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Abstract

In this paper we study a treatment allocation problem with multiple treatments, in which the
individuals to be treated arrive sequentially. The goal of the policy maker is to treat every individ-
ual as well as possible. Which treatment is “best” is allowed to depend on various characteristics
(functionals) of the individual-specific outcome distribution of each treatment. For example mea-
sures of welfare, inequality, or poverty. We propose the Functional Sequential Allocation policy,
and provide upper bounds on the regret it incurs compared to the oracle policy that knows the
best treatment for each individual. These upper bounds increase sublinearly in the number of
treatment assignments and we show that this regret guarantee is minimax optimal. In addition,
the assumptions under which this regret guarantee is established are as weak as possible — even a
minimal weakening of them will imply non-existence of policies with regret increasing sub-linearly
in the number of assignments. Furthermore, we provide an upper bound on the number of sub-
optimal assignments made by the FSA policy and show that every policy must make a number of
suboptimal assignments at least of this order.

JEL Classification: C18, C22, J68.

Keywords: Sequential Treatment Allocation, Distributional Policy Effects, Statistical Decision
Theory, Minimax Optimal Regret, Multiple Treatments.

1

http://arxiv.org/abs/1812.09408v1
mailto:anders.kock@economics.ox.ac.uk
mailto:david.preinerstorfer@ulb.ac.be
mailto:bveliyev@econ.au.dk


1 Introduction

In many treatment programs the individuals to be treated arrive sequentially. For example, workers
become unemployed throughout the year or patients to be treated in a hospital fall at different points
in time. Therefore, one must sequentially treat the individuals and thus sequentially learn about the
treatment-specific outcome distribution as treatment outcomes are observed. In this paper, we study a
setting in which a policy maker’s objective is to treat as many individuals as well as possible in the course
of the treatment period. We measure the attractiveness of a treatment by a (combination of) functionals
of the distribution of treatment outcomes. Thus, the goal of the policy maker can be, for example, to
assign as often as possible the treatment with the highest welfare (according to some welfare measure)
or quantile, lowest uncertainty of outcome (according to a measure of dispersion), lowest inequality or
poverty, or best tradeoff between several distributional characteristics of the treatments. In order to
treat as many individuals as well as possible the policy maker must sequentially learn the distribution
of treatment outcomes for the K available treatments, yet assign as few as possible individuals to
suboptimal treatments.

We propose the Functional Sequential Allocation (FSA) policy for the above problems and establish
its properties. We first analyze a homogeneous treatment distribution setting, i.e.,the outcome distri-
bution for each of the treatments is assumed to be the same for all individuals. To begin, we provide
an upper bound on the maximal expected regret of the FSA policy compared to what could have been
obtained had the population outcome distributions of the K treatments been known from the outset
and one had always assigned the treatment maximizing the (combination of) functional characteristics
of interest, cf. Theorem 3.1. Next, we show that FSA policy is near minimax optimal. More precisely,
we show in Theorem 3.6 that every policy must incur of at least almost the same order as FSA policy.

In the setting of heterogeneous treatment effects we assume that the policy maker observes a vector
of characteristics (covariates) of the individual to be treated prior to treatment allocation. For each
individual the best is now the one that maximizes the (combination of) functionals of the conditional
distribution given the vector of characteristics. In Theorem 4.4 (cf. also Corollary 4.5) we show how
the FSA policy can be adjusted in such a way that its maximal regret vis-à-vis the infeasible oracle
policy (the policy that knows the population conditional distributions of treatment outcomes given
characteristics and always assigns the best one) can be bounded from above and shown to increase
sublinearly in the number of assignments. Theorem 5.2 shows that the assumptions under which the
upper bounds on regret are established are essentially minimal as every policy must incur a regret which
is linear in the number of assignments without such assumptions. Furthermore, Theorem 5.3 establishes
the minimax optimality of the FSA policy up to logarithmic factors.

Next, if for a large proportion of vectors of characteristics the best and second best treatment are
not too similar, we show that the upper bound on the maximal regret compared to the infeasible oracle
can be further sharpened, cf. Theorem 4.7. Furthermore, we show in Theorem 4.8 that the expected
number of suboptimal assignments made increases sublinearly in the number of assignments. The latter
can be interpreted as an ethical guarantee on the FSA policy; only few persons will receive a treatment
which is not optimal for them. Furthermore, Theorem 5.1 (and its proof) shows that i) no policy can
achieve much lower regret than the FSA policy, ii) every policy must make at least as many suboptimal
assignments as the FSA policy. In this sense, the FSA policy is (minimax) optimal.

Finally, in Theorem 5.4, we show that even though our sublinear regret bounds are increasing in the
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dimension d of the vector of characteristics, one should never ignore these, as maximal regret of any
policy must increase even linearly in the number of assignments made if one ignores the characteristics.

We note that the sequential setting considered in this paper differs from the classic treatment setting
in which one often presupposes the existence of a data set that has already been sampled. Based on
this data set, one is then interested in estimating the effect of a treatment. This effect is most often the
difference in a suitable (conditional) expectation, i.e.,the focus is on the first moment of the distribution
of treatment outcomes — a special case of the functionals studied in this paper. We also stress that the
goal of the policy maker in this paper is to treat as many individuals as well as possible. This is not
equivalent to assigning treatments in such a way that “information” about the treatments is maximized
after the last treatment. Assigning treatments sequentially in a way that maximizes “information” at
the end of the treatment period is also an interesting goal, which warrants further study. The latter
objective, however, can sometimes be problematic as an algorithm designed for this purpose knowingly
treats individuals in a suboptimal way in order to obtain information.

1.1 Related literature

Our paper is related to several strands of literature. First, our work relates to the literature on statistical
treatment allocation rules. Here Manski (2004) did seminal work in proposing conditional empirical
success rules which take a finite partition of the covariate space and on each set of this partition dictate
to assign the treatment with the highest sample average. In choosing this partition, one faces a tradeoff
between individualization and having enough observations for each group to estimate treatment effects
precisely. In particular, Manski (2004) studies when full individualization is optimal. Stoye (2009) shed
further light on this by showing that if one does not restrict how outcomes vary with covariates then full
individualization is alway minimax optimal. This result relies on the fact that without any restrictions
on how the outcome distribution varies with covariates, this relationship could be arbitrarily wiggly such
that even seemingly similar individuals may carry no information about how treatments affect the other
person.

Furthermore, our work is related to the recent paper by Kitagawa and Tetenov (2018) who consider
treatment allocation through an empirical welfare maximization lens. The authors take the view that
realistic policies are often constrained to be simple due to ethical, legislative, or political reasons. Using
techniques from empirical risk minimization they show how their procedure is minimax optimal within
the considered class of realistic policies. Furthermore, Athey and Wager (2017) have used concepts from
semiparametric efficiency theory to establish regret bounds that scale with the semiparametrically effi-
cient variance. Finally, Kitagawa and Tetenov (2017) have considered treatment allocation in a setting
in which one targets “equality-minded” social welfare functions. Other papers on statistical treatment
rules in econometrics focusing on the case where the sample is given include Chamberlain (2000); Dehejia
(2005); Hirano and Porter (2009); Bhattacharya and Dupas (2012); Stoye (2012); Tetenov (2012). Fur-
thermore, Rothe (2010) has done work on inference on policy effects that need not be restricted to the
mean of the distribution, cf. also Rothe (2012).

The most important distinguishing features of our work compared to the classic literature on statis-
tical treatment rules above is that we are working in a sequential setting where the individuals to be
treated arrive gradually. Thus, we do not have a data set of size N at our disposal from the outset based
on which the best treatment must be found. The sequential setting poses new challenges such as not
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maltreating too many individuals in the search for the best treatment. Furthermore, in contrast to most
work, we focus on the problem of a policy maker who targets a general (combination of) functionals of
the outcome distribution of the treatments.

Second, the sequential setting adopted in this paper is related to the literature on multi-armed bandit
problem which study sequential decision making under uncertainty. While this literature generally
focuses on problem without covariates in which one is interested in the mean of the distribution only, we
give an overview of the most related papers here. Robbins (1952) was the first to introduce an algorithm
with provable performance guarantees. In particular, he showed that the average reward will converge
to the mean of the best arm.

The algorithm most relevant for our work is the Upper Confidence Bound (UCB) strategy of
Lai and Robbins (1985), for targeting unconditional means, which was further refined in Auer et al.
(2002). The underlying idea of our FSA policy is similar to the one of UCB. However, as will be seen,
the analysis of the FSA policy is very different from the one of UCB since the FSA policy is designed
to target (combinations of) general functionals of the distribution of treatment outcomes instead of the
mean only. Furthermore, we allow for the presence of covariates on which the distribution of treatment
outcomes can depend. In this sense, the works of Rigollet and Zeevi (2010) and Perchet and Rigollet
(2013) are related to our paper — both consider a setting targeting the distribution with the highest con-
ditional mean in the presence of covariates. The former paper studies a UCB type policy while the latter
studies the successive elimination algorithm and verifies its minimax optimality. Kock and Thyrsgaard
(2017) considered a setting in which the policy maker is also interested in how risky a treatment is and
takes this into account by targeting a tradeoff between expected outcome and variance of the treatments.
Finally, Cassel et al. (2018) consider bandit problems where the target can be a general (risk) criterion
defined on the empirical distribution functions of the path of assignments. For a good general overview
of multi-armed bandit problems for targeting the unconditional mean of the distributions to be sampled
from we refer to Bubeck and Cesa-Bianchi (2012).

2 Sequential treatment allocation without covariates

To set the stage for the general setting, we begin by considering a treatment allocation problem where
no covariates are observed prior to assigning the treatment. This can also be interpreted as (correctly)
assuming that the outcome of the treatment is independent of the (observed) covariates. In most settings
this is clearly not a realistic assumption. However, this stripped case clearly illustrates the main ideas
of our policy .

2.1 Notation

We here present some notation used throughout the paper. For any x ∈ Rd, ||x|| denotes the ℓ2-norm.
Furthermore, for any a < b and d ∈ N, B([a, b]d) denotes the Borel σ-field on [a, b]d equipped with the
usual topology. Subsequently, let Dcdf(R) denote the set of cumulative distribution functions (cdfs) on R,
and for real numbers a < b let Dcdf ([a, b]) denote the set of elements F ∈ Dcdf (R) such that F (a−) = 0
and F (b) = 1. Furthermore, we shall denote the supremum metric on Dcdf (R) by ‖.‖∞.
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2.2 Setup

Consider a setting where at each point in time t = 1, ..., N a policy maker must assign one of K
treatments to an individual. Thus, t can also be thought of as indexing individuals instead of time.
We shall allow the total number of treatments to be made, N , to be a random variable. This reflects
that in many treatment problems the policy maker does not know a priori how many treatments will be
made. For example, one does not know at the beginning of the year how many individuals will become
unemployed. The aim of the policy maker is to assign as many of the N individuals as well as possible.
However, the policy maker does not know which of the K treatments is the best. The observational
structure is as follows: after assigning a treatment, its outcome is observed but the policy maker does
not observe the counterfactuals, i.e., what would have happened if another treatment had been assigned.
Upon observing the outcome of treatment t ∈ 1, ..., N − 1, individual t arrives and must be assigned
to a treatment based on the information gathered from all previous assignments. Thus, the data set
is gradually constructed in the course of the treatment program, and the policy maker seeks to sample
in such a way as to maximize cumulative welfare by assigning the unknown best treatment as often as
possible.

To be precise, let a < b and let Yi,t ∈ [a, b] be the outcome of treatment i ∈ I := {1, ..., K}
at time/individual t ∈ {1, ..., N}. A policy is a (recursively) defined sequence of (Borel measurable)
functions π = {πt}∞t=1 which can depend on observed variables only: the first treatment is some element
in I not depending on any non-existing previous treatment outcomes. The second treatment can depend
on Z1 := Yπ1,1 such that π2 : [a, b] → I. In general,

πt : [a, b]
(t−1) → I

and we write πt(Zt−1) where Zt−1 := (Yπt−1(Zt−1),t−1, ...., Yπ1,1). Thus, Zt−1 is the information available
after the (t − 1)-th treatment outcome was observed. For convenience, the dependence of πt on Zt−1

is often suppressed. We stress that the policy maker can assign only one treatment πt ∈ I to each
individual and observes the outcome of that treatment, i.e., Yπt,t, only. This is in accordance with
most real life situations: one does generally not observe the counterfactuals. Note also that restricting
attention to problems where only one of the K treatments can be assigned does not exclude that a
treatment consists of a combination of several treatments (for example a combination of several drugs)
— one simply defines this combined treatment as a separate treatment at the expense of increasing the
set of potential treatments.

While we assume that Yt = (Y1,t, ..., YK,t) are distributed identically and independently across t, the
joint distribution of the treatment outcomes is left unspecified. In particular, given t, the dependence
structure of Yi,t and Yj,t is not restricted. Let Pi denote the outcome distribution on B([a, b]) of treat-
ment i with corresponding cdf F i. Ideally, the policy maker would like to assign every individual to
the “best” treatment, in the sense that the outcome distribution for this treatment maximizes a func-
tional T : Dcdf ([a, b]) → R, where we recall thatDcdf([a, b]) denotes the set of cdfs F such that F (a−) = 0
and F (b) = 1, i.e., the set of cdfs with support [a, b]. The specific functional used depends on the ap-
plication, and encodes the particular characteristic of the distribution the policy maker is interested in.
To give specific examples, the functional could be a (combination of) welfare-, inequality-, or poverty-
measures, see Appendix A. It could also be a quantile, a (trimmed) moment, a U-functional, or an
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L-functional see Appendix C. Given T, the goal is to find a policy π that minimizes the “regret”

RN(π) =

N
∑

t=1

(

max
i∈I

T(F i)− T(F πt)

)

. (1)

The loss for assigning treatment πt instead of a best treatment is maxi∈I T(F
i) − T(F πt). Thus,

we consider a policy maker whose goal is to incur as little loss as possible for as many individuals as
possible. Of course there are situations in which this is not the goal of the policy maker. For example,
one may only be interested in using the treatments to gather as much information as possible about a
characteristic of the treatment outcome distributions by the end of N treatments without regard to the
loss each individual incurs. While this exception is definitely also an interesting problem, we shall focus
on finding policies that minimize (1) since treating as many individuals as possible as well as possible is
a common objective for policy makers.

For every treatment i define ∆i := max1≤k≤K T(F k)−T(F i) as the loss due to assigning treatment i
instead of an optimal one. Then, the regret can also be written as

RN(π) =
∑

i:∆i>0

∆i

N
∑

t=1

1{πt=i} =
∑

i:∆i>0

∆iSi(N) (2)

where Si(N) =
∑N

t=1 1{πt=i} is the number of times treatment i is assigned in the course of N treatments.
Throughout the paper, we shall assume that the functional T of interest satisfies the following

assumption:

Assumption 2.1. The functional T is well defined on Dcdf([a, b]) for a < b, and for D ⊆ Dcdf ([a, b])
there exists a real number C such that:

|T(F )− T(G)| ≤ C‖F −G‖∞ for every F ∈ D and every G ∈ Dcdf([a, b]). (3)

Remark 2.2. The set D appearing in Assumption 2.1 encodes the assumptions imposed on the cdfs
of each treatment outcome, i.e., on F 1, . . . , FK . In particular, the larger D , the less restrictive are the
assumptions imposed on F 1, . . . , FK . Ideally, one would thus like D = Dcdf([a, b]), which, however, is
too much to ask for many functionals. Furthermore, there is a trade-off between C and D , in the sense
that a “larger” class D leads to a larger constant C. Note also that Assumption 2.1 implies that the
restriction of T to D is Lipschitz continuous w.r.t. ‖.‖∞. But, Assumption 2.1 does not require T to be
Lipschitz continuous on all of Dcdf ([a, b]).

Remark 2.3. Assumption 2.1 is satisfied for many popular functionals arising in applied economics.
We provide a detailed discussion together with formal results in Appendix A, where we consider many
important inequality-, welfare-, and poverty measures. The inequality measures we discuss in Appendix
A.1 include the Schutz-coefficient, the Gini-index, the class of linear inequality measures of Mehran
(1976), the generalized entropy family (which includes Theil’s index), the Atkinson family of inequality
indices (Atkinson (1970)), and the family of Kolm-indices (Kolm (1976a)). In most cases, we discuss
both relative and absolute versions of these measures. In Appendix A.2 we provide results for welfare
measures based on inequality measures discussed in Appendix A.1. The poverty measures we discuss in
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Appendix A.3 are the headcount ratio, the family of poverty measures of Sen (1976) (in the generalized
form of Kakwani (1980)), and the family of inequality measures suggested by Foster et al. (1984). We
emphasize that the results in Appendices A.1, A.2 and A.3 are obtained from a set of more abstract
results of independent interest that we establish in Appendix C. These results establish Assumption 2.1
for U-functionals (i.e., population versions of U-statistics), quantiles, L-functionals (population versions
of L-statistics), and for truncated versions of U-functionals.

We also need an assumption that guarantees that the functional T evaluated at empirical cdfs is
measurable.

Assumption 2.4. For every m ∈ N the function that maps x ∈ [a, b]m to T evaluated at m−1
∑m

j=1 1xj≤·,
the empirical cdf corresponding to x = (x1, . . . , xm), is Borel measurable.

Assumption 2.4 is typically satisfied and poses no practical restrictions.

3 Functional sequential allocation policy and regret bounds

We now turn to describing our treatment policy, the Functional Sequential Allocation (FSA) policy, and
its properties. The policy is inspired by the UCB strategy of Lai and Robbins (1985) for multi-armed
bandit problems. While the UCB policy was designed for targeting the mean of a distribution, the
FSA policy can target any functional. Furthermore, Section 4 allows covariates to influence treatment
outcomes.

We need some more notation to introduce the FSA policy. Given a policy π, a natural number t and
treatment i, we shall define the random set

Si,t(π) = {s ∈ {1, . . . , t} : πs = i} ⊆ {1, . . . , t}.

That is, Si,t(π) contains all those individuals s ∈ {1, . . . , t} the policy π has assigned to treatment i.
We shall often just write Si,t instead of Si,t(π). Furthermore, we shall denote the cardinality of Si,t(π)
by Si(t). Note that Si(t) =

∑t
s=1 1{πs=i} holds, and that Si(t) is the number of times treatment i has

been assigned in the first t treatments. To formulate our algorithm, we also define the empirical cdf

F̂i,t(.) := Si(t)
−1
∑

s∈Si,t

1{Yi,s≤.}, (4)

Observe that this just denotes the empirical cdf based on the individuals assigned to treatment i up to
time t. The policy we analyze is defined as follows:

Functional Sequential Allocation: Let C be the Lipschitz coefficient in Assumption 2.1. Then, the
FSA policy π̂ with parameter β > 0 proceeds as:

1. If t ∈ {1, . . . , K}, assign treatment t, i.e. π̂t = t.

2. If t ≥ K + 1, assign

π̂t ∈ argmax
i∈I

{

T(F̂i,t−1) + C
√

β log(t)/2Si(t− 1)
}
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After the K initialization rounds, the FSA policy assigns a treatment that i) is promising in the
sense that T(F̂i,t−1) is large or ii) has not been well explored in the sense that Si(t − 1) is small. The
parameter β is chosen by the researcher and indicates the weight put on assigning scarcely explored
treatments, i.e treatments with low Si(t−1). A regret minimizing choice of β is given after Theorem 3.1
below. Note also that the FSA policy does not require knowledge of the, often unknown, number of
treatments to be made (N). In this sense, the policy falls in the class of “anytime strategies”, in the
sense that it does not use the number of assignments to be made when making assignments and its
regret guarantees hold for any termination point.

Below, we use the notation log(x) = max(log(x), 1). Note that log(x) = log(x) if x ≥ e.

Theorem 3.1. Suppose that the number of treatments, N , has expectation n and is independent of
treatment outcomes. Under Assumptions 2.1 and 2.4, the cumulative regret of the FSA policy π̂ with
parameter β > 2 satisfies

supE[RN (π̂)] ≤ c

√

Knlog(n) (5)

where the supremum is over all K-tuples of D and c = c(β, C) is a constant, defined in the proof of the
theorem, that depends on β and C.

Theorem 3.1 provides an upper bound on the maximal regret incurred by the FSA policy in the
absence of covariates. As seen in Theorem 3.6 below, this bound is minimax optimal in n up to the
factor

√

log(n). Note that the “expected per person regret” E(RN (π̂))/n tend to zero as n tends to
infinity. The choice parameter β can be chosen optimally as a function of C to minimize c. In particular,
inspection of the proof shows that β = 2 +

√
2 minimizes c(β, C) and implies c ≤

√
11C. Finally, we

remark that it is sensible that the upper bound on regret is increasing in the number of available
treatments K as it becomes harder to find the best treatment as the number of available treatments
increases.

We now turn to showing the near-minimax optimality of the upper bound on maximal regret in
Theorem 3.1. It suffices to show that for any policy the maximal regret must be large against a certain
family of K-tuples of distributions of treatment outcomes (we shall consider K = 2). To this end,
consider the following family of distributions on B([0, 1]), but cf. also Remark 3.5 below.

Definition 3.2. Let H = {Pha
: a ∈ (−1,∞)} where Pha is the distribution on B([0, 1]) with den-

sity ha(y) = (1 + a)ya1{y>0}, and corresponding cdf Ha with Ha(y) = ya+1 for y ∈ [0, 1], Ha(y) = 0
for y ∈ (−∞, 0) and Ha(y) = 1 else.

Assumption 3.3. Assume that there exists ā > −1, c > 0 and δ > 0 such that Ha ∈ D for all a ∈
[ā− δ, ā + δ] ⊆ (−1,∞). Furthermore, either

T(Ha2)− T(Ha1) ≥ c(a2 − a1) (6)

holds for all a1, a2 ∈ [ā− δ, ā + δ] ⊆ (−1,∞) such that a1 ≤ a2, or

T(Ha2)− T(Ha1) ≤ −c(a2 − a1)

holds for all a1, a2 ∈ [ā− δ, ā + δ] ⊆ (−1,∞) such that a1 ≤ a2.
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Remark 3.4. The requirement on T in Assumption 3.3 is a local uniform monotonicity condition
on a 7→ T(Ha). It is rather mild and satisfied, for example, if a 7→ T(Ha) is continuously differentiable
on (ā−δ, ā+δ) with a derivative bounded away from zero (this can be seen by the mean value theorem).
This requirement is, in turn, easily seen to be satisfied when T is any moment or quantile. Intuitively,
Assumption 3.3 rules out that T is too flat. For example, all policies would incur zero regret if T is
constant and it is thus sensible that some strict monotonicity is needed in order to prove non-trivial lower
bounds on regret. We stress that the local uniform monotonicity is needed only at one point ā ∈ (−1,∞).

Remark 3.5. The only property of H that is used in the proof of Theorem 3.6 below is that the
Kullback-Leibler divergence between any two members of H is sub-quadratic in a sense made precise in
Lemma D.3 and surrounding discussion. Thus, the family H can be replaced by any other family of
distributions with this sub-quadratic property as well as satisfying Assumption 3.3.

Out next result shows that the maximal/uniform regret in Theorem 3.1 is optimal as a function of n
up to a multiplicative factor

√

log(n). It suffices to consider N non-random, [a, b] = [0, 1] and K = 2.

Theorem 3.6. Let Assumptions 2.1 and 3.3 be satisfied and consider a treatment problem with N = n
non-random and K = 2 treatments. Then, for any policy π, there exists a cl > 0 such that

supERn(π) ≥ cl
√
n,

where the supremum is over all two-tuples of distributions on B([0, 1]).

Remark 3.7. While the FSA policy does not need to know N , inspection of the proof of Theorem 3.6
shows that even when N is non-random (such that N = E[N ] = n) and known, even a policy that
requires knowledge of n must incur a maximal regret of order

√
n. The FSA policy is guaranteed to

incur a maximal regret not much more than this even without knowing n, cf. Theorem 3.1 above.

4 Treatment allocation with covariates

The results up to this point have been for treatment allocation problems without any covariates being
observed on an individual prior to treatment allocation. While the results for this problem will be useful
in the present section, it is often too restrictive to assume that the treatment outcomes do not depend
on the characteristics of the person to be treated. For example, one medicine may work very well (in
terms of the functional of interest) for one person while it may be outright dangerous to another person
if he is allergic to some of the substances.

We now suppose that prior to assigning each treatment the policy maker observes a vector of covari-
ates. More precisely, let Xt ∈ [0, 1]d, d ∈ N be the vector of covariates observed on individual t prior
to the treatment assignment and assume that the random vector (Y1,t, . . . , YK,t, Xt) is iid across t. For
each x ∈ [0, 1]d, let F i(·, x) be the distribution function of Yi,t conditional on Xt = x. The corresponding
probability measure on B([a, b]) is denoted Pi(·, x).

A policy is now a (recursively) defined sequence of Borel measurable functions π = {πt}∞t=1 which can
depend on observed variables only: the first treatment can depend on X1 only, so π1 : [0, 1]

d → I. The
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second treatment can depend on X2 and Z1 := (Yπ1(X1), X1) such that π2 : [0, 1]d × [a, b] × [0, 1]d → I.
In general

πt : [0, 1]
d × [[0, 1]d × [a, b]]t−1 → I

and we write πt(Xt, Zt−1) where Zt−1 := (Yπt−1(Xt,Zt−1), Xt−1, ...., Yπ1(X1), X1). We shall often use that it
is convenient to suppress the dependence of πt on Zt−1 and write πt(Xt). In this case, πt is, of course, a
random function as it implicitly depends on Zt−1.

