⟨b(t), f(t,u)⟩+ h(t,u)

]
, (9)

satisfying the integrability conditions

û(·) ∈ L1
ρ(R+;U), h(·, û(·)) ∈ L1

ρ(R+) (10)

fulfill by construction the requirements of item (i), therefore, are optimal optimal con-
trols.

(iv) (Uniqueness of optimal controls) If the temporary optimization problem (7) has at
most one solution for a.e. t ∈ R+, then there exists at most one optimal control.

2.2. ITM versus standard dynamic optimization methods. Transforming the objec-
tive functional (2) into the representation in (5) allows us to rewrite a linear-in-state optimal
control problem in an advantageous way, as the state variable no longer appears in (5), and
all relevant information about the evolution of the state is encoded in the coefficient b(t).
This makes solving the dynamic optimization problem straightforward, as it only requires
performing a uniform optimization on the integrand (part (iv) in Theorem 2.4). Of course,
Dynamic Programming and Maximum Principle approaches remain applicable.

Following the Dynamic Programming approach, one could write the HJB equation for
(t,x) ∈ R+ ×X as follows:

ρv(t,x)− vt(t,x) = ⟨a(t)x, vx(t,x)⟩ (11)

+ sup
u∈U: l(t,u)≤0

{⟨f(t,u), vx(t,x)⟩+ h(t,x,u)}.

Assuming a solution of the form v(t,x) = ⟨α(t),x⟩ + β(t), the following steps would be
followed to solve the problem with the Dynamic Programming-HJB method:13

– Determine α : R+ → Rn and β : R+ → R that solve (11). This step involves solving a
system of ODEs.

– Confirm, through a verification theorem, that v is indeed the value function, and that
the corresponding candidate optimal control is indeed optimal. This procedure passes
through a transversality condition on v for t → ∞ and can be fairly complex. Once

12One can readily prove that if the map

R+ ×U → R, (t,u) 7→ ⟨b(t), f(t,u)⟩+ h(t,u)

is upper semicontinuous and the map l is lower semicontinuous, then there exists a single-valued measurable
selection of the multivalued map (9) verifying the integrability conditions (10). This follows from Proposition
7.33, p. 153 of Bertsekas and Shreve (1996).

13Note that the value function can be derived from (5) above.
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completed, it provides sufficient conditions for optimality. Under suitable conditions,
e.g. uniqueness of solutions to the HJB equation, these conditions are also necessary.

Similarly, applying the classical Maximum Principle would lead to a forward-backward
system of 2n ODEs with time-dependent coefficients. In addition, to identify the solution to
the optimal control problem, appropriate transversality conditions for the adjoint variables
are necessary. Ultimately, in the absence of state constraints, this approach yields necessary
conditions for optimality, which are also sufficient under concavity assumptions on the data.

Although the ITM applies only when the underlying problem has a specific linear-in-state
structure, it has certain notable advantages:

(i) It provides a direct approach that allows us to obtain in a single step both necessary
and sufficient conditions for optimality in the optimal control problem, even in the
absence of concavity, based on optimizing a family of temporary problems. By con-
struction, the ITM also handles problems involving discontinuities more easily than
traditional dynamic optimization methods.

(ii) It can be naturally applied to non-autonomous problems, which makes it particularly
suitable for the study of problems with intertemporal exogenous changes in technolog-
ical, demographic, climate-based, etc, factors. The method is still useful in the case
of stochastic environments discussed in the Examples subsection below.

(iii) It is applicable as well when X and U are infinite-dimensional. This is the case,
for example, in applications of optimal control in a PDE setup; see Boucekkine et al.
(2022b,a), or in dealing with delay equations. The method is particularly advantageous
in these cases, as it does not involve the use of unbounded differential operators in the
solution of the HJB equation and in the verification theorem; see Boucekkine et al.
(2019), and Boucekkine et al. (2022b).

(iv) The ITM is readily applicable in the N -player differential game context, where it pro-
vides necessary and sufficient conditions for Nash equilibria from corresponding nec-
essary and sufficient equilibrium conditions for a family of temporary non-cooperative
games. In this context, the Dynamic Programming approach involves solving a sys-
tem of N HJB equations, while the Maximum Principle approach requires solving a
coupled forward-backward system of 2n×N ODEs. While both approaches are valid,
they can be significantly more cumbersome.

2.3. The N-player case: Nash equilibria. Consider the following non-cooperative dif-
ferential game. There are N ≥ 2 players, labeled by i = 1, .., N . We denote by X = Rn the
state space, which is assumed to be common to all players, and by Ui = Rki the control
space of player i, for i = 1, . . . , N . We set

U := U1 × · · · ×UN

and let k := k1+ · · ·+kN be the dimension of U. The state path is denoted by x(·), whereas
the control path of player i is denoted by ui(·). Finally, we set

u(·) :=
(
u1(·), . . . ,uN (·)

)
.

The state equation is the same as in (1). However, now the constraints to be satisfied may
be different for each player. For player i, these are given by

li(t,u(t)) ≤ 0, ∀t ≥ 0,
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where li : R+ ×U → Rpi for some pi ∈ N.
The objective functional of player i is given by14

J i(x0,u
−i(·);ui(·)) :=

∫ ∞

0
e−ρit[⟨ai(t),x(t)⟩+ hi(t,ui(t),u−i(t))]dt, (12)

where ai : R+ → X and hi : R+ ×U → R.
As in the previous subsection, we introduce the maps:

bi(t) : R+ → X, t 7→ bi(t) :=

∫ ∞

0
e−ρτΦ∗

A(t+ τ, t)ai(t+ τ)dτ, i = 1, ..., N.

For the remainder of the subsection, we impose the following.

Assumption 2.5 Assumption 2.1(i)-(ii) hold and Assumption 2.1(iii) holds with a,b
replaced by ai, bi; i.e., for all i = 1, . . . , N ,

bi(t) : R+ → X, t 7→ bi(t) :=

∫ ∞

0
e−ρτΦ∗

A(t+ τ, t)ai(t+ τ)dτ, (13)

is well defined and bounded.

Similarly to the single-agent case, we have the following.

Proposition 2.6 Let Assumption 2.5 holds and, for every i = 1, . . . , N , consider a
control strategy of the i-th player: ui(·) ∈ L1

ρi(R+,U
i). Let u(·) := (u1(·), . . . ,uN (·)), let

x(·) := xx0,u(·)(·) be the associated state trajectory and fix i ∈ {1, . . . N}. Then:∫ ∞

0
e−ρit⟨ai(t),x(t)⟩dt =

〈
bi(0),x0

〉
+

∫ ∞

0
e−ρit

〈
bi(t), f(t,u(t))

〉
dt, (14)

where the right-hand side is well-defined and finite. If, in addition the map t 7→ hi(t,ui(t))
belongs to L1

ρi(R+), then the objective functional (12) is well-defined and finite and can be
written as:

J i(x0,u
−i(·);ui(·)) =

〈
bi(0),x0

〉
+

∫ ∞

0
e−ρit

[〈
bi(t), f(t,u(t))

〉
+ hi(t,ui(t))

]
dt. (15)

The proof is omitted as the argument is similar to the one in the proof of Proposition
2.2.

2.3.1. Open-loop Nash equilibria. Prior to defining equilibrium, we first define the set of
admissible strategies. We begin by considering the following set:

U0
G := L1

ρ1(R+,U
1)× . . .× L1

ρN
(R+,U

N ).

The set of open-loop admissible strategies is then given by

UG =
{
u(·) = (u1(·), ...,uN (·)) ∈ U0

G : t 7→ hi(t,u(t)) ∈ L1
ρi(R+) ∀i = 1, ..., N,

li(t,u(t)) ≤ 0, ∀t ≥ 0, ∀i = 1, ..., N
}
. (16)

14Hereafter, we use {−i} to denote the profile of every player except player i; i.e., {1, ..., N} \ {i} for
i ∈ {1, ..., N}.
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Given i ∈ {1, ..., N} and15 u−i(·) ∈ U0
G \L1

ρi(R+;U
i), we define the set of admissible control

strategies of player i as the i-th section of the above set;16 i.e.,

U i
G(u

−i(·)) :=
{
ui(·) ∈ L1

ρi(R
+;Ui) : (ui(·),u−i(·)) ∈ UG

}
. (17)

Next, we introduce the notion of open-loop Nash equilibrium for this setup.

Definition 2.7 (Open-loop Nash equilibrium) An admissible open-loop strategy û(·) ∈
UG is called an open-loop Nash equilibrium for the dynamic game starting at x0 if, for all
i ∈ {1, ..., N},

J i(x0, û
−i(·); ûi(·)) ≥ J i(x0, û

−i(·);ui(·)), ∀ui(·) ∈ U i
G(û

−i(·)).

Similarly to the previous subsection, Nash equilibria do not depend on the initial datum
x0 (in view of (15)) and the ITM allows us to investigate a family of associated temporary
games parametrized by time. More precisely, for each t ∈ R+, consider the following
temporary game. There are N players and, for i = 1, ..., N , player i takes as given the
choices u−i

t ∈ U−i of the others players at time t and seeks to maximize, over the set

Ui,u−i
t

:=
{
ui ∈ Ui : li(t,ui,u−i

t ) ≤ 0
}
,

the i-th objective function:

Ui,u−i
t

→ R, ui 7→
〈
bi(t), f(t,ui,u−i

t )
〉
+ h(t,ui,u−i

t ). (18)

The notion of Nash equilibrium in this temporary context is given below.

Definition 2.8 (Temporary Nash equilibrium) A temporary Nash equilibrium at time
t ∈ R+ is an N -tuple of temporary strategies ût = (û1

t , ..., û
N
t ) ∈ U such that for each

i = 1, ..., N , 
ûi
t ∈ Ui,û−i

t
,

ûi
t ∈ arg max

ui∈U
i,û−i

t

{ 〈
bi(t), f(t,ui, û−i

t )
〉
+ h(t,ui, û−i

t )
}
.

(19)

We will denote by NEt the (possibly empty) set of Nash equilibria for the temporary
game in t ∈ R+. We then have the following equivalence result, which is analogous to the
one obtained in the optimal control case above.

Theorem 2.9 (Open-loop Nash equilibria)
(i) (Sufficient conditions for open-loop Nash equilibria) Let û(·) ∈ UG be such that ût :=

û(t) belongs to NEt for a.e. t ∈ R+. Then û(·) is an open-loop Nash equilibrium for
the dynamic game.

15With some abuse of notation, here we denote

U0
G \ L1

ρi(R+;U
i) :=

∏
j ̸=i

L1
ρj (R+,U

j).

16The above choice is equivalent to taking the set of admissible strategies for each player i to be
L1

ρi(R+;Ui), and assigning value −∞ to control strategies which do not lie in U i
G(x0,u

−i(·)).
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(ii) (Necessary conditions for open-loop Nash equilibria) Let u(·) ∈ UG be an open-loop
Nash equilibrium for the dynamic game and assume that, for i = 1, . . . , N , the map

R+ ×Ui → Rpi ; (t,ui) 7→ li(t,u−i(t),ui)

is lower semicontinuous. Let

Di :=
{
(t,ui) ∈ R+ ×Ui : ui ∈ Ui,u−i(t), ∀t ∈ R+

}
and assume that the map

Di → R; (t,ui) 7→ ⟨bi(t), f(t,u−i(t),ui)⟩+ h(t, û−i(t),ui)

is upper semicontinuous and coercive in ui, uniformly in t ∈ R+. Then, u(t) ∈ NEt,
for a.e. t ∈ R+.

(iii) (Existence of open-loop Nash equilibria) Assume that NEt is non-empty for a.e. t ∈
R+. Then, any single-valued measurable selection17 û(·) of the multi-valued map

R+ → P(U); t 7→ NEt (20)

satisfying the integrability conditions

ûi(·) ∈ L1
ρi(R+;U), hi(·, û(·)) ∈ L1

ρi(R+), ∀i = 1, ..., N (21)

satisfies the requirements of item (i) and thus constitutes an open-loop Nash equilib-
rium for the dynamic game.

(iv) (Uniqueness of open-loop Nash equilibria) Under the assumptions of item (ii) above,
assume that NEt is at most a singleton for a.e. t ∈ R+. Then, there is at most one
open-loop Nash equilibrium for the dynamic game.

A detailed proof is given in Appendix A.

Theorem 2.9 demonstrates that, under the same conditions as in the single-agent case,
the reformulation of the objective functional allows us to transform the problem of solving
the differential game to that of solving a family of temporary games. This result can
be generalized to the study of Markovian equilibria. As mentioned earlier, this insight
has appeared in the context of specific models in the literature. The ITM provides a
general framework, encompassing several possible applications. Related conditions have
been discussed in Dockner et al. (1985) and Mart́ın-Herrán and Zaccour (2005), who studied
the solvability of a system of ODEs representing the (sufficient) optimality conditions via
the Pontryagin Maximum Principle. We next turn our attention to the study of Markovian
Nash equilibria.

2.3.2. Markov-Nash equilibria. Open-loop Nash equilibrium can be restrictive, as it relies
on commitment and it does not incorporate the reactions of the players’ strategies to the
other players’ choices. An alternative concept is that of (closed-loop) Markovian equilibrium
(Dockner, 2000, Ch. 4, Sec. 1). In what follows, we extend the notion of admissible strategies
to accommodate feedback maps.

17Similarly to the optimal control case, if we also assume that the maps

R+ ×U → R, (t,u) 7→
〈
bi(t), f(t,u)

〉
+ hi(t,u)

are upper semicontinuous and that the maps li are lower semicontinuous, for each i = 1, ..., N , then a single
measurable selection of the multivalued map (20) satisfying the integrability conditions (21) exists.
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Given a measurable map φ = (φ1, ...,φN ) : R+×X → U, we say that φ is an admissible
Markovian strategy for the dynamic game starting at x0 if it satisfies the following.

(i) The closed-loop equation

x′(t) = A(t)x(t) + f(t,φ(t,x(t))), x(0) = x0 ∈ X, (22)

admits a unique solution, denoted by xx0,φ(·).
(ii) The feedback strategy ux0,φ(·) := φ(·,xx0,φ(·)) lies in UG; i.e.,

– the feedback strategy satisfies the control constraints:

li(t,u
x0,φ(t)) ≤ 0, ∀t ∈ R+, ∀i = 1, ..., N ;

– the map ux0,φ(·) ∈ L1
ρ1(R+,U1) × . . . × L1

ρN
(R+,UN ), and the map t 7→

hi(t,u(t)) ∈ L1
ρi(R+), for every i = 1, ..., N .