The benchmark for our policy will be the infeasible (oracle) policy which knows the true condi-
tional treatment outcome distributions F i(·, x) and for an individual with characteristics x assigns the
treatment with the optimal conditional distribution, i.e assigns 1

π⋆(x) = argmax
i∈I

T(F i(·, x))

where ties are broken arbitrarily such that T(F π⋆(x)(·, x)) = maxi=1,...,K T(F i(·, x)). This way of defining
the oracle reflects the general difference to the setting without covariates: we now attempt to get as close
as possible to the welfare we could have obtained had we known for each individual which treatment
is best. The best treatment now depends on the characteristics of the individual and thus conditional
distributions replace the unconditional ones in Section 2. One can still target all functionals T of
the conditional distributions F i(·, x) as long as Assumption 2.1 is satisfied, cf. the examples given in
Appendix A.

In the presence of covariates, the regret of a policy π is defined as

RN(π) =

N
∑

t=1

T
(

F π⋆(Xt)(·, Xt)
)

−
N
∑

t=1

T
(

F πt(Xt)(·, Xt)
)

(7)

Our goal is to provide sharp upper bounds on the expected value of the regret. Thus, we strive to get
as close as possible to the welfare we could have attained had we assigned the optimal treatment π⋆(x)
for each individual. We stress again that the optimal treatment now depends on the individual’s char-
acteristics through x.

Remark 4.1. Without any assumptions on the map x 7→ F i(y, x), the problem does not have any
interesting solution in the sense that any policy has maximal regret that increases linearly in n (since
Assumption 2.1 implies that T is bounded, such that no policy has regret of larger order than n, this
also implies that any policy is minimax optimal). In fact we show in Theorem 5.2 below that even
if x 7→ F i(y, x) is continuous on (and thus also uniformly continuous on [0, 1]d), the maximal regret
of any policy must increase linearly in n. Hence, we impose the following, minimally stronger, Hölder
continuity condition on F i(y, x) which will be just enough to ensure existence of (near) minimax optimal
policies with sub-linear regret.

1Note that we allow πt, the assignment of a policy π for individual t, to be a function of Xt and Zt−1. Thus, one may
argue that the oracle should assign the treatment i ∈ I for which the conditional distribution of Yi,t given Xt and Zt−1

maximizes T. However, by independence of (Yi,t, Xt) and Zt−1, this distribution is Pi(·, x), i.e.,the conditional distribution
of Yi,t given Xt.
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Assumption 4.2. There exist γ ∈ (0, 1] and L > 0 such that for all i ∈ I
|F i(y, x1)− F i(y, x2)| ≤ L||x1 − x2||γ for all y ∈ R and all x1, x2 ∈ [0, 1]d.

In addition, for each i ∈ I and x ∈ [0, 1]d, F i(·, x) belongs to D of Assumption 2.1.

Assumption 4.2 requires that the distribution functions F i(·, x1) and F i(·, x2) are close to each
other whenever x1 and x2 are close. The assumption essentially requires that individuals with similar
characteristics have similar outcome distributions for each treatment. Since any policy must generically
incur linear in n maximal regret without Assumption 4.2, Hölder continuity is in this sense the weakest
possible form of continuity ensuring existence of policies with non-trivial upper bounds on regret.

Assumption 4.3. The distribution PX of covariate Xt has a density with respect to the Lebesgue measure
on B([0, 1]d) that is bounded above and below by c̄ and c > 0, respectively.

Assumption 4.3 restricts the covariates to be continuous but finitely discrete covariates can also be
allowed for by simply running a separate policy for each of the values of the discrete covariates.

4.1 The functional sequential allocation policy in the presence of covariates

Heuristically, the idea of the FSA policy in thepresence of covariates is to group together individuals
with similar values of the covariates, and then implement the FSA policy without covariates from
Section 3 on each group separately. This amounts to targeting the treatment that is best on average
in each group instead of fully individualizing the treatments. It thus strikes a middle ground between
individualization and and having enough observations to estimate the treatment outcome distributions
in each group. In other words, the grouping amounts to choosing a rectangular kernel in a sequential
nonparametric estimation problem of x 7→ F i(y, x).

More precisely, let {B1, ..., BF} ⊆ B([0, 1]d) be a partition of the space of covariates [0, 1]d, i.e. ∪F
i=1Bi =

[0, 1]d and Bi∩Bj = ∅ for i 6= j. In addition, let Vj = supx,y∈Bj
‖x− y‖ be the maximal distance between

any two points in Bj and B̄j = λd(Bj) > 0 be the Lebesgue measure of Bj.
In order to define the FSA policy π̄ in the presence of covariates precisely, let Nj(t) =

∑t
s=1 1{Xs∈Bj}

be the number of individuals with covariates in Bj in the course of t treatment assignments and let π̂Bj ,r

be the assignment made by the FSA policy without covariates to r-th individual in group Bj with the
parameter β > 2.2 We then define π̄t : [0, 1]

d → I as

π̄t(x) = π̂Bj ,Nj(t) if x ∈ Bj (8)

where π̂Bj ,Nj(t) of course depends on the Nj(t) previous treatment outcomes observed for individuals
with covariates in Bj . Note also that the covariates are only used to assign group membership to an
individual. Since the FSA policy without covariates is used separately for each group, we are effectively
targeting a treatment that is best for the average individual in each group. For group j, this means
targeting a treatment that attains maxi∈I T(F

i
j ) where F

i
j is the cumulative distribution function defined

as

F i
j (y) :=

1

PX(Bj)

∫

Bj

F i(y, x)PX(dx). (9)

2We recommend running the FSA policy for each group with β = 2 +
√
2 as this minimizes c in Theorem 3.1.
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4.2 An upper bound on the maximal regret of the FSA policy with covari-

ates

Let S0 = S0(γ, L, c, c̄) be the set of distributions of (Y1,t, ..., YK,t, Xt) that satisfy Assumptions 4.2 and 4.3.

Theorem 4.4. Suppose that the number of treatments, N , has expectation n and is independent of
treatment outcomes and covariates. Consider a partition characterized by {V1, ..., VF} and {B̄1, ..., B̄F}.
Under Assumptions 2.1, 2.4, 4.2 and 4.3, there exists a c > 0 such that

sup
S0

E[RN (π̄)] ≤
F
∑

j=1

(

c

√

Kc̄B̄jnlog(c̄B̄jn) + 2CLV γ
j nc̄B̄j

)

. (10)

Theorem 4.4 gives an upper bound on the regret of the FSA policy in the presence of covariates
for any choice of grouping individuals. This flexibility may be useful since a policy maker is sometimes
constrained by ethical or legislative reasons in the way he groups individuals such that he can not choose
the partition {B1, ..., BF} that minimizes the upper bound on regret in (10).

The upper bound on regret consists of two parts. The first part is very similar to the uniform part
of Theorem 3.1; the difference being that the total number of individuals expected to be treated, n, has
now been replaced by an upper bound on the number of individuals expected to fall in group Bj, c̄nB̄j .
Thus, the first part of the upper bound on regret is the regret we expect to accumulate on each group
compared to always assigning the treatment that is best for the average individual in that group. The
second part of the upper bound on expected regret is the approximation error incurred due to targeting
the treatment that is best for the average individual in group Bj , i.e.,targeting maxi∈I T(F

i
j ), instead

of targeting T
(

F π⋆(x)(·, x)
)

. It is sensible that this approximation error is increasing in the size of the
groups as measured by Vj and B̄j .

A specific type of partition that achieves near-minimax optimal regret over the class of distribu-
tions S0 is “quadratic groups”. It uses hard thresholds for each entry of Xt to create hypercubes that
partition [0, 1]d. The groups thus created do not only attain low regret but are also relevant in practice
due to their simplicity and resemblance to real ways of grouping people. More precisely, fix P ∈ N and
define

Bk =
{

x ∈ [0, 1]d :
kl − 1

P
≤ xl ≤(∗) kl

P
, l = 1, ..., d

}

(11)

for k = (k1, ..., kd) ∈ {1, ..., P}d where ≤(∗) is weak for kl = P and strict otherwise. Thus, P is the
number of splits along each dimension of Xt creating a partition of [0, 1]d consisting of P d smaller
hypercubes B1, ..., BP d with side lengths 1/P .

Corollary 4.5. Suppose that the horizon N has expectation n and is independent of treatment outcomes
and covariates. Use the partition in (11) with P = ⌈n1/(2γ+d)⌉. Under Assumptions 2.1, 2.4, 4.2 and 4.3,
we obtain that

sup
S0

E
[

RN(π̄)
]

≤ c

√

Klog(n)n1− γ
2γ+d . (12)

for some c > 0.
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Corollary 4.5 reveals that it is possible to achieve sublinear (in n) regret under the smoothness on the
conditional distributions guaranteed by Assumption 4.2. Note that a curse of dimensionality is present
in the sense that the upper bound on regret gets close to linear in n as d, the number of covariates,
increases. The presence of this effect is due to the fact that as part of the regret minimization, we
sequentially estimate the conditional distributions of the treatment outcomes and each F i(y, ·) is a
function of a d-dimensional variable. Finally, it is also to be expected that the regret is increasing in the
number of available treatments K as more observations must be used for experimentation when more
treatments are available.

The upper bound on the maximal regret in Corollary 4.5 is near-minimax optimal as we shall make
precise in Theorem 5.3 below. Thus, if there is nothing prohibiting the choice of groups in (11), not
much can be gained from a maximal regret point-of-view in searching for “better” partitions under the
given set of assumptions.

Finally, we remark that the grouping in (11) with P = ⌈n1/(2γ+d)⌉ requires knowledge of the expected
number of treatments n. If the exact number of treatments is known a priori (as it is in many classical
treatment problems) then n is trivially known. If, however, n is unknown one can instead use the doubling
trick to attain upper bound on the maximal regret that are of the same order as in Corollary 4.5, but
with slightly higher multiplicative constants. In essence, the doubling trick works by resetting the
policy at time 2m, m ∈ N. The name “doubling trick” comes from the fact that the length between
subsequent resets of the policy doubles between subsequent resets. Importantly, the length of each
treatment period is known. The doubling trick is a general tool in games of unknown horizon and we
refer to Shalev-Shwartz (2012) for more details.

4.3 Stronger regret guarantees and number of suboptimal assignments

So far, our results in the case where covariates are present have only assumed that the conditional
distribution of the treatment outcomes is Hölder continuous, cf. Assumption 4.2. If, furthermore, it is
also the case that the best and second best treatment are “well-separated”, the upper bound on maximal
regret in Section 4.2 can be lowered slightly. Formally, introduce the second best treatment π♯(x) that
is, for any x ∈ [0, 1]d, if mini∈I T(F

i(·, x)) < T
(

F π⋆(x)(·, x)
)

, then π♯(x) satisfies

T
(

F π♯(x)(·, x)
)

= max
i∈I

{T(F i(·, x)) : T(F i(·, x)) < T
(

F π⋆(x)(·, x)
)

},

and π♯(x) = 1 if mini∈I T(F
i(·, x)) = T

(

F π⋆(x)(·, x)
)

. We can now introduce the margin condition.

Assumption 4.6. There exists α ∈ (0, 1) and C0 > 0 such that

PX

(

0 < T
(

F π⋆(X)(·, X)
)

− T
(

F π♯(X)(·, X)
)

≤ δ
)

≤ C0δ
α for all δ ∈ [0, 1].

The margin condition restricts how likely it is that the best and second best treatment are close to
each other. In particular, it limits the probability of these treatments being almost equally good, i.e.,
it limits how likely it is that the best and second-best treatment are within a δ-margin. Assumptions
of the margin condition type have previously been used in the works of Mammen and Tsybakov (1999),
Tsybakov (2004), Audibert and Tsybakov (2007) in the statistics literature. In the context of statistical
treatment rules, the margin condition has recently been used in the work of Kitagawa and Tetenov (2018)
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who considered a static (non-sequential arrival of individuals to be treated/information) treatment
allocation problem. Finally, the margin condition was also used in the work of Perchet and Rigollet
(2013) in the context of a multi-armed bandit problem.

The margin condition does not only allow us to prove sharper upper bounds on maximal regret than
in Section 4.2, it also allows us to provide an upper bound on the number of suboptimal assignments
made by the FSA policy. In particular, we shall define the total number of suboptimal assignments for
a policy π over the course of a total of N assignments as

SN(π) =
N
∑

t=1

1{
πt(Xt,Zt−1)6∈argmax{T(F i(·,Xt)),i=1,...,K}

}.

In Theorem 4.8 we establish an upper bound on E(SN(π̄)) which is near minimax optimal.
Let S = S(γ, L, c, c̄, α, C0) be the set of K-tuples of conditional distributions of (Y1,t, . . . , YK,t)

given Xt that satisfy Assumptions 4.2, 4.3 and 4.6. The maximal regret over S of the FSA policy over
can be bounded as follows.

Theorem 4.7. Suppose that the horizon N has expectation n and is independent of treatment outcomes
and covariates. Consider the partition in (11) and set P = ⌈n1/(2γ+d)⌉. Under Assumptions 2.1, 2.4,
4.2, 4.3 and 4.6, we obtain that

sup
S

E[RN (π̄)] ≤ cKlog(n)n1−
γ(1+α)
2γ+d (13)

for some constant c > 0.

Compared to Corollary 4.5 the exponent on n in the upper bound on regret is now smaller. Thus,
in the presence of the margin condition (Assumption 4.6), the regret guarantee on the FSA policy is
stronger. Of course, since S ⊂ S0, this is not altogether surprising. We shall see in Theorem 5.1 below
that the upper bound on maximal regret is minimax optimal in n up to logarithmic factors.

Our next result shows that the upper bound on maximal regret does not come at the price of excessive
experimentation leading to many suboptimal assignments. In fact, Lemma D.5 in the appendix shows
that under the margin condition, an upper bound on E[SN (π)] for any policy π follows as a consequence
of an upper bound on regret.

Theorem 4.8. Suppose that the horizon N has expectation n and is independent of treatment outcomes
and covariates. Consider the partition in (11) and set P = ⌈n1/(2γ+d)⌉. Under Assumptions 2.1, 2.4, 4.2,
4.3 and 4.6, we obtain that

sup
S

E[SN (π̄)] ≤ c[Klog(n)]
α

1+αn1− αγ
2γ+d

for some constant c > 0.

The upper bound in Theorem 4.8 on the maximal number of suboptimal assignments made is a useful
theoretical guarantee since it limits the number of individuals who receive suboptimal treatments. A
policy which only ensures high total welfare (low regret), may not be ethically viable if too many
individuals are maltreated. Finally we note that no policy can be expected to make substantially fewer
suboptimal assignments than the FSA policy since Step 4 of the proof of Theorem 5.1 below actually
shows that for any policy there exist distributions in S for which the number of suboptimal assignments
must be at least of order n1− αγ

2γ+d .
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5 Lower bounds on maximal regret and minimax optimality

of the FSA policy

In this section we prove formally the impossibility results mentioned in Remark 4.1 and establish (near)
minimax optimality of the FSA policy in several settings. As was the case in the setting without
covariates in Section 3, only a local uniform monotonicity of T over H suffices to establish tight lower
bounds on maximal regret. We stress, however, that while the assumptions imposed in the present
section are the same as in the case without covariates, the proofs are more involved as one must carefully
construct conditional distributions of treatment outcomes satisfying Assumptions 4.2 and 4.6 against
which large regret must be incurred by any policy.

For all lower bounds, we consider the case of K = 2 available treatments. Fix a functional T and
let Π denote the set of all policies π. For any 2-tuple of conditional distributions (F 1, F 2) of Y1,t and Y2,t

given Xt in S and policy π, we make the dependence of regret on (F 1, F 2) explicit by

Rn(π) = Rn(π, F
1, F 2) =

n
∑

t=1

∣

∣T
(

F 1(·, Xt)
)

− T
(

F 2(·, Xt)
)∣

∣1{π⋆(Xt)6=πt(Xt,Zt−1)}. (14)

Theorem 5.1. Suppose that Xt is uniformly distributed on [0, 1]d (thus c = c̄ = 1 in Assumption 4.3).
Then, under Assumptions 2.1 and 3.3, there exists a cl > 0 such that

inf
π∈Π

sup
(F 1,F 2)∈S

E[Rn(π, F
1, F 2)] ≥ cln

1−
γ(1+α)
2γ+d . (15)

Theorem 5.1 shows that the upper bound on maximal regret of the FSA policy obtained in Theo-
rem 4.7 is only improvable by logarithmic factors. Put differently, the FSA policy is minimax optimal
up to logarithmic factors.

5.1 Maximal regret is linear without Assumption 4.2

Let C[0, 1]d denote the set of (uniformly) continuous functions on [0, 1]d and let SC denote the 2-tuples of
distributions (F 1, F 2) of Y1,t and Y2,t given Xt such that F 1, F 2 ∈ C[0, 1]d. The following theorem, which
is a consequence of Theorem 5.1, shows that without the Hölder continuity imposed in Assumption 4.2,
no policy exists that has sub-linear maximal regret in n. Furthermore, since every policy is guaranteed
to incur no more than linear (in n) regret, this shows that the problem is not well posed without
Assumption 4.2. More precisely, even when restricting attention to (uniformly) continuous F 1 and F 2,
maximal regret of any policy is linear in n. Thus, the following Theorem makes precise Remark 4.1
prior to Assumption 4.2.

Theorem 5.2. Suppose that Xt is uniformly distributed on [0, 1]d (thus c = c̄ = 1 in Assumption 4.3).
Then, under Assumptions 2.1 and 3.3, there exists a cl > 0 such that

inf
π∈Π

sup
(F 1,F 2)∈SC

E[Rn(π, F
1, F 2)] ≥ cln.
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5.2 Lower bound on maximal regret without margin condition

The next result, which gives a lower bound on maximal regret in the absence of the margin condition
in Assumption 4.6, is again a consequence of Theorem 5.1.

Theorem 5.3. Suppose that Xt is uniformly distributed on [0, 1]d (thus, c = c̄ = 1 in Assumption 4.3).
Then, under Assumptions 2.1 and 3.3, for all ε > 0 there exists a cl(ε) > 0 such that

inf
π∈Π

sup
(F 1,F 2)∈S0

E[Rn(π, F
1, F 2)] ≥ cl(ε)n

1− γ
2γ+dn−ε. (16)

Comparing the lower bound on maximal regret in Theorem 5.3 to the upper bound on maximal
regret of the FSA policy established in Corollary 4.5 reveals that the FSA policy is near-optimal also in
this setting. If a policy with strictly smaller maximal regret exists, the order of this improvement must
be o(nε) for all ε > 0, e.g., logarithmic.

5.3 Ignoring covariates

Theorem 3.1 shows that the maximal regret for the FSA policy is guaranteed to increase not much
faster than rate

√
n in the absence of covariates. On the other hand, if γ(1+α)

2γ+d
< 1

2
(which occurs

in case 2γα < d), the maximal regret must increase faster than
√
n for any policy in the presence

of covariates, cf. Theorem 5.1. At first sight, one could be led to believe that it may sometimes be
advantageous to ignore the covariates in order to achieve a lower maximal regret. Note, however, that
the oracle targets are defined differently in the context of Theorems 3.1 and 5.1. More precisely, if
covariates are available one targets the “best” conditional distribution. Our next result shows, that it
is in fact a very bad idea to ignore the covariates unless one knows that these are irrelevant (which one
rarely does). To be precise, consider polices that are a (recursively) defined sequence of Borel measurable
functions π = {πt}∞t=1 which can depend on observed treatment outcomes (but not covariates): the first
treatment is some element in I not depending on any non-existing previous treatment outcomes. The
second treatment can depend on Z1 := Yπ1,1 such that π2 : [0, 1] → I. In general, πt : [0, 1]

(t−1) → I
and we write πt(Zt−1) where Zt−1 := (Yπt−1(Zt−1), ...., Yπ1). Thus, Zt−1 is the allowed to be used after

the previous treatment outcome is observed. Let Π̃ denote the collection of such policies. Note the
similarity to the definition of a policy in the setting without covariates, cf. Section 2.2.

Theorem 5.4. Suppose that Xt is uniformly distributed on [0, 1]d (thus c = c̄ = 1 in Assumption 4.3).
Then, under Assumptions 2.1 and 3.3, there exists a cl > 0 such that

inf
π∈Π̃

sup
(F 1,F 2)∈S

E[Rn(π, F
1, F 2)] ≥ cln. (17)

Thus, the maximal regret of any policy ignoring covariates must increase at the worst-case linear rate
in n. To illustrate the connections to the FSA policy note that for this policy ignoring the covariates
amounts to assigning all individuals to the same group, i.e. F = 1 and thus V1 =

√
d, B̄1 = 1. Using

these quantities in Theorem 4.4 results in a upper bound on regret which is linear in n.
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A Verification of Assumption 2.1 for some inequality-, welfare-

and poverty-measures

To keep the statements in the subsequent examples simple, and to give some concrete meaning to
the discussion in Remark 2.2, we shall now define some sets of cdfs D that will show up frequently
in the following discussion: Given real numbers a < b, we shall denote (i) the subset of all cdfs F
inDcdf([a, b]) that are continuous on [a, b] and right-differentiable on (a, b) with right-sided derivative F+,
say, satisfying F+(x) ≤ s for all x ∈ (a, b) by Ds([a, b]); (ii) we shall denote the subset of all cdfs F
inDcdf([a, b]) that are continuous on [a, b] and right-differentiable on (a, b) with right-sided derivative F+,
say, satisfying F+(x) ≥ r for all x ∈ (a, b) by Dr([a, b]); and (iii) we shall denote the subset of all cdfs F
inDcdf([a, b]) that are continuous on [a, b] and right-differentiable on (a, b) with right-sided derivative F+,
say, satisfying r ≤ F+(x) ≤ s for all x ∈ (a, b) by Ds

r ([a, b]). Furthermore, we shall denote the subset
of Ds([a, b]) consisting of all cdfs F ∈ Ds([a, b]) that are continuous on all of R (and not only on [a, b])
by C s([a, b]), and correspondingly define Cr([a, b]) and C s

r ([a, b]).
To illustrate the scope of our results, and to facilitate their implementation in practice, we shall now

discuss several functionals of interest in applied economics that satisfy Assumption 2.1. We emphasize
that Appendix C contains a catalog of general methods for verifying Assumption 2.1, and that the
results in the following three sections are established using these techniques. Therefore, in addition to
their intrinsic importance, the following results, and in particular their proofs, also provide a pattern as
to how Assumption 2.1 can be verified for functionals that are not explicitly discussed.

A.1 Inequality measures

In this section we verify Assumption 2.1 for functionals that measure the inequality inherent to an,
e.g., “income”, “wealth” or “productivity”, distribution F . Such “inequality measures” are obviously
relevant in situations where one intends to select, among various candidates, that treatment (e.g., the
introduction of a certain tax) which leads to the most “equal” outcome distribution. To avoid possible
misunderstanding, we emphasize that it is neither our goal to discuss theoretical foundations of inequality
measures nor to point out their relative advantages and disadvantages. The functional must be chosen
by the applied economist, who can—in making such a choice—rely on excellent book-length treatments,
e.g., Lambert (2001), Chakravarty (2009) or Cowell (2011), as well as the original sources some of which
we shall point out further below.

We first discuss inequality measures that are derived from the Lorenz curve. The first such inequality
measure we consider is the Schutz-coefficient Srel(F ), say, which is also known as the Hoover-index or
Robin Hood-index. In plain words, this coefficient measures the maximal vertical distance between
the 45◦ line and the Lorenz curve corresponding to F (cf. Gastwirth (1971) or Equation (22) below for
a formal definition of the Lorenz curve). It can be shown (e.g., Lambert (2001)) that Srel(F ) coincides
with half the relative mean deviation index, i.e.,

Srel(F ) =
1

2µ(F )

∫

|x− µ(F )|dF (x), (18)

provided the expression is well defined. Here, the index “rel” signifies that this index is defined “relative”
to the mean (as a consequence, multiplying each income by the same amount does not change the
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inequality index). A corresponding “absolute” variant (i.e., a measure which remains unchanged if one
adds to every income the same amount) is obtained by multiplying the relative measure by the mean
functional, and is denoted by Sabs(F ) = 1

2

∫

|x−µ(F )|dF (x). We refer to Kolm (1976a,b) for a discussion
concerning relative and absolute inequality measures. The following lemma provides conditions under
which the relative and absolute Schutz-coefficient satisfies Assumption 2.1.

Lemma A.1. Let a < b be real numbers. Then, the absolute Schutz-coefficient T = Sabs satisfies
Assumption 2.1 with D = Dcdf([a, b]) and C = b − a. Next, assume that a ≥ 0, and define for
every δ ∈ (a, b) and every s > 0 the set

D(s, δ) := {F ∈ C
s([a, b]) : µ(F ) ≥ δ}. (19)

Then, for every δ ∈ (a, b) and every s > 0 the relative Schutz-coefficient T = Srel (defined as 0 for the
cdf corresponding to point mass 1 at 0) satisfies Assumption 2.1 with D = D(s, δ) and constant C =
(b− a)(2s+ δ−1) + 5.