We will denote the set of admissible Markovian strategies starting at x0 by MG(x0).
Note that in this case we need to keep track of the initial datum x0, as the admissible set
may depend on it. In the context of no time-dependent coefficients, it might be interesting
to consider admissible Markovian strategies that also do not depend explicitly on time. We
term these strategies stationary Markovian, and we denote the set of such strategies by
Mo

G(x0).

Given φ ∈ MG(x0), with a slight abuse in notation, we define

Ji(x0,φ−i;φi) := Ji(x0,u
x0,φ;−i(·);ux0,φ;i(·)).

Next, given φ−i : R+ ×X → u−i, we set

MG
i (x0,φ−i) :=

{
φi : R+ ×X → Ui : (φi,φ−i) ∈ MG(x0)

}
. (23)

We are now ready to define Markovian Nash equilibria.

Definition 2.10 (Markov-Nash equilibrium) Given x0 ∈ Rn, a Markovian admissible
strategy profile φ̂ ∈ MG(x0) is called a Markov-Nash equilibrium for the dynamic game
starting at x0 if, for all i ∈ {1, ..., N},

Ji(x0, φ̂−i; φ̂i) ≥ Ji(x0, φ̂−i;φi), ∀φi ∈ Mi
G(x0,φ−i).

Remark 2.11 The above definition is equivalent to the one provided in (Dockner, 2000,
Def. 4.1). Indeed, for (Markovian) optimal control problems, there is no difference be-
tween optimizing over open-loop controls or over closed-loop (Markovian) controls. Hence,
φ̂ ∈ MG(x0) being a Markovian Nash equilibrium for the dynamic game starting at x0 is
equivalent to, for each i = 1, ..., N , the feedback control ûi(·) := φ̂i(·;xx0,φ̂(·)) being an
optimal control of the control problem:

sup
ui(·)∈UG

i (x0,φ̂−i)

∫ ∞

0
e−ρit[⟨ai(t),x(t)⟩+ hi(t, φ̂−i(t,x(t)),ui(t))]dt,

under the state equation

x′(t) = A(t)x(t) + f(t, φ̂−i(t,x(t)),ui(t)), x(0) = x0 ∈ X;
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where, once again abusing notation,

UG
i (x0, φ̂−i) =

{
ui(·) ∈ L1

ρi(R+;Ui) :

lj(t, φ̂−i(t,x(t)),ui(t)) ≤ 0, ∀j = 1, ..., N, ∀t ∈ R+,

and t 7→ hj(t, φ̂−i(t,x(t)),ui(t)) ∈ L1
ρj (R+) ∀j = 1, ..., N

}
.

The latter is exactly the condition of equilibrium required in Dockner, 2000, Def. 4.1. □

Remark 2.12 (Open-loop and Markovian Nash equilibria) Since the open-loop Nash
equilibrium (if it exists) does not depend on the initial datum, it is also a degenerate
Markovian Nash equilibrium. If the problem is stationary; i.e., the data A, f , li,ai, hi do
not depend on t, then by Theorem 2.9, an open-loop Nash equilibrium, if it exists, will not
depend on t, as the temporary problem is time independent. Thus, it will be a stationary
Markovian equilibrium.

Remark 2.13 (Markov Perfect Equilibrium) In the context of Markovian Nash equi-
libria, one may inquire whether a stronger property holds. Starting the game from any
initial time t0 and any initial condition x0, does the equilibrium map φ̂, when restricted
to [t0,∞), continue to be a Markovian equilibrium for the game starting at (t0,x0)? If
the answer to this question is affirmative, we say that φ̂ is a Markov Perfect Equilibrium
(MPE). In our setup, the open loop equilibrium seen as degenerate Markov equilibrium (if
it exists) is automatically an MPE. □

Next, we investigate whether a uniqueness result holds for Markovian Nash equilibria.
The next Proposition provides a qualified confirmation. The proof is given in Appendix A.

Proposition 2.14 (Uniqueness of affine Markovian Nash equilibria) Suppose that:

(i) The map f is affine in u; i.e.,

f(t,u) = P(t)u+ j(t), P(t) ∈ L(U,X), j(t) ∈ X;

(ii) There are no control constraints; i.e., li ≡ 0 for each i = 1, ..., N ;
(iii) For each i = 1, ..., N , the function hi only depends on (t,ui) and is strictly concave

and coercive, for each t ∈ R+.

Then, the differential game admits at most one MPE in the class of time-dependent affine
Markovian feedbacks:

ML
G =

{
φ = (φ1, ...,φN ) : R+ ×X → U : φi(t,x) = Li(t)x+wi(t),

where Li : R+ → L(X,Ui) and wi : R+ → Ui bounded ∀i = 1, ..., N

}
.

2.4. Illustrative Examples. Before we discuss the climate application, which is the main
focus of our paper, we briefly illustrate the ITM in the context of two illustrative examples.
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Example 2.14.1 (Endogenous growth under habit formation) Consider a simplified
endogenous growth model where agents’ preferences are shaped by past aggregate consump-
tion (external habits). This creates an internal state variable that the social planner must
account for, and whose dynamics fit within the ITM framework.

The economy is described by two state variables: the stock of physical capital, K(t) > 0,
and the stock of consumption habits, H(t). The planner chooses the path of consumption,
C(t) > 0, to maximize intertemporal utility. Assume that the production is linear in the
capital stock, Y (t) = AK(t), where A > 0 (A can also include a depreciation factor).
Output is allocated between consumption and investment so the law of motion for capital
is:

K ′(t) = AK(t)− C(t). (24)

Agents’ utility is influenced by a reference standard of living, which is determined by past
aggregate consumption. We model this as a stock of habits, H(t), which accumulates with
current consumption and depreciates at a rate γ > 0:

H ′(t) = C(t)− γH(t) (25)

The planner maximizes a discounted stream of utility. Instantaneous utility depends posi-
tively on consumption, U(C(t)) (for some U satisfying Inada’s conditions), and negatively
on the habit stock, which enters linearly with a weight α > 0. The objective is:

max
C(t)

∫ ∞

0
e−ρt [U(C(t))− αH(t)] dt (26)

subject to the dynamics of K(t) and H(t) and given initial conditions.

To map the model to the ITM structure, define the state x(t) = [K(t), H(t)]T and the
control u(t) = C(t). The state dynamics x′(t) = Ax(t) + f(t, u(t)) is then represented by
the system:

A =

(
A− δ 0
0 −γ

)
(27)

and

f(t, u(t)) =

(
−u(t)
u(t)

)
(28)

The objective functional is in the form
∫∞
0 e−ρt [⟨a,x(t)⟩+ h(t, u(t))] dt where

a =

(
0
−α

)
(29)

and

h(t, u(t)) = U(u(t)). (30)

Applying the ITM, the function b(t) defined in (3) is now constant and given by

b = [bK , bH ] = (ρI−AT )−1a = [0,−α/(ρ+ γ)]T (31)

The maximization (8) now reads as

max
C≥0

{(
bK bH

)(−C
C

)
+ u(C)

}
= max

C≥0
{(bH − bK)C + u(C)}
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so that the optimal control C(t) is constant over time and its optimal level is given by

C∗ = (u′)−1

(
α

ρ+ γ

)
. (32)

The same model can be adapted to an N -player game if we suppose that the unity of agent
i is negatively influenced by the habits of all other agents.

Example 2.14.2 (Randomness) The ITM can be extended to incorporate risk. We
sketch the method in the case when n = k = 1, when randomness enters through the
coefficient A(t), which now becomes a stochastic process: A(t) = A(t, ω) where ω ∈ Ω is the
generic element of the probability space. Let (Ft)t≥0 be the filtration generated by A(·).
The control process u(t) is naturally required to be adapted to (Ft)t≥0, and the functional
J becomes

J (x0;u(·)) := E
[∫ ∞

0
e−ρt[a(t)x(t) + h(t, u(t))]dt

]
,

where E denotes the expectation operator. One can then apply the ITM to the correspond-
ing trajectories; i.e., for fixed ω, define

b(t, ω) :=

∫ ∞

0
e−ρτ+

∫ t+τ
t A(s, ω)dsdτ

thus obtaining

J (x0;u(·)) = E[b(0)]x0 +
∫ ∞

0
e−ρtE [b(t)f(t, u(t)) + h(t, u(t))] dt.

Hence, the optimization problem reduces to a pointwise optimization of the expression
E [b(t)f(t, u(t)) + h(t, u(t))], for Ft-measurable u(t). By using the properties of the condi-
tional expectation operator E[· |Ft], we rewrite

E
[
b(t)f(t, u(t)) + h(t, u(t))

]
= E

[
E
[
b(t)f(t, u(t)) + h(t, u(t)) | Ft

]]
E
[
E
[
b(t) | Ft

]
f(t, u(t)) + h(t, u(t))

]
.

Setting bt(t, ω) := E
[
b(t) | Ft](ω), the latter expression can be optimized ω-wise as in (7),

with bt(t, ω) in place of b(t), leading to the optimal control û(t) = û(t, ω). We remark that
there is no requirement of a Markovian structure for A(t, ω) and that randomness of f and
h can also be considered. Clearly the method generalizes for n, k > 1. Thus, the ITM
can be employed in the study of problems with exogenous random regime switching of the
coefficients, for instance when

A(t, ω) = δIt(ω),

where It is a stochastic process taking values in a finite set I = {1, ..., N}, and δ : I → R.
Examples of such problems can be found in the literature of irreversible (local) pollution
(with linear pollution damage functions) where the decay rate of pollution (or nature’s self-
cleaning capacity) is time-dependent and possibly stochastic, with nonzero probability for
the pollution decay rate to be nil. See, for example, Tahvonen and Withagen (1996) and
more recently Boucekkine et al. (2025).

Next, we turn to the main focus of our paper, which invoves using the ITM in order to
investigate properties of an analytical integrated assessment model.
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3. An analytical integrated assessment model

We will employ a version of the integrated assessment model in Golosov et al. (2014). Our
analysis will extend their basic model in several directions that are of independent inter-
est, including introducing multiple heterogenous regions, technological progress, strategic
considerations, and deep (Knightian) uncertainty.

3.1. Preferences and technology. We consider two infinitely lived countries, 1 and 2.
Country i, i ∈ {1, 2}, chooses a consumption flow Ci(t) earning a payoff ui(Ci(t)) for
t ∈ [0,+∞). The instantaneous utility functions ui are assumed to be strictly increasing,
strictly concave and satisfy the usual Inada conditions. The common discount factor is
ρ > 0. To fix ideas, we consider country 1 to be representative of the “global north,” while
country 2 represents the “global south.” The lifetime payoff of each country i is given by:18

Ui =

∫ ∞

0
e−ρt

[
ui (Ci(t))− γi

(
S(t)− S

)]
dt (33)

where the variable S(t) stands for the total stock of greenhouse gas emissions (GHG) relative
to the pre-industrial level, S. As different countries have different degrees of vulnerability
to climate change, the parameters γi > 0 capture the relative sensitivity of each country’s
payoff to GHG concentrations. The climate sensitivity parameter can be the result of a
country’s geography, but can also capture the ability to engage in adaptation. Of course,
there are several different ways to model climate damage. Our formulation can be thought of
as a reduced form of the one used, for example, in Van der Ploeg and Withagen (2012). The
additive linear structure can be justified as an approximation of the composition between
the mapping from GHG emersions to temperatures, which is concave, and a convex mapping
from temperatures to actual damages. Flow output can be produced by using an input, Ki,
according to

Yi(t) = Ai(t)fi(Ki(t)). (34)

The functions fi are assumed to be differentiable, increasing, and concave. We assume that
the input is “dirty;” i.e., its use creates a flow of GHG emissions. For simplicity, folllowing
Golosov et al. (2014), we will assume that the input depreciates completely after it is used in
production. Each country chooses an abatement effort Bi(t) towards reducing the stock of
GHG emissions. Like with the climate-sensitivity parameter, the abatement technology can
capture several factors. For example, it might include reforestation efforts, carbon capture
and storage systems, etc.

Next, we discuss the production technology and introduce policy interventions through
a variety of transfers between the two countries. The total factor productivity (TFP)
parameters, Ai(t), in the two countries are as follows. For country 1 (the global north) we
have

A1(t) = A(t), (35)

where A(t) stands for the (exogenous) technological frontier, which is assumed to be con-
tinuous. For country 2 (the global south) we have

A2(t) = h(Ra(t))A(t). (36)

18We thus use a utility linear damage specification; see, for example, Withagen (1994) and Tahvonen
(1997).
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In the above expression, Ra stands for a production technology-specific transfer from country
1. The function h is assumed to be positive, strictly increasing, and concave. Furthermore,
we assume that limR→∞ h(R) ∈ (0, 1) (so that the TFP in country 2 is always lower than in
country 1). Along the same lines, we assume that the efficiency of the abatement effort in
country 2 may depend on a technology transfer from country 1. Henceforth, Rb represents
an abatement-specific technology transfer from country 1, to be used in improving the
effectiveness of the abatement technology in country 2.19 Flow output in the two countries
is respectively given by

Y1(t) = A(t)f1(K1(t)), and Y2(t) = h(Ra(t))A(t)f2(K2(t)).

Aggregate feasibility requires that output in each country equals the respective total amount
of resources used; i.e.,

Y1 = K1 + C1 +B1 +Ra +Rb; Y2 = K2 + C2 +B2.

3.2. The climate model. We follow the approach in Golosov et al. (2014) in modeling
the two-way interplay between climate and economic activity. Building on the models
described in Nordhaus and Boyer (2003), this approach incorporates explicitly the increase
in GHG, and implicitly the effects of carbon sinks like the terrestrial biosphere and shallow
and deep oceans. The modeling allows for non-linear absorption of atmospheric carbon,
but it abstracts from the delays of the economic impact of this carbon content and it does
not separately keep track of the dynamics of different GHG. Importantly, this approach
concentrates on temperatures and abstracts from the effects of precipitation.20

The evolution of S(t) depends on the aggregate use of the “dirty” production input as
well as on the aggregate investment in abatement. We assume that a fraction ϕL of emitted
carbon stays permanently in the atmosphere, while a fraction (1 − ϕ0) of the remaining
emissions exits into the biosphere and the remaining part decays at geometric rate ϕ. We
use P (t) and T (t), respectively, to indicate the permanent and the temporary components
of the total emissions, S(t). Given the pre-industrial level of GHG concentration in the
atmosphere S(0) = S = P (0) + T (0), we then have:

P ′(t) = ϕLG (t,K1(t),K2(t), B1(t), B2(t), Rb(t)) (37)

T ′(t) = −ϕT (t) + (1− ϕL)ϕ0G (t,K1(t),K2(t), B1(t), B2(t), Rb(t)) (38)

S(t) = P (t) + T (t) (39)

The function G : R6
+ → R specifies how the use of the dirty input and the abatement tech-

nologies in the two countries affect the flow of emissions. We assume that G is continuous,
strictly increasing in the use of dirty capital, Ki, strictly decreasing in the abatement-related
variables, Bi and Rb, and that it has at most linear growth in K1,K2, B1, B2, and Rb.