The next index we consider is the Gini-index, which for a cdf F is defined as the area between the
Lorenz curve and the 45◦ line, and which can be written as (cf. again Lambert (2001))

Grel(F ) =
1

2µ(F )

∫ ∫

|x1 − x2|dF (x1)dF (x2), (20)

provided that the expression is well defined. A corresponding absolute inequality measure is .5
∫ ∫

|x1−
x2|dF (x1)dF (x2), which we denote by Gabs(F ). The following lemma provides conditions under which
Assumption 2.1 is satisfied for these two Gini-indices:

Lemma A.2. Let a < b be real numbers, and let D = Dcdf ([a, b]). For this choice of a, b and D, the
functional T = Gabs satisfies Assumption 2.1 with constant C = b − a. Next, assume that a ≥ 0, and
define for every δ ∈ (a, b) the set

D(δ) := {F ∈ Dcdf ([a, b]) : µ(F ) ≥ δ}. (21)

Then, for every δ ∈ (a, b) the relative Gini-index T = Grel (defined as 0 for the cdf corresponding to
point mass 1 at 0) satisfies Assumption 2.1 with constant C = 4δ−1(b− a).

It can be verified that the Gini-index belongs to the class of linear inequality measures (cf. Mehran
(1976)). Linear inequality measures are functionals of the form

F 7→
∫

[0,1]

(u− L(F, u))dW (u), where L(F, u) := µ(F )−1

∫

[0,u]

qα(F )dα, (22)

where W denotes a function on [0, 1] (independent of F ) with finite total variation. Note that L(F ; u) is
the Lorenz curve corresponding to F evaluated at u (cf. Gastwirth (1971) and our Equation (94)). The
following lemma provides conditions under which a linear inequality measure as defined in Equation (22)
satisfies Assumption 2.1. The result relies on Lipschitz-type properties of the Lorenz curve established
in Lemma C.14 in the appendix. The generality is bought at the price of comparably strong regularity
conditions. This becomes apparent by comparing the regularity conditions to the ones in Lemma A.2.
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Lemma A.3. Let a < b be positive real numbers and let r > 0. Assume that W : [0, 1] → R has
finite total variation κ, say. Then, the functional defined in Equation (22) satisfies Assumption 2.1
with D = Cr([a, b]), and constant C = κa−1(r−1 + (b− a)a−1).

An absolute version of the linear inequality measure in Equation (22) is obtained after multiplication
with µ(F ), and is given by

F 7→
∫

[0,1]

(µ(F )u− U(F, u))dW (u), where U(F, u) :=

∫

[0,u]

qα(F )dα. (23)

The following result provides conditions under which such absolute linear inequality measures satisfy As-
sumption 2.1. As usual, the regularity conditions required for absolute versions of an inequality measure
are weaker than the ones needed for the relative version:

Lemma A.4. Let a < b be real numbers and let r > 0. Assume that W : [0, 1] → R has finite total
variation κ, say. Furthermore, denote |

∫

[0,1]
udW (u)| =: c. Then, the functional defined in Equation (23)

satisfies Assumption 2.1 with D = Cr([a, b]), and constant C = c(b− a) + r−1κ.

Another important family of inequality indices is the so-called generalized entropy family, cf. Cowell
(1980): Given a parameter α ∈ R, an inequality measure is obtained via (if the involved expressions are
well defined)

Ec(F ) =















1
c(c−1)

∫

[

(

x/µ(F )
)c − 1

]

dF (x) if c /∈ {0, 1}
∫ (

x/µ(F )
)

log
(

x/µ(F )
)

dF (x) if c = 1
∫

log
(

x/µ(F )
)

dF (x) if c = 0.

(24)

The inequality measures corresponding to c = 1 is known as Theil’s entropy index (cf. also Theil (1967)),
and the measure corresponding to c = 0 is known as the mean logarithmic deviation (cf. Lambert
(2001), p.112). A formal result providing conditions under which generalized entropy measures in the
previous display satisfy Assumption 2.1 is presented next. The regularity conditions we need to impose
depend on c. In particular, support assumptions inherent in the definition of D are somewhat weaker
in case c ∈ (0, 1).

Lemma A.5. Let 0 ≤ a < b be real numbers, and let c ∈ R.

1. If c ∈ (0, 1), then, for every δ ∈ (a, b) the functional T = Ec (defined as 0 for the cdf corresponding
to point mass 1 at 0) satisfies Assumption 2.1 with D = D(δ) (cf. Equation 21) and constant C =
|c(c− 1)|−1

[

δ−c(bc − ac) + δ−1(b− a)
]

.

2. If c /∈ [0, 1] and a > 0, then the functional T = Ec satisfies Assumption 2.1 with D = Dcdf ([a, b])
and C = |c(c− 1)|−1[a−c|bc − ac|+ |c|max

(

(a/b)2c−1, (b/a)2c−1
)

a−1(b− a)].

3. If c ∈ {0, 1} and a > 0, then the functional T = Ec satisfies Assumption 2.1 with D = Dcdf ([a, b])
and with constant C = a−1 + log(b/a) if c = 0, and with constant C = a−1

∫

[a,b]
|1 + log(x)|dx +

ba−1
{

| log(b/a)|(b− a) + a−1
}

if c = 0.
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We continue with a family of (relative) inequality indices introduced in Atkinson (1970). This family
depends on an “inequality aversion” parameter ε ∈ (0, 1)∪ (1,∞). For a fixed ε in that range, the index
obtained equals (if the involved quantities are well defined)

Aε(F ) = 1− 1

µ(F )

[
∫

x1−εdF (x)

]1/(1−ε)

. (25)

It is well known (cf., e.g., Lambert (2001) p.112) that Aε can be written as

Aε(F ) = 1− [ε(ε− 1)E1−ε(F ) + 1]1/(1−ε). (26)

Together with Lemma A.5 this relation can be used to obtain the following result:

Lemma A.6. Let 0 ≤ a < b be real numbers, let ε ∈ (0, 1) ∪ (1,∞) and set c(ε) = 1− ε.

1. If ε ∈ (0, 1), then, for every δ ∈ (a, b) the functional T = Aε (defined as 0 for the cdf corresponding
to point mass 1 at 0) satisfies Assumption 2.1 with D = D(δ) (cf. Equation 21) and constant C =

c(ε)−1
[

δ−c(ε)(bc(ε) − ac(ε)) + δ−1(b− a)
]

.

2. If ε ∈ (1,∞) and a > 0, then the functional T = Aε satisfies Assumption 2.1 with D = Dcdf ([a, b])
and constant

C = c(ε)−1(b/a)ε
{

[a−c(ε)|bc(ε) − ac(ε)|+ |ε||c(ε)|2(a/b)2c(ε)−1a−1(b− a)]
}

.

As the last example in this section, we proceed to an important family of (absolute) inequality
indices, the Kolm-indices (Kolm (1976a), cf. also the discussion in Section 1.8.1 of Chakravarty (2009)).
Given a parameter κ > 0 the corresponding index is defined as

Kκ(F ) = κ−1 log

(∫

eκ[µ(F )−x]dF (x)

)

. (27)

The following lemma verifies Assumption 2.1 for this class of inequality indices:

Lemma A.7. Let a < b and let κ > 0. Then, the functional T = Kκ satisfies Assumption 2.1 with D =
Dcdf ([a, b]) and constant C = κeκb(b− a) + [e−κa − e−κb].

A.2 Welfare measures

The most elementary class of social welfare functions are of the form (cf. Atkinson (1970))

F 7→
∫

u(x)dF (x), (28)

for a utility function u. Such functionals can directly be dealt with the theory developed in Kock and Thyrsgaard
(2017). We therefore refer to this article for corresponding results.
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There are many important social welfare functions, however, that are not of the simple form (28),
and can thus not be treated with the results in Kock and Thyrsgaard (2017). Many such exceptional
measures are related to a relative inequality measure F 7→ Irel(F ), say, via the transformation

W(F ) = µ(F )(1− Irel(F )); (29)

or (correspondingly) to an absolute inequality measure F 7→ Iabs(F ), say, via the transformation

W(F ) = µ(F )− Iabs(F ). (30)

The Gini social welfare function (obtained via the previous display upon choosing Iabs = Gabs, see the
discussion after Equation (20) for a definition of Gabs) is one of the most important examples. The
following result allows one to use the results from the preceding section in establishing Assumption 2.1
for the two types of social welfare functions in (29) and (30).

Lemma A.8. Let a < b be real numbers. Then, the following holds:

1. Let the relative inequality measure Irel satisfy Assumption 2.1 with Drel and C. Suppose further
that |1 − Irel| ≤ γ < ∞ holds.3 Then, the social welfare function W derived via Equation (29)
satisfies Assumption 2.1 with D = Drel and constant γ(b− a) + max(|a|, |b|)C.

2. Let the absolute inequality measure Iabs satisfy Assumption 2.1 with Dabs and C. Then, the social
welfare function W derived via Equation (30) satisfies Assumption 2.1 with D = Dabs and with
constant (b− a) + C.

The preceding lemma together with Lemma A.2 implies that the Gini social welfare function (defined
directly after Equation (30) above) satisfies Assumption 2.1 with a < b real numbers, D = Dcdf([a, b]),
and constant C = 2(b − a). Similar statements can easily be obtained for social welfare functions
corresponding to the class of linear inequality measures via Lemma A.4 (which then covers the class of
social welfare functions considered recently in Kitagawa and Tetenov (2017)), or via the other inequality
measures discussed in the preceding section.

A.3 Poverty measures

Poverty indices are typically based on a poverty line, i.e., a threshold z below which an, e.g., income is
classified as “poor”. There are two basic approaches to defining z: the absolute approach considers z

as fixed (i.e., independent of the underlying income distribution F ), whereas the relative approach
views z = z(F ) as a function of the “income distribution” F . In particular, in the relative approach the
poverty line adapts to growth/decline of the economy. To make this formal and to give an example, the
following poverty line functional combines both approaches (cf. Kakwani (1986) and Lambert (2001),
p.139) in taking a convex combination of a fixed amount z0 and a centrality measure of the underlying
income distribution:

zm,z0,δ(F ) = z0 + δ(m(F )− z0) (31)

3Note that for relative inequality measures Irel defined on Dcdf([a, b]) for 0 ≤ a < b it is typically the case that Irel(F ) ∈
[0, 1], and hence 1− Irel(F ) ∈ [0, 1] as well.
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where z0 > 0, 0 ≤ δ ≤ 1, and m is a location functional that either coincides with the mean functional µ,
or the median functional q1/2. Note in particular that zm,z0,0 = z0, i.e., this definition nests both an
absolute and a relative approach. For concreteness, Lemma B.1 in Appendix B summarizes conditions
under which the poverty line functionals in the family (31) satisfy Assumption 2.1.

The first poverty measure we shall consider is the so-called headcount ratio, which is the proportion
in a population F that qualifies as poor according to a given poverty line z:

Hz(F ) = F (z(F )). (32)

For the sake of generality, the following lemma establishes conditions under which the headcount ratio
satisfies Assumption 2.1 under high-level conditions concerning the poverty line functional z. Specific
constants and domains for the concrete family of poverty lines defined in Equation (31) can immediately
be obtained with Lemma B.1 in Appendix B. An analogous statement applies to the poverty measures
introduced further below, and will not be restated.

Lemma A.9. Let a = 0 < b, and let z : Dcdf([a, b]) → R denote a poverty line functional that satisfies
Assumption 2.1 with Dz and constant Cz, say. Let s > 0. Then, Hz satisfies Assumption 2.1 with D =
Dz ∩ Ds([a, b]) and C = Czs+ 1.

Certain disadvantages of the headcount ratio motivated Sen (1976) to introduce a different family
of poverty measures, using an axiomatic approach. We shall now discuss this family in the generalized
form of Kakwani (1980). Given a poverty line z and a “sensitivity parameter” κ ≥ 1, say, each element
of this family of poverty indices is written as

PSK(F ; z, κ) = (κ+ 1)

∫

[0,z(F )]

[

1− x

z(F )

] [

1− F (x)

F (z(F ))

]κ

dF (x), (33)

with the convention that 0/0 := 0. A result discussing conditions under which PSK(F ; z, κ) satisfies
Assumption 2.1, and which is again established under high-level assumptions on the poverty line z, is
provided next.

Lemma A.10. Let a = 0 < b, κ ≥ 1, and let z : Dcdf([a, b]) → R denote a poverty line functional that
satisfies Assumption 2.1 with Dz and constant Cz, say. Suppose further that z ≥ z∗ > 0 holds for some
real number z∗. Let s > 0. Then T = PSK(.; z, κ) satisfies Assumption 2.1 with D = Dz ∩ Ds([a, b])
and C = (κ+ 1)[1 + bz−2

∗ Cz + κ[(2 + s)Cz + 4]].

Second, we consider a family, each element of which can be written as

PFGT (F ; z,Λ) =

∫

[0,z(F )]

Λ
(

1− [x/z(F )]
)

dF (x), (34)

where Λ : [0, 1] → [0, 1] is non-decreasing, surjective and convex. This class contains (at least after
monotonic transformations), e.g., the measures of Foster et al. (1984) or Chakravarty (1983) as special
cases (cf. Lambert (2001) Chapter 6.3, and also the more recent review in Foster et al. (2010)). The
following result provides conditions under which PFGT satisfies Assumption 2.1. Again the result is
established under high-level assumptions on the poverty line z (note in particular that the poverty line
in Equation (31) is greater or equal to (1− δ)z0 > 0 in case F is supported on [0,∞)).
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Lemma A.11. Let a = 0 < b and let z : Dcdf([a, b]) → R denote a poverty line functional that
satisfies Assumption 2.1 with Dz and constant Cz, say. Suppose further that z ≥ z∗ > 0 holds for some
real number z∗, that Λ : [0, 1] → [0, 1] is non-decreasing and surjective, and that Λ is the restriction
of a convex real-valued function Λ∗ defined on an open interval in R containing [0, 1]. Denote the
Lipschitz constant of Λ by CΛ. Then, T = PFGT (.; z,Λ) satisfies Assumption 2.1 with D = Dz and C =
bz−2

∗ CΛCz + 1.

As a direct application of Lemma A.11, we note that given a poverty line z the poverty measure of
Foster et al. (1984) is obtained upon setting Λ(x) = xα in Equation (34). The conditions in the preceding
lemma are satisfied for α ≥ 1 (in which case CΛ = α). The preceding lemma does not cover the range α ∈
[0, 1). Note that the functional corresponding to Λ(x) = xα with α = 0 coincides with the headcount
ratio, which is already covered via Lemma A.9. Furthermore, the range α > 1 might be considered most
important, as only such values of α guarantee that in addition to the “Monotonicity Axiom” (“Given
other things, a reduction in the income of a poor household must increase the poverty measure”), which
would be satisfied for all α ≥ 0, the inequality measure obtained also satisfies the “Transfer Axiom”
(“Given other things, a pure transfer of income from a poor household to any other household that is
richer must increase the poverty measure”) of Sen (1976), cf. Proposition 1 in Foster et al. (2010). Both
axioms are plausible requirements (albeit not undisputed, an early criticism being Kundu and Smith
(1983)), but are not satisfied by the headcount ratio, cf. Sen (1976).

B Proofs for Section A

Proof of Lemma A.1: Given F,G ∈ Dcdf([a, b]) it holds that |Sabs(F )− Sabs(G)| is not greater than 1/2-
times

∫

[a,b]

∣

∣|x− µ(F )| − |x− µ(G)|
∣

∣ dF (x) +

∣

∣

∣

∣

∣

∫

[a,b]

|x− µ(G)|dF (x)−
∫

[a,b]

|x− µ(G)|dG(x)

∣

∣

∣

∣

∣

.

Using the reverse triangle inequality, the first integral in the previous display can be bounded from
above by |µ(F )−µ(G)| ≤ (b−a)‖F −G‖∞ (cf. Example C.3 for the inequality). Using Lemma C.2, the
remaining expression to the right in the previous display is seen not to be greater than (b−a)‖F −G‖∞.
Hence, the first statement follows (noting that Sabs is obviously well defined on all of Dcdf ([a, b])).

Concerning the second claim, we first observe that for every F ∈ Dcdf([a, b]) it holds that

1

2

∫

[a,b]

|x− µ(F )|dF (x) =

∫

[a,µ(F )]

(µ(F )− x)dF (x). (35)

Next, let s > 0, δ ∈ (a, b), F ∈ D(s, δ) and G ∈ Dcdf ([a, b]). We consider two cases, and start with the
case where µ(G) = 0 (implying that a = 0 and that G is the cdf corresponding to point mass at 0).
Then, by convention, Srel(G) = 0, and it follows from Equation (35) (recalling that µ(F ) ≥ δ > 0) that

|Srel(F )− Srel(G)| ≤
∫

[a,µ(F )]

|1− x/µ(F )|dF (x) ≤ F (µ(F )). (36)
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Since F is continuous 0 = F (0) = F (µ(G)) holds. It follows that F (µ(F )) = |F (µ(F ))−F (µ(G))|. Using
the mean value theorem of Minassian (2007) and Example C.3 we conclude that |F (µ(F ))−F (µ(G))| ≤
s(b− a)‖F −G‖∞.

Next, we turn to the case where µ(G) > 0. First, we note that

|Srel(F )− Srel(G)| ≤ |F (µ(F ))−G(µ(G))|+
∣

∣

∣

∣

∣

∫

[a,µ(F )]

x

µ(F )
dF (x)−

∫

[a,µ(G)]

x

µ(G)
dG(x)

∣

∣

∣

∣

∣

.

Consider the first term in absolute values in the previous display: by the triangle inequality:

|F (µ(F ))−G(µ(G))| ≤ |F (µ(F ))− F (µ(G))|+ ‖F −G‖∞.

From the mean value theorem for right-differentiable functions as in Minassian (2007), and the definition
of Ds([a, b]), we obtain |F (µ(F ))−F (µ(G))| ≤ s|µ(F )−µ(G)| ≤ s(b−a)‖F−G‖∞, the second inequality
following from Example C.3. Now, note that (incorporating the considerations in case µ(G) = 0) it
remains to show that

∣

∣

∣

∣

∣

∫

[a,µ(F )]

x

µ(F )
dF (x)−

∫

[a,µ(G)]

x

µ(G)
dG(x)

∣

∣

∣

∣

∣

≤ ((s+ δ−1)(b− a) + 4)‖F −G‖∞. (37)

To this end, denote m := min(µ(F ), µ(G)), M := max(µ(F ), µ(G)), let F̃ denote a cdf in {F,G} which
realizes the latter maximum, and rewrite the difference of integrals inside the absolute value to the left
in the preceding display as

∫

[a,m]

x

µ(F )
dF (x)−

∫

[a,m]

x

µ(F )
dG(x)±

∫

(m,M ]

x

µ(F̃ )
dF̃ (x) +

∫

[a,µ(G)]

[

x

µ(F )
− x

µ(G)

]

dG(x),

where the ± is “+” in case F̃ = F and “−” in case F̃ = G. Next, denote the difference of the first
two integrals in the previous display by A, the third integral by B and the fourth by C, respectively.
First, Lemma C.2 (applied with k = 1, c = a, d = m and ϕ(x) = x/µ(F )) implies (working with the
upper bounds |M∗| ≤ 1 and C ≤ 1 in Lemma C.2 for the special case under consideration) that |A| ≤
2‖F −G‖∞. Second, note that the integrand in B is smaller than 1, hence

|B| ≤ F̃ (M)− F̃ (m) ≤ F (M)− F (m) + 2‖F −G‖∞ ≤ s|µ(F )− µ(G)|+ 2‖F −G‖∞ (38)

where we used ‖F̃ − F‖ ≤ ‖F −G‖∞ for the first inequality, and the mean value theorem of Minassian
(2007) for the second. To obtain an upper bound for |B| we now use Example C.3 to see that the right
hand side in the previous display is not greater than [s(b− a) + 2]‖F −G‖∞. Concerning |C| note that

|C| ≤
∫

[a,µ(G)]

∣

∣

∣

∣

µ(G)

µ(F )
− 1

∣

∣

∣

∣

dG(x) ≤
∣

∣

∣

∣

µ(G)

µ(F )
− 1

∣

∣

∣

∣

.

If µ(G)/µ(F ) ≥ 1, then the upper bound in the previous display is not greater (cf. Example C.3) than
[

µ(F ) + (b− a)‖F −G‖∞
]

/µ(F )− 1 ≤ δ−1(b− a)‖F −G‖∞,

and the same bound holds if µ(G)/µ(F ) < 1. Hence, |C| ≤ δ−1(b− a)‖F −G‖∞. Summarizing,

|A|+ |B|+ |C| ≤ ((s+ δ−1)(b− a) + 4)‖F −G‖∞,

which proves the statement in Equation (37).
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Proof of Lemma A.2: The first statement follows from Example C.6. To prove the statement concern-
ing Grel, we first note that Grel is well defined on Dcdf ([a, b]) (note that µ(F ) ≤ 0 implies that a = 0 and
that µF is point mass at 0, implying that Grel(F ) = 0). Let F,G ∈ Dcdf([a, b]). We now consider two
cases, and start with the case where µ(G) = 0. Then, Grel(G) = 0 and

|Grel(F )− Grel(G)| = Grel(F ) ≤ δ−1[µ(F )− µ(G)] ≤ δ−1(b− a)‖F −G‖∞, (39)

where we used Example C.3 in the last inequality.
Next, in case µ(G) 6= 0, we have µ(G) > 0 (recall that a ≥ 0), and we set ϕ(x1, x2) = |x1 − x2|.

Write
|Grel(F )− Grel(G)| ≤ A+B, (40)

where

A := δ−1

[

∫

[a,b]

∫

[a,b]

ϕ(x1, x2)dF (x1)dF (x2)−
∫

[a,b]

∫

[a,b]

ϕ(x1, x2)dG(x1)dG(x2)

]

, (41)

which, by Example C.6 is not greater than δ−12(b− a)‖F −G‖∞, and

B :=

∫

[a,b]

∫

[a,b]

|(µ(F )−1 − µ(G)−1)ϕ(x1, x2)|dG(x1)dG(x2). (42)

By the reverse triangle inequality (using that µ(F ) > 0 and µ(G) > 0), we see that

B ≤ |µ(F )−1 − µ(G)−1|
∫

[a,b]

∫

[a,b]

|x1 − x2|dG(x1)dG(x2) ≤ 2
∣

∣[µ(G)/µ(F )]− 1
∣

∣ . (43)

Using Example C.3, we see that µ(F ) − (b − a)‖F − G‖∞ ≤ µ(G) ≤ µ(F ) + (b − a)‖F − G‖∞, from
which it is easy to conclude that

− (b− a)‖F −G‖∞/µ(F ) ≤ [µ(G)/µ(F )]− 1 ≤ (b− a)‖F −G‖∞/µ(F ), (44)

from which it follows that
∣

∣[µ(G)/µ(F )]− 1
∣

∣ ≤ δ−1(b−a)‖F −G‖∞. Hence, in case µ(G) 6= 0, we obtain
that

|Grel(F )− Grel(G)| ≤ 4δ−1(b− a)‖F −G‖∞. (45)

Together with the first case, this proves the result.

Proof of Lemma A.3: First of all, the functional under consideration is trivially well defined onDcdf([a, b])
(because a > 0 holds). Next, we apply Lemma C.12 together with Lemma C.14 to obtain that for ev-
ery u ∈ [0, 1] the functional F 7→ L(F, u) satisfies Assumption 2.1 with a, b and D (as in the statement
of the present lemma) as in the statement of the theorem and with constant a−1(r−1 + (b− a)a−1). The
statement immediately follows.