19We thus assume that the know-how needed to improve TFP and the abatement technology in country
2 must originate in country 1. Allowing for technology improvements from related investments in country 2
would add additional decision variables without significantly contributing to the issues we investigate here.

20As mentioned earlier, our modeling contribution and qualitative findings do not depend on the details
of the climate model employed and we use the Golosov et al. (2014) model as an illustration.
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3.3. A special case. For illustration purposes, we shall consider a special case of models
where explicit results can be readily derived. This is specified in the following.

Assumption 3.1 (A special case) Suppose that:
(i) The map G is independent of t and given by:

G(K,B,Rb) = ηK(K1 +K2)−ηB(B1(t)
θ1 + g(Rb)B2(t)

θ2),

where θ1, θ2 ∈ (0, 1) and ηK , ηB > 0.

(ii) The production function is linear: fi(Ki) = Ki, so that

Yi(t) = Ai(t)Ki(t), (40)

where Ai(t) > 1 are as in (35)-(36).

(iii) The production technological frontier is constant:

A(t) ≡ A > 1.

(iv) For σ1, σ2 > 0, the instantaneous payoff functions ui are given by

ui(Ci(t)) =
C1−σi
i

1− σi
, or ui(Ci(t)) = ln(Ci) (logarithmic case).

(v) The function h is in C2([0,+∞), (0, 1)), with h′ > 0, h′′ < 0, and such that
limR→∞ h(R) ∈ (0, 1) and the same holds for the function g. Moreover, Ah(0) > 1,

and the map Rb 7→ g(Rb)
1

1−θ2 is strictly concave.

We will restrict attention on cases where G > 0. The concavity of g(Rb)
1

1−θ2 guarantees
the uniqueness of the solution in what follows. We emphasize again that, as K is a control
variable in our model, our method allows for the functions fi to be strictly concave. We next
specify and characterize the normative and positive arrangements that will be considered
henceforth.21

4. Normative and positive investigations

We first consider two normative benchmarks by characterizing the solutions to two social
planner problems. We then study the Nash equilibria of a suitable non-cooperative dynamic
game.

21The above conditions will imply the existence and uniqueness of a solution to the auxiliary problem
and the uniqueness of solutions to the social planners’ problem as well as the uniqueness of open-loop
Nash equilibria for the cases we will investigate next. Although we assume differentiability throughout
for expository purposes, our results do not require differentiability and can be demonstrated using convex
optimization techniques.
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4.1. The Global planner’s (GP) problem. We will first consider the problem of a
benevolent “global planner (GP)” who has control over resources and production in both
countries and who can freely transfer resources from one country to the other. Clearly, this
defines an extreme normative benchmark, as it abstracts from any strategic considerations
between the two countries, as well as mobility constraints, transportation costs, etc.

The GP chooses: C1, C2, B1, B2, Ra, Rb,K1,K2, under the following single resource con-
straint:

C1(t) + C2(t) +B1(t) +B2(t) +Ra(t) +Rb(t) +K1(t) +K2(t)

≤ Y1(t) + Y2(t) = A(t)f1(K1(t)) + h(Ra(t))A(t)f2(K2(t)). (41)

We assume that the GP maximizes the sum of the two countries’ objectives:

UP = U1 + U2 =

∫ ∞

0
e−ρt

[
u1 (C1(t)) + u2 (C2(t))− γ1

(
S(t)− S

)
− γ2

(
S(t)− S

)]
dt

=
1

ρ
(γ1 + γ2)S +

∫ ∞

0
e−ρt [u1 (C1(t)) + u2 (C2(t))− (γ1 + γ2)S(t)] dt. (42)

To unburden the presentation, we will occasionally abuse notation and use C to indicate
the vector (C1, C2), R to indicate (Ra, Rb), etc. Formally, the above optimal control problem
is characterized by: (i) the state equation given by the system (37)-(39), and (ii) the set of
admissible policies22

Up1 :=

{
C,B,K,R ∈ L1

loc(R+;R8
+) : t 7→ u1(C1(t)) ∈ L1

ρ(R+),

t 7→ u2(C2(t)) ∈ L1
ρ(R+), t 7→ S(t) ∈ L1

ρ(R+)

and (41) holds for all t ≥ 0

}
(43)

and (iii) the objective functional given by (42).

We begin by defining:

x(t) :=

(
P (t)
T (t)

)
, u(t) := (C(t), B(t),K(t), Ra(t), Rb(t))

T , (44)

A(t) :=

(
0 0
0 −ϕ

)
, f(t,u(t)) :=

(
ϕLG (t,K(t), B(t), Rb(t))

(1− ϕL)ϕ0G (t,K(t), B(t), Rb(s))

)
, (45)

a(t) := −(γ1 + γ2)

(
1
1

)
, h(t,u(t)) := u1(C1(t)) + u2(C2(t)) + (γ1 + γ2)S, (46)

g(t,x(t)) := 0, (47)

and

l(t,u(t)) := (−C(t),−B(t),−K(t),−Ra(t),−Rb(t),

C(t) +B(t) +K(t) +Ra(t) +Rb(t)−A(t)f1(K1(t)) + h(Ra(t))A(t)f2(K2(t)))
T . (48)

22We denote by L1
ρ(R+) the set

{
f : R+ → R :

∫∞
0

e−ρt | f(t) | dt < ∞
}
, while L1

loc stands for the set
of functions that are locally Lebesgue-integrable. The set of admissible strategies is chosen in a way that
guarantees that the state equation and the objective functional are well-defined.
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With these choices, we have the problem in (41)-(43). Moreover:

Φ∗
A(t+ τ, t) = exp (τA) =

(
1 0
0 e−ϕτ

)
,

and, therefore,

b(t) = −(γ1 + γ2)

(
1/ρ

1/(ρ+ ϕ)

)
.

The map t → b(t) captures the impact on the objective function of the future evolution
of the state variables, as well as their marginal (exogenous) impact on the intertemporal

payoffs. Here, the first element of b(t), (γ1+γ2)
ρ , captures the discounted intertemporal

disutility stream generated by an extra unit of GHG added to the permanent stock, P (t).

The second element, (γ1+γ2)
ρ+ϕ , gives the analogous expression for the addition of an extra

unit of GHG to the transitory stock, T (t), where ϕ is the rate at which GHG emissions
decay over time.

Returning to the GP problem, note that Assumption 2.1 is satisfied, due to the assump-
tions in Section 3.2. We can thus apply directly Proposition 2.2 yielding the following
reformulation of the GP’s objective functional:

UP = (γ1 + γ2)

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ

]
+

∫ ∞

0
e−ρt [u1 (C1(t)) + u2 (C2(t))− (γ1 + γ2)ΦG (t,K(t), B(t), Rb(t))] dt

where

Φ :=

[
ϕL

ρ
+

(1− ϕL)ϕ0

ρ+ ϕ

]
. (49)

Applying Theorem 2.5, we can now characterize the outcomes of the GP dynamic opti-
mization problem.

Corollary 4.1 Assume that, for every t ≥ 0, (C∗(t), B∗(t),K∗(t), R∗(t)) solves the
following temporary optimization problem:

max
C,B,K,R

[
u1(C1) + u2(C2)− (γ1 + γ2)ΦG(t,K,B,Rb)

]
(50)

over the feasible set EGP (t) ⊆ R8 described by the inequalities{
C1, C2, B1, B2,K1,K2, Ra, Rb ≥ 0,

C1 + C2 +B1 +B2 +K1 +K2 +Ra +Rb ≤ A(t) [f1(K1) + h(Ra)f2(K2)] ,
(51)

where

Φ :=

[
ϕL

ρ
+

(1− ϕL)ϕ0

ρ+ ϕ

]
.

In addition, assume (C∗(t), B∗(t),K∗(t), R∗(t)) is admissible for the original dynamic opti-
mization problem. Then the map t 7→ (C∗(t), B∗(t),K∗(t), R∗(t)) solves the GP’s problem.
Conversely, a solution to the GP’s problem constitutes, for a.e. t ≥ 0, a solution to the
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temporary problem above. Consequently, if the solution to the temporary problem is unique
for a.e. t ≥ 0, then the solution to the GP’s problem is a.e. unique.

Proof. See Appendix B.1. □

Clearly, a global planner who can costlessly allocate resources across the two countries
would not choose to produce in country 2, as country 1 is more efficient.23 The interpretation
is straightforward. When the marginal abatement efficiency (ηB) is small relative to the
marginal addition to GHG emissions generated by production (ηK), the GP will refrain
from subsidizing abatement in country 2.

4.2. The restricted planner’s (RP) problem. As a second normative benchmark we
consider the more relevant case of a planner who cannot directly move resources across the
two countries. The planner can still invest in producing and in improving the abatement
technology through choosing positive Ra and Rb. In this case we find that, as is more
natural, production takes place in both countries. As before, the RP planner maximizes
the functional in (42). The difference is reflected in the constraints, as we now replace the
single resource constraint (41) with the following two constraints, one for each country:{

C1(t) +B1(t) +K1(t) +Ra(t) +Rb(t) ≤ Y1(t) = A(t)f1(K1(t))
C2(t) +B2(t) +K2(t) ≤ Y2(t) = A(t)h(Ra(t))f2(K2(t)).

(52)

This implies that the set of admissible policies for the RP’s problem is now the set URP ,
which is defined exactly as UGP in (43), but with the constraints (52) in the place of (41).

Similarly to Corollary 4.1, we can specify Theorem 2.4 for this case as follows.

Corollary 4.2 Assume that, for every t ≥ 0, (C∗(t), B∗(t),K∗(t), R∗(t)) solves the
following temporary optimization problem:

max
C,B,K,R

[
u1(C1) + u2(C2)− (γ1 + γ2)ΦG(t,K,B,Rb)

]
over the feasible set ERP (t) ⊆ R8 defined by the inequalities:

C,B,K,R ≥ 0

C1 +B1 +K1 +Ra +Rb ≤ A(t)f1(K1)

C2 +B2 +K2 ≤ A(t)h(Ra)f2(K2)

(53)

In addition, assume (C∗(t), B∗(t),K∗(t), R∗(t)) is admissible for the original dynamic opti-
mization problem. Then the map t 7→ (C∗(t), B∗(t),K∗(t), R∗(t)) solves the RP’s problem.
Conversely, a solution to the RP’s problem constitutes, for a.e. t ≥ 0, a solution to the
above temporary problem. Consequently, if the solution of the temporary problem is unique
for a.e. t ≥ 0, then the solution to the RP’s problem is a.e. unique.

Like before, one can return to the illustrative special case described in Assumption 3.1;
see Appendix B.2, in particular Proposition B.3.

23Note that Rb = 0 in (70) and (79) if and only if ηK
ηB

≥ g(0)θ2g′(0)1−θ2θθ22 (A − 1). To see this,

observe that, in that case, the derivative of (78) evaluated Rb = 0 is positive. Conversely, when ηK
ηB

<

g(0)θ2g′(0)1−θ2θθ22 (A− 1), the interior maximum point R̄b satisfies: ηK
ηB

=
[
g(R̄b)

θ2g′(R̄b)
1−θ2θθ22 (A− 1)

]
.
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4.3. The non-cooperative dynamic game. Normative issues aside, an important ques-
tion concerning implementation is whether outcomes of interactions between self-interested
countries are likely to be efficient. To investigate these questions, we now turn to the study
of Nash equilibria of an underlying non-cooperative game between the two countries. As
before, we first investigate the game keeping G, zi fi, ui, g, and h in a general form. Player 2
(the global South) takes Ra and Rb as given, as we assume that they are chosen by country
1 (the global North). Given the strategy of the other player, each country i maximizes its
own payoff, which can be written as

Ui = γi
S

ρ
+

∫ ∞

0
e−ρtui (Ci(t)) dt− γi

∫ ∞

0
e−ρt(P (t) + T (t))dt. (54)

We first discuss how the general result in Theorem 2.9 applies in this specific setup. The
proof can be found in Appendix B.3.

Corollary 4.3 Assume that, for every t ≥ 0, (C∗(t), B∗(t),K∗(t), R∗(t)) is a Nash
equilibrium of the temporary game where:24

(i) Given B2,K2 ≥ 0, Country 1 chooses (C1, B1,K1, Ra, Rb) ≥ 0 to maximize

H1(t, C1, B1,K1, Ra, Rb) := u1 (C1)− γ1ΦG (t,K(t), B(t), Rb(t)) , (55)

under the constraint:

C1 +B1 +Ra +Rb + I1 ≤ Y1(t) = A(t)f1(K1). (56)

(ii) Given B1,K1, Ra, Rb ≥ 0, country 2 chooses (C2, B2,K2) ≥ 0 to maximize

H2(t, C1, B1,K1, Ra, Rb) := u2 (C2)− γ2ΦG (t,K(t), B(t), Rb(t)) (57)

under the constraint:

C2 +B2 +K2 ≤ Y2(t) = A(t)h(Ra)f2(K2). (58)

In addition, assume that (C∗(t), B∗(t),K∗(t), R∗(t)) is an admissible strategy for the
original differential game. Then the map t → (C∗(t), B∗(t),K∗(t), R∗(t)) is an open-loop
Nash equilibrium to the original differential game. Conversely, every Nash equilibrium of
the original differential game is, for a.e. t ≥ 0, a Nash equilibrium for the above temporary
game. Consequently, if the Nash equilibrium of the temporary game is unique for a.e. t ≥ 0,
then the Nash equilibrium to the original differential game is a.e. unique.

Proof. See Appendix B.3 □

Like before, additional insights, as well as necessary and sufficient conditions for Rb >
0, can be obtained if we impose further structure on the problem. We discuss those in
Proposition B.6 in Appendix B.3.

24In order to rule out outcomes where (56) or (58) do not hold, we assume that the payoff to either player
is −∞ if their budget constraint is violated.
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5. Calibration

Explicit comparisons between sevral variables of interest are obtained for the specific
cases described in Hypothesis 3.1 under logarithmic utility. To unburden the exposition, we
report these in Appendix C. Here we pursue an expository calibration in order to illustrate
some quantitative features of our modeling approach. The relevant parameters we use are
listed in Table 1 in the Appendix.25 We will focus attention on various comparisons between
the solutions to the global planner (GP), restricted planner (RP) and Nash (N) solutions
for several variables of interest. We will pay particular attention to the GHG emissions and
temperatures paths under different scenarios, including under heterogeneous vulnerability
to climate damages.