Proof of Lemma A.4: The triangle inequality, together with Example C.3 and Lemma C.13 (which is
applicable due to Lemma C.12) immediately yield the claimed result.
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Proof of Lemma A.5: We start with the first statement. The functional T is obviously everywhere
defined on Dcdf([a, b]) (in case µ(F ) = 0 it follows that a = 0 and that F corresponds to point mass 1
at 0 in which case T (F ) = 0, by definition). Next, let δ ∈ (a, b), let F ∈ D(δ) and let G ∈ Dcdf ([a, b]). We
consider first the case where µ(G) = 0 (implying that T(G) = 0). Then, noting that

∫

[a,b]
xcdG(x) = 0,

we conclude that |T(F )− T(G)| = T(F ), the latter being not greater than

1

c|c− 1|δc

∣

∣

∣

∣

∣

∫

[a,b]

xcdF (x)−
∫

[a,b]

xcdG(x)

∣

∣

∣

∣

∣

≤ bc − ac

c|c− 1|δc‖F −G‖∞, (46)

where we used Lemma C.2 for the last inequality. Next, consider the case where µ(G) > 0. We note
that

∣

∣

∣

∣

∣

∫

[a,b]

(x/µ(F ))cdF (x)−
∫

[a,b]

(x/µ(F ))cdG(x)

∣

∣

∣

∣

∣

(47)

can be upper bounded by A+B with

A :=

∣

∣

∣

∣

∣

∫

[a,b]

(x/µ(F ))cdF (x)−
∫

[a,b]

(x/µ(F ))cdG(x)

∣

∣

∣

∣

∣

≤ bc − ac

δc
‖F −G‖∞ (48)

the inequality following from Lemma C.2, and

B := |(1/µ(F ))c − (1/µ(G))c|
∫

[a,b]

xcdG(x) ≤ |(µ(G)/µ(F ))c − 1|, (49)

the inequality following from Jensen’s inequality (recalling that c ∈ (0, 1)). It remains to observe that
the simple inequality |zc − 1| ≤ |x− 1| for z > 0 it follows that

|(µ(G)/µ(F ))c − 1| ≤ |µ(G)/µ(F )− 1| ≤ δ−1(b− a)‖F −G‖∞, (50)

where the second inequality follows from Example C.3 together with µ(F ) ≥ δ. Hence, in case µ(G) > 0
we see that

|T(F )− T(G)| ≤ (c|c− 1|)−1

[

bc − ac

δc
+ δ−1(b− a)

]

‖F −G‖∞,

which proves the first claim. We now prove the second claim. Since a > 0 holds in this case, µ(G)
and µ(F ) can not be smaller than a. Hence the functional is well defined on all of Dcdf ([a, b]). Further-
more, the expression in Equation (47) is greater than A+B, where A and B have been defined above.
By Lemma C.2 it holds that A is not greater than a−c|bc − ac‖F −G‖∞. Furthermore, B is not greater
than

max
(

(a/b)c, (b/a)c
)

|(µ(F )/µ(G))c − 1| ≤ |c|max
(

(a/b)2c−1, (b/a)2c−1
)

|µ(F )/µ(G)− 1|
≤ |c|max

(

(a/b)2c−1, (b/a)2c−1
)

a−1(b− a)‖F −G‖∞,
(51)

the first inequality following from |zc − 1| ≤ |c|max((a/b)c−1, (b/a)c−1)|z − 1| for z ∈ [a/b, b/a] (noting
that this interval contains 1 and recalling that c /∈ [0, 1]), and the second inequality following from
Exercise C.3. We now turn to the last case where c ∈ {0, 1} (and a > 0 guaranteeing that the functional
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is then well defined on all of Dcdf([a, b])). We consider first the case where c = 0. The statement follows
after noting that |T(F )− T(G)| is not greater than C +D with

C :=

∣

∣

∣

∣

∣

∫

[a,b]

log(x)dF (x)− log(x)dG(x)

∣

∣

∣

∣

∣

≤ log(b/a)‖F −G‖∞ (52)

the inequality following from Lemma C.2, and

D :=

∫

[a,b]

∣

∣log(x/µ(F ))− log(x/µ(G))
∣

∣ dG(x) = | log(µ(G)/µ(F ))| ≤ log(1 + a−1‖F −G‖∞)

≤ a−1‖F −G‖∞.

(53)

In case c = 1, let f(x) = (x/µ(F )) log(x/µ(F )) and g(x) = (x/µ(G)) log(x/µ(G)). Write

|T(F )− T(G)| ≤
∣

∣

∣

∣

∣

∫

[a,b]

f(x)dF (x)−
∫

[a,b]

f(x)dG(x)

∣

∣

∣

∣

∣

+

∫

[a,b]

|f(x)− g(x)|dG(x). (54)

From Lemma C.2 it follows that the first absolute value in the upper bound is not greater than a−1
∫

[a,b]
|1+

log(x)|dx‖F −G‖∞. Finally, noting that for every x ∈ [a, b] we have

|f(x)− g(x)| = |x|
{

|µ−1(F )− µ−1(G)|| log(x/µ(F ))|+ µ−1(G)
∣

∣log(µ(F )/µ(G))
∣

∣

}

≤ ba−1
{

| log(b/a)|(b− a) + a−1
}

‖F −G‖∞,
(55)

where (in addition to a > 0) we used Exercise C.3 and the inequality for log(µ(G)/µ(F )) established
above. The final claim follows.

Proof of Lemma A.6: We start with Part 1: Let δ ∈ (a, b). From the first part of Lemma A.5 we obtain
that in case ε ∈ (0, 1) the functional Ec(ε) satisfies Assumption 2.1 with D = D(δ) (cf. Equation 21) and

constant |εc(ε)|−1
[

δ−c(ε)(bc(ε) − ac(ε)) + δ−1(b− a)
]

. It remains to observe that the function

z 7→ 1− z1/c(ε) (56)

is Lipschitz continuous on [0, 1] with constant c(ε)−1. The claim then follows from Lemma C.1 (withm =
1), the representation in Equation (26) together with the observation that 0 ≤ ε(ε− 1)Ec(ε)(F ) + 1 ≤ 1
holds for every F ∈ Dcdf([a, b]) as a consequence of Jensen’s inequality.

Concerning Part 2: From the second part of Lemma A.5 we obtain that in case ε ∈ (1,∞) the
functional Ec(ε) satisfies Assumption 2.1 with D = Dcdf([a, b]) and constant (note that 2c(ε) − 1 < 0)
equal to

|c(ε)ε|−1[a−c(ε)|bc(ε) − ac(ε)|+ |c(ε)|(a/b)2c(ε)−1a−1(b− a)].

We shall now argue similarly as in Part 1. The function in Equation (56) is Lipschitz continuous
on [(b/a)c(ε), (a/b)c(ε)] with constant c(ε)−1(b/a)ε. From Equation (26) and because (b/a)c(ε) ≤ ε(ε −
1)E1−ε(F ) + 1 ≤ (a/b)c(ε) holds for every F ∈ Dcdf([a, b]) (a > 0 and c(ε) < 0) the claim follows from
Lemma C.1 (with m = 1).
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Proof of Lemma A.7: Clearly T is well defined on all of Dcdf([a, b]). Let F ∈ Dcdf([a, b]). Then, by
Jensen’s inequality:

∫

[a,b]

eκ[µ(F )−x]dF (x) ≥ 1. (57)

Since log restricted to [1,∞) is Lipschitz continuous with constant 1, we obtain for any G ∈ Dcdf ([a, b])
that

|T(F )− T(G)| ≤ κ−1

∣

∣

∣

∣

∣

∫

[a,b]

eκ[µ(F )−x]dF (x)−
∫

[a,b]

eκ[µ(G)−x]dG(x)

∣

∣

∣

∣

∣

. (58)

Since the term in absolute values in the previous display is not greater than

∣

∣

∣
eκµ(F ) − eκµ(G)

∣

∣

∣
+

∣

∣

∣

∣

∣

∫

[a,b]

e−κxdF (x)−
∫

[a,b]

e−κxdG(x)

∣

∣

∣

∣

∣

(59)

which can be bounded from above by

κeκb(b− a)‖F −G‖∞ + [e−κa − e−κb]‖F −G‖∞, (60)

where we used Example C.3 and Lemma C.2

Proof of Lemma A.8: Obviously, the welfare function W is well defined on Dcdf([a, b]) in both parts of
the lemma. The first statement in the present lemma follows from the assumptions and Example C.3,
noting that x1x2 − y1y2 = (x1 − y1)x2 − y1(y2 − x2) holds for real numbers xi, yi, i = 1, 2. The second
statement follows directly from the assumptions and Example C.3.

Lemma B.1. Let a < b be real numbers, z0 > 0 and 0 ≤ δ ≤ 1. Then, the following holds:

1. If δ = 0, then zm,z0,δ satisfies Assumption 2.1 with D = Dcdf ([a, b]), and C = 0.

2. If δ > 0 and m = µ(.), then zm,z0,δ satisfies Assumption 2.1 with D = Dcdf([a, b]) and C = δ(b−a).

3. If δ > 0 and m = q1/2(.), then, for every r > 0 the poverty line zm,z0,δ satisfies Assumption 2.1
with D = Cr([a, b]), and C = r−1δ.

Proof of Lemma B.1: Recall from Equation 31 that by definition zm,z0,δ(F ) = z0 + δ(m(F ) − z0). The
first statement is trivial; the second follows directly from Example C.3; and the third follows from
Lemma C.12 and Example C.10.

Proof of Lemma A.9: Since z satisfies Assumption 2.1 the functional z is well defined on Dcdf([a, b]).
Thus Hz is well defined on Dcdf ([a, b]) as well. Finally, given F ∈ D and G ∈ Dcdf([a, b]), note that by
definition and the triangle inequality:

|Hz(F )− Hz(G)| ≤ |F (z(F ))− F (z(G))|+ ‖F −G‖∞ ≤ (Czs+ 1)‖F −G‖∞, (61)

where we used that z satisfies Assumption 2.1 together with a mean-value theorem as in Minassian
(2007) for the last inequality.
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Proof of Lemma A.10: Obviously, PSK(.; z, κ) is well defined on Dcdf ([a, b]) because z ≥ z∗ > 0 holds by
assumption, and due to our convention that 0/0 := 0 (noting also that F (x) = 0 for every x ∈ [0, z(F )]
in case F (z(F )) = 0). Next, fix F ∈ D and G ∈ Dcdf ([a, b]). Define for all x ∈ R

f(x) := max(1− [x/z(F )], 0)[1− [F (x)/F (z(F ))]]κ,

and analogously
g(x) := max(1− [x/z(G)], 0)[1− [G(x)/G(z(G))]]κ.

Define m := min(z(F ), z(G)) and M := max(z(F ), z(G)), and the following partition of [a,M ] (using
our convention 0/0 := 0):

A :=

{

x ∈ [a,m] :
F (x)

F (z(F ))
>

G(x)

G(z(G))

}

, B := [a,m]\A, and C := (m,M ],

where C = ∅ in case m = M . Next, write

PSK(F ; z, κ)− PSK(G; z, κ)

κ + 1
=

∫

[a,M ]

[f(x)− g(x)]dF (x) +

[

∫

[a,b]

g(x)F (x)−
∫

[a,b]

g(x)G(x)

]

,

noting that f and g vanish for x > M ; and denote the right-hand side by S1 + S2, S2 denoting the term
in brackets to the far right. Since g([a, b]) ⊆ [0, 1] and because g is right-continuous (G is a cdf) and
non-increasing, it hence follows from Lemma C.7 that |S2| ≤ ‖F − G‖∞. Concerning S1, note that for
every x ∈ [a,M ] it holds that |f(x)− g(x)| is not greater than the sum of

|max([1− x

z(F )
], 0)−max([1− x

z(G)
], 0)| ≤ x|z(F )−1 + z(G)−1|

≤ xz−2
∗ |z(F ) + z(G)| ≤ bz−2

∗ Cz‖F −G‖∞,
(62)

(where we used that z ≥ z0 to obtain the second inequality, and that z satisfies Assumption 2.1 to obtain
the third) and

∣

∣|1− [F (x)/F (z(F ))]|κ − |1− [G(x)/G(z(G))]|κ
∣

∣ ≤ κ|[F (x)/F (z(F ))]− [G(x)/G(z(G))]| (63)

(where we used κ ≥ 1, the reverse triangle inequality, and Lemma A.9 to obtain the upper bound). It
hence follows that |S1| is bounded from above by the sum of bz−2

∗ C
z
‖F −G‖∞ and κ times

∫

A

[F (x)/F (z(F ))]− [G(x)/G(z(G))]dF (x) +

∫

B

[G(x)/G(z(G))]− [F (x)/F (z(F ))]dF (x)

+

∫

C

h(x)dF (x),

(64)

where for every x ∈ C we define

h(x) :=















|F (x)/F (z(F ))| if m < M = z(F )

|G(x)/G(z(G))| if m < M = z(G)

0 if m = M.

(65)
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Using 0 ≤ h ≤ 1, the mean value theorem in Minassian (2007), and that z satisfies Assumption 2.1, we
see that the third integral in Equation (64) satisfies

∫

C

h(x)dF (x) ≤ F (M)− F (m) ≤ sCz‖F −G‖∞. (66)

To bound the expression in Equation (64), we also recall that Lemma A.9 shows that

G(z(G))− (Cz + 1)‖F −G‖∞ ≤ F (z(F )) ≤ G(z(G)) + (Cz + 1)‖F −G‖∞. (67)

We consider different cases:
Consider first the case where F (z(F )) = 0: Then, the convention 0/0 := 0 implies A = ∅ and B =

[a,m]. Furthermore, the integral over B in Equation (64) vanishes in this case, because m ≤ z(F )
implies F (m) = 0. By Equation (66), in this case it holds that the expression in Equation (64) does not
exceed sCz‖F −G‖∞.

Next, consider the case where G(z(G)) = 0 and F (z(F )) > 0. It follows from our convention that
then A = {x ∈ [a,m] : F (x)/F (z(F )) > 0}, and that the integral over B in (64) vanishes. The integral
over A is not greater than

F (m) = F (m)−G(z(G)) ≤ F (z(F ))−G(z(G)) ≤ (Cz + 1)‖F −G‖∞,

where we used Equation (67) to obtain the last inequality. Together with Equation (66) we thus see
that in this case the expression in Equation (64) does not exceed (Cz(1 + s) + 1)‖F −G‖∞.

Finally, consider the case where G(z(G)) and F (z(F )) are both positive. Then, we can write the
integral over A in Equation (64) as

F (z(F ))−1

∫

A

F (x)− F (z(F ))
G(x)

G(z(G))
dF (x)

≤ F (z(F ))−1

∫

A

[F (x)−G(x)] + (Cz + 1)‖F −G‖∞
G(x)

G(z(G))
dF (x)

≤ ‖F −G‖∞(Cz + 2),

where we used Equation (67) to obtain the first inequality. Similarly, the integral over B in Equation (64)
can be shown not to be greater than ‖F − G‖∞(Cz + 2). Summarizing, in this last case the expression
in Equation (64) does not exceed [(2 + s)Cz + 4]‖F − G‖∞. In particular, this bound is bigger than
the two bounds in the other two cases. Hence, we conclude that the expression in Equation (64) is not
greater than [(2 + s)Cz + 4]‖F −G‖∞ in general.

It follows that |S1| is bounded from above by

[bz−2
∗ Cz + κ[(2 + s)Cz + 4]]‖F −G‖∞. (68)

Since |S2| ≤ ‖F −G‖∞, it follows that

PSK(F ; z, κ)− PSK(G; z, κ)

κ + 1
≤ |S1|+ |S2| ≤ [1 + bz−2

∗ Cz + κ[(2 + s)Cz + 4]]‖F −G‖∞.
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Proof of Lemma A.11: Obviously, PFGT (.; z,Λ) is well defined on Dcdf([a, b]) because z ≥ z∗ > 0 holds
by assumption. Next, fix F ∈ D and G ∈ Dcdf ([a, b]). Note that we can write

PFGT (F ; z,Λ) =

∫

[a,b]

Λ(max(1− [x/z(F )], 0))dF (x). (69)

Abbreviating f(x) = Λ(max(1− [x/z(F )], 0)) and g(x) = Λ(max(1− [x/z(G)], 0)) we obtain

PFGT (F ; z,Λ)− PFGT (G; z,Λ) =

∫

[a,b]

[f(x)− g(x)]dF (x) +

[

∫

[a,b]

g(x)dF (x)−
∫

[a,b]

g(x)dG(x)

]

.

Denote the first integral on the right by A, and the term in brackets to the far right by B. Noting
that g : [a, b] → [0, 1] is continuous (Λ is the restriction of a convex function) and non-increasing, we
obtain from Lemma C.7 that |B| ≤ ‖F − G‖∞. Concerning A, we note that since Λ is the restriction
of a convex function defined on an open interval containing [0, 1], Λ is Lipschitz continuous. Hence the
constant CΛ as claimed in the statement of the lemma indeed exists. In particular, using this property
and the inequality |max(1− z1, 0)−max(1− z2, 0)| ≤ |z1 − z2| for nonnegative real numbers z1, z2, we
can bound

|A| ≤ CΛb|[1/z(F )]− [1/z(G)]| ≤ CΛbz
−2
∗ |z(F )− z(G)| ≤ CΛbz

−2
∗ Cz‖F −G‖∞, (70)

where we used Lipschitz continuity of the map x 7→ x−1 on [z∗,∞) (with constant z−2
∗ ), and the

assumption that z satisfies Assumption 2.1 for obtaining the second inequality. Together with the upper
bound on |B| we obtain the claimed statement.

C General results for establishing Assumption 2.1

We here summarize in a self-contained way some results that turn out to be useful for establishing
Assumption 2.1 for empirically relevant functionals T. Specific examples were discussed in Appendix A
and include inequality measures (cf. Appendix A.1), welfare measures (cf. Appendix A.2), and poverty
measures (cf. Appendix A.3). The techniques we describe are based on decomposability-properties of the
functional, its specific structural (e.g., linearity) properties, and on properties of quantiles and quantile
functions, or related quantities such as Lorenz curves. We emphasize that all of the results in the present
section are fairly elementary, but are difficult to pinpoint in the literature in the form needed. We first
start with a short section concerning notation.

C.1 Notation

We denote by D(R) the Banach space of real-valued bounded càdlàg functions equipped with the supre-
mum norm ‖G‖∞ = sup{|G(x)| : x ∈ R}. The closed convex subset of D(R) consisting of all cumulative
distribution functions (cdfs) shall be denoted by Dcdf (R). Furthermore, given two real numbers a < b, we
define the subset Dcdf((a, b]) of Dcdf(R) as follows: F ∈ Dcdf((a, b]) if and only if F ∈ Dcdf (R), F (a) = 0
and F (b) = 1. Likewise, we define the subset Dcdf ([a, b]) of Dcdf (R) as follows: F ∈ Dcdf ([a, b]) if and
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only if F ∈ Dcdf(R), F (a−) = 0 and F (b) = 1. Here F (a−) denotes the left-sided limit of F at a. Given
a cdf F we denote by µF the (uniquely defined) probability measure on the Borel sets of R that satisfies

µF ((−∞, x]) = F (x) for every x ∈ R,

and, as usual, we denote the Lebesgue-Stieltjes integral of a µF -integrable function f : R → R

by
∫

R
f(x)dF (x) :=

∫

R
f(x)dµF (x).

In the following subsections we shall repeatedly encounter functionals T with domain T ⊆ Dcdf(R)
and co-domain R, which are Lipschitz continuous (T being equipped with the metric induced by the
supremum norm on D(R)): recall that a functional T : T → R is called Lipschitz continuous if there
exists a nonnegative real number C so that for every F and G ∈ T it holds that

|T(F )− T(G)| ≤ C‖F −G‖∞. (71)

We then call C a Lipschitz constant of T. When we say that a functional T is Lipschitz continuous
with constant C, we do not imply that this is the smallest such constant. Recall from Remark 2.2 that
if a functional T is Lipschitz continuous on T = Dcdf ([a, b]) for real numbers a < b, then T satisfies
Assumption 2.1 with D = Dcdf([a, b]).

C.2 Decomposability

Oftentimes functionals can be decomposed into a function of several “simpler” functionals. It is a basic,
but useful, fact that if a functional can be written as a composition of functionals that satisfy Assump-
tion 2.1 with a Lipschitz continuous function on the intermediating Euclidean space, this composition
satisfies Assumption 2.1 as well. The result is as follows, its proof is trivial and omitted.

Lemma C.1. Let a < b be real numbers, and let D ⊆ Dcdf([a, b]). Suppose that Ti for i = 1, . . . , m
satisfies Assumption 2.1 with a, b and D and with constant Ci, respectively. Let Ii := Ti(Dcdf ([a, b])) and
set I =×m

i=1
Ii. Assume G : I → R is Lipschitz continuous with constant C, when I ⊆ Rm is equipped

with the metric induced by the norm ‖.‖1 on Rm. Then, T = G ◦ (T1, . . . ,Tm) satisfies Assumption 2.1
with a, b and D and with constant C

∑m
i=1Ci.

C.3 U-functionals

We here consider U-functionals (the corresponding sample plug-in variants being traditionally referred
to as U-statistics, hence the name). The following result covers examples such as moments, certain
concentration measures or dependence measures, cf. Chapter 5 in Serfling (2009), and see also the
subsequent discussion for examples.

Lemma C.2. Let a < b be real numbers and let ϕ : [a, b]k → R for some k ∈ N. Suppose that ϕ is
bounded, and is symmetric in the sense that for all xi ∈ [a, b] for 1, . . . , k it holds that ϕ(x1, . . . , xk) =
ϕ(xπ1 , . . . , xπk

) for every permutation xπ1, . . . , xπk
of x1, . . . , xk. Let a ≤ c < d ≤ b. Suppose that for

every x∗
2, . . . , x

∗
k ∈ [c, d]k−1 the function x 7→ ϕ(x, x∗

2, . . . , x
∗
k) defined on [c, d] is continuous and has
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total variation not greater than C ∈ R. For F ∈ Dcdf([a, b]) define the functional mϕ;c,d as the iterated
Lebesgue-Stieltjes integral

mϕ;c,d(F ) :=

∫

[c,d]

. . .

∫

[c,d]

ϕ(x1, . . . , xk)dF (x1) . . . dF (xk), (72)

where we write mϕ in case c = a and d = b. Then, mϕ;c,d is Lipschitz continuous on Dcdf ([a, b]) with
constant kC∗, where

C∗ =























C if a = c, b = d

C +m∗ if b = d

C +M∗ if a = c

C +m∗ +M∗ else,

(73)

and where

m∗ := sup{|ϕ(c, x∗
2, . . . , x

∗
k)| : x∗

2, . . . , x
∗
k ∈ [c, d]k−1} (74)

M∗ := sup{|ϕ(d, x∗
2, . . . , x

∗
k)| : x∗

2, . . . , x
∗
k ∈ [c, d]k−1}. (75)

Proof. Note first that mϕ;c,d(F ) is well defined (i.e., ϕ is integrable w.r.t. the k-fold product mea-

sure
⊗k

i=1 µF ) on Dcdf([a, b]) because ϕ is bounded. Next, we reduce the statement to the case k = 1:
let F and G be elements of Dcdf([a, b]), let µ be a measure that dominates both µF and µG, let f and g
denote µ-densities of µF and µG, respectively, w.r.t. µ. Then, by Fubini’s theorem,

mϕ;c,d(F ) =

∫

[c,d]

. . .

∫

[c,d]

ϕ(x1, . . . , xk)

k
∏

j=1

f(xj)dµ(x1) . . . dµ(xk), (76)

and an analogous expression (replacing the density f by the density g) corresponds to mϕ;c,d(G). Recall
also that for arbitrary real numbers aj , bj for j = 1, . . . , k we may write

k
∏

j=1

aj −
k
∏

j=1

bj =
k
∑

j=1











j−1
∏

i=1

ai



 (aj − bj)
k
∏

i=j+1

bi






, (77)

where empty products are to be interpreted as 1. Equipped with (77), using Equation (76), and Fubini’s
theorem, we write mϕ;c,d(F )−mϕ;c,d(G) as

k
∑

j=1

∫

[c,d]
. . .

∫

[c,d]
ϕ(x1, . . . , xk)[f(xj)− g(xj)]dµ(xj)dF (x1) . . . dF (xj−1)dµ(x1) . . . dG(xj−1) . . . dG(xk).

Using the triangle inequality to upper bound |mϕ;c,d(F ) − mϕ;c,d(G)|, an application of the symmetry
condition shows that it suffices to verify that for x∗

2, . . . , x
∗
k in [c, d]k−1 arbitrary

∣

∣

∣

∣

∣

∫

[c,d]

ϕ(x, x∗
2 . . . , x

∗
k)dF (x)−

∫

[c,d]

ϕ(x, x∗
2 . . . , x

∗
k)dG(x)

∣

∣

∣

∣

∣

≤ C∗‖F −G‖∞. (78)
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Let f : R → R be a continuous function (possibly depending on x∗
2, . . . , x

∗
k) such that f(x) = ϕ(x, x∗

2 . . . , x
∗
k)

holds for every x ∈ [c, d], and such that f(x) → 0 as x → −∞. An application of the integration-by-parts
formula (as in, e.g., Exercise 34.b on p.108 in Folland (2013)) gives

∫

[c,d]

ϕ(x, x∗
2 . . . , x

∗
k)dF (x) =

∫

[c,d]

f(x)dF (x) = f(d)F (d)− f(c−)F (c−)−
∫

[c,d]

F (x)dµf(x), (79)

an analogous statement holding for F replaced by G. Hence, the quantity to the left in the inequality
in (78) is seen to be not greater than

|f(d)||F (d)−G(d)|+ |f(c)||F (c−)−G(c−)|+
∣

∣

∣

∣

∣

∫

[c,d]

F (x)−G(x)dµf(x)

∣

∣

∣

∣

∣

. (80)

Noting that |f(d)| ≤ M∗, that |f(c)| ≤ m∗, that |F (d)−G(d)| = 0 if d = b, that |F (c−)−G(c−)| = 0
if a = c, and furthermore noting that |F (d) − G(d)| ≤ ‖F − G‖∞ and |F (c−) − G(c−)| ≤ ‖F − G‖∞
always hold, the statement in (78) follows from the total variation of µf on [c, d] being not greater
than C.

Example C.3 (Mean). Let a < b be real numbers. Let k = 1 and set ϕ(x) = x, i.e., we consider the
mean functional F 7→ µ(F ), say, defined via

F 7→
∫

[a,b]

xdF (x). (81)

Note that ϕ is bounded on [a, b], is trivially symmetric, and ϕ satisfies the continuity condition in
Lemma C.2. Furthermore, the total variation of ϕ is

∫

[a,b]
|ϕ′(x)|dx = (b − a). As a consequence of

Lemma C.2 the functional mϕ is thus Lipschitz continuous on Dcdf ([a, b]) with constant (b− a).

Example C.4 (Moments). For simplicity, let a = 0 and b > 0. Let k = 1 and set ϕ(x) = xp for
some p > 0, i.e., we consider the p-mean functional

F 7→
∫

[0,b]

xpdF (x). (82)

Note that ϕ is bounded on [a, b], is trivially symmetric, and ϕ satisfies the continuity condition in
Lemma C.2. Furthermore, the total variation of ϕ is

∫

[0,b]
|ϕ′(x)|dx = ϕ(b) = bp. As a consequence of

Lemma C.2 the functional mϕ is thus Lipschitz continuous on Dcdf ([0, b]) with constant bp.

Example C.5 (Variance). Let a < b be real numbers. Let k = 2 and set ϕ(x1, x2) = .5(x1 − x2)
2, i.e.,

we consider the variance

F 7→ .5

∫

[a,b]

∫

[a,b]

(x1 − x2)
2dF (x1)dF (x2) =

∫

[a,b]

[

x1 −
∫

[a,b]

x2dF (x2)

]2

dF (x1). (83)

Note that ϕ is bounded on [a, b]2, is symmetric, and ϕ satisfies the continuity condition in Lemma C.2.
For every x2 ∈ [a, b] the total variation of x 7→ .5(x−x2)

2 is
∫

[a,b]
|x−x2|dx ≤ 2max(a2, b2)+.5(b2−a2). It

follows from Lemma C.2 that the variance functional is Lipschitz continuous with constant 2max(a2, b2)+
.5(b2 − a2).
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Example C.6 (Gini-mean difference). Let a < b be real numbers, and let ϕ(x1, x2) = |x1 − x2|. This
corresponds to the functional

F 7→
∫

[a,b]

∫

[a,b]

|x1 − x2|dF (x1)dF (x2), (84)

which constitutes the numerator of the Gini-index and is sometimes called the Gini-mean difference.
Clearly, ϕ is bounded and symmetric, and satisfies the continuity condition in Lemma C.2. Furthermore,
for every x2 ∈ [a, b] it holds that the total variation of x 7→ |x − x2| equals (b − a). It follows from
Lemma C.2 that mϕ is Lipschitz continuous on Dcdf ([a, b]) with constant 2(b− a).

The following lemma is sometimes useful, because it avoids the continuity condition of the integrand
in Lemma C.2 by working with a monotonicity condition.

Lemma C.7. Let a < b be real numbers and let ϕ : [a, b] → R be right-continuous, and be non-decreasing
or non-increasing. Then, the functional

F 7→
∫

[a,b]

ϕ(x)dF (x) (85)

is Lipschitz continuous on Dcdf ([a, b]) with constant |ϕ(b)− ϕ(a)|.

Proof. Note first that the functional under consideration is well defined on Dcdf ([a, b]); and that we only
need to consider the case where ϕ is non-decreasing. To this end let F,G ∈ Dcdf ([a, b]) and note that,
by the transformation theorem, we have

∫

[a,b]

ϕ(x)dF (x)−
∫

[a,b]

ϕ(x)dG(x) =

∫

[ϕ(a),ϕ(b)]

xdFϕ(x)−
∫

[ϕ(a),ϕ(b)]

xdGϕ(x), (86)

where Fϕ ∈ Dcdf ([ϕ(a), ϕ(b)]) denotes the cdf corresponding to the image measure µF ◦ ϕ, and Gϕ ∈
Dcdf ([ϕ(a), ϕ(b)]) is defined analogously. An application of Example C.3 thus shows that

∣

∣

∣

∣

∣

∫

[a,b]

ϕ(x)dF (x)−
∫

[a,b]

ϕ(x)dG(x)

∣

∣

∣

∣

∣

≤ [ϕ(b)− ϕ(a)]‖Fϕ −Gϕ‖∞. (87)

It remains to observe that ‖Fϕ −Gϕ‖∞ ≤ ‖F −G‖∞, by Lemma C.8.

Lemma C.8. Let F and G be cdfs, and let ϕ : R → R be right-continuous, and be non-decreasing or
non-increasing. Then, ‖Fϕ − Gϕ‖∞ ≤ ‖F − G‖∞ holds, where Fϕ denotes the cdf corresponding to the
image measure µF ◦ ϕ, and Gϕ is defined analogously.

Proof. First of all, note that ‖Fϕ−Gϕ‖∞ = supz∈C(F,G) |Fϕ(z)−Gϕ(z)|, where C(F,G) ⊆ R is defined as
the subset of points at which both Fϕ and Gϕ are continuous. Next, let z ∈ C(F,G) and define ϕ−(x) :=
inf{z ∈ R : ϕ(z) ≥ x}, i.e., a generalized inverse of ϕ. Part (5) of Proposition 1 in Embrechts and Hofert
(2013) shows that for every z ∈ R we have

A(z) := {x ∈ R : ϕ(x) < z} = {x ∈ R : x < ϕ−(z)}. (88)
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Using this expression for A(z), we can for every z ∈ C(F,G) rewrite |Fϕ(z)−Gϕ(z)| as

|µFϕ((−∞, z))− µGϕ((−∞, z))| = |µF (A(z))− µG(A(z))|
= |µF ({x ∈ R : x < ϕ−(z)})− µG({x ∈ R : x < ϕ−(z)})|.

On the one hand, the expression to the far right in the previous display equals 0 ≤ ‖F − G‖∞
in case ϕ−(z) ∈ {−∞,+∞}. On the other hand, if ϕ−(z) ∈ R, the same expression is seen to
equal |F (ϕ−(z)−)−G(ϕ−(z)−)| ≤ ‖F −G‖∞. Since this argument goes through for every z ∈ C(F,G),
we are done.

C.4 Quantiles, quantile functions, L-functionals, Lorenz curve, and trun-

cation

In the present subsection we provide some results concerning Lipschitz continuity of quantiles-based
functionals. For α ∈ [0, 1] we define the α-quantile of a cdf F as usual via qα(F ) = inf{x ∈ R : F (x) ≥ α}.
Note that for α = 0 we have qα(F ) = −∞, and that (by monotonicity) the quantile function α 7→ qα(F )
is B([0, 1])− B(R̄) measurable. The first result is as follows:

Lemma C.9. Let α ∈ (0, 1] and let F ∈ Dcdf([a, b]) for real numbers a < b. Suppose F (qα(F )) = α and
that there exists a positive real number r so that

F (qα(F )− x)− α ≤ −rx if x > 0 and qα(F )− x ≥ a.

F (qα(F ) + x)− α ≥ rx if x > 0 and qα(F ) + x ≤ b.
(89)

Then, for every G ∈ Dcdf ([a, b]) it holds that |qα(F )− qα(G)| ≤ r−1‖F −G‖∞. Consequently, denoting
by D the set of all cdfs that satisfy the conditions imposed on F above, it follows that qα satisfies
Assumption 2.1 with a, b,D and constant C = r−1.

Proof. Let G be an element of Dcdf([a, b]). The claim is trivial if F = G. Thus, we assume that F 6= G.
Note that F (x) = 0 ≤ α for every x < a, and F (x) = 1 > α for every x ≥ b implies qα(F ) ∈ [a, b];
and that, by the same reasoning, qα(G) ∈ [a, b]. Now, on the one hand, if qα(F )− r−1‖G − F‖∞ < a,
then qα(G) ≥ qα(F ) − r−1‖G − F‖∞. If, on the other hand, qα(F ) − r−1‖G − F‖∞ ≥ a, then from
the first line in (89) with x = r−1‖G − F‖∞ one obtains α ≥ F (qα(F ) − r−1‖G− F‖∞) + ‖G − F‖∞,
thus α ≥ G(qα(F ) − r−1‖G − F‖∞) and hence, again, qα(G) ≥ qα(F ) − r−1‖G − F‖∞. Similarly,
on the one hand, if qα(F ) + r−1‖G − F‖∞ > b, then qα(G) ≤ qα(F ) + r−1‖G − F‖∞. If, on the
other hand qα(F ) + r−1‖G − F‖∞ ≤ b, then the second line in (89) with x = r−1‖G − F‖∞ shows
that F (qα(F ) + r−1‖G − F‖∞) − ‖G − F‖∞ ≥ α, thus G(qα(F ) + r−1‖G − F‖∞) ≥ α, and hence,
again, qα(G) ≤ qα(F ) + r−1‖G− F‖∞. Summarizing yields |qα(F )− qα(G)| ≤ r−1‖F −G‖∞. The last
statement is trivial.

Example C.10 (Median). The median of a distribution F is defined as its α = 1/2 quantile q1/2(F ).
Let a < b and r > 0 be real numbers, and denote by D the set of cdfs F so that F (q1/2(F )) = 1/2, and
so that Equation (89) is satisfied for α = 1/2 (Lemma C.12 provides a sufficient condition for F ∈ D).
Then, the functional F 7→ q1/2(F ) satisfies Assumption 2.1 with a, b and D with constant C = r−1.
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The second result is auxiliary, and concerns not a single quantile, but the Lipschitz continuity of the
quantile function F 7→ q.(F ) on certain subsets of [0, 1].

Lemma C.11. Let F ∈ Dcdf([a, b]) for real numbers a < b, and let α∗ < α∗ for α∗ and α∗ in (0, 1].
Suppose F (qα(F )) = α holds for every α ∈ [α∗, α

∗], and that there exists a positive real number r so that
Equation (89) is satisfied for every α ∈ [α∗, α

∗]. Then, for every G ∈ Dcdf([a, b]) it holds that

sup
α∈[α∗,α∗]

|qα(F )− qα(G)| ≤ r−1‖F −G‖∞.

Proof. The statement follows immediately from Lemma C.9.

A simple sufficient condition for the assumption on F in Lemma C.11 (and hence also for the
assumption on F in Lemma C.9) is that F admits a density that is bounded from below (on the support
of F ):

Lemma C.12. Let a < b be real numbers and let F ∈ Dcdf ([a, b]). Suppose F is continuous, and is
right-sided differentiable on (a, b) with right-sided derivative F+, which furthermore satisfies F+(x) ≥ r
for every x ∈ (a, b) for some r > 0. Then, F (qα(F )) = α and Equation (89) holds for every α ∈ (0, 1].

Proof. The condition F+(x) ≥ r for every x ∈ (a, b) for a r > 0 implies that F is strictly increasing
on [a, b], which (together with continuity of F ) implies F (qα(F )) = α for every α ∈ (0, 1]. The second
claim follows from the mean-value theorem for right-differentiable functions in Minassian (2007) (noting
that qα(F ) ∈ [a, b] for every α ∈ (0, 1], cf. the proof of Lemma C.9).

The next result in this section concerns population versions of L-statistics.

Lemma C.13. Let ν be a measure on the Borel sets of [0, 1], and let J : [0, 1] → R be such that
∫

[0,1]
|J(α)|dν(α) =

c < ∞. Assume further that ν(0) = 0. Let d ∈ N ∪ {0}, let 0 < p1 < . . . < pd ≤ 1, and let v1, . . . , vd be
real numbers. Let a < b be real numbers and define on Dcdf ([a, b]) the functional

T(F ) =

∫

[0,1]

qα(F )J(α)dν(α) +

d
∑

j=1

viqpi(F ), (90)

the sum to the right being interpreted as 0 if d = 0. Let F ∈ Dcdf([a, b]) satisfy F (qα(F )) = α for
every α ∈ (0, 1], and suppose there is a positive real number r so that Equation (89) holds for every α ∈
(0, 1]. Then, for every G ∈ Dcdf ([a, b]) it holds that

|T(F )− T(G)| ≤ r−1



c+
d
∑

i=1

|vi|



 ‖F −G‖∞.

Consequently, denoting by D the set of all cdfs that satisfy the conditions imposed on F above, it follows
that T defined in Equation (90) satisfies Assumption 2.1 with a, b,D and constant C = r−1[c+

∑d
i=1 |vi|].

37



Proof. We first verify that T(F ) is well defined for every F ∈ Dcdf ([a, b]). To this end, we show that
the integral

∫

[0,1]
qα(F )J(α)dν(α) exists for every F ∈ Dcdf([a, b]). Note that the (B([0, 1]) - B(R̄)

measurable) function g(α) : [0, 1] → R̄ defined via α 7→ |qα(F )J(α)| coincides ν-almost everywhere with
the (B([0, 1]) - B(R) measurable) function

g∗(α) :=

{

g(α) if α ∈ (0, 1]

0 if α = 0.
(91)

Note further that the function α 7→ qα(F ) is well defined on (0, 1] and its range is contained in [a, b]
(cf. the argument in the beginning of the proof of Lemma C.9). It thus follows that |g∗(α)| ≤
max(|a|, |b|)|J(α)|, and the integrability condition on J shows that g∗ (and thus g) is integrable. Now,
let F and G be as in the statement of the lemma. Consider |T(F ) − T(G)|. Clearly, by the triangle
inequality and Lemma C.11, it suffices to verify the statement for the case d = 0. Then, |T(F )− T(G)|
is not greater than

∫

(0,1]

|qα(F )− qα(G)||J(α)|dν(α). (92)

Note that the function α 7→ |qα(F )−qα(G)| is bounded on (0, 1]. By the monotonic convergence theorem
for ε ց 0 the integral

∫

[ε,1]
|qα(F )−qα(G)||J(α)|dν(α) converges to the integral in (92). But

∫

[ε,1]
|qα(F )−

qα(G)||J(α)|dν(α) ≤ r−1c‖F −G‖∞ by Lemma C.11. The last statement is trivial.

One particularly important application concerns the so-called Lorenz curve associated with a cdf F
which is defined (cf. Gastwirth (1971)) below in Equation (94).

Lemma C.14. Let a < b be real numbers and define on Dcdf ([a, b]) the family of functionals indexed
by u ∈ [0, 1] and defined by

Q(F, u) :=

∫

[0,u]

qα(F )dα; (93)

furthermore, if a > 0, define the family of functionals indexed by u ∈ [0, 1] via

L(F, u) := µ(F )−1

∫

[0,u]

qα(F )dα (94)

Let F ∈ Dcdf ([a, b]) satisfy F (qα(F )) = α for every α ∈ (0, 1], and suppose there is a positive real
number r so that Equation (89) holds for every α ∈ (0, 1]. Then, for every G ∈ Dcdf ([a, b]) it holds that

|Q(F, u)−Q(G, u)| ≤ r−1u‖F −G‖∞ ≤ r−1‖F −G‖∞.

Consequently, denoting by D the set of all cdfs that satisfy the conditions imposed on F above, it follows
that T = Q(., u) satisfies Assumption 2.1 with a, b,D and constant C = r−1u. Furthermore, if a > 0,
then

|L(F, u)− L(G, u)| ≤ a−1(r−1u+ (b− a)a−1)‖F −G‖∞,

and it follows that T = L(., u) satisfies Assumption 2.1 with a, b,D and constant C = a−1(r−1 + (b −
a)a−1).
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Proof. For the first claim, we just apply Lemma C.13 with ν equal to Lebesgue measure, J = 1[0,u],
which satisfies the integrability condition with c = u ≤ 1.

For the second claim, note that L(., u) is well defined on Dcdf([a, b]) because a > 0. Next, observe
that for F and G as in the statement of the lemma we can bound |L(F, u)− L(G, u)| from above by

µ(F )−1

{

∣

∣Q(F, u)−Q(G, u)
∣

∣+ |1− µ(F )/µ(G)|
∫

[0,u]

qα(G)dα

}

. (95)

Since µ(F ) ≥ a, since qα(G) ≤ b for α ∈ (0, u], and because we already know that

∣

∣Q(F, u)−Q(G, u)
∣

∣ ≤ r−1u‖F −G‖∞,

it remains to observe that

|1− (µ(F )/µ(G))| ≤ (b− a)‖F −G‖∞/µ(G) ≤ (b− a)a−1‖F −G‖∞ (96)

to conclude that the expression in (95) is not greater than a−1
{

r−1u+ (b− a)a−1
}

‖F −G‖∞.

The final result in this section concerns trimmed generalized-mean functionals. We consider one-
sidedly trimmed functionals, the trimming affecting the lower or upper tail. Two-sided trimming can
be dealt with similarly. We abstain from spelling out the details.

Lemma C.15. Let a < b be real numbers, let ϕ : R → R, let ϕ restricted to [a, b] be continuous, let the
total variation of ϕ on [a, b] be not greater than C, and let |ϕ(x)| ≤ u hold for all x ∈ [a, b]. Furthermore,
let α ∈ (0, 1). For F ∈ Dcdf([a, b]) define

m
t−
ϕ;α(F ) :=

∫

[a,qα(F )]

ϕ(x)dF (x) and m
t+
ϕ;α(F ) :=

∫

[qα(F ),b]

ϕ(x)dF (x). (97)

Let F ∈ Dcdf ([a, b]), assume that F is continuous, and right-sided differentiable on (a, b), with right-sided
derivative F+ satisfying r ≤ F+(x) ≤ κ for every x ∈ (a, b), and for positive real numbers κ and r.
Then, for every G ∈ Dcdf ([a, b]) it holds that

|mt−
ϕ;α(F )−m

t−
ϕ;α(G)| ≤ [C + u(1 + κr−1)]‖F −G‖∞,

and
|mt+

ϕ;α(F )−m
t+
ϕ;α(G)| ≤ [C + u(1 + κr−1)]‖F −G‖∞, (98)

Consequently, denoting by D the set of all cdfs that satisfy the conditions imposed on F above, it follows
that mt−

ϕ;α and mt+
ϕ;α satisfy Assumption 2.1 with a, b,D and constant C + u(1 + κr−1).

Proof. We only provide an argument for the first claimed inequality, the second is obtained analogously.
Furthermore, throughout the proof we write mt

ϕ;α instead of mt−
ϕ;α. First, note that the functional m

t
ϕ;α(F )

is indeed well defined for every F ∈ Dcdf([a, b]). This follows from qα(F ) ∈ [a, b], and since ϕ is bounded
on [a, b]. Next, let F be as in the statement of the lemma and satisfy the conditions imposed, and
let G ∈ Dcdf([a, b]). Note first that qα(F ), qα(G) ∈ [a, b] (cf. the argument in the beginning of the proof
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of Lemma C.9). By the triangle inequality, |mt
ϕ;α(F ) − m

t
ϕ;α(G)| ≤ A + B, where (using the notation

introduced in Equation (72))

A :=
∣

∣mϕ;a,qα(G)(F )−mϕ;a,qα(G)(G)
∣

∣ ≤ (C + u)‖F −G‖∞,

the upper bound following from Lemma C.2, and

B :=

∫

g(x)|ϕ(x)|dF (x) ≤ u

∫

g(x)dF (x), (99)

where g(x) =
∣

∣1[a,qα(F )](x)− 1[a,qα(G)](x)
∣

∣. By continuity of F :
∫

g(x)dF (x) ≤ |F (qα(G))− α|. (100)

which, by the assumed behavior of the right-derivative of F and a mean-value theorem for right-
differentiable functions (for example the one by Minassian (2007)), is not greater than

κ|qα(G)− qα(F )| ≤ κr−1‖F −G‖∞ (101)

the last inequality following from Lemma C.9 together with Lemma C.12. This proves the claim. The
last statement is trivial.

D Proofs of results in Sections 3, 4 and 5

Throughout the appendix, KL(·, ·) denotes the Kullback-Leibler (KL) divergence between two probabil-
ity measures (on a Borel σ-algebra clear from the context) or, if applicable, a version of their densities.

D.1 Proofs of results in Section 3

D.1.1 Proof of Theorem 3.1

To establish Equation (5) we need to show that for every K-tuple (F 1, . . . , FK) with F i ∈ D , i =

1, . . . , K, we have E(RN(π̂)) ≤ c
√

Knlog(n). Note that this inequality trivially holds in case T(F 1) =

. . . = T(FK). In particular, if T(F 1) = . . . = T(FK) holds for every F 1, . . . , FK such that Fi ∈ D for
i = 1, . . . , K there is nothing to prove. We thus assume without loss of generality that the K-tuple
F 1, . . . , FK is such that T(F i) is not constant in i ∈ {1, . . . , K}; also implying that the constant C from
Assumption 2.1 must satisfy C > 0.

We now claim that for every i with ∆i > 0 we have

E[Si(N)] ≤ 2C2β log(n)

∆2
i

+
β + 2

β − 2
, (102)

where we recall that n = E(N). Before proving this claim, note that Assumption 2.1 implies ∆i ≤ C,
and that Equation (2) shows that

E[RN (π̂)] =
∑

i:∆i>0

∆iE[Si(N)], (103)
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which together with the claim in Equation (102) yield

E[RN (π̂)] =
∑

i:∆i>0

√

∆2
iE[Si(N)]

√

E[Si(N)]

≤
√

2C2β log(n) + C2(β + 2)/(β − 2)
∑

i:∆i>0

√

E[Si(N)]

≤
√

2C2β log(n) + C2(β + 2)/(β − 2)
√
Kn,

where the last line follows from the Cauchy-Schwarz inequality and
∑

i:∆i>0 E[Si(N)] ≤ E[N ] = n. Upon

choosing c = C
√

2β + (β + 2)/(β − 2) we would thus obtain Equation (5). Therefore, it remains to
prove the statement in Equation (102). Before doing that, we note for later use that Equations (102)
and (103) also give the regret bound

E[RN (π̂)] ≤
∑

i:∆i>0

(

2C2β log(n)

∆i
+

β + 2

β − 2
∆i

)

. (104)

Now, to prove Equation (102), note that by Tonelli’s theorem

E(Si(N)) = E

(

∞
∑

t=1

1{N=t}Si(N)

)

=
∞
∑

t=1

E
(

1{N=t}Si(t)
)

, (105)

where we used that P(N ∈ N) = 1, a consequence of E(N) = n ∈ N. Denote the σ-algebra generated
by Y1, . . . , Yt by At. By assumption, σ(N) and At are independent for every t ∈ N. Note furthermore
that Si(t) is At measurable for every t ∈ N. Hence, for every t ∈ N we have

E
(

1{N=t}Si(t)
)

= E

(

Si(t)E
(

1{N=t}|At

)

)

= P (N = t)E
(

Si(t)
)

, (106)

from which it follows that

E(Si(N)) =

∞
∑

t=1

P (N = t)E
(

Si(t)
)

. (107)

If Equation (102) were already known to be true for any N that coincides with its expectation with
probability one, we could apply this to any N ≡ t (implying that the corresponding expectation equals
t), which together with the previous display would deliver that

E(Si(N)) ≤ 2C2β
∑∞

t=1 P (N = t) log(t)

∆2
i

+
β + 2

β − 2
≤ 2C2 log(n)

∆2
i

+
β + 2

β − 2
, (108)

where we used Jensen’s inequality to obtain the last inequality. Therefore, it remains to establish
Equation (102) for N such that P(N = E(N)) = 1.

Let N satisfy P(N = E(N)) = 1. Note that without loss of generality we can assume that N = n
holds everywhere. If n ≤ K, we have Si(n) ≤ 1 and hence (102) is obviously satisfied. From now on, we
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therefore let n ≥ K + 1. Furthermore, we fix an i such that ∆i > 0. Now, for every t ∈ {K + 1, . . . , n},
we note that {πt = i} ⊆ At ∪ Bi,t ∪ Ci,t, where

At :=
{

T(F̂i∗,t−1) + C
√

β log(t)/2Si∗(t− 1) ≤ T(F i∗)
}

,

Bi,t :=
{

T(F̂i,t−1) > T(F i) + C
√

β log(t)/2Si(t− 1)
}

,

Ci,t :=
{

Si(t− 1) <
2βC2 log(n)

∆2
i

}

,

and where we define i∗ as the smallest element of argmaxi=1,...,K T(Fi). Indeed, on the complement of
At ∪ Bi,t ∪ Ci,t we have

T(F̂i∗,t−1) + C
√

β log(t)/2Si∗(t− 1) > T(F i∗)

≥ T(F i) + 2C
√

β log(n)/2Si(t− 1)

≥ T(F i) + 2C
√

β log(t)/2Si(t− 1)

≥ T(F̂i,t−1) + C
√

β log(t)/2Si(t− 1),

implying π̂t = i∗, which contradicts π̂t = i, because i 6= i∗ as ∆i > 0. Using {πt = i} ⊆ At ∪ Bi,t ∪ Ci,t

and setting u :=
⌈

2C2β log(n)
∆2

i

⌉

, we now obtain (recall that n ≥ K + 1) that

Si(n) =

K
∑

t=1

1{πt=i} +

n
∑

t=K+1

1{πt=i} = 1 +

n
∑

t=K+1

1{πt=i} = 1 +

n
∑

t=K+1

1{πt=i}∩Ci,t
+

n
∑

t=K+1

1{πt=i}∩Cc
i,t

≤ u+

n
∑

t=K+1

1At∪Bi,t
,

where we also used 1 +
∑n

t=K+1 1{πt=i}∩Ci,t
≤ u. From the upper bound in the previous display we get

E[Si(n)] ≤ u+

n
∑

t=K+1

P(At) + P(Bi,t).