We map carbon concentrations into global temperatures, T , using the following expres-
sion; see, for example, Golosov et al. (2014):

Temp(St) = 3 ln

(
St

S

)
/ ln(2),

where S is the pre-industrial level of the GHG concentration. In what follows, we will focus
on the sensitivity of various variables to (i) the intertemporal elasticity of substitution, and
(ii) the North-South heterogeneity.

5.1. Intertemporal elasticity of substitution. Here we investigate the sensitivity of
model outcomes to the value of the intertemporal elasticity of substitution, σ. In the next
section we will investigate the effects of heterogeneity, including in the value of discounting,
which is an important parameter in climate economics.26 Using values from our benchmark
calibration (see Appendix E), we vary σ in [0.1, 2]. Figure 1 illustrates the differences in
temperatures between the Nash case and the GP solution (first-best).
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Figure 1. Absolute vs relative Nash inefficiency gap in terms of the final
temperature when σ varies.

25The codes used in this section are freely available at: https://github.com/crricci/climate_change_
optimal/.

26The sensitivity with respect to σ is also discussed in Golosov et al. (2014), who concentrate on the
logarithmic case for their theoretical investigations.

https://github.com/crricci/climate_change_optimal/
https://github.com/crricci/climate_change_optimal/
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As σ increases, consumption is smoother and both net emissions and temperatures de-
crease with σ. When σ is small, say below 0.5, the absolute deviation of the temperature in
the Nash case with respect to the first best is larger than 5 degrees (of course, it becomes
very large when σ goes to zero). This inefficiency gap drops to less than 2 degrees close to
the logarithmic case, and then it decreases quickly to zero for σ ≤ 1.5. It turns out that
the difference between the first-best and the Nash outcome are higher in the neighborhood
of the logarithmic case (about 50% around σ = 1). This suggests that large differences
in relative efficiency between the Nash and the GP outcome can result when σ is in the
neighborhood of the logarithmic case.

5.2. Heterogeneity. Here we briefly explore the sensitivity to heterogeneity with respect
to the time discount factor (ρ) and with respect to the parameter measuring relative vul-
nerability to climate change (γ).

5.2.1. Discounting. Time discounting is an important parameter in climate economics, as
many of the GHG-related damages occur in the future; see, for example, Stern (2007). Few
game-theoretic models in this area have investigated the role of heterogeneity in time dis-
counting.27 Here, we will consider the autonomous benchmark case and illustrate that our
methodology can accommodate this type of heterogeneity at low mathematical and compu-
tational costs. The results also illustrate the intrinsically dynamic nature of our method-
ology. As we will see, the planners’ problems internalize the heterogeneity in discounting
rates, leading to endogenous dynamics as the optimal controls will be time-dependent.

To illustrate this point, define

Φ(ρ) =
ϕL

ρ
+

(1− ϕLϕ0)

ρ+ ϕ
,

where ϕ, ϕL, ϕ0 are the climate parameters defined earlier.
Then the planners’ problem (the GP and the RP only differ in their constraints) objective
function under equal discount factors, ρ, is given by

max
C,B,K,R

[
u1(C1) + u2(C2)− (γ1 + γ2)Φ(ρ)G(t,K,B,Rb)

]
. (59)

In the case of heterogeneous discount factors, ρ1, ρ2, this objective becomes

max
C,B,K,R

{
e−ρ1t [u1(C1)− γ1Φ(ρ1)G(t,K,B,Rb)]+ e−ρ2t [u2(C2)− γ2Φ(ρ2)G(t,K,B,Rb)]

}
.

(60)
Note that, apart from the difference in the coefficients, γiΦ(ρi), the expression assigns a
different (time-dependent) weight to country 1 versus country 2, as the exponential decay
at different rates. As a result, the controls in this problem will be time-dependent. Figure
2 shows the optimal paths for both the GP and the RP problems when ρ1 is our benchmark
while ρ2 = 1.2 ρ1 (thus, the global south is “more impatient”).

Some features of the asymmetry in time preference include that optimal consumption in
the global north is rising, with the GP lying below that of the RP solution. In contrast,
optimal consumption in the global south is declining, as the higher preference for present
consumption in the south is internalized. Note that in this case, the GP solution implies

27One recent exception is Vosooghi et al. (2022), however, the authors do not investigate equilibrium
dynamics.
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Figure 2. Control variables C1, C2, B1, B2, I1, I2, Ra, Rb in the Global and
Restricted planner cases when ρ2 = 1.2ρ1.
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higher consumption to the south relative to the RP solution. the optimal abatement effort
in the global north is increasing over time (and these largely overlap) in both the GP and
the RP solution in order to balance for the emissions resulting from increasing consumption.
Abatement in the global south remains relatively steady and large in both the GP and the
RP solution, being much higher under the GP. Also of note, reflecting the global south’s
impatience, the production technology transfer is relatively constant and higher for the RP,
while this ordering is reversed for the abatement-specific transfer.

5.2.2. Vulnerability to climate change. Figure 3 below shows the over-time stocks of emis-
sions when σ = 1 in the homogeneous damage (γ1 = γ2 = 50$/TCO2) case, versus the case
where the global south experiences higher damages, γ1 = 25$/TCO2, and γ2 = 75$/TCO2
(we keep the total damages constant for this comparison).28
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Figure 3. σ = 1 (log), Total emissions.

A few remarks are in order. First, as it is more efficient, the GP would only engage in
production in the north. Global emissions are higher in the non-cooperative outcome than
in the GP and the RP solutions, which are close. The associated global temperature paths
are given in Figure 4. In the Nash outcome under asymmetric γ’s, the north emits more
than the south, reflecting the higher resilience to damages in the north. In contrast, in the
symmetric case, the emissions in the south are close to those in the north. Other relevant
variables are summarized in Table 3 in Appendix E.

Lower intertemporal substitution (σ = 1.2). In this case, emissions in both countries are
lower compared to the logarithmic utility case. In addition, the relative differences between
the efficiency benchmarks and the Nash outcome ar smaller. The qualitative properties
concerning players’ relative positions in the symmetric versus the asymmetric cases remain
largely unchanged from the logarithmic case (see Figure 5).

28Recall that a higher γ can also be interpreted as a result of a lesser availability or effectiveness of the
respective adaptation measures.
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Figure 4. σ = 1 (log), Global temperature.
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Figure 5. σ = 1.2, Total emissions

Finally, we turn to the effect of an increase in relative climate vulnerability in the global
south (modeled as an increase in the ratio γ2

γ1
) on the north-south transfers. We choose

the RP case for the illustration. Figure 6 suggests that north-south abatement technology
transfers become more important relatively to production transfers as climate vulnerability
in the south increases.

In the following section we extend the climate model to account for Knightian uncertainty.
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Figure 6. Impact of γ2 on the expenditure of transfers Ra, Rb in the Re-
stricted planner case (σ = 1 (log)).

6. Knightian Uncertainty and Robust control

While it is well recognized that GHG concentrations in excess of the preindustrial level are
detrimental to economic well-being, the details of the mapping from excess concentrations
to damages and to the resulting utility reductions are subject to considerable uncertainty.
Indeed, as anthropogenic climate change is unprecedented, one might argue that it would be
difficult to accommodate this uncertainty within the standard model of Bayesian decision-
making under risk. As a result, decision-makers might favor policies that perform well
for a variety of models in the proximity of the benchmark (approximate) model. Robust
control is one rigorous way to model this problem; see, for example, Hansen and Sargent
(2008), Hansen and Sargent (2010), Anderson et al. (2014), Li et al. (2016), Hansen and
Sargent (2022), and Barnett et al. (2022). In this section we introduce model uncertainty
regarding the damages resulting from climate change through the variables γ1, γ2. Our goal
is to demonstrate that the ITM can be applied to this setup. Here, we will only develop
explicitly the global planner’s (GP) problem (we relegate the proofs in Appendix D.1).
The restricted planner’s case is studied in Subsection D.2), while the non-cooperative Nash
outcomes are studied in Subsection D.3.

6.1. The global planner’s (GP) robust control problem. In the GP case, the concern
about model-uncertainty is represented by a two-person zero-sum dynamic game in which,
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after observing the choice of a social planner, a “malevolent player” chooses the worst spec-
ification of the model according to a metric we describe below.29 In particular, we assume
that the malevolent nature’s deviation from the approximating distribution is penalized by
adding ∫ ∞

0
e−ρt

[
α1 |γ1(t)− γ̂1|2 + α2 |γ2(t)− γ̂2|2

]
dt (61)

to the planner’s objective function, where αi represent the magnitude of the deviation
“punishment”for the two countries, making it more costly for the malevolent player to
deviate from the approximate model. In what follows, we will concentrate on the benchmark
case where α1 = α2 = α. We interpret γ̂1 and γ̂2 as the (strictly positive) benchmark values
of the respective parameters. Since a larger α implies a higher penalty for the malevolent
player resulting from their deviation from the approximating distribution, it makes such
a deviation less likely, which is equivalent to a lower concern about model uncertainty
(robustness). Incorporating the malevolent player’s decision, the robust GP problem can
be written as follows:

max
C(·),K(·),B(·),Ra(·),Rb(·)

min
γ1(·),γ2(·)

UR((α1, α2)) = UR
1 (α1) + UR

2 (α2) =∫ ∞

0
e−ρt

[
u1 (C1(t))− γ1(t)

(
S(t)− S

)
+ α1 |γ1(t)− γ̂1|2

]
dt

+

∫ ∞

0
e−ρt

[
u2 (C2(t))− γ2(t)

(
S(t)− S

)
+ α2 |γ2(t)− γ̂2|2

]
dt (62)

subject to a single resource constraint:

C1(t) + C2(t) +B1(t) +B2(t) +Ra(t) +Rb(t) +K1(t) +K2(t)

= Y1(t) + Y2(t) = A(t)f1(K1(t)) + h(Ra(t))A(t)f2(K2(t)). (63)

As before, the control strategies of the GP are assumed to belong to the set UGP given
in (43), while those of the malevolent player (γ1(·), γ2(·)) belong to L2

ρ(R+;R2). Following
Theorem Theorem 2.4, the above functional can be rewritten, allowing us to obtain the
following minimax theorem.

Theorem 6.1 Suppose that Hypothesis 3.1 holds.30 Then:

max
C(·),K(·),B(·),Ra(·),Rb(·)

min
γ1(·),γ2(·)

UR((α1, α2)) =

min
γ1(·),γ2(·)

max
C(·),K(·),B(·),Ra(·),Rb(·)

UR((α1, α2))

Proof. See Appendix D. □

The above clearly holds if we restrict attention to constant strategies (γ1, γ2) for the
malevolent player. For expository purposes, we will restrict attention to this case under
logarithmic utility in what follows.

29Our modeling follows van den Broek et al. (2003). Our results generalize to the use of the relative
entropy approach, which is often employed in economic applications; see, for example, Hansen and Sargent
(2008).

30The statement holds more generally under the joint concavity of G.
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6.1.1. Logarithmic payoffs. We now investigate the logarithmic case under constant γ1 and
γ2. Using Theorem 6.1, we solve the following:

min
γ1,γ2∈R

max
C(·),B(·),K(·),R(·)∈Up1

UR(α) = min
γ1,γ2∈R

max
C(·),B(·),K(·),R(·)∈Up1

U1 + U2 =

min
γ1,γ2∈R

max
C(·),B(·),K(·),R(·)∈Up1

∫ ∞

0
e−ρt

[
ln (C1(t)) + ln (C2(t))− (γ1 + γ2)

(
S(t)− S

)
+ α |γ1 − γ̂1|2 + α |γ2 − γ̂2|2

]
dt (64)

Both the planner’s choices reflect the fact that they internalize the damages resulting
from the climate externality and their decisions only depend on the value of γ1 + γ2. For
the planner’s payoff to be decreasing in S(t) we will require that (γ1 + γ2) is positive. We
then have the following.

Proposition 6.2 Suppose Assumption 3.1 holds and assume logarithmic payoffs. Given
γ̂1, γ̂2 > 0, the values of (γ1, γ2) that solve (64) are unique and given by:

γ1 =
1

4α

[
−α(−3γ̂1 + γ̂2)− ρΓ1 +

√
[ρΓ1 − α(γ̂1 + γ̂2)]

2 + 8α

]
,

γ2 =
1

4α

[
−α(−3γ̂2 + γ̂1)− ρΓ1 +

√
[ρΓ1 − α(γ̂1 + γ̂2)]

2 + 8α

]
,

where

Γ1 :=

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ

]
− ΦηK

ρ
(Rb +B1 +B2) +

ΦηB
ρ

(
Bθ1

1 + g(Rb)B
θ2
2

)
.

The values of R,C,B and K are given by the corresponding resource constraint in Proposi-
tion B.2.

Proof. See Appendix D. □

As mentioned earlier, the reader is refereed to Appendix D for the corresponding results
for the RP and Nash cases. The last case is of independent interest, as it extends robust con-
trol from decision-theoretic to a differential game setup. As an illustration, Figure 7 extends
the earlier calibration to the case where there is concern about model uncertainty, assuming
logarithmic utility. The three figures below summarize the paths for global temperatures
corresponding to the solutions of: (A) the global planner, (B) the restricted planner, and
(C) the Nash case, respectively. Each graph is given for different values of α, with α = ∞
corresponding to the approximate (rational expectations) model.

Clearly, lower values of α give rise to “more cautious” behavior, as they correspond to
a higher concern about model uncertainty. A broader comparison across several variables
is given in Table 4 in Appendix F. In Appendix F we also discuss related simulations
and corresponding confidence intervals when nature draws independently over time from
an exponential distribution with mean γ. The graphs indicate a sharp difference between
the planners’ solutions (graphs A,B) and those resulting from the non-cooperative equilibria
(graphs C). An interesting comparison concerns an important asymmetry related to possible
mis-specification. Table 3 summarizes the welfare values under two scenarios. If a planner
uses a “worst case scenario,” (α = 10000), while actual data is generated by the approximate
(α = ∞) model, this obviously leads to some welfare losses. But the losses are far larger in
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the reverse scenario, where data is generated by a worst case distribution, while the planner
optimizes according to the approximate model. Thus, the cost from more aggressive climate
action can be thought of as paying insurance against far worse climate outcomes.
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Figure 7. log, asymmetric damages, global temperature as function of α.

true α

b
el
iv
ed

α 10000 ∞
10000 24.68 37.38

∞ 10.78 41.76

Table 1. Welfare values in the case of the Global Planner for different
values of perceived vs true α.
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7. Conclusions

we developed a two-country differential game extension of the model in Golosov et al.
(2014). We considered different transfer schemes, including transfers that can improve the
abatement technology. We examined the effects of heterogeneity in preferences, time dis-
count rates, and vulnerability to damages resulting from the stock of accumulated GHG.
We compared planner’s solutions to those in non-cooperative equilibria. We then calibrated
our model in order to study quantitative differences between these solutions and to quanti-
tatively explore the role of heterogeneity and Knightian uncertainty on emissions, damages,
consumption, transfers, and welfare. We then compare these to efficiency benchmarks.