We will show further below that:

P(At) ≤
t
∑

s=1

P
(

T(Fi∗,s) + C
√

β log(t)/2s ≤ T(F i∗))

P(Bi,t) ≤
t
∑

s=1

P
(

T(Fi,s) > T(F i) + C
√

β log(t)/2s),

(109)

where for every s ∈ {1, . . . , t} and every l ∈ {i, i∗} we define Fl,s := s−1
∑s

j=1 1{Yl,j≤.}. From Equa-
tion (109), Assumption 2.1 and the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality in the form estab-
lished in Corollary 1 in Massart (1990) (note that Equation (1.5) in Massart (1990) obviously remains
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valid if “>” is replaced by “≥”) we then obtain

P(At) ≤
t
∑

s=1

P(||Fi∗,s − F i∗||∞ ≥
√

β log(t)/2s) ≤ 2

t
∑

s=1

1

tβ
=

2

tβ−1

P(Bi,t) ≤
t
∑

s=1

P(||Fi,s − F i||∞ >
√

β log(t)/2s) ≤ 2

t
∑

s=1

1

tβ
=

2

tβ−1
.

The identity
n
∑

t=K+1

1

tβ−1
≤
∫ ∞

K

1

xβ−1
dx =

1

(β − 2)Kβ−2
≤ 1

β − 2
(110)

combined with u ≤ 1 + 2C2β log(n)/∆2
i now establishes (102).

It remains to verify the two inequalities in Equation (109). To this end we need some more notation:
For every l ∈ {1, . . . , K}, every r ∈ N and every ω ∈ Ω let

tl,r(ω) := inf{s ∈ N :
s
∑

j=1

1{π̂j(Zj−1(ω))=l} = r}. (111)

Lemma D.1. For every l ∈ {1, . . . , K}, every r ∈ N and every ω ∈ Ω it holds that tl,r(ω) ∈ N.

Proof. Suppose there exists a triple l, r, ω such that
∑s

j=1 1{π̂j(Zt(ω))=l} < r holds for every s ∈ N,
implying in particular that

1 ≤
∞
∑

j=1

1{π̂j(Zj−1(ω))=l} =: κ(ω) < r, (112)

where we used tl,1 = l. Let t ≥ K + 1. From the definition of π̂ it follows that

π̂t(Zt−1(ω)) ∈ argmax
j∈I

{

T(F̂j,t−1(.)(ω)) + C
√

β log(t)/2Sj(t− 1)(ω)

}

, (113)

where we now evaluate all random variables at ω which we emphasize in the preceding display. In
particular, T(F̂j,t−1(.)(ω)) and Sj(t − 1)(ω) are sequences of real numbers. For convenience, we shall

write F̂j,t−1(ω) instead of F̂j,t−1(.)(ω) in what follows. From Equation (112) and the previous display it
follows that eventually

T(F̂π̂t(Zt−1(ω)),t−1(ω)) + C
√

β log(t)/2Sπ̂t(Zt−1(ω))(t− 1)(ω) ≥ T(F̂l,t−1(ω)) + C
√

β log(t)/2Sl(t− 1)(ω),

(114)
which is equivalent to (recall that C > 0 from the discussion in the first paragraph of the present
subsection)

at

[

T(F̂π̂t(Zt−1(ω)),t−1(ω))− T(F̂l,t−1(ω))
]

≥
[

[Sl(t− 1)(ω)]−1/2 − [Sπ̂t(Zt−1(ω))(t− 1)(ω)]−1/2
]

, (115)
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where at := [C
√

β log(t)/2]−1 → 0 as t → ∞. Consequently, the sequence on the left hand side of the
previous inequality converges to 0 as t → ∞. To see this, let F ∈ D and note that

|T(F̂π̂t(Zt−1(ω)),t−1(ω))−T(F̂l,t−1(ω))| ≤ |T(F̂π̂t(Zt−1(ω)),t−1(ω))−T(F )|+|T(F )−T(F̂l,t−1(ω))| ≤ 2C. (116)

It thus follows that

lim sup
t→∞

[

[Sl(t− 1)(ω)]−1/2 − [Sπ̂t(Zt−1(ω))(t− 1)(ω)]−1/2
]

≤ 0, (117)

or equivalently, noting that Equation (112) implies limt→∞ Sl(t− 1)(ω) = κ(ω), that

lim sup
t→∞

Sπ̂t(Zt−1(ω))(t− 1)(ω) ≤ κ(ω). (118)

This, however, implies the contradiction that for every j = 1, . . . , K it must hold that limt→∞ Sj(t −
1)(ω) < ∞ (the limit existing due to monotonicity). To see the latter, suppose limt→∞ Sj(t−1)(ω) = ∞
holds for treatment j. Define the subsequence t′ := {t ∈ N : π̂t(Zt−1(ω)) = j} of N, and note that t′ → ∞
due to our assumption limt→∞ Sj(t−1)(ω) = ∞. Next, observe that Sj(t

′−1)(ω) = Sπ̂t′(Zt′−1(ω))
(t′−1)(ω),

a contradiction to the previous display.

Before we proceed, let l ∈ {1, . . . , K}. Note that tl,r < tl,s holds for all pairs of natural numbers r < s.
Note also that for all pairs of natural numbers r and s the event {tl,s = r} is measurable w.r.t. the σ-
algebra generated by Y1, . . . , Yr−1, i.e., w.r.t. Ar := σ(Y1, . . . , Yr−1).

Lemma D.2. For every l ∈ {1, . . . , K} and every r ∈ N the joint distribution of Yl,1, . . . , Yl,r coincides
with the joint distribution of Yl,tl,1, . . . , Yl,tl,r .

Proof. Let l ∈ {1, . . . , K}. Note that for any r ∈ N the random variables Yl,tl,1, . . . , Yl,tl,r are well defined
as a consequence of Lemma D.1. To prove the statement, we use induction on r, and start with r = 1.
In this case the statement is trivial, because tl,1 = l implies Yl,tl,1 = Yl,l which has the same distribution
as Yl,1. Next, assume that r > 1. By the induction hypothesis, we need to show that for Aj ∈ B(R) for
j = 1, . . . , r we have

P

(

Yl,tl,1 ∈ A1, . . . , Yl,tl,r ∈ Ar

)

= P

(

Yl,tl,1 ∈ A1, . . . , Yl,tl,r−1
∈ Ar−1

)

P(Yl,r ∈ Ar). (119)

Let Ir :=
{

A ⊆ N : |A| = r
}

, and for any I ∈ Ir, let Ij , j = 1, ..., r denote the j-th element of I (I being
ordered from smallest to largest). Observe that the random set {tl,1, . . . , tl,r} takes its values in I for
some I ⊆ Ir, implying that

∑

I∈Ir

∏r
k=1 1{tl,k=Ik} = 1. We can thus write

P

(

Yl,tl,1 ∈ A1, . . . , Yl,tl,r ∈ Ar

)

= E





r
∏

j=1

1Aj
(Yl,tl,j)



 = E

(

r
∏

j=1

1Aj
(Yl,tl,j)

∑

I∈Ir

r
∏

k=1

1{tl,k=Ik}

)

, (120)

which can further be rewritten as

∑

I∈Ir

E





r
∏

j=1

1Aj
(Yl,tl,j)1{tl,j=Ij}



 =
∑

I∈Ir

E





r
∏

j=1

1Aj
(Yl,Ij)1{tl,j=Ij}



 . (121)
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Next, using that {tl,j = Ij} ∈ AIr−1 holds for every j = 1, . . . , r, we write the expectation to the far
right in the previous display as

E






E





r
∏

j=1

1Aj
(Yl,Ij)1{tl,j=Ij}

∣

∣

∣

∣

AIr−1










= E





r−1
∏

j=1

1Aj
(Yl,Ij)1{tl,j=Ij}1{tl,r=Ir}E

(

1Ar(Yl,Ir)|AIr−1

)



 . (122)

Clearly Yl,Ir is independent of Y1, . . . , YIr−1, and thus the inner conditional expectation coincides with
E
(

1Ar(Yl,Ir)
)

= P(Yl,Ir ∈ Ar) = P(Yl,r ∈ Ar). To prove (119) it hence remains to verify that

∑

I∈Ir

E





r−1
∏

j=1

1Aj
(Yl,Ij)1{tl,j=Ij}1{tl,r=Ir}



 = P(Yl,tl,1 ∈ A1, . . . , Yl,tl,r−1
∈ Ar−1). (123)

To see this, write

∑

I∈Ir

E





r−1
∏

j=1

1Aj
(Yl,Ij)1{tl,j=Ij}1{tl,r=Ir}



 =
∑

I∈Ir−1

∑

k>Ir−1

E





r−1
∏

j=1

1Aj
(Yl,Ij)1{tl,j=Ij}1{tl,r=k}





=
∑

I∈Ir−1

E





r−1
∏

j=1

1{tl,j=Ij}1Aj
(Yl,Ij)

∑

k>Ir−1

1{tl,r=k}



 ,

and note that tl,r > tl,r−1 implies that
∏r−1

j=1 1{tl,j=Ij}

∑

k>Ir−1
1{tl,r=k} =

∏r−1
j=1 1{tl,j=Ij}, which together

with
∑

I∈Ir−1

∏r−1
k=1 1{tl,k=Ik} = 1 shows that the expression to the right in the previous display equals

∑

I∈Ir−1

E





r−1
∏

j=1

1{tl,j=Ij}1Aj
(Yl,Ij)



 =
∑

I∈Ir−1

E





r−1
∏

j=1

1Aj
(Yl,tl,j)

r−1
∏

k=1

1{tl,k=Ik}



 = E





r−1
∏

j=1

1Aj
(Yl,tl,j)



 ,

the latter being equal to P(Yl,tl,1 ∈ A1, . . . , Yl,tl,r−1
∈ Ar−1).

Finally, to obtain the upper bounds claimed in Equation (109), note first that

P(Bi,t) = P(T(F̂i,t−1) > T(F i) + C
√

β log(t)/2Si(t− 1))

=

t
∑

s=1

P(T(F̂i,t−1) > T(F i) + C
√

β log(t)/2s, Si(t− 1) = s).

Note further that for every index s, on the event {Si(t − 1) = s} the empirical cdf F̂i,t−1 coincides by
definition with s−1

∑s
j=1 1{Yi,ti,j

≤.}. Hence, the sum in the second line of the previous display is not
greater than

t
∑

s=1

P






T



s−1
s
∑

j=1

1{Yi,ti,j≤.}



 > T(F i) + C
√

β log(t)/2s






.
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By Lemma D.2 the joint distribution of Yi,ti,1 , . . . , Yi,ti,s coincides with the joint distribution of Yi,1, . . . , Yi,s.
It thus follows that we can replace Yi,ti,1, . . . , Yi,ti,s by Yi,1, . . . , Yi,s in the previous display without chang-
ing the probabilities. In other words, we can replace s−1

∑s
j=1 1{Yi,ti,j≤.} by Fi,s in the previous display,

from which the upper bound on P(Bi,t) in Equation (109) follows. The upper bound on P(At) is obtained
analogously.

D.1.2 Proof of Theorem 3.6

We begin with a lemma that provides an upper bound on the KL divergence between members of H as
defined in Definition 3.2. In particular, the KL-divergence between two elements Pha and Phb

of H is
sub-quadratic in the distance between a and b.

Lemma D.3. The KL divergence between any two elements of H (cf. Definition 3.2) satisfies:

KL(ha, hb) =

∫ 1

0

log

(

ha(y)

hb(y)

)

ha(y)dy ≤ 1

(1 + b)(1 + a)
(b− a)2

Proof. By simple calculus we obtain that

∫ 1

0

log

(

ha(y)

hb(y)

)

ha(y)dy =

∫ 1

0

log

(

(1 + a)ya

(1 + b)yb

)

(1 + a)yady

=

∫ 1

0

[

log

(

1 + a

1 + b

)

+ (a− b) log(y)

]

(1 + a)yady

≤ a− b

1 + b
+ (a− b)(1 + a)

∫ 1

0

log(y)yady

=
a− b

1 + b
− (a− b)(1 + a)

(1 + a)2

=
a− b

1 + b
− (a− b)

(1 + a)
=

(a− b)2

(1 + b)(1 + a)
.

Proof of Theorem 3.6. Throughout the proof we fix a policy π and assume without loss of generality
that T(Ha2) − T(Ha2) ≥ c(a2 − a1) for all a1, a2 ∈ [ā − δ, ā + δ] ⊆ (−1,∞) and a2 ≥ a1. The case
where a 7→ T(Ha) is locally uniformly decreasing follows analogously.

Let treatment 1 have distribution Pā with cdf Hā and treatment 2 have distribution Pā−ε with
cdf Hā−ε or Pā+ε with cdf Hā+ε for some ε > 0. It suffices to show that the maximal regret incurred
over the two two-tuples (Hā, Hā−ε) and (Hā, Hā+ε) is greater than c

√
n for some c > 0. Denote by Pt

π,−ε
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and Pt
π,ε, respectively, the distribution of (Yπt(Zt−1),t, ..., Yπ1,1) under the relevant tuple. Since

sup
j∈{−ε,ε}

En
π,jRn(π) ≥

1

2

(

En
π,−εRn(π) + En

π,εRn(π)
)

=
1

2

(

n
∑

t=1

2
∑

i=1

∆iE
n
π,−ε1{πt(Zt−1)=i} +

n
∑

t=1

2
∑

i=1

∆iE
n
π,ε1{πt(Zt−1)=i}

)

≥ cε

2

(

n
∑

t=1

En
π,−ε1{πt(Zt−1)=2} +

n
∑

t=1

En
π,ε1{πt(Zt−1)=1}

)

.

where the third estimate used that T(Hā+ε)−T(Hā) and T(Hā)−T(Hā−ε) are bounded from below by cε
for ε ≤ δ. Next, note that En

π,−ε1{πt(Zt−1)=2} +En
π,ε1{πt(Zt−1)=1} = En

π,−ε1{πt(Zt−1)=2} + 1−En
π,ε1{πt(Zt−1)=2}

is the sum of type 1 and 2 errors for the testing problem H0 : P = Pn
π,−ε vs Ha : P = Pn

π,ε for the
test 1{πt(Zt−1)=2}. Thus, using Theorem 2.2(iii) of Tsybakov (2009), we get for t = 2, ..., n

En
π,−ε1{πt(Zt−1)=2} + En

π,ε1{πt(Zt−1)=1} ≥
1

4
exp

(

−KL(Pn
π,−ε,P

n
π,ε)
)

.

Using the chain rule for Kullback-Leibler divergence, cf. Theorem 2.5.3 of Cover and Thomas (2012),

KL(Pn
π,−ε,P

n
π,ε) = KL(Pn−1

π,−ε,P
n−1
π,ε ) + En−1

π,−εKL(Pπ,−ε,n,Pπ,ε,n)

where Pπ,j,n, j ∈ {−ε, ε} is the conditional distribution of Yπn(Zn−1),n given Zn−1 under the policy π and
distribution Pn

π,j. Since Y1,n and Y2,n are independent of Zn−1, we observe

Pπ,j,n = Pā1{πn(Zn−1)=1} + Pā+j1{πn(Zn−1)=2}.

Hence, by Lemma D.3,

KL(Pπ,−ε,n,Pπ,ε,n) ≤ KL(Hā−ε, Hā+ε)1{πn(Zn−1)=2} ≤
4ε2

(1 + ā− δ)2
1{πn(Zn−1)=2}.

Thus, by induction, we observe that

KL(Pn
π,−ε,P

n
π,ε) ≤

4ε2

(1 + ā− δ)2
Nπ = c̃ε2Nπ,

with c̃ = 4
(1+ā−δ)2

and Nπ = En
π,−ε

∑n
t=1 1{πt(Zt−1)=2}. But since we also have supj∈{−ε,ε}E

n
π,jRn(π) ≥ cε

2
Nπ

we conclude that

sup
j∈{−ε,ε}

En
π,jRn(π) ≥

cε

2
max

(n

4
exp(−c̃ε2Nπ), Nπ

)

≥ cε

4

(n

4
exp(−c̃ε2Nπ) +Nπ

)

≥ cε

4
inf
z≥0

(n

4
exp(−c̃ε2z) + z

)

.
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Note that

z∗ := argmin
(n

4
exp(−c̃ε2z) + z

)

= log
( c̃ε2n

4

)

/(c̃ε2),

is positive if ε2 > 4
nc̃
. Thus, choosing ε =

√

8
nc̃

(which is less than δ for n ≥ n0 = ⌈ 8
δ2c̃

⌉) shows

sup
j∈{−ε,ε}

En
π,jRn(π) ≥

c√
c̃

log(2)√
128

· √n.

The first n0 terms are handled by using supj∈{−ε,ε}E
n
π,jRn(π) ≥ cε

4
infz≥0

(

n
4
exp(−c̃ε2z) + z

)

with ε =

δ/2 and by choosing the constant in the statement of the theorem small enough.

D.2 Proofs of results in Section 4

First, we provide an auxiliary result that will be useful in the proofs of Theorems 4.4 and 4.7. In the
local treatment problem for individuals with covariates in Bj , ∗ denotes the index of a treatment in the
set argmaxT(F i

j ). That is, T(F ∗
j ) = maxi∈I T(F

i
j ). To save on notation, we shall write πt(Xt) instead

of πt(Xt, Zt−1) throughout this section.

Lemma D.4. Suppose that Assumption 2.1 and 4.2 are satisfied and a grouping is characterised by {V1, ..., VF}
and {B̄1, ..., B̄F}. Then, for any i ∈ I, j ∈ {1, . . . , F} and x, x̃ ∈ Bj, we obtain that

|T(F i(·, x))− T(F i(·, x̃))| ≤ CLV γ
j ,

|T
(

F π⋆(x)(·, x)
)

− T
(

F π⋆(x̃)(·, x̃)
)

| ≤ CLV γ
j ,

|T(F i
j )− T(F i(·, x))| ≤ CLV γ

j ,

|T(F ⋆(·, x))− T(F ∗
j )| ≤ CLV γ

j .

Proof. Fix i, j and x, x̃ ∈ Bj . Assumption 4.2 implies that

||F i(·, x)− F i(·, x̃)||∞ ≤ L||x− x̃||γ ≤ LV γ
j .

Then, the first statement follows immediately from Assumption 2.1. Using this result, we also obtain
the second statement via

|T
(

F π⋆(x)(·, x)
)

− T
(

F π⋆(x̃)(·, x̃)
)

| = |max
i∈I

T(F i(·, x))−max
i∈I

T(F i(·, x̃))|

≤ max
i∈I

|T(F i(·, x))− T(F i(·, x̃))| ≤ CLV γ
j .

Now, we move to the third part. For any s and x, we have that

F i
j (y)− F i(y, x) =

1

PX(Bj)

∫

Bj

(F i(y, s)− F i(y, x))PX(ds).
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As x, s ∈ Bj , Assumption 4.2 leads to |F i(y, s)− F i(y, x)| ≤ LV γ
j and hence ||F i

j − F i(·, x)||∞ ≤ LV γ
j

for each x ∈ Bj . Then, the third claim is the direct consequence of Assumption 2.1 on T.
Concerning the last statement, we observe that

|T(F ⋆(·, x))− T(F ∗
j )| =

∣

∣max
i∈I

T(F i(·, x))−max
i∈I

T(F i
j )
∣

∣

≤ max
i∈I

|T(F i(·, x))− T(F i
j )| ≤ CLV γ

j ,

which finishes the proof.

Now, we are ready to deal with the proofs of main results.

Proof of Theorem 4.4. First, we write RN (π̄) =
∑F

j=1 R̃j(π̄) with

R̃j(π̄) :=

N
∑

t=1

[

T
(

F π⋆(Xt)(·, Xt)
)

− T
(

F π̄t(Xt)(·, Xt)
)]

1{Xt∈Bj}.

Fix j ∈ {1, . . . , F}. Recalling the definition of F i
j in (9), each summand in the previous display can be

written as
[

T

(

F π⋆(Xt)(·, Xt)
)

− T(F ∗
j ) + T(F ∗

j )− T(F
π̄t(Xt)
j ) + T(F

π̄t(Xt)
j )− T

(

F π̄t(Xt)(·, Xt)
)

]

1{Xt∈Bj}, (124)

which by Lemma D.4 is not greater than T(F ∗
j )− T(F

π̄t(Xt)
j ) + 2CLV γ

j . Therefore, we obtain

R̃j(π̄) ≤
N
∑

t=1

[

T
(

F ∗
j

)

− T
(

F
π̄t(Xt)
j

)

]

1{Xt∈Bj} + 2CLV γ
j

N
∑

t=1

1{Xt∈Bj}. (125)

By Wald’s identity E(
∑N

t=1 1{Xt∈Bj}) ≤ nc̄B̄j . Hence, to prove the theorem, it remains to show that for
some c (which in fact will be the same c(β, C) as in Theorem 3.1) it holds that

E





N
∑

t=1

[

T
(

F ∗
j

)

− T
(

F
π̄t(Xt)
j

)

]

1{Xt∈Bj}



 ≤ c

√

Kc̄B̄jnlog(c̄B̄jn). (126)

To this end, for every m ∈ N and every v = (v1, . . . , vm) ∈ {1, . . . , F}m, we define the event

Ω(m, v) := {N = m,X1 ∈ Bv1 , . . . , Xm ∈ Bvm} ⊆ Ω. (127)

Note that {Ω(m, v) : m ∈ N, v ∈ {1, . . . , F}m} defines a partition of Ω. For the sake of brevity,

set f :=
∑N

t=1[T
(

F ∗
j

)

− T
(

F
π̄t(Xt)
j

)

]1{Xt∈Bj}. Then, note that by Tonelli’s theorem we can write

E(f) =
∑

m∈N
v∈{1,...,F}m

E(1Ω(m,v)f) =
∑

m∈N
v∈{1,...,F}m

P(Ω(m, v))E(f |Ω(m, v)), (128)
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where we define E(f |Ω(m, v)) := P−1(Ω(m, v))E(1Ω(m,v)f) in case P(Ω(m, v)) > 0 and E(f |Ω(m, v)) := 0
else. Fix m and v, and assume that {vs : s ∈ {1, . . . , m}, vs = j} is not empty. Denote the elements of
the latter set by t1, . . . , tm̄, ordered from smallest to largest. On the event Ω(m, v) (i.e., for every ω ∈
Ω(m, v)) we can use the definition of π̄ to rewrite (recall the definition of the FSA policy π̂ in the
no-covariate case)

f =

m̄
∑

s=1

[

T(F ∗
j )− T

(

F
π̂s(Zs−1)
j

)

]

, (129)

where for every s > 1 we define Zs−1 = (Yπ̂s−1,ts−1 , . . . , Yπ̂1,t1), and for s = 1 we recall from the definition of
the FSA policy that π̂1 := 1, which is deterministic. The previous display shows that on the event Ω(m, v)
we can write f as a function of (Yt1, . . . , Ytm̄), i.e., as H(Yt1 , . . . , Ytm̄), say. We conclude that

E(f |Ω(m, v)) = E

(

m̄
∑

s=1

[

T(F ∗
j )− T

(

F
π̂s(Zs−1)
j

)

] ∣

∣

∣

∣

Ω(m, v)

)

= E
(

H(Yt1, . . . , Ytm̄)|Ω(m, v)
)

. (130)

The quantity to the right equals E∗(H(Yt1, . . . , Ytm̄)), where the probability measure P∗ corresponding
to E∗ is defined as the P-measure with density P−1(Ω(m, v))1Ω(m,v). Note that for Ai ∈ B(RK) for i =
1, . . . , m we have that P∗(Yt1 ∈ A1, . . . , Ytm̄ ∈ Am̄) equals (using various independence properties of the
observations and N)

P−1(Ω(m, v))P
(

Yt1 ∈ A1, . . . , Ytm̄ ∈ Am̄,Ω(m, v)
)

=
m̄
∏

s=1

P(Yts ∈ As, Xts ∈ Bj)

P(Xts ∈ Bj)
(131)

=

m̄
∏

s=1

P(Yts ∈ As|{Xts ∈ Bj}). (132)

We thus see that P∗ is the m̄-fold product of Q(.) := P(Y1 ∈ .|{X1 ∈ Bj}). For i.i.d. random K-
vectors Y ∗

1 , . . . , Y
∗
m̄, say, each with distribution Q (which exist possibly after enlarging the underlying

probability space), it hence follows from the definition of H that

E(H(Yt1, . . . , Ytm)|Ω(m, v)) = E(H(Y ∗
1 , . . . , Y

∗
m̄)) = E

(

m̄
∑

s=1

[

T(F ∗
j )− T

(

F
π̂s(Z∗

s−1)

j

)

]

)

(133)

where Z∗
s−1 = (Y ∗

π̂s−1,s−1, . . . , Y
∗
π̂1,1

) for s > 1. Noting that the r-th marginal ofQ has cdf F r
j , it now follows

from Theorem 3.1 applied with marginal distribution Q and (constant) N = m̄ that the quantity in the

previous display, and thus E(f |Ω(m, v)) is not greater than c
√

Km̄log(m̄). It thus follows from (128)

(noting that f vanishes on those exceptional sets Ω(m, v) for which the set {vs : s ∈ {1, . . . , m}, vs = j}
is empty, and to which the just derived upper bound does not apply) that

E(f) ≤ c
∑

m∈N
v∈{1,...,F}m

P(Ω(m, v))

√

Km̄log(m̄). (134)

Recall, that m̄ = |{vs : s ∈ {1, . . . , m}, vs = j}|. Hence, we can interpret m̄ as a random variable
on the set of all tuples (m, v), over which the sum in the previous display extends, equipped with the
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probability measure P(Ω(m, v)). It remains to observe that the function h defined via x 7→
√

Kxlog(x)

is concave on [0,∞), which allows us to apply Jensen’s inequality to upper bound the right hand side

in the previous display by c
√

Kxlog(x) with

x =
∑

m∈N
v∈{1,...,F}m

P(Ω(m, v))m̄ = E
(

∑

m∈N
v∈{1,...,F}m

1Ω(m,v)m̄
)

= E
(

∑

m∈N
v∈{1,...,F}m

[

1Ω(m,v)

N
∑

s=1

1Xs∈Bj

])

(135)

= E
(

N
∑

s=1

∑

m∈N
v∈{1,...,F}m

1Ω(m,v)1Xs∈Bj

)

= E
(

N
∑

s=1

1Xs∈Bj

∑

m∈N
v∈{1,...,F}m

1Ω(m,v)

)

= E
(

N
∑

s=1

1Xs∈Bj

)

. (136)

We used Tonelli’s theorem in the second equality. We know already that x ≤ c̄B̄jn. Since the function h is
also monotonically increasing, it follows that E(f) ≤ ch(c̄B̄jn), which is the statement in Equation (126).