We develpped a general abstract framework, the Integral Transformation Method (ITM),
that encompasses several applications that are linear in a (suitably defined) state vari-
able. Solutions to such dynamic problems can be found through the analysis of a family
of temporary optimization problems parametrized by time. This includes cases involving
time-dependent systems, control and state constraints, differential games, and robust con-
trol optimization. The ITM might be particularly well-suited for future applications in the
study of mean-field games; see Lasry and Lions (2007) and, for a more recent application,
Alvarez et al. (2023), including games involving impulse control, as in Bertucci (2020).
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Appendix A. The ITM method: proofs

Proof of Theorem 2.4. (i) By Proposition 2.2, for any u(·) ∈ U ,

J (x0;u(·)) = ⟨b(0),x0⟩+
∫ ∞

0

e−ρt [⟨b(t), f(t,u(t))⟩+ h(t,u(t))] dt (65)

≤ ⟨b(0),x0⟩+
∫ ∞

0

e−ρt sup
u∈U: l(t,u)≤0

[⟨b(t), f(t,u)⟩+ h(t,u)] dt = J (x0; û(·)),

where the latter equality is due to the fact that û(t) is a solution to the temporary optimization
problem for a.e. t ∈ R+, implying the optimality of û(·).

(ii) Let u(·) be optimal. Then,

∫ ∞

0

e−ρt [⟨b(t), f(t,u(t))⟩+ h(t,u(t))] dt = sup
u(·)∈U

∫ ∞

0

e−ρt [⟨b(t), f(t,u(t))⟩+ h(t,u(t))] dt

=

∫ ∞

0

e−ρt sup
u∈U: l(t,u)≤0

[⟨b(t), f(t,u)⟩+ h(t,u)] dt =

∫ ∞

0

e−ρt sup
u∈U: l(t,u)≤0

[⟨b(t), f(t,u)⟩+ h(t,u)] dt.

This implies

⟨b(t), f(t,u(t))⟩+ h(t,u(t)) = sup
u∈U: l(t,u)≤0

[⟨b(t), f(t,u)⟩+ h(t,u)] , for a.e. t ∈ R+,

as claimed.

(iii) Follows from (i).

(iv) Follows from (ii).
□

Proof of Theorem 2.9.
(i) Let i ∈ {1, ...N}. Our assumption implies that, for a.e. t ≥ 0, the argmax in (18), when

taking u−i,t = û−i(t), is non-empty and contains ûi(t). Using also Proposition 2.6 in the first
and the last equality below and the above fact in the equality in the middle, we have, for all
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ui(·) ∈ Ui(û−i(·)),
Ji(x0, û−i(·);ui(·))

= ⟨bi(0),x0⟩+
∫ ∞

0

e−ρit [⟨bi(t), f(t, û−i(t),ui(t))⟩+ hi(t, û−i(t),ui(t))] dt

≤ ⟨bi(0),x0⟩+
∫ ∞

0

e−ρit sup
ui∈Ui,û−i,t

[⟨bi(t), f(t, û−i,t,ui)⟩+ hi(t, û−i,t,ui)] dt

= ⟨bi(0),x0⟩+
∫ ∞

0

e−ρit [⟨bi(t), f(t, û−i(t), ûi(t))⟩+ hi(t, û−i(t), ûi(t))] dt

= Ji(x0, û−i(·); ûi(·)).
Since this is true for all i = 1, . . . , N , it follows the claim.

(ii) Assume that u(·) ∈ UG is an open-loop Nash equilibrium for the dynamic game. By Proposition
2.6, for all ui(·) ∈ Ui(u−i(·)) we have

Ji(x0;u−i(·);ui(·))

= ⟨bi(0),x0⟩+
∫ ∞

0

e−ρit [⟨bi(t), f(t,u−i(t),ui(t))⟩+ hi(t,u−i(t),ui(t))] dt. (66)

Our assumptions imply (Bertsekas and Shreve, 1996, Prop. 7.33, p. 153) the existence of a Borel
measurable map ûi(·) ∈ U(u−i(·)) such that

sup
ui∈Ui,u−i(t)

{
⟨bi(t), f(t,u−i(t),ui)⟩+ hi(t,u−i(t),ui)

}
= ⟨bi(t), f(t,u−i(t), ûi(t))⟩+ hi(t,u−i(t), ûi(t)), ∀t ∈ R+. (67)

By the definition of Nash equilibrium, and using (66) and (67), it follows that, for every
i = 1, ..., N ,

Ji(x0,u−i(·);ui(·)) ≥ Ji(x0;u−i(·); ûi(·))

= ⟨bi(0),x0⟩+
∫ ∞

0

e−ρit [⟨bi(t), f(t,u−i(t), ûi(t))⟩+ hi(t,u−i(t), ûi(t))] dt

= ⟨bi(0),x0⟩+
∫ ∞

0

e−ρit sup
ui∈Ui,u−i(t)

[⟨bi(t), f(t,u−i(t),ui)⟩+ hi(t,u−i(t),ui)] dt

≥ ⟨bi(0),x0⟩+
∫ ∞

0

e−ρit [⟨bi(t), f(t,u−i(t),ui(t))⟩+ hi(t,u−i(t),ui(t))] dt

= Ji(x0;u−i(·);ui(·)).
Thus, the above inequalities are in fact equalities and, thus, we have

sup
ui∈Ui,u−i(t)

[⟨bi(t), f(t,u−i(t),ui)⟩+ hi(t,u−i(t),ui)]

= ⟨bi(t), f(t,u−i(t),ui(t))⟩+ hi(t,u−i(t),ui(t)), for a.e. t ∈ R+.

Thus, the claim follows.

(iii) This is immediate from point (i).
(iv) This is immediate from point (ii).

□

Proof of Proposition 2.14. For simplicity of notation and clearness of exposition, we will illustrate
the proof for the case N = 2. Notice that, given the assumptions on h1 and h2, Theorem 2.9
implies that there exists a unique open-loop Nash equilibrium for the game, which also constitutes



40 R. BOUCEKKINE, G. FABBRI, S. FEDERICO, F. GOZZI, T. LOCH-TEMZELIDES, AND C. RICCI

a (degenerate) MPE. Consider now a generic MPE φ̂ = (φ̂1, φ̂2) ∈ ML
G. We identify φ̂ with(

(L̂1, ŵ1), (L̂2, ŵ2)
)
, and let x̂t0,x0(·) stand for the solution to the closed-loop equation associated

with φ̂, starting at (t0,x0), where t0 ∈ R+. Remark 2.11 and the fact that φ̂ is an MPE imply that
û1(·) := φ̂1(·, x̂t0,x0(·)) is an optimal control for the problem starting at t0:

sup
u1(·)∈U1

G(t0)

∫ ∞

t0

e−ρ1t
[
⟨a1(t),x(t)⟩+ h1(t,u1(t))

]
dt,

under the state equation
x′(t) = A(t)x(t) +P(t)

(
u1(t)

(L̂2(t)x(t) + ŵ2(t))

)
+ j(t)

x(t0) = x0 ∈ X,

where

U1
G(t0) =

{
u1(·) ∈ L1

ρ1
([t0,∞);U1) : t 7→ h1(t,u1(t)) ∈ L1

ρ1
([t0,∞);R)

}
.

This optimal control problem has the same structure as the one investigated in Subsection 2.1.
Namely, it involves a linear dependence of the state variable in the functional. This allows us to
perform the same transformation of the functional, ending up with a family of temporary optimiza-
tion problems parametrized by t. For all t ∈ R+, each of these temporary problems admits a unique
solution. Denote these by u1,t. Since φ̂ is a MPE, we have that, for a.e. t0 ∈ R+,

u1,t0 = û1(t0) = φ̂1(t0,x0), ∀x0 ∈ X.

It follows that φ̂1 cannot depend on x. By symmetry, the same is true for φ̂2. Thus, φ̂ must be
degenerate and it coincides with the unique open-loop Nash equilibrium of the game. □

Appendix B. The GP, RP, and Nash equilibrium solutions under Assumption 3.1

Here we give the proofs for the GP, RP, and Nash equilibrium cases discussed in section 4. In
each case we state and prove specific results under Assumption 3.1.

B.1. The Global Planner’s case (GP).

Proof of Corollary 4.1. The proof follows by applying Theorem 2.4 using the specific forms in (44)-
(48). □

Next, we discuss the case under Assumption 3.1.

Proposition B.1 Suppose Assumption 3.1 holds and assume σ1, σ2 ̸= 1 (non-logarithmic util-
ity). Then there exists a unique solution to the problem given in (50)-(51). Moreover, the GP’s
policy is characterized by the following:

C1 =

(
A− 1

(γ1 + γ2)ΦηK

)1/σ1

, C2 =

(
A− 1

(γ1 + γ2)ΦηK

)1/σ2

, (68)

Ra = 0, (69)

Rb ∈ argmax

−Rb + g(Rb)
1

1−θ2

(
θ2
ηK

(A−1)ηB

) 1
1−θ2

(
1

θ2
− 1

) , (70)

B1 =

(
ηBθ1
ηK

(A− 1)

) 1
1−θ1

, B2 =

(
ηBg(Rb)θ2

ηK
(A− 1)

) 1
1−θ2

, (71)
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and

K1 =
1

A− 1
(C1 + C2 +B1 +B2 +Rb), K2 = 0. (72)

Proof. By Theorem 4.1, under Assumption 3.1 the GP maximizes

max
C,B,K,Ra,Rb

[C1−σ1
1

1− σ1
+

C1−σ2
2

1− σ2
− (γ1 + γ2)Φ

(
ηK(K1 +K2)− ηB(B1(t)

θ1 + g(Rb)B2(t)
θ2)
) ]

(73)

under the constraints{
C,B,K,Ra, Rb ≥ 0

C1 + C2 +B1 +B2 +K1 +K2 +Ra +Rb ≤ A [K1 + h(Ra)K2] .
(74)

Observe that for any plan satisfying the second constraint in (74) with strict inequality, we can
construct a feasible plan which satisfies it with equality by increasing C1 (or C2). Hence, we can
assume without loss of generality that (74) holds as an equality. After a simple substitution, our
problem is equivalent to

max
C,B,K,Ra,Rb

[
C1−σ1

1

1− σ1
+

C1−σ2
2

1− σ2
− (γ1 + γ2)Φ

(
−ηB(B1(t)

θ1 + g(Rb)B2(t)
θ2)
)

− (γ1 + γ2)ΦηK

(
1

A− 1

(
C1 + C2 +B1 +B2 +A(1− h(Ra))K2 +Ra +Rb

))]
. (75)

Since h < 1, using a simple argument by contradiction we can reduce the problem to one where
Ra = K2 = 0. Indeed, if a policy involves K2 > 0, since its coefficient in (75) is strictly positive,
we can construct an alternative plan implying a strictly higher payoff by increasing C1 or C2, and
setting K2 = 0. We can then use the same argument to establish that Ra = 0. This, in turn, implies
that the second constraint in (74) becomes

K1 =
1

A− 1
(C1 + C2 +B1 +B2 +Rb).

Hence the problem is equivalent to

max
C1,C2,B1,B2,Rb

[
C1−σ1

1

1− σ1
+

C1−σ2
2

1− σ2
− (γ1 + γ2)Φ

(
−ηB(B1(t)

θ1 + g(Rb)B2(t)
θ2)
)

− (γ1 + γ2)ΦηI

(
1

A− 1
(C1 + C2 +B1 +B2 +Rb)

)]
(76)

under the non-negativity constraints: C1, C2, B1, B2, Rb ≥ 0.

The objective function in (76) is well defined, continuous and negatively coercive in R5
+. This

implies that a maximum exists. Moreover, by Assumption 3.1-(v) it is strictly convex, so the
maximum is unique.

Next, we find it convenient to separate the objective in (76) into four parts:

F1(C1) + F2(C2) + F3(B1) + F4(B2, Rb) :=

[
C1−σ1

1

1− σ1
− (γ1 + γ2)ΦηK

A− 1
C1

]
+

[
C1−σ2

2

1− σ2
− (γ1 + γ2)ΦηK

A− 1
C2

]
+ (γ1 + γ2)Φ

[
− ηK

A− 1
B1 + ηBB

θ1
1

]
+ (γ1 + γ2)Φ

[
− ηK

A− 1
(B2 +Rb) + ηBg(Rb)B

θ2
2

]
. (77)

We proceed by maximizing each part independently. By maximizing F1, F2 and F3 we obtain (68)
and the first part of (71). Maximizing F4 w.r.t. B2, we obtain the second part of (71). However,
the value of Rb is not yet explicit in this expression. We proceed by substituting the expression for
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the optimal B2 in F4. Then, maximizing the expression w.r.t. Rb (skipping the factor (γ1 + γ2)Φ,
as it multiplies the entire expression), we obtain:

− ηK

A− 1

[(
ηK

ηBg(Rb)θ2

1

A− 1

) 1
θ2−1

+Rb

]
+ ηBg(Rb)

(
ηK

ηBg(Rb)θ2

1

A− 1

) θ2
θ2−1

.

The last expression can be rewritten as

ηK

A− 1

−Rb + g(Rb)
1

1−θ2

(
θ2
ηK

(A−1)ηB

) 1
1−θ2

(
1

θ2
− 1

) , (78)

and (70) follows. □

Proposition B.2 Let Assumption 3.1 hold and assume logarithmic utility. Then there exists a
unique solution to the problem (50)-(51). Moreover, the GP’s policy is characterized by the following:

C1 =

(
A− 1

(γ1 + γ2)ΦηK

)
, C2 =

(
A− 1

(γ1 + γ2)ΦηK

)
,

Ra = 0,

Rb ∈ argmax

− ηK

(A− 1)
Rb + (1− θ2)θ

θ2
1−θ2
2 (ηBg(Rb))

1
1−θ2

(
(A− 1)

ηK

) θ2
1−θ2

 , (79)

, B1 =

(
ηBθ1
ηK

(A− 1)

) 1
1−θ1

, B2 =

(
ηBg(R

GP
b )θ2

ηK
(A− 1)

) 1
1−θ2

,

and

K1 =
1

A− 1
(C1 + C2 +B1 +B2 +Rb), K2 = 0.

Proof. The proof follows the same lines as in the proof of Proposition B.1 and will be omitted. □

B.2. The restricted planner’s case (RP).

Proof of Corollary 4.2. As in the proof of Corollary 4.1 we define the terms of the optimal control
problem as in (44)-(47) and define the constraint on the control variables as

l(t,u(t)) :=
(
− C(t),−B(t),−K(t),−Ra(t),−Rb(t),

C1(t) +B1(t) +K1(t) +Ra(t) +Rb(t)−A(t)f1(K1(t)),

C2(t) +B2(t) +K2(t)− h(Ra(t))A(t)f2(K2(t))
)T

. (80)

The claim then follows by applying Theorem 2.4. □

We will again discuss the optimum under Assumption 3.1.

Proposition B.3 Suppose Assumption 3.1 holds and σ ̸= 1 (non-logarithmic utility case).
Then the RP’s policies are characterized by the following:

C1 =

(
(γ1 + γ2)ΦηK

1

A− 1

)−1/σ1

, C2 =

(
Ah(Ra)− 1

(γ1 + γ2)ΦηK

)1/σ2

(81)
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(Ra, Rb) ∈ argmax

{
σ2

1− σ2

(
1

(γ1 + γ2)ΦηK

) 1
σ2

(Ah(Ra)− 1)
1−σ2
σ2

+ (1− θ2)ηBg(Rb)

(
ηK

ηBg(Rb)θ2
· 1

Ah(Ra)− 1

) θ2
θ2−1

− ηK

A− 1
(Ra +Rb)

}
(82)

B1 =

(
ηBθ1
ηK

(A− 1)

) 1
1−θ1

, B2 =

(
ηK

ηBg(Rb)θ2

1

Ah(Ra)− 1

) 1
θ2−1

, (83)

and

K1 =
1

A− 1
(C1 +B1 +Ra +Rb), K2 =

C2 +B2

Ah(0)− 1
.

Proof. We find if convenient to use Corollary 4.2 together with the budget constraint, in order to
rewrite the optimization problem into separate parts. Thus, we need to maximize the following:

F1(C1) + F2(C2, Ra) + F3(B1) + F4(B2, Ra) + F5(Ra, Rb) :=

[
C1−σ1

1

1− σ1
− (γ1 + γ2)ΦηK

A− 1
C1

]
+

[
C1−σ2

2

1− σ2
− (γ1 + γ2)ΦηK

Ah(Ra)− 1
C2

]
+ (γ1 + γ2)Φ

[
− ηK

A− 1
B1 + ηBB

θ1
1

]
+ (γ1 + γ2)Φ

[
− ηK

h(Ra)A− 1
B2 + ηBg(Rb)B

θ2
2

]
+ (γ1 + γ2)Φ

[
− ηK

A− 1
(Ra +Rb)

]
. (84)

Maximizing F1 and F3 gives the two equations in (81), while maximizing F2 and F4 results in the
two expressions in (83). Using the expressions in (83), to find Ra and Rb we need to maximize
(ignoring the common factor (γ1 + γ2)Φ):

σ2

1− σ2

(
1

(γ1 + γ2)ΦηK

) 1
σ2

(h(Ra)A− 1)
1−σ2
σ2

+ (1− θ)ηBg(Rb)

(
ηK

ηBg(Rb)θ2

1

h(Ra)A− 1

) θ2
θ2−1

− ηK

A− 1
(Ra +Rb). (85)

If (Ra, Rb) is a maximum point for this expression, the control is optimal. □

Proposition B.4 Suppose Assumption 3.1 holds and assume logarithmic utility. Then the
RP’s policies are characterized by the following:

CRP
1 =

(
A− 1

(γ1 + γ2)ΦηK

)
, CRP

2 =

(
Ah(Rp2

a )− 1

(γ1 + γ2)ΦηK

)
, (86)

(RRP
a , RRP

b ) ∈ argmax

{
1

(γ1 + γ2)Φ
log

(
Ah(Ra)− 1

(γ1 + γ2)ΦηK

)

+ (1− θ2)θ
θ2

1−θ2
2 (ηBg(Rb))

1
1−θ2

(
Ah(Ra)− 1

ηK

) θ2
1−θ2

− ηK

A− 1
(Ra +Rb)

}
(87)

BRP
1 =

(
ηBθ1
ηK

(A− 1)

) 1
1−θ1

, BRP
2 =

(
ηBg(R

RP
b )θ2

ηK
(Ah(Ra)− 1)

) 1
1−θ2

, (88)

and

K1 =
1

A− 1
(C1 +B1 +Ra +Rb), K2 =

C2 +B2

Ah(0)− 1
.

Proof. The proof follows the lines of the proof of Proposition B.3 and will be omitted. □
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B.3. Nash equilibrium (N).

Proposition B.5 Let (C(·),K(·), B(·), R(·)) ∈ URP and assume that t 7→
G(t, C(t), B(t), Rb(t)) ∈ L1

ρ(R+). Then the objective functional of country i in expression
(54) can be written as

Ui = γi

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ

]
+

∫ ∞

0

e−ρt [ui (Ci(t))− γiΦG (t,K(t), B(t), Rb(t))] dt, (89)

where Φ is defined in (49).

Proof. We will apply Proposition 2.6. We begin by defining

x(t) :=

(
P (t)
T (t)

)
, (90)

u1(t) := (C1(t), B1(t),K1(t), Ra(t), Rb(t))
T
, u2(t) := (C2(t), B2(t),K2(t))

T
, (91)

A(t) :=

(
0 0
0 −ϕ

)
, f(t,u(t)) :=

(
ϕLG (t,K(t), B(t), Rb(t))

(1− ϕL)ϕ0G (t,K(t), B(t), Rb(s))

)
, (92)

a1(t) := −γ1

(
1
1

)
, h1(t,u1(t),u−1(t)) := u1(C1(t)) + γ1S, (93)

a2(t) := −γ2

(
1
1

)
, h2(t,u2(t),u−2(t)) := u2(C2(t)) + γ2S, (94)

g1(t,x(t)) := 0, g2(t,x(t)) := 0, (95)

and

l1(t,u(t)) :=
(
− C1(t),−B1(t),−K1(t),−Ra(t),−Rb(t),

C1(t) +B1(t) +K1(t) +Ra(t) +Rb(t)−A(t)f1(K1(t))
)T

, (96)

l2(t,u(t)) :=
(
− C2(t),−B2(t),−K2(t), C2(t) + B2(t) +K2(t) − h(Ra(t))A(t)f2(K2(t))

)T
. (97)

Under these choices, the general formulation in Section 2.3 reduces to the problem in (54). Moreover,
we have

Φ∗
A(t+ τ, t) = exp (τA) =

(
1 0
0 e−ϕτ

)
,

and

bi(t) = −γi

(
1/ρ

1/(ρ+ ϕ)

)
, i ∈ {1, 2}.

Thus, Assumption 2.5 is readily satisfied, due to the assumptions in Section 3.2. Applying Proposi-
tion 2.6 completes the proof. □

Proof of Corollary 4.3. As noted earlier, in order to rule out outcomes when (56) or (58) do not
hold, we assume that the payoff to either player is −∞ if their budget constraint is violated. It the
follows that Player 1 will choose Ra = 0. For, if this is not the case, their payoff could increase
by reducing Ra and increasing C1 (keeping B1, Rb and K1 constant). The result then follows by
applying Theorem 2.9 using the definitions in (90)-(96)-(97). □

Next, we once again turn to the special case in the main text.
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Proposition B.6 Suppose that Assumption 3.1 holds and assume σ ̸= 1 (non-logarithmic
utility case). Then Nash equilibrium is characterized by the following equations:

C1 =

(
γ1ΦηK

1

A− 1

)−1/σ1

, C2 =

(
γ2ΦηK

1

Ah(0)− 1

)−1/σ2

, (98)

RN
a = 0, RN

b ∈ argmax

{
(1− θ2)θ

θ2
1−θ2
2 (ηBg(Rb))

1
1−θ2

(
Ah(0)− 1

ηK

) θ2
1−θ2

− ηK

A− 1
Rb

}
(99)

B1 =

(
ηK
ηBθ1

1

A− 1

) 1
θ1−1

, B2 =

(
ηBg(Rb)θ2(Ah(0)− 1)

ηK

) 1
1−θ2

,

and

K1 =
1

A− 1
(C1 +B1 +Rb), K2 =

C2 +B2

Ah(0)− 1
.

Proof. We look for a solution of the form described in Proposition 4.3. As demonstrated in the
beginning of the proof of Corollary 4.3, we necessarily have Ra ≡ 0. This implies that Ra = 0 and
the expressions for K1 and K2 follow.

Using the equation for K1 and K2, we can rewrite the maximization problem of Player 1 as

max
C1,B1,Rb

u1 (C1)− γ1ΦηK

(
1

A− 1
(C1 +B1 +Rb) +

1

h(0)A− 1
(C2 +B2)

)
+ γ1ΦηB

(
Bθ1

1 + g(Rb)B
θ2
2

)
= F1(C1)− F2(B1)− F3(Rb, B2)− F4(B2, C2) =

=

[
u1 (C1)−

γ1ΦηK

A− 1
C1

]
−
[
γ1ΦηK

A− 1
B1 − γ1ΦηBB

θ1
1

]
−
[
γ1ΦηK

A− 1
Rb − γ1ΦηBg(Rb)B

θ2
2

]
− γ1ΦηK

[
1

h(0)A− 1
(C2 +B2)

]
. (100)

Maximizing the term containing F1 and F2 we obtain (98). The term containing F4 does not depend
of the decisions of Player 1, so it is not taken into account in his decision. The maximization of the
term containing F3 (recall that g is concave) gives

Rb = 0, if g′(0) ≤ 1
A−1

ηK

ηB
B−θ2

2

Rb = (g′)−1
(

1
A−1

ηK

ηB
B−θ2

2

)
, if g′(0) > 1

A−1

ηK

ηB
B−θ2

2 .
(101)

The maximization problem of Player 2 reads as

max
C2,B2

u2 (C2)−γ2ΦηK

(
1

A− 1
(C1 +B1 +Rb) +

1

h(0)A− 1
(C2 +B2)

)
+γ2ΦηB

(
Bθ1

1 + g(Rb)B
θ2
2

)
= J1(C2)− J2(B2, Rb) + J3(C1, B1)

=

[
u1 (C2)−

1

h(0)A− 1
C2

]
−
[

γ2ΦηK

h(0)A− 1
B2 − γ2ΦηBg(Rb)B

θ2
2

]
+

[
−γ2ΦηK

(
1

A− 1
(C1 +B1 +Rb)

)
+ γ2ΦηBB

θ1
1

]
. (102)
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Maximizing the term J1, we obtain the expression for C2. The term J3 does not depend of the
decisions of Player 2. The maximization of the J2 gives

B2 :=

(
ηBg(Rb)θ2(Ah(0)− 1)

ηK

) 1
1−θ2

. (103)

Thus, a Nash equilibrium with Rb = 0 exists if and only if this expression evaluated at Rb = 0
satisfies the condition in the first line of (101); i.e. if and only if

g′(0) ≤ 1

A− 1

ηK
ηB

(
ηBg(0)θ2(Ah(0)− 1)

ηK

) −θ2
1−θ2

.

Rearranging this expression, we obtain the condition (i) in the text.

To establish the existence of a a Nash equilibrium with Rb > 0, we need to find a pair B2, Rb

satisfying the second line of (101) and (103). Thus, we need to find Rh
b such that

ηK
ηB

= g′(Rh
b )

1−θ2θθ22 g(Rh
b )

θ2(A− 1)1−θ2(Ah(0)− 1)θ2 .

Since g′(Rb)
1−θ2g(Rb)

θ2 → 0 as Rb → +∞, the previous equation has a solution if and only if (ii)
holds. The associated value of Bh

2 can be found using (103). We remark that the condition in the
second line of (101) holds, since Bh

2 can be found using the expression in (101). Thus, since g is
concave,

g′(0) > g′(Rh
b ) =

(
1

A− 1

ηK
ηB

Bh
2

−θ2
)
.

Implication (iii) then follows from (i) and (ii). □

Proposition B.7 Suppose that Assumption 3.1 holds and assume logarithmic utility. Then,
Nash equilibrium is characterized by the following:

CN
1 =

(
A− 1

γ1ΦηK

)
, CN

2 =

(
Ah(0)− 1

γ2ΦηK

)
, (104)

RN
a = 0, RN

b ∈ argmax

{
(1− θ2)θ

θ2
1−θ2
2 (ηBg(Rb))

1
1−θ2

(
Ah(0)− 1

ηK

) θ2
1−θ2

− ηK

A− 1
Rb

}
(105)

BN
1 =

(
ηBθ1
ηK

(A− 1)

) 1
1−θ1

, BN
2 :=

(
ηBg(R

N
b )θ2

ηK
(Ah(0)− 1)

) 1
1−θ2

, (106)

and

K1 =
1

A− 1
(C1 +B1 +Rb), K2 =

C2 +B2

Ah(0)− 1
.

Proof. The proof follows along the lines of the proof of Proposition B.6 and will be omitted. □

Appendix C. Comparisons under Assumption 3.1 and logarithmic payoffs

Here we concentrate on the specific case described in Assumption 3.1 under logarithmic utility.
This allows us to analytically compare the outcomes under the regimes studied in the previous
sections, namely the global (GP) and restricted planner’s (RP) solutions, as well as the Nash equi-
librium (N) outcomes. These findings are later confirmed using numerical methods. The detailed
results of the logarithmic utility case in the three arrangements are given in Propositions B.2, B.4,
and B.7. Here we report on the related comparisons.
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C.1. Transfers. In Propositions B.2, B.4, and B.7, we derive the values for Ra and Rb in the three
regimes. Regarding the order of the transfers in the different regimes, we have the following.

Proposition C.1 Assume that Assumption 3.1 holds, and ui(C) = ln(C) i = 1, 2. Then

0 = RGP
a = RN

a ≤ RRP
a

and

RN
b ≤ RRP

b ≤ RGP
b .31

Proof. We compare the expressions for Ra and Rb under the three arrangements described in Section
4. Their respective expressions are given in Propositions B.2, B.4, and B.7. The first part of the
claim follows since we have already demonstrated that 0 = RGP

a = RN
a (see the proofs of Proposition

B.1 and of Corollary 4.3).

For the second inequality, observe that the three expressions for Rb in (70), (82), and

(99), can be rewritten respectively as follows: Rb ∈ argmax−Rb + µ(Rb)(Ā− 1)
θ2

1−θ2 , Rb ∈
argmax−Rb + µ(Rb)(Āh(RRP

a )− 1)
θ2

1−θ2 , and Rb ∈ argmax−Rb + µ(Rb)(Āh(0)− 1)
θ2

1−θ2 , where
µ(Rb) is a concave and increasing function. The claim then follows since Since (Āh(0) − 1) ≤
(Āh(RRP

a )− 1) ≤ (Ā− 1). □

C.2. Consumption and abatement. In Propositions B.2, B.4, and B.7, we derive the values of
C1, C2, B1 and B2 in the three regimes. We have the following.