Proof of Corollary 4.5. The given choice of groups results in F = P d, B̄j = P−d and Vj =
√
dP−1.

Hence, Theorem 4.4 and the choice P = ⌈n 1
2γ+d ⌉ yields

E[RN (π̄)] ≤ cP d
(

√

KnP−dlog(nP−d) + nP−γ−d
)

≤ c

√

Klog(n)P d
(
√
nP−d + nP−γ−d

)

≤ c

√

Klog(n)n1− γ
2γ+d

which is the claimed result.

Proof of Theorem 4.7. Define c1 := 4CLdγ/2 + 1. Recalling P = ⌈n1/(2γ+d)⌉, we shall assume without
loss of generality that n is large enough (n ≥ n0, say) such that c1P

−γ ≤ 1 holds (this will allow us to
apply Assumption 4.6 with δ = c1P

−γ in the arguments below). Note that by Assumption 2.1 for n < n0

it holds that E[RN (π)] ≤ Cn0. Hence, c in the statement of Theorem 4.7 can be chosen large enough to
deal with the initial terms smaller than n0. Throughout the proof the bins are sorted in the lexicographic
order and we shall write B1, ..., BP d for the P d bins. The proof is divided into several steps:

Step 1: Decomposition of bins into different types. To obtain the desired upper bound, we shall
treat three types of bins separately. This division of bins was also used in Perchet and Rigollet (2013)
to establish the properties of their successive elimination algorithm in a classic bandit problem targeting
the distribution with the highest (conditional) mean. The bins are split into

J :=
{

j ∈ {1, . . . , P d} : ∃ x̄ ∈ Bj ,T(F
π⋆(x̄)(·, x̄))− T(F π♯(x̄)(·, x̄)) > c1P

−γ
}

,

Js :=
{

j ∈ {1, . . . , P d} : ∃ x̄ ∈ Bj ,T(F
π⋆(x̄)(·, x̄)) = T(F π♯(x̄)(·, x̄))

}

,

Jw :=
{

j ∈ {1, . . . , P d} : 0 < T(F π⋆(x)(·, x))− T(F π♯(x)(·, x)) ≤ c1P
−γ for all x ∈ Bj

}

.

(137)
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The bins corresponding to indices in J , Js, and Jw will be referred to as “well-behaved”, “strongly
ill-behaved” and “weakly ill-behaved” bins, respectively. Note that Jw and J ∪ Js are clearly disjoint.
That J and Js are disjoint is shown in Step 2 below. Hence, the sets of bins corresponding to indices
in J , Js, Jw constitute a partition of the set of all P d bins Bj, and we can thus write

E(RN (π̄)) =
∑

j∈Js

E(R̃j(π̄)) +
∑

j∈Jw

E(R̃j(π̄)) +
∑

j∈J

E(R̃j(π̄)), (138)

where

R̃j(π̄) :=
N
∑

t=1

[

T
(

F π⋆(Xt)(·, Xt)
)

− T
(

F π̄t(Xt)(·, Xt)
)

]

1{Xt∈Bj}. (139)

Step 2: Strongly ill-behaved bins. For every j ∈ Js, by definition, there exists a x̄ ∈ Bj such

that T
(

F π⋆(x̄)(·, x̄)
)

= T
(

F π♯(x̄)(·, x̄)
)

. From the definition of π♯ it thus follows that T
(

F π⋆(x̄)(·, x̄)
)

=
T
(

F i(·, x̄)
)

for every i ∈ I. Therefore, for every x ∈ Bj and every i ∈ I, Lemma D.4 yields

T(F π⋆(x)(·, x))− T(F i(·, x)) = T(F π⋆(x)(·, x))− T(F i(·, x))− [T(F π⋆(x̄)(·, x̄))− T(F i(·, x̄))] (140)

≤ 2CLdγ/2P−γ ≤ c1P
−γ. (141)

First of all, this shows that J and Js are disjoint. Furthermore, from Equations (139) and (140), we
obtain

∑

j∈Js

R̃j(π̄) ≤ c1P
−γ
∑

j∈Js

N
∑

t=1

1{Xt∈Bj}1{0<T(Fπ⋆(Xt)(·,Xt))−T(Fπ♯(Xt)(·,Xt))}
(142)

≤ c1P
−γ

N
∑

t=1

1
{0<T(Fπ⋆(Xt)(·,Xt))−T(Fπ♯(Xt)(·,Xt))≤c1P−γ}

. (143)

From Condition 4.6 we hence obtain:
∑

j∈Js

E[R̃j(π̄)] ≤ c1nP
−γPX

(

0 < T
(

F π⋆(X)(·, X)
)

− T
(

F π♯(X)(·, X) ≤ c1P
−γ
)

≤ C0c
1+α
1 nP−γ(1+α). (144)

Step 3: Weakly ill-behaved bins. Since {Xt ∈ Bj} for j ∈ Jw are disjoint subsets of

{0 < T(F π⋆(Xt)(·, Xt))− T(F π♯(Xt)(·, Xt)) ≤ c1P
−γ},

we obtain from Condition 4.6, recall that P(Xt ∈ Bj) ≥ c
P d , that

|Jw|
c

P d
≤
∑

j∈Jw

P(Xt ∈ Bj) ≤ PX

(

0 < T
(

F π⋆(X)(·, X)
)

−T
(

F π♯(X)(·, X)
)

≤ c1P
−γ
)

≤ C0c
α
1P

−γα, (145)

which yields |Jw| ≤ (C0c
α
1 /c)P

d−γα. Using (125) and (126) with Vj =
√
dP−1 and B̄j = P−d we obtain

E[R̃j(π̄)] ≤ c′
(

√

Knlog(n)P−d/2 + nP−γ−d

)

, (146)
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where c′ depends on d, L, γ, c̄, C, β, but not on n. Combining this with (146) leads to

∑

j∈Jw

E[R̃j(π̄)] ≤ c′′
(

√

Knlog(n)P d/2−γα + nP−γ(1+α)
)

, (147)

where c′′ depends on d, L, γ, c, c̄, C, C0, α, β, but not on n.

Step 4: Well-behaved bins. For every j ∈ J let xj ∈ Bj be such that

T(F π⋆(xj)(·, xj))− T(F π♯(xj)(·, xj)) > c1P
−γ. (148)

Next, define the following sets of indices (“corresponding to the optimal and suboptimal arms given xj”):

I⋆j := {i ∈ I : T
(

F π⋆(xj)(·, xj)
)

= T(F i(·, xj))},
I0j := {i ∈ I : T

(

F π⋆(xj)(·, xj)
)

− T(F i(·, xj)) > c1P
−γ}.

Clearly π⋆(xj) ∈ I⋆j and π♯(xj) ∈ I0j (cf. (148)). Hence I⋆j and I0j define a nontrivial partition of I. For
every j ∈ J we can thus decompose R̃j(π̄) defined in Equation (139) as the sum of

R̃j,I⋆j
(π̄) :=

∑

i∈I⋆j

N
∑

t=1

[

T
(

F π⋆(Xt)(·, Xt)
)

− T
(

F i(·, Xt)
)

]

1{Xt∈Bj}1{π̄t(Xt)=i},

R̃j,I0j
(π̄) :=

∑

i∈I0j

N
∑

t=1

[

T
(

F π⋆(Xt)(·, Xt)
)

− T
(

F i(·, Xt)
)

]

1{Xt∈Bj}1{π̄t(Xt)=i}.

(149)

Step 4a: A bound for E(R̃j,I⋆j
(π̄)). For any i ∈ I⋆j and every x ∈ Bj satisfying T(F π⋆(x)(·, x)) 6=

T(F i(·, x)), the triangle inequality, the definition of π♯, and Lemma D.4 yield

0 < T(F π⋆(x)(·, x))− T(F π♯(x)(·, x)) ≤ T(F π⋆(x)(·, x))− T(F i(·, x))
= T(F π⋆(x)(·, x))− T(F π⋆(xj)(·, xj)) + T(F i(·, xj))− T(F i(·, x))
≤ 2CLdγ/2P−γ ≤ c1P

−γ,

the last inequality following from c1 = 4CLdγ/2+1. But this means that for any i ∈ I⋆j and every x ∈ Bj

T(F π⋆(x)(·, x))− T(F i(·, x)) ≤ c1P
−γ1

{0<T(Fπ⋆(x)(·,x))−T(Fπ♯(x)(·,x))≤c1P−γ}
. (150)

We deduce

E[R̃j,I⋆j
(π̄)] ≤ E

N
∑

t=1

c1P
−γ1

{0<T(Fπ⋆(Xt)(·,Xt))−T(Fπ♯(Xt)(·,Xt))≤c1P−γ}
1{Xt∈Bj} ≤ nc1P

−γqj , (151)

where qj := P(0 < T(F π⋆(Xt)(·, Xt)) − T(F π♯(Xt)(·, Xt)) ≤ c1P
−γ, Xt ∈ Bj), which is independent of t

due to the Xt being identically distributed.
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Step 4b: A bound for E(R̃j,I0j
(π̄)). By Lemma D.4 for every x ∈ Bj and every i ∈ I0j we have

T(F π⋆(x)(·, x))− T(F i(·, x)) ≤
[

T(F ∗
j )− T(F i

j )
]

+ c1P
−γ, (152)

from which it follows that

E[R̃j,I0j
(π̄)] ≤ E

∑

i∈I0j

N
∑

t=1

[

T
(

F ∗
j

)

− T
(

F i
j

)

]

1{Xt∈Bj}1{π̄t=i} + c1P
−γE

∑

i∈I0j

N
∑

t=1

1{Xt∈Bj}1{π̄t=i},

=
∑

i∈I0j

∆i
jES(i, N, j) + c1P

−γ
∑

i∈I0j

ES(i, N, j),

(153)

where for every i ∈ I0j the sum S(i, N, j) :=
∑N

t=1 1{Xt∈Bj}1{π̄t=i}, and where ∆i
j := T(F ∗

j )− T(F i
j ). We

now claim that (this claim will be verified before moving to Step 4c below)

ES(i, N, j) ≤ 2C2β log(c̄nP−d)

[∆i
j ]
2

+
β + 2

β − 2
. (154)

Defining ∆j := mini∈I0j
∆i

j , noting that maxi∈I0j ∆
i
j ≤ 2C by Assumption 2.1, and combining Equa-

tions (153) and (154) we obtain the bound

E[R̃j,I0j
(π̄)] ≤ K

2C2β log(c̄nP−d)

∆j

(

1 +
c1P

−γ

∆j

)

+ (c1 + 2C)K
β + 2

β − 2
. (155)

Now, it remains to prove the claim in Equation (154). To this end we apply a conditioning argument
as in the proof of Theorem 4.4. We shall now use some quantities (in particular the sets Ω(m, v)) that
were defined in that proof: note that

ES(i, N, j) =
∑

m∈N
v∈{1,...,F}m

P(Ω(m, v))E(S(i, N, j)|Ω(m, v)). (156)

Arguing as in the proof of Theorem 4.4, it is now easy to see that E(S(i, N, j)|Ω(m, v)) can be written
as the expected number of times arm i is selected in running the FSA policy π̂ (without covariates)
in a problem with m̄ (fixed) i.i.d. inputs with distribution Q. We can hence apply the bound in
Equation (102), to the just mentioned problem, to obtain that

E(S(i, N, j)|Ω(m, v)) ≤ 2C2β log(m̄)

[∆i
j ]
2

+
β + 2

β − 2
. (157)

We can now combine the obtained inequality with Equation (156) to see that

ES(i, N, j) ≤
∑

m∈N
v∈{1,...,F}m

P(Ω(m, v))
2C2β log(m̄)

[∆i
j ]
2

+
β + 2

β − 2
. (158)
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The claim in (154) now follows from Jensen’s inequality, and (cf. the end of the proof of Theorem 4.4)

∑

m∈N
v∈{1,...,F}m

P(Ω(m, v))m̄ ≤ c̄B̄jn = c̄nP−d. (159)

Step 4c: A bound for E(R̃j(π̄)) with j ∈ J . For all i ∈ I0j and all x ∈ Bj the triangle inequality

and Lemma D.4 with Vj =
√
dP−1 yield

c1P
−γ <|T(F π⋆(xj)(·, xj))− T(F i(·, xj))|

≤|T(F π⋆(xj)(·, xj))− T(F π⋆(x)(·, x))|+ |T(F π⋆(x)(·, x))− T(F i(·, x))|+ |T(F i(·, x))− T(F i(·, xj))|
≤2CLdγ/2P−γ + |T(F π⋆(x)(·, x))− T(F i(·, x))|.

Recalling that c1 = 4CLdγ/2 + 1, we obtain

T
(

F π⋆(x)(·, x)
)

− T(F i(·, x)) > (1 + 2CLdγ/2)P−γ. (160)

[In particular, since I0j 6= ∅ holds, 0 < T(F π⋆(x)(·, x)) − T(F π♯(x)(·, x)) for all x ∈ Bj if j ∈ J , an
observation we shall need later in Step 4d.] For each i ∈ I0j and every x ∈ Bj , (160) and Lemma D.4
imply

∆i
j = T(F ∗

j )− T(F i
j ) ≥ T(F π⋆(x)(·, x))− T(F i(·, x))− 2CLdγ/2P−γ > P−γ; (161)

in particular for any j ∈ J and any i ∈ I0j we have ∆j = mini∈I0j
∆i

j > P−γ. Recalling that R̃j(π̄) =

R̃j,I∗j
(π̄) + R̃j,I0j

(π̄), we combine (151) and (155) (with the just observed ∆j > P−γ) to see that for

any j ∈ J

E[R̃j(π̄)] ≤ nc1P
−γqj +

2C2(c1 + 1)Kβ log(c̄nP−d)

∆j

+ (c1 + 2C)K
β + 2

β − 2
. (162)

Step 4d: A bound for
∑

j∈J E[R̃j(π̄)]. Using Equation (162) and |J | ≤ P d we obtain

∑

j∈J

E[R̃j(π̄)] ≤ (c1 + 2C)K
β + 2

β − 2
P d + nc1P

−γ
∑

j∈J

qj +
∑

j∈J

2C2(c1 + 1)Kβ log(c̄nP−d)

∆j

. (163)

Since the Bj are disjoint, recalling the definition of qj after Equation (151) we obtain

nc1P
−γ
∑

j∈J

qj ≤ c1nP
−γPX

(

0 < T(F π⋆(X)(·, X))− T(F π♯(X)(·, X)) < c1P
−γ
)

≤ C0c
1+α
1 nP−γ(1+α),

(164)

where we used Assumption 4.6 to obtain the last inequality. To deal with the last term in (163), we
need a better lower bound on the ∆j-s than the already available P−γ. For notational simplicity, let’s
suppose that the well-behaved bins are indexed as J = {1, 2, . . . , j1} such that 0 < ∆1 ≤ ∆2 ≤ . . . ≤ ∆j1
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(cf. Equation (161) and the ensuing discussion for 0 < ∆1). Fix j ∈ J . Then, for any k = 1, . . . , j, we
claim that:

Bk ⊆
{

x : 0 < T(F π⋆(x)(·, x))− T(F π♯(x)(·, x)) < ∆j + 2CLdγ/2P−γ
}

. (165)

To see (165), note that, by definition, there exists an i ∈ I0
k such that ∆k = T(F ∗

k )−T(F i
k). For x ∈ Bk

Lemma D.4 yields (the first inequality following from the observation after Equation (160))

0 < T(F π⋆(x)(·, x))− T(F π♯(x)(·, x)) ≤ T(F π⋆(x)(·, x))− T(F i(·, x))
≤ ∆k + 2CLdγ/2P−γ

≤ ∆j + 2CLdγ/2P−γ,

and thus x is an element of the set on the right-hand-side of (165). Since all bins Bk are disjoint
and ∆j +2CLdγ/2P−γ ≤ c1∆j (obtained by recalling c1 = 4CLdγ/2 +1, and using the observation ∆j >
P−γ made directly after Equation (161)), the inclusion (165) yields that for any j ∈ J :

PX

(

0 < T(F π⋆(X)(·, X))− T(F π♯(X)(·, X)) < c1∆j

)

≥
j
∑

k=1

PX(Bk) ≥
cj

P d
. (166)

Let’s denote j2 := max{j ∈ J : ∆j ≤ 1/c1} (here interpreting the maximum of an empty set as 0).
Then, for each j ∈ {1, . . . , j2} by Assumption 4.6 :

PX

(

0 < T(F π⋆(X)(·, X))− T(F π♯(X)(·, X)) < c1∆j

)

≤ C0(c1∆j)
α. (167)

Combining (166), (167), and ∆j > P−γ, for any j ∈ {1, . . . , j2} we get ∆j ≥ max
(

c∗
(

jP−d
)1/α

, P−γ
)

,

with constant c∗ := c−1
1 c1/αC−1/α. Combining this with the identity ∆j > 1/c1 for j > j2, we obtain

that

∑

j∈J

1

∆j

≤
j2
∑

j=1

min
(

c−1
∗

(

P d/j
)1/α

, P γ
)

+

j1
∑

j=j2+1

c1 ≤
P d
∑

j=1

min
(

c−1
∗

(

P d/j
)1/α

, P γ
)

+ c1P
d.

For P̃ := ⌈P d−αγ⌉ (in fact for any P̃ ∈ {1, . . . , P d}, and thus in particular for our particular choice) it
holds that

P d
∑

j=1

min
(

c−1
∗

(

P d/j
)1/α

, P γ
)

≤
P̃
∑

j=1

P γ + c−1
∗ P d/α

∞
∑

j=P̃+1

j−1/α ≤ c∗∗P
d+γ(1−α),

for c∗∗ := [2 + c−1
∗ (α−1 − 1)−1], where we used

∑∞
j=P̃+1 j

−1/α ≤ (α−1 − 1)−1P̃ 1−α−1
(cf. (110)). Hence,

combining Equations (163), (164) with the bounds in the previous two displays we obtain

∑

j∈J

E[R̃j(π̄)] ≤ c′′′
(

nP−γ(1+α) +Klog(nP−d)P d +Klog(nP−d)P d+γ(1−α)
)

, (168)
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for a constant c′′′, say, that depends on d, L, γ, c, C, C0, α and β, but not on n.

Step 5: Combining. From Equations (138), (144), (147) and (168) we obtain

E[RN (π̄)] ≤
c′′′′

4

(

nP−γ(1+α) +

√

Knlog(n)P d/2−γα +Klog(nP−d)P d +Klog(nP−d)P d+γ(1−α)

)

(169)

for a constant c′′′′ that depends on d, L, γ, c, C, C0, α and β, but not on n. From P = ⌈n1/(2γ+d)⌉ we
get n ≤ P 2γ+d, and obtain

E[RN (π̄)] ≤
c′′′′

4
Klog(n)

(

nP−γ(1+α) + n1/2P d/2−γα + 2P d+γ(1−α)
)

≤ c′′′′Klog(n)P d+γ(1−α), (170)

from which the conclusion follows.

The following lemma allows to upper bound the number of suboptimal assignments made by the
FSA policy. It will also play a crucial role in providing a lower bound on regret in Section D.3 since it
establishes that if the margin condition (Assumption 4.6) is in place, such a lower bound can be obtained
by lower bounding the number of suboptimal assignments made.

Lemma D.5. Let a functional T be given and assume that Assumption 4.6 is satisfied. Furthermore, N
is independent of all covariates and has expectation n. Then, there exists a C̃ > 0 such that for any
policy π

E[RN (π)] ≥ C̃n−1/α
(

E[SN (π)]
)1+1/α

. (171)

Proof. Choose D0 ≥ 2 such that 1/(C0D0)
1/α < 1. We show that

E[RN (π)] ≥ C̃n−1/α
(

E[SN (π)]
)1+1/α

. (172)

for C̃ = C̃(α) = (1 − 1/D0)/(C0D0)
1/α. If E[SN (π)] = 0, (172) is trivially valid. Thus, suppose

that E[SN(π)] > 0. Note that for any δ > 0,

RN (π) ≥ δ
N
∑

t=1

1{T(Fπ⋆(Xt)(·,Xt))−T(F ♯(Xt)(·,Xt))>δ}1
{

πt(Xt,Zt−1)6∈argmax{T(F i(·,Xt)), i=1,...,K}
}

= δSN(π)− δ

N
∑

t=1

1{T(Fπ⋆(Xt)(·,Xt))−T(F ♯(Xt)(·,Xt))≤δ}1
{

πt(Xt,Zt−1)6∈argmax{T(F i(·,Xt)), i=1,...,K}
}

= δSN(π)− δ

N
∑

t=1

1{0<T(Fπ⋆(Xt)(·,Xt))−T(F ♯(Xt)(·,Xt))≤δ}1
{

πt(Xt,Zt−1)6∈argmax{T(F i(·,Xt)), i=1,...,K}
}

≥ δSN(π)− δ
N
∑

t=1

1{0<T(Fπ⋆(Xt)(·,Xt))−T(F ♯(Xt)(·,Xt))≤δ},
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where the second equality used that if πt(Xt, Zt−1) 6∈ argmax {T(F i(·, Xt)), i = 1, ..., K}, then 0 <
T(F π⋆(Xt)(·, Xt)) − T(F ♯(Xt)(·, Xt)). Choosing δ := (E[SN (π)]/(nC0D0))

1/α ≤ 1/(C0D0)
1/α < 1 (the

inequality following from E[SN (π)] ≤ E(N) ≤ n), Assumption 4.6 yields

E[RN (π)] ≥ δ(E[SN(π)]− C0nδ
α) = δ(1− 1/D0)E[SN (π)] = C̃n−1/α

(

E[SN (π)]
)1+1/α

, (173)

which proves (172).

Proof of Theorem 4.8. Combine Theorem 4.7 and Lemma D.5.

D.3 Proofs for Section 5

We begin with an auxiliary lemma bounding the Kolmogorov distance between any two members of H
as defined in Definition 3.2.

Lemma D.6. For all a1 < a2 in (−1,∞) it holds that

‖Ha1 −Ha2‖∞ =

[

a1 + 1

a2 + 1

](a1+1)/(a2−a1) a2 − a1
a2 + 1

≤ a2 − a1
a2 + 1

. (174)

Proof. Let a1 < a2 be elements of (−1,∞). By definition of the ‖.‖∞-norm and the cdf Ha it holds that

‖Ha1 −Ha2‖∞ = sup
x∈[0,1]

|xa1+1 − xa2+1|. (175)

For every x ∈ [0, 1] the function a 7→ xa+1 is strictly decreasing on (−1,∞). Hence, using a1 < a2, it
follows that the supremum to the right in the previous display equals

sup
x∈[0,1]

(

xa1+1 − xa2+1
)

= max
x∈(0,1)

(

xa1+1 − xa2+1
)

, (176)

the equality being trivial. It is elementary to verify (e.g., by checking the first and second order conditions
for a maximum) that the maximum in the previous display is attained at

x∗ :=

[

a1 + 1

a2 + 1

]1/(a2−a1)

, (177)

from which it follows that

‖Ha1 −Ha2‖∞ = xa1+1
∗ − xa2+1

∗ = xa1+1
∗

(

1− xa2−a1
∗

)

= xa1+1
∗

a2 − a1
a2 + 1

, (178)

which proves the claimed equality, the inequality being a trivial consequence of x∗ ∈ (0, 1).

Lemma D.7. Suppose the functional T satisfies Assumptions 2.1 and 3.3. With ā and δ as in Assump-
tion 3.3, denote the image of T over A(δ) := {Ha : a ∈ [ā− δ, ā + δ]} by T(A(δ)). Then, T(A(δ)) is a
non-empty compact interval and
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1. the function from [ā − δ, ā + δ] to T(A(δ)) defined via a 7→ T(Ha) is Lipschitz continuous and
possesses an inverse that is Lipschitz continuous.