Proposition C.2 Suppose that Assumption 3.1 holds and ui(C) = ln(C), i = 1, 2. Then

CGP
1 = CRP

1 < CN
1 , BGP

1 = BRP
1 = BN

1

and

CRP
2 < CGP

2 , BN
2 ≤ BRP

2 < BGP
2 .

Moreover, provided that the technological differences (before transfers) between North and South are
not too large; i.e.,

(1− h(0)) <
Ā− 1

Ā

γ1
γ1 + γ2

(107)

we have

CRP
2 < CN

2 . (108)

Proof. We compare the expressions of C1 and C2 for the three arrangements described in Section 4.
Their expression are given in Propositions B.2, B.4 and B.7.

The results for Country 1 are immediate. The first claim for Country 2 is straightforward given
the properties of h. The second follows from the fact that RN

b ≤ RRP
b ≤ RGP

b and 0 = RN
a = RGP

a ≤
RRP

a (see Proposition C.1), together with the fact that h and g are increasing functions. Finally,
(108) follows directly from the respective expressions for consumption in the two cases, since (107)
implies (

γ1 + γ2
γ2

)
>

(
A− 1

Ah(0)− 1

)
.

□

31Using the expression in Proposition B.4, we can conclude that RRP
a is strictly positive provided that

ηK
ηB

is sufficiently small.
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C.3. Welfare. Next, we turn to a study of welfare in the two countries under the different regimes.
We denote by Ui the utility of country i and we let U := U1 + U2. We have the following.

Proposition C.3 Suppose that Assumption 3.1 holds, and ui(C) = ln(C) i = 1, 2. Then

(i) UGP > URP > UN ,
(ii) UGP

1 > URP
1 ,

(iii) UGP
2 > URP

2 .

Proof. Directly from the definitions, it follows that UGP > URP > UN . In addition, we have that
UGP
1 > URP

1 , and UGP
2 > URP

2 . To see this, decompose the payoff of country 1 and abstract the
part in B1 (which is the same in all the cases), to obtain

UGP
1 = ln(CGP

1 )− γ1ΦηK
1

A− 1
CGP

1 − γ1ΦηK
1

A− 1
CGP

2

+ γ1ΦηBg(R
GP
b )

(
BGP

2

)θ2 − γ1ΦηK
1

A− 1
BGP

2 − γ1ΦηK
1

A− 1
RGP

b

= ln

(
A− 1

(γ1 + γ2)ΦηK

)
− γ1

γ1 + γ2
− γ1

γ1 + γ2

+ γ1ΦηBg(R
GP
b )

(
BGP

2

)θ2 − γ1ΦηK
1

A− 1
BGP

2 − γ1ΦηK
1

A− 1
RGP

b , (109)

and

URP
1 = ln(CRP

1 )− γ1ΦηK
1

A− 1
CRP

1 − γ1ΦηK
1

h(Ra)A− 1
CRP

2

− γ1ΦηK
1

A− 1
RRP

a + γ1ΦηBg(R
RP
b )

(
BRP

2

)θ2 − γ1ΦηK
1

A− 1
BRP

2 − γ1ΦηK
1

A− 1
RRP

b

= ln

(
A− 1

(γ1 + γ2)ΦηK

)
− γ1

γ1 + γ2
− γ1

γ1 + γ2

− γ1ΦηK
1

A− 1
RRP

a + γ1ΦηBg(R
RP
b )

(
BRP

2

)θ2 − γ1ΦηK
1

h(Ra)A− 1
BRP

2 − γ1ΦηK
1

A− 1
RRP

b .

(110)

The values of B2 and of Rb (respectively of B2, Rb, and Ra) are chosen by the global planner
(respectively the restricted planner) to maximize (γ1 + γ2)Φ times

ηBg(R
GP
b )

(
BGP

2

)θ2 − ηK
1

A− 1
BGP

2 − ηK
1

A− 1
RGP

b , (111)

respectively,

− ηK
1

A− 1
RRP

a + ηBg(R
GP
b )

(
BGP

2

)θ2 − ηK
1

A− 1
BGP

2 − ηK
1

A− 1
RGP

b . (112)

Since, for any choice of B2, Rb, and Ra, the expression in (112) is smaller than (111), the last line
of (109) is smaller than the last line of (110). Thus, the payoff to country 1 under the GP is higher
than its payoff under the RP. The same argument holds for country 2. □

C.4. Emissions. Under Assumption 3.1, we can separate the GHG emissions due to each player.
Denote by Gi the instantaneous net emissions of player i, given by

G1 := ΛII1 − ΛDBθ1
1 and G2 := ΛII2 − ΛDg(Rb)B

θ2
2 .

For the aggregate GHG emission flows, G, we have the following.
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Proposition C.4 Suppose that Assumption 3.1 holds and ui(C) = ln(C) i = 1, 2. Then

GGP ≤ GRP .

If, in addition, (107) holds, then

GGP ≤ GRP ≤ GN .

Proof. Proposition C.2 established that CGP
1 = CRP

1 and Proposition C.3 established that UGP
1 >

URP
1 . Since the payoff of country 1 is given by ln(C1) minus a disutility part which is linear in total

emissions, we obtain

GGP < GRP .

We prove now the second part. From Proposition C.2 we know that CRP
1 < CN

1 and, under
hypothesis (107) we also have (see (108) CRP

2 < CN
2 . So the utility coming from consumption is

higher in both countries in the Nash case than in the RP case. On the other hand we also know,
from Proposition C.3 that URP > UN so the only possibility is that the disutility coming from
emissions is also lower i.e. that emissions are lower. This concludes the proof. □

Appendix D. Robust control proofs

D.1. The GP robust control problem.

Proof of Theorem 6.1. We need to demonstrate that UR, as a function of the control variables, is
concave and, as a function of (γ1(·), γ2(·)) is convex. The proof then follows from Proposition 2.2,
p.173, in Ekeland and Temam (1999). We briefly describe how to check these conditions

• (γ1(·), γ2(·)) vary in the cone of non-negative functions of L2
ρ(R+,R2) which is convex, closed

and non-empty.
• (C(·), B(·), Ra(·), Rb(·)) vary in the subset of L6

ρ(R+,R2) given by non-negative functions
satisfying (63). Since the right-hand side of (63) is a quasi-concave function of K1, Ra and
K2, the subset is convex. It is also clearly closed and non-empty.

• The functional (62) is convex with respect to (γ1(·), γ2(·)).
• To check the concavity of the functional in(62) with respect to (C(·), B(·), Ra(·), Rb(·)), we
first remark that the concavity of (g(Rb))

1
1−θ2 implies that the function

(Rb, B2) 7→ g(Rb)B
θ2
2 (113)

is jointly concave32 and then the function G is convex. The convexity of G then implies the
concavity of the functional. Using Corollary 4.1, this can be rewritten as

(γ1 + γ2)

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ

]
+

∫ ∞

0

e−ρt [u1 (C1(t)) + u2 (C2(t))− (γ1 + γ2)ΦG (t,K(t), B(t), Rb(t))] dt.

This concludes the proof.

□

32To check this property it is enough to check the signature of the Hessian matrix of (113) and to use the

sign of the second derivative of (g(Rb))
1

1−θ2 .
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Proof of Proposition 6.2. We demonstrated that the initial max-min problem is equivalent to the
min-max problem given by

min
γ1,γ2

max
Ci(t),Bi(t),Rb(t)

UR(α) = U1 + U2 =∫ ∞

0

e−ρt
[
u1 (C1(t))− γ1

(
S(t)− S

)
+ α |γ1 − γ̂1|2

]
dt

+

∫ ∞

0

e−ρt
[
u2 (C2(t))− γ2

(
S(t)− S

)
+ α |γ2 − γ̂2|2

]
dt

= min
γ1,γ2

max
Ci(t),Bi(t),Rb(t)

{
(γ1 + γ2)

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ

]
+

α

ρ
(|γ1 − γ̂1|2 + |γ2 − γ̂2|2)+∫ ∞

0

e−ρt [u1 (C1(t)) + u2 (C2(t))− (γ1 + γ2)ΦG (t,K(t), B(t), Rb(t))] dt

}
.

Without loss of generality, we can restrict attention to the case γ1+γ2 > 0. In the logarithmic case,
the previous expression can be written as:

min
γ1,γ2

{
(γ1 + γ2)

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ

]
+

α

ρ
(|γ1 − γ̂1|2 + |γ2 − γ̂2|2)+∫ ∞

0

e−ρt

[
ln

(
A− 1

(γ1 + γ2)ΦηK

)
+ ln

(
A− 1

(γ1 + γ2)ΦηK

)
− (γ1 + γ2)ΦηK

(
Rb +B1 +B2 +

(
A− 1

(γ1 + γ2)ΦηK

)
+

(
A− 1

(γ1 + γ2)ΦηK

))
+ (γ1 + γ2)ΦηB

(
B1(t)

θ1 + g(Rb)B2(t)
θ2
)
dt

}
. (114)

Evaluating the time integral, simplifying, and eliminating the terms that do not depend on γi, we
have that (γ1, γ2) is a solution of the previous minimization problem if and only if it is a solution
to:

min
γ1,γ2

{
2

ρ
ln

(
A− 1

(γ1 + γ2)ΦηK

)
+ (γ1 + γ2)Γ1 +

α

ρ

(
|γ1 − γ̂1|2 + |γ2 − γ̂2|2

)}
. (115)

The previous equation is coercive, convex, goes to +∞ when (γ1 + γ2) → 0, and has exactly one
minimum for γ1 + γ2 > 0. At the minimum point the first-order conditions are necessary and
sufficient:

−2

ρ

1

γ1 + γ2
+ Γ1 +

2α

ρ
(γ1 − γ̂1) = 0 = −2

ρ

1

γ1 + γ2
+ Γ1 +

2α

ρ
(γ2 − γ̂2),

Since γ2 = γ1 + γ̂2 − γ̂1, the previous equation becomes:

0 = 2αγ2
1 + γ1 [α(−3γ̂1 + γ̂2) + ρΓ1] + (γ̂2 − γ̂1)

[
ρΓ1

2
− αγ̂1

]
− 1.

Thus,

γ1 =
1

4α

[
−α(−3γ̂1 + γ̂2)− ρΓ1 ±

√
[α(−3γ̂1 + γ̂2) + ρΓ1]

2 − 8α

(
(γ̂2 − γ̂1)

[
ρΓ1

2
− αγ̂1

]
− 1

)]

=
1

4α

[
−α(−3γ̂1 + γ̂2)− ρΓ1 ±

√
[ρΓ1 − α(γ̂1 + γ̂2)]

2
+ 8α

]
, (116)

and

γ2 =
1

4α

[
−α(−3γ̂2 + γ̂1)− ρΓ1 ±

√
[ρΓ1 − α(γ̂1 + γ̂2)]

2
+ 8α

]
.
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The unique positive solution is then given by:

γ1 =
1

4α

[
−α(−3γ̂1 + γ̂2)− ρΓ1 +

√
[ρΓ1 − α(γ̂1 + γ̂2)]

2
+ 8α

]
,

and

γ2 =
1

4α

[
−α(−3γ̂2 + γ̂1)− ρΓ1 +

√
[ρΓ1 − α(γ̂1 + γ̂2)]

2
+ 8α

]
.

The choices for the other variables follow as in Subsection 4.1. In particular,

γ1 + γ2 =
1

2α

[
α(γ̂2 + γ̂1)− ρΓ1 +

√
[ρΓ1 − α(γ̂1 + γ̂2)]

2
+ 8α

]
> 0.

□

D.2. The RP robust control problem. The restricted robust social planner’s problem can be
written as follows:

max
C(·),K(·),B(·),Ra(·),Rb(·)

min
γ1(·),γ2(·)

UR(α) = UR
1 (α) + UR

2 (α) =∫ ∞

0

e−ρt
[
u1 (C1(t))− γ1(t)

(
S(t)− S

)
+ α |γ1(t)− γ̂1|2

]
dt

+

∫ ∞

0

e−ρt
[
u2 (C2(t))− γ2(t)

(
S(t)− S

)
+ α |γ2(t)− γ̂2|2

]
dt, (117)

subject to the resource constraints:{
C1(t) +B1(t) +K1(t) +Ra(t) +Rb(t) = Y1(t) = A(t)f1(K1(t))
C2(t) +B2(t) +K2(t) = Y2(t) = A(t)h(Ra(t))f2(K2(t)).

(118)

The control variables belong to the set URP defined below (52), while the strategies of the malevolent
player (γ1(·), γ2(·)) are assumed to belong to L2

ρ(R+;R2).

Similarly to Theorem 6.1 in the GP set-up, we have here the following minimax theorem.

Theorem D.1 Under the above assumptions we have:

max
C(·),K(·),B(·),Ra(·),Rb(·)

min
γ1(·),γ2(·)

UR(α) =

min
γ1(·),γ2(·)

max
C(·),K(·),B(·),Ra(·),Rb(·)

UR(α)

D.2.1. Logarithmic payoffs. As in the case of the GP we study the special case where Assumption
3.1 holds, the payoffs are logarithmic, and γ1 and γ2 are real constants. Using Theorem D.1, and
again restrict attention to the case where γ1 + γ2 > 0, we need to solve the following:

min
γ1,γ2∈R

max
C(·),B(·),K(·),R(·)∈URP

UR(α) = min
γ1,γ2∈R

max
C(·),B(·),K(·),R(·)∈Up1

U1 + U2 =

min
γ1,γ2∈R

max
C(·),B(·),K(·),R(·)∈URP

∫ ∞

0

e−ρt
[
ln (C1(t)) + ln (C2(t))− (γ1 + γ2)

(
S(t)− S

)
+ α |γ1 − γ̂1|2 + α |γ2 − γ̂2|2

]
dt. (119)

We have the following result.
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Proposition D.2 Suppose Hypothesis 3.1 holds and assume logarithmic payoffs. Given γ̂1, γ̂2 >
0 the values of (γ1, γ2) that solve (119) are given by

(γ1, γ2) ∈ argmin

{
1

ρ
ln

(
A− 1

(γ1 + γ2)ΦηK

h(Ra(γ1, γ2))A− 1

(γ1 + γ2)ΦηK

)
+ (γ1 + γ2)Λ1(γ1, γ2)

+ h(Ra(γ1, γ2))A+
α

ρ

(
|γ1 − γ̂1|2 + |γ2 − γ̂2|2

)}
, (120)

where

Λ1(γ1, γ2) :=

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ

]
− ΦηK

ρ
(Ra(γ1, γ2) +Rb(γ1, γ2) +B1 +B2)

+
ΦηB
ρ

(
B1(t)

θ1 + g(Rb(γ1, γ2))B2(t)
θ2
)
, (121)

and
(
Ra(γ1, γ2), Rb(γ1, γ2)

)
is any pair (Ra, Rb) solving the maximization problem (87). The values

of R,C,B, and K are given by the corresponding resource constraint.

Proof. Using the equivalence between max-min and min-max problems given in Theorem D.1 and
Corollary 4.2, we obtain:

min
γ1,γ2

max
Ci(t),Bi(t),Rb(t)

UR(α) = U1 + U2 =∫ ∞

0

e−ρt
[
u1 (C1(t))− γ1

(
S(t)− S

)
+ α |γ1 − γ̂1|2

]
dt

+

∫ ∞

0

e−ρt
[
u2 (C2(t))− γ2

(
S(t)− S

)
+ α |γ2 − γ̂2|2

]
dt =

min
γ1,γ2

max
Ci(t),Bi(t),Rb(t)

{
(γ1 + γ2)

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ

]
+

α

ρ
(|γ1 − γ̂1|2 + |γ2 − γ̂2|2) +

∫ ∞

0

e−ρt [u1 (C1(t)) + u2 (C2(t))

−(γ1 + γ2)ΦG (t,K(t), B(t), Rb(t))] dt

}
. (122)

Using the expression for Φ defined in (49) and the expressions for Ci derived earlier, we obtain:

min
γ1,γ2

{
(γ1 + γ2)

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ

]
+

α

ρ
(|γ1 − γ̂1|2 + |γ2 − γ̂2|2)+∫ ∞

0

e−ρt

[
ln

(
A− 1

(γ1 + γ2)ΦηK

)
+ ln

(
h(Ra(γ1, γ2))A− 1

(γ1 + γ2)ΦηK

)
− (γ1 + γ2)ΦηK

(
Ra(γ1, γ2) +Rb(γ1, γ2) +B1 +B2 +

(
A− 1

(γ1 + γ2)ΦηK

)
+

(
h(Ra(γ1, γ2))A− 1

(γ1 + γ2)ΦηK

))
+ (γ1 + γ2)ΦηB

(
B1(t)

θ1 + g(Rb(γ1, γ2))B2(t)
θ2
)
dt

}
. (123)
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Evaluating the time integral, simplifying, and eliminating the terms which do not depends of γi, we
obtain that (γ1, γ2) is a solution of the previous minimization if and only if it is a solution to:

min
γ1,γ2

{
1

ρ
ln

(
A− 1

(γ1 + γ2)ΦηK

h(Ra(γ1, γ2))A− 1

(γ1 + γ2)ΦηK

)
+ (γ1 + γ2)Λ1(γ1, γ2)

+ h(Ra(γ1, γ2))A+
α

ρ

(
|γ1 − γ̂1|2 + |γ2 − γ̂2|2

)}
, (124)

where Λ1(γ1, γ2) is defined in (121) and
(
Ra(γ1, γ2), Rb(γ1, γ2)

)
is determined by solving the maxi-

mization problem (87). The previous equation is coercive and goes to infinity when (γ1 + γ2) goes
to zero. So it has a minimum, and for this minimum point we have γ1 + γ2 > 0 (observe that Ra

and Rb are well defined for γ1 + γ2 > 0). □

As in the previous case, these values are generically unique. Due to the fact that Ra and Rb

depend here on γi, we cannot obtain a closed expression as in Subsection 6.1.1. Still, the previous
expression allows us to reduce the problem to a finite-dimensional minimization problem that one
can treat numerically.

D.3. The Nash robust control problem. In the Nash problem, each country takes as given the
(robust) strategy of the other country when choosing their best response. More precisely, we will
consider one malevolent player for each country.33 Formally, given C2(t), B2(t), t ∈ [0,∞), country
1 solves:

max
C1(t),B1(t),Ra(t),Rb(t)

min
γ1(t)

UR
1 (α) =

∫ ∞

0

e−ρt
[
u1 (C1(t))− γ1(t)

(
S(t)− S

)
+ α |γ1(t)− γ̂1|2

]
dt

(125)
subject to its feasibility constraint.

Similarly, given C1(t), B1(t), Ra(t), Rb(t); t ∈ [0,∞), country 2 solves:

max
C2(t),B2(t)

min
γ2(t)

UR
2 (α) =

∫ ∞

0

e−ρt
[
u2 (C2(t))− γ2(t)

(
S(t)− S

)
+ α |γ2(t)− γ̂2|2

]
dt (126)

subject to its feasibility constraint.

Once again, in what follows we will restrict attention to the case of logarithmic payoffs and a
constant γ. It can be shown that the minimax Theorem we used in the analysis of the planners’
problems also holds in this case. Proceeding as in Theorem 6.1, we can again exchange the max-min
with the min-max in the previous problem for Country 1 to obtain:

min
γ1

max
C1(t),B1(t),Ra(t),Rb(t)

UR
1 (α) =

∫ ∞

0

e−ρt
[
ln (C1(t))− γ1

(
S(t)− S

)
+ α |γ1 − γ̂1|2

]
dt

= min
γ1

max
Ci(t),Bi(t),Ra(t),Rb(t)

{
γ1

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ

]
+

α

ρ
(|γ1 − γ̂1|2) +

∫ ∞

0

e−ρt [ln (C1(t))− γ1G (t,K(t), B(t), Rb(t))] dt

}
. (127)

33This follows the “soft constraint” formulation in van den Broek et al. (2003).
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Similarly, Country 2 solves:

min
γ2

max
C2(t),B2(t)

{
γ2

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ

]
+

α

ρ
(|γ2 − γ̂2|2) +

∫ ∞

0

e−ρt [ln (C2(t))− γ2G (t,K(t), B(t), Rb(t))] dt

}
. (128)

We then have the following.

Proposition D.3 Suppose Assumption 3.1 holds, payoffs are logarithmic, and γ̂1, γ̂2 > 0.
Suppose that (γ1, γ2) > 0 solve the following system:{

G1(γ2) +
2
ρα(γ1 − γ̂1)− 1

ρ
1
γ1

= 0

G2(γ1) +
2
ρα(γ2 − γ̂2)− 1

ρ
1
γ2

= 0

where the expressions for G1(γ2) and G2(γ1) are given in Appendix B. Then (γ1, γ2) form part of a
solution to the problem in (127)-(128).

Proof. Observe that the choices of Bi, Ra = 0 and Rb do not depend on γ1 and on γ2, while the
values of C2 and K2 are independent of γ1. In the logarithmic case, the expression (127) simplifies
and the problem of Country 1 reduces to:

min
γ1

{
γ1

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ
− ηKΦ

ρ

(
1

A− 1
(B1 +Rb) +K2(γ2)

)
+

ηBΦ

ρ
(B1(t)

θ1 + g(Rb)B2(t)
θ2)

]
+

α

ρ
(|γ1 − γ̂1|2) +

1

ρ
ln

(
A− 1

γ1ΦηK

)
− 1

ρ

}
. (129)

Country 2, in turn, solves:

min
γ2

{
γ2

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ
− ηKΦ

ρ

(
K1(γ1) +

1

Ah(0)− 1
B2

)
+

ηBΦ

ρ
(B1(t)

θ1 + g(Rb)B2(t)
θ2)

]
+

α

ρ
(|γ2 − γ̂2|2) +

1

ρ
ln

(
Ah(0)− 1

γ2ΦηK

)
− 1

ρ

}
. (130)

The expression to be minimized in (129) is convex in γ1 ∈ (0,+∞), it is coercive, and it goes to +∞
when γ1 → 0+. Thus, for any fixed γ2, the point of minimum in γ1 is unique, and similarly for the
the expression (130). The two first order conditions are necessary and sufficient and imply:

G1(γ2) +
2

ρ
α(γ1 − γ̂1)−

1

ρ

1

γ1
= 0,

G2(γ1) +
2

ρ
α(γ2 − γ̂2)−

1

ρ

1

γ2
= 0,

where we denoted

G1(γ2) :=

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ
− ηKΦ

ρ

(
1

A− 1
(B1 +Rb) +K2(γ2)

)
+

ηBΦ

ρ
(B1(t)

θ1 + g(Rb)B2(t)
θ2)

]
,

and

G2(γ1) :=

[
S

ρ
− P (0)

ρ
− T (0)

ρ+ ϕ
− ηKΦ

ρ

(
K1(γ1) +

1

Ah(0)− 1
B2

)
+

ηBΦ

ρ
(B1(t)

θ1 + g(Rb)B2(t)
θ2)

]
,

where

K1(γ1) =
1

A− 1
(CN

1 +BN
1 +RN

b ) =
1

A− 1

((
A− 1

γ1ΦηK

)
+BN

1 +RN
b

)
,
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where BN
1 and RN

b are given in (106) and (105) and

K2(γ2) =
1

Ah(0)− 1
(CN

2 +BN
2 ) =

1

Ah(0)− 1

((
Ah(0)− 1

γ2ΦηK

)
+BN

2

)
,

where BN
2 is are given in (106). This concludes the proof.

□
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Appendix E. Calibration

We used the parameter values in the following table:

Parameter Used in Value

ρ Discounting factor, Eq. (1) − log
(
(0.96)10

)
α Production, Eq. (16) + α 1
A Technology, Eq. (16) 2.1
σ1 Utility rich, Assn 3 (iv) 1 (log) or 1.2
σ2 Utility poor, Assn 3 (iv) 1 (log) or 1.2
γ1 damages from emission rich, Eq. (1) 0.0025 or 0.002
γ2 damages from emission poor, Eq. (1) 0.0025 or 0.006
ϕ climate, Eq. (6) 0.5

ϕL climate, Eq. (5) 0.2
ϕ0 climate, Eq. (6) 0.393
θ1 abatement technology, Assn 3 (i) 0.5
θ2 abatement technology, Assn 3 (i) 0.5
ΛI abatement technology, Assn 3 (i) 0.013
ΛD abatement technology, Assn 3 (i) 0.1

g(x) abatement technology, Assn 3 (i),(v) g(x) = g(∞)x+g(0)
x+1

g(0) abatement technology, Assn 3 (i),(v) 0.2
g(∞) abatement technology, Assn 3 (i),(v) 0.5

h(x) abatement technology, Assn 3 (i),(v) h(x) = h(∞)x+h(0)
x+1

h(0) abatement technology, Assn 3 (i),(v) 0.5
h(∞) abatement technology, Assn 3 (i),(v) 0.9

Table 2. Parameters values

GP RP Nash
C1 20240.406 20240.406 40480.813
C2 20240.406 16264.905 1840.037
B1 17.899 17.899 17.899
B2 10.899 6.768 0.009
K1 36829.049 18543.627 36817.011
K2 0.000 18408.026 36800.924
Ra 0.000 137.716 0.000
Rb 2.343 1.967 0.000

gRb 0.780 0.765 0.500
hRa 0.500 0.897 0.500

G 478.097 479.749 956.605
G1 478.355 240.644 478.198
G2 -0.258 239.105 478.407

DeltaP 191.239 191.900 382.642
DeltaT 115.442 116.099 305.639

DeltaTemp 1.402 1.407 2.682
WelFareTot 17.832 17.607 14.127

WelFare1 8.916 8.913 8.609
WelFare2 8.916 8.694 5.518

Y1 77341.003 38941.616 77315.723
Y2 0.000 34679.698 38640.970
Cγ 202.404 182.527 211.604

Cγ1 50.601 50.601 101.202
Cγ2 50.601 40.662 4.600

(a) Symmetric case

GP RP Nash
12650.254 12650.254 50601.016
12650.254 10147.208 766.682
17.899 17.899 17.899
10.899 6.741 0.009

23028.772 11617.178 46017.196
0.000 11507.871 15333.826
0.000 108.778 0.000
2.343 1.964 0.000
0.780 0.765 0.500
0.500 0.896 0.500

298.693 300.004 797.135
298.951 150.600 597.800
-0.258 149.404 199.335
119.477 120.002 318.854
44.134 44.655 242.253
0.804 0.808 2.296
16.893 16.664 12.142
8.946 8.944 9.499
7.947 7.720 2.643

48360.422 24396.073 96636.111
0.000 21661.819 16100.517

202.404 182.380 410.942
25.301 25.301 101.202
75.902 60.883 4.600

(b) Asymmetric case

Table 3. σ = 1 (log), Comparisons
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Appendix F. Robustness Comparisons and Randomization

Planner PlannerRobust
C1 20240.406 11468.314
C2 20240.406 11468.314
B1 17.899 17.899
B2 10.899 10.899
K1 36829.049 20879.790
K2 0.000 0.000
Ra 0.000 0.000
Rb 2.343 2.343
gRb 0.780 0.780
hRa 0.500 0.500

G 478.097 270.757
G1 478.355 271.014
G2 -0.258 -0.258

DeltaP 191.239 108.303
DeltaT 115.442 33.029

DeltaTemp 1.402 0.702
WelFareTot 17.832 17.563

WelFare1 8.916 8.781
WelFare2 8.916 8.781

Y1 77341.003 43847.560
Y2 0.000 0.000
Cγ 202.404 114.683
Cγ1 50.601 28.671
Cγ2 50.601 28.671

Table 4. Comparison of GP in the robust and no robust case when α = 105

Finally, we consider the case where γ̂1 and γ̂2 in the approximate model are drawn from anexpo-
nential distribution with parameters 1/γ̂1 and 1/γ̂, respectively. The exponential distribution is “fat
tailed,” implying a higher probability of extreme values than a normal distribution. We consider
a fixed value for the parameter α. We then proceed according to the following sequence for each
n = 1, . . . , N , where N is the number of randomizations:

(1) Pick γ̂1(ω) and γ̂2(ω) from an exponential distribution with parameter 1/γ̂1 and 1/γ̂2,
respectively.

(2) The malevolent players choose: γ1(ω) and γ2(ω)
(3) For each regime (GP, RP, Nash) the decision-makers choose their choice variables depending

on ω.
(4) For each n we compute the resulting global temperatures depending on γ1(ω) and γ2(ω).
(5) Once this is done, for each regime and for every temperature profile, we select the top 97.5%

and the bottom 2.5% of temperature generated trajectories, as ω varies. This generates the
upper and the lower confidence intervals seen in the Figure below, indicating a stark contrast
between the non-cooperative solution and the two efficiency benchmarks.



58 R. BOUCEKKINE, G. FABBRI, S. FEDERICO, F. GOZZI, T. LOCH-TEMZELIDES, AND C. RICCI

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (years)

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

G
lo

ba
l t

em
pe

ra
tu

re
 (°

C
)

Global planner
Restricted planner
Nash

Figure 8. Randomization of γ̂
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