2. for any non-empty compact interval I ⊆ T(A(δ)), there exists a Lipschitz continuous function A :
T(A(δ)) → [ā− δ, ā + δ] such that for any function f : [0, 1]d → I it holds that

T(HA(f(x))) = f(x) for every x ∈ [0, 1]d. (179)

Proof. Consider part 1. first. It suffices to verify the statement under the condition in Equation (6)
(the other statement can be obtained from this one upon passing from T to −T). Under Equation (6),
one has T(A(δ)) = [T(Hā−δ),T(Hā+δ)] which is a non-empty compact interval. Furthermore, it suffices
to verify that there exists a constant L > 0, say, such that for every pair a1 6= a2 in [ā− δ, ā+ δ] it holds
that

L−1|a1 − a2| ≤ |T(Ha1)− T(Ha2)| ≤ L|a1 − a2|. (180)

For the upper bound in the previous display, we use Assumption 2.1 together with Lemma D.6 to
obtain ‖T(Ha1) − T(Ha2)‖∞ ≤ C‖Ha1 − Ha2‖∞ ≤ C(min(a1, a2) + 1)−1|a2 − a1|. Since min(a1, a2) ≥
ā− δ > −1 the second inequality in the previous display follows with L = (ā− δ+1)−1C. Next, observe
that the assumption in Equation (6) implies the first inequality in the previous display with constant c
(instead of L−1). Increasing L, if necessary, proves the first part of the lemma. Denoting the inverse
of a 7→ T(Ha) by A one has in particular that

T(HA(z)) = z for every z ∈ T(A(δ))

which yields the second part of the lemma upon using that f(x) ∈ I ⊆ T(A(δ)) for any x ∈ [0, 1]d.

In proving Theorem 5.1 it will be useful to make the dependence of regret

Rn(π) = Rn(π, F
1, F 2) =

n
∑

t=1

∣

∣T
(

F 1(·, Xt)
)

− T
(

F 2(·, Xt)
)∣

∣1{π⋆(Xt)6=πt(Xt,Zt−1)}. (181)

and and the number of suboptimal assignments

Sn(π) = Sn(π, F
1, F 2) =

n
∑

t=1

1{T(F 1(·,Xt))6=T(F 2(·,Xt)), π⋆(Xt)6=πt(Xt,Zt−1)}.

on the conditional distributions F1 and F1 explicit for any policy π. We make the following remark on
notation prior to proving Theorem 5.1

Proof of Theorem 5.1. Throughout the proof, fix a functional T satisfying Assumptions 2.1 and 3.3 as
well as a policy π. It will be notationally convenient to label treatment 2 as -1. The idea of proving a
lower bound on regret follows the general pattern of reducing the problem to a testing problem as in
Chapter 2 of Tsybakov (2009).

The proof consists of four steps. First, we construct a certain set of Hölder continuous functions C.
Second, based on C, we construct a set S of 2-tuples of (conditional) distributions on the Borel sets
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of [0, 1]. Third, these distributions are shown to satisfy Assumptions 4.2 and 4.6, i.e S ⊆ S such that
the treatment problem falls under the assumptions of Theorem 4.7 Fourth, we show that for any policy π

sup
(F 1,F−1)∈S

E[Rn(π, F
1, F−1)] ≥ c2n

1−
γ(1+α)
2γ+d .

for some c2 > 0 independent of π. To establish the above display, we use Lemma D.5 to conclude
that it suffices to provide a lower bound on the number of suboptimal treatments made by π. This, in
turn, is achieved by using standard techniques for obtaining minimax lower bounds (e.g., Chapter 2 of
Tsybakov (2009)). In particular, by lower bounding the sum of Type 1 and Type 2 errors in a certain
binary testing problem.

Step 1: Construction of the Hölder class C.
For P ≥ 2, let B1, B2, . . . , BP d be the hypercubes defined in (11) sorted in the lexicographic order.

Let qi, i = 1, ..., P d be the center of Bi. Furthermore, set m = ⌈0.5P d−αγ⌉ and note that m ≤ P d

for P ≥ 2. Next, set Ωm = {−1, 1}m and observe that |Ωm| = 2m. For each ω ∈ Ωm, we define the
function fω on [0, 1]d as

fω(x) =
1

2
+

m
∑

j=1

ωjϕj(x),

where ϕj(x) = 4−1P−γφ(2P (x− qj))1Bj
(x) and φ(x) = (1 − ||x||∞)γ, and we let ‖x‖∞ = max1≤i≤d |xi|

for x ∈ Rd. With this notation in place, we can define the class of functions

Cm := C = {fω : ω ∈ Ωm}.

We now show that each element of C is Hölder continuous. More precisely, for each fω ∈ C, we show
that for any pair x1, x2 ∈ [0, 1]d

|fω(x1)− fω(x2)| ≤ 2−1||x1 − x2||γ,

where ‖.‖ denotes the Euclidean norm. Observe that for any pair x1, x2 ∈ [0, 1]d one has |φ(x1)−φ(x2)| ≤
||x1−x2||γ∞ ≤ ||x1−x2||γ where the first inequality uses i) for a, b ≥ 0 one has aγ ≤ bγ+ |b−a|γ for γ ≤ 1
and ii) the reverse triangle inequality for ‖·‖∞.

If x1, x2 ∈ Bj for some j ∈ {1, ..., P d}, the definition of fω and |φ(x1)− φ(x2)| ≤ ||x1 − x2||γ lead to

|fω(x1)− fω(x2)| ≤ |ϕj(x1)− ϕj(x2)| ≤ 4−1P−γ(2P )γ||x1 − qj − (x2 − qj)||γ ≤ 2−1||x1 − x2||γ. (182)

Suppose instead that x1 ∈ Bj , x2 ∈ Bk for some j 6= k. Let S = {θx1 + (1− θ)x2 : θ ∈ [0, 1]} be the
line connecting x1 and x2. Define y1 = argminz∈S∩B̄j

||z − x2|| and y2 = argminz∈S∩B̄k
||z − x1||. Noting

that ϕj(y1) = ϕk(y2) = 0 we obtain from (182) that

|fω(x1)− fω(x2)| = |ωjϕj(x1)− ωkϕk(x2)|
≤ |ωjϕj(x1)− ωjϕj(y1)|+ |ωjϕj(y1)− ωkϕk(y2)|+ |ωkϕk(y2)− ωkϕk(x2)|
≤ 4−12γ||x1 − y1||γ + 4−12γ||y2 − x2||γ
≤ 2−1||x1 − x2||γ
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where we exploited ||x1 − x2|| = ||x1 − y1||+ ||y1 − y2||+ ||y2 − x2|| ≥ ||x1 − y1||+ ||y2 − x2|| combined
with the inequality (aγ + bγ) ≤ 21−γ(a+ b)γ for γ ≤ 1.

Step 2: Construction of S.
Observe that the range of each f ∈ C is contained in [1/4, 3/4]. If necessary, a linear transformation

of T ensures that [1/4, 3/4] ⊆ T(A(δ)) (with T(A(δ)) as in Lemma D.7) without affecting the rates of
the lower bound on maximal regret. Part 2. of Lemma D.7 now implies for each f ∈ C there exists a
gf : [0, 1]d → [ā − δ, ā + δ] with gf(x) = A(f(x)) for all x ∈ [0, 1]d and A is Lipschitz continuous such
that T(Hgf (x)) = f(x). Let Pf,1(·, x) be the distribution on the Borel sets of [0, 1] with cdf Hgf (x)(y) =

ygf (x)+1. Borel measurability of x 7→ Pf,1(A, x) for each A ∈ B([0, 1]) follows from continuity of gf and
Scheffé’s Lemma. Let the joint distribution Pf of (Y1,t, Xt) on B([0, 1]1+d) be defined as Pf (A × B) =
∫

B
Pf,1(A, x)PX(dx) for A ∈ B([0, 1]) and B ∈ B([0, 1]d).
To finish the construction of the distribution of (Y−1,t, Y1,t, Xt) on B([0, 1]2+d), denoted Pf,1/2, let P1/2,−1(·)

be the distribution on the Borel sets of [0, 1] with cdf Hg1/2(y) = yg1/2+1 where g1/2 = A(1/2) is a

constant (function constant in x). Finally, let Pf,1/2(A1 × A2 × B) =
∫

A2×B
P1/2,−1(A1)dPf(y, x) =

P1/2,−1(A1) ·Pf (A2×B) for A1, A2 ∈ B([0, 1]) and B ∈ B([0, 1]d). Thus, Y−1,t is independent of (Y1,t, Xt).
This independence is merely chosen for concreteness as the important ingredients in Steps 3 and 4 below
are the conditional distributions of Pf,1 (of Y1,t given Xt) and P1/2,−1 (of Y−1,t given Xt), respectively

4.
With these definitions in place, for each f ∈ C, let Pt

π,f be the distribution of Zt on the Borel

sets of R(d+1)t with corresponding expectation Et
π,f . Define Pπ,f,1,t(A, (x, z)) := Pf,1(A, x) for every

A ∈ B([0, 1]) and (x, z) ∈ Rd × R(d+1)(t−1). By independence of (Y1,t, Xt) and Zt−1 the Markov kernel
Pπ,f,1,t defines a regular conditional probability of Y1,t given (Xt, Zt−1). Similarly, Pπ,f,−1,t(A, (x, z)) :=
P1/2,−1(A) defines a regular conditional distribution of Y−1,t given (Xt, Zt−1).

To exhibit Pt
π,f explicitly, let u1 = x1 ∈ Rd and z1 = (y1, x1) ∈ R × Rd. For s = 2, ..., t let zs =

(ys, xs, zs−1) ∈ R(d+1)s. Then, for any A ∈ B([0, 1]), us = (xs, zs−1) ∈ Rd × R(s−1)(d+1) and f ∈ C define

Pπ,f,s(A, us) := Pπ,f,1,s(A, us)1{πs(us)=1} + Pπ,f,−1,s(A, us)1{πs(us)=−1}

= Pf,1(A, xs)1{πs(us)=1} + P1/2,−1(A)1{πs(us)=−1} (183)

=

∫

A

[

(1 + gf (xs))y
gf(xs)
s 1{πs(us)=1} + (1 + g1/2)y

g1/2
s 1{πs(us)=−1}

]

dys. (184)

Note that Pπ,f,s defines a regular conditional distribution of Yπt(Xt,Zt−1),t given (Xt, Zt−1). Thus, set-

ting ds(zs) = (1 + gf(xs))y
gf(xs)
s 1{πs(us)=1} + (1 + g1/2)y

g1/2
s 1{πs(us)=−1}, we observe by (184) for As ∈

B([0, 1]), Bs ∈ B([0, 1]d), s = 1, ..., t

Pt
π,f(×t

s=1(As × Bs)) =

∫

×t−1
s=1(As×Bs)

∫

Bt

Pπ,f,t(At, (xt, zt−1))PX(dxt)P
t−1
π,f (dzt−1)

=

∫

×t−1
s=1(As×Bs)

∫

Bt

∫

At

dt(zt)dytdxtP
t−1
π,f (dzt−1)

4Recall that the marginal distribution of Y
−1,t, P1/2,−1, is also the conditional distribution of Y

−1,t given Xt by the
independence of Y

−1,t and Xt.
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which can be used as the induction step to show (the induction start is trivial) that Pt
π,f is absolutely

continuous with density d(zt) =
∏t

s=1 ds(zs) with respect to the t(d+ 1)-dimensional Lebesgue measure
(restricted to [0, 1]t(d+1)).

Now, set S =
{

(Hgf (x), Hg1/2) : f ∈ C
}

.

Step 3: Verifying that S ⊆ S.
To verify that S ⊆ S we show that for every f ∈ C: i) one has ||Hgf(x1) −Hgf (x2)||∞ ≤ L||x1 − x2||γ

for some L > 0 (Assumption 4.2), and ii) the margin condition (Assumption 4.6) is satisfied.

Verifying Assumption 4.2:
We begin by verifying that for each f ∈ C one has ||Hgf(x1) − Hgf (x2)||∞ ≤ L||x1 − x2||γ for some

L > 0. Note that by Lemma D.6

||Hgf(x1)(y)−Hgf (x2)(y)||∞ ≤ |gf(x1)− gf(x2)|
ā− δ + 1

, ā− δ > −1

such that the conclusion follows upon recalling that gf(x) = A(f(x)) with Lipschitz continuous A
and Hölder continuous f . Denoting by c1 the Lipschitz constant of A, we can choose L = c1

2(ā−δ+1)
.

Since Hg1/2(y) does not depend on x it is Hölder continuous as well.

Verifying Assumption 4.6: We next verify that each tuple in S satisfies the margin condition. To be
precise, we shall show that for every f ∈ C

PX

(

0 < |T(Hgf(X))− T(Hg1/2(X))| ≤ δ
)

≤ 8dδα for all δ ∈ [0, 1], (185)

which will verify the margin condition with C0 = 8d since there are only two treatments. To this end,
we note that T(Hgf (X))−T(Hg1/2) = fω(X)−1/2 for some ω ∈ Ωm. Since PX is the uniform distribution

on [0, 1]d and recalling φ(x) = (1− ||x||∞)γ, for any ω ∈ Ωm, the substitution u = 2Px− 2Pq1 yields

PX(0 < |fω(X)− 1/2| ≤ δ) =
m
∑

j=1

PX(0 < |fω(X)− 1/2| ≤ δ,X ∈ Bj)

= mPX(0 < φ(2P (X − q1)) ≤ 4P γδ,X ∈ B1)

= m(2P )−d

∫

2PB1−2Pq1

1{φ(x)≤4P γδ}dx

= m(2P )−d

∫

[−1,1]d
1{φ(x)≤4P γδ}dx

= mP−d

∫

[0,1]d
1{φ(x)≤4P γδ}dx,

where the last equality follows from φ(x) being invariant to changing the signs of the coordinates of x.
To bound the last line of the above display consider two cases. If 4P γδ > 1, then

PX(0 < |fω(X)− 1/2| ≤ δ) = mP−d

∫

[0,1]d
1{φ(x)≤4P γδ}dx = mP−d ≤ 2P−γα ≤ 8δα,
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where we used m = ⌈0.5P d−γα⌉ ≤ 0.5P d−γα + 1 ≤ 2P d−γα and α ∈ (0, 1).
On the other hand, if 4P γδ ≤ 1, we obtain that

PX(0 < |fω(X)− 1/2| ≤ δ) = mP−d

∫

[0,1]d
1{φ(x)≤4P γδ}dx

= mP−d −mP−d

∫

[0,1]d
1{||x||∞<1−41/γδ1/γP}dx

= mP−d[1− (1− 41/γδ1/γP )d]

≤ mP−dd41/γδ1/γP

≤ 2dP 1−αγ41/γδ1/γ

≤ 2d(4δ)α ≤ 8dδα,

which establishes (185).

Step 4: Lower bounding sup(F 1,F−1)∈S E(Rn(π, F
1, F−1)).

By Lemma D.5 it suffices to show that

sup
(F 1,F−1)∈S

E(Sn(π, F
1, F−1)) ≥ c3n

1− αγ
d+2γ (186)

for some c3 > 0 independent of π. Note also that the left hand side of (186) is equal to supf∈C E
n
π,f

[

Sn(π)
]

which we shall now lower bound. Since Xt is independent of Zt−1 and π⋆(x) = sign(fω(x)− 1/2),

sup
f∈C

En
π,f [Sn(π)] = sup

ω∈Ωm

n
∑

t=1

Et−1
π,fω

[

PX

(

πt(Xt, Zt−1) 6= sign(fω(Xt)− 1/2), fω(Xt) 6= 1/2)
)]

≥ sup
ω∈Ωm

m
∑

j=1

n
∑

t=1

Et−1
π,fω

[PX(πt(Xt, Zt−1) 6= ωj , Xt ∈ Bj)]

≥ 1

2m

m
∑

j=1

n
∑

t=1

∑

ω∈Ωm

Et−1
π,fω

[PX(πt(Xt, Zt−1) 6= ωj , Xt ∈ Bj)]. (187)

Note that for every j ∈ {1, ..., m} and t ∈ {1, ..., n},

Qj
t :=

∑

ω∈Ωm

Et−1
π,fω

[PX(πt(Xt, Zt−1) 6= ωj, Xt ∈ Bj)] =
∑

ω−j∈Ωm−1

∑

i∈{−1,1}

Et−1
π,f

ωi
−j

[PX(πt(Xt, Zt−1) 6= i, Xt ∈ Bj)]

where ω−j = (ω1, ..., ωj−1, ωj+1, ..., ωm) and ωi
−j = (ω1, ..., ωj−1, i, ωj+1, ..., ωm) for i ∈ {−1, 1}. Note

that for any u ∈ R(t−1)(d+1), PX(πt(Xt, u) 6= i, Xt ∈ Bj) = P
j
X(πt(Xt, u) 6= i)/P d with P

j
X(A) =

PX(A|Xt ∈ Bj) for any A ∈ B([0, 1]d). Expectations with respect to P
j
X are denoted by E

j
X . Hence, for

every ω−j ∈ Ωm−1,

∑

i∈{−1,1}

Et−1
π,f

ωi
−j

[PX(πt(Xt, Zt−1) 6= i, Xt ∈ Bj)] =
1

P d

∑

i∈{−1,1}

Et−1
π,f

ωi
−j

[Pj
X(πt(Xt, Zt−1) 6= i)].
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Here
∑

i∈{−1,1} E
t−1
π,f

ωi
−j

[Pj
X(πt(Xt, Zt−1) 6= i)] = Et−1

π,f
ω−1
−j

E
j
X1{πt(Xt,Zt−1)=1} + 1 − Et−1

π,f
ω1
−j

E
j
X1{πt(Xt,Zt−1)=1}

is the sum of Type 1 and Type 2 errors for the testing problem H0 : Pt−1
π,f ⊗ P

j
X = Pt−1

π,f
ω−1
−j

⊗ P
j
X

vs Ha : P
t−1
π,f ⊗ P

j
X = Pt−1

π,f
ω1
−j

⊗ P
j
X for the test 1{πt(Xt,Zt−1)=1}. For any test πt this sum can be bounded

from below, using Theorem 2.2(iii) of Tsybakov (2009), by

∑

i∈{−1,1}

Et−1
π,f

ωi
−j

[Pj
X(πt(Xt, Zt−1) 6= i)] ≥ 1

4
exp

[

−KL
(

Pt−1
π,f

ω−1
−j

⊗ P
j
X ,P

t−1
π,f

ω1
−j

⊗ P
j
X

)

]

=
1

4
exp

[

−KL
(

Pt−1
π,f

ω
−1
−j

,Pt−1
π,f

ω1
−j

)

]

Thus, for every ω−j ∈ Ωm−1,

∑

i∈{−1,1}

Et−1
π,f

ωi
−j

[PX(πt(Xt, Zt−1) 6= i, Xt ∈ Bj)] ≥
1

4P d
exp

[

−KL
(

Pt−1
π,f

ω
−1
−j

,Pt−1
π,f

ω1
−j

)

]

and we next bound KL
(

Pt−1
π,f

ω−1
−j

,Pt−1
π,f

ω1
−j

)

from above. Using the chain rule for Kullback-Leibler diver-

gence, cf. Theorem 2.5.3 of Cover and Thomas (2012) 5, it follows that

KL
(

Pt−1
π,f

ω−1
−j

,Pt−1
π,f

ω1
−j

)

= KL
(

Pt−2
π,f

ω−1
−j

⊗ PX ,P
t−2
π,f

ω1
−j

⊗ PX

)

+ Et−2
π,f

ω−1
−j

EXKL
(

Pπ,f
ω−1
−j

,t−1,Pπ,f
ω1
−j

,t−1

)

= KL
(

Pt−2
π,f

ω−1
−j

,Pt−2
π,f

ω1
−j

)

+ Et−2
π,f

ω−1
−j

EXKL
(

Pπ,f
ω−1
−j

,t−1,Pπ,f
ω1
−j

,t−1

)

.

To proceed, note that by (183) for any s = 1, ..., t− 1, u = (x, z) ∈ Rd × R(s−1)(d+1) (where u = x ∈ Rd

for s = 1) and f ∈ C
KL

(

Pπ,f
ω−1
−j

,s,Pπ,f
ω1
−j

,s

)

= KL
(

Pf
ω−1
−j

,1,Pf
ω1
−j

,1

)

1{πs(u)=1} +KL
(

P1/2,−1,P1/2,−1

)

1{πs(u)=−1}

= KL
(

Pf
ω−1
−j

,1,Pf
ω1
−j

,1

)

1{πs(u)=1}. (188)

Next, observe that the function fω−1
−j

− fω1
−j

is γ-Hölder continuous with constant 2. Furthermore, it

vanishes on the boundary of Bj . Using these observations along with (188) and gf(x) = A(f(x)) for
any f ∈ C, one obtains for any s = 1, ..., t− 1:

KL
(

Pπ,f
ω−1
−j

,s,Pπ,f
ω1
−j

,s

)

= KL
(

Pf
ω−1
−j

,1,Pf
ω1
−j

,1

)

1{πs(u)=1}

≤ 1

(1 + ā− δ)2
(

gf
ω−1
−j

(x)− gf
ω1
−j

(x)
)2

1{πs(u)=1,x∈Bj}

≤ c21
(1 + ā− δ)2

(

fω−1
−j
(x)− fω1

−j
(x)
)2

1{πs(z)=1,x∈Bj}

≤ 4c̃2

P 2γ
1{πs(u)=1,x∈Bj},

5While the proof in Cover and Thomas (2012) is for discrete measures, the same proof technique applies equally well to
measures equivalent to a product of Lebesgue measures which is the case in our setting as observed at the end of Step 2.
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for a constant c̃ = c1d
γ/2/(1 + ā − δ) (with c1 being the Lipschitz constant of A). It thus follows by

induction that for any t = 1, ..., n, j = 1, ..., m and policy π

KL
(

Pt−1
π,f

ω−1
−j

,Pt−1
π,f

ω1
−j

)

≤ 4c̃2

P 2γ
Nj,π,

where Nj,π := En−1
π,f

ω
−1
−j

EX

∑n
s=1 1{πs(Xs,Zs−1)=1,Xs∈Bj}. Thus,

n
∑

t=1

Qj
t ≥ n

2m−1

4P d
exp

(

− 4c̃2

P 2γ
Nj,π

)

On the other hand, one also has

n
∑

t=1

Qj
t =

n
∑

t=1

∑

ω−j∈Ωm−1

∑

i∈{−1,1}

Et−1
π,f

ωi
−j

[PX(πt(Xt, Zt−1) 6= i, Xt ∈ Bj)]

≥
n
∑

t=1

∑

ω−j∈Ωm−1

Et−1
π,f

ω−1
−j

[PX(πt(Xt, Zt−1) = 1, Xt ∈ Bj)]

= 2m−1Nj,π.

Using the above two displays in (187) yields

sup
f∈C

En
π,f [Sn(π)] ≥

1

2

m
∑

j=1

max

(

n

4P d
exp

(

− 4c̃2

P 2γ
Nj,π

)

, Nj,π

)

≥ 1

4

m
∑

j=1

(

n

4P d
exp

(

− 4c̃2

P 2γ
Nj,π

)

+Nj,π

)

≥ m

4
inf
z≥0

(

n

4P d
exp

(

− 4c̃2

P 2γ
z
)

+ z

)

.

The unique

z∗ = argmin
z≥0

{ n

4P d
exp

(

− 4c̃2

P 2γ
z
)

+ z
}

=
P 2γ

4c̃2
log
(

c̃2nP−d−2γ
)

is strictly positive if and only if P <
(

nc̃2
)1/(d+2γ)

in which case, upon choosing P = ⌈0.5
(

nc̃2
)1/(d+2γ)⌉

and recalling m = ⌈0.5P d−αγ⌉, we get

sup
f∈C

En
π,f [Sn(π)] ≥

m

4

P 2γ

4c̃2
ln
(

c̃2nP−d−2γ
)

≥ P d+γ(2−α)

32c̃2
ln(2d+2γ)

≥ 0.5d+γ(2−α)

32c̃2
(nc̃2)

d+γ(2−α)
d+2γ ln(2d+2γ) ≥ 0.5d+2d ln(2)

32
c̃−

2αγ
d+2γ n1− αγ

d+2γ

≥ 0.5d+2d ln(2)

32

( c1d

1 + ā− δ
∨ 1
)− 2αγ

d+2γ

n1− αγ
d+2γ ≥ 0.5d+2d ln(2)

32

( c1d

1 + ā− δ
∨ 1
)− 2

d+2

n1− αγ
d+2γ

= c3n
1− αγ

d+2γ
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for a constant c3 =
0.5d+2d ln(2)

32

(

c1d
1+ā−δ

∨ 1
)− 2

d+2
depending on neither α nor γ.

Proof of Theorem 5.2. The proof of this theorem relies on Theorem 5.1 and the notation used is as in
that theorem. Let

F(γ) =
{

f : [0, 1]d → [1/4, 3/4] such that |f(x1)− f(x2)| ≤ 1/2||x1 − x2||γ for all x1, x2 ∈ [0, 1]d
}

.

Note that
⋃

γ>0 F(γ) ⊆ C[0, 1]d. Thus, since cl in Theorem 5.1 does not depend on γ, we get

sup
f∈C

[0,1]d

En
π,f [Rn(π)] ≥ sup

f∈
⋃

γ>0
F(γ)

En
π,f [Rn(π)] ≥ cln.

Proof of Theorem 5.3. Fix a policy π and choose α ∈ (0, 1) such that γα/(2γ+d) < ε. Observe that S ⊆
S0 for all α > 0. Furthermore, since cl = cl(α) in Theorem 5.1 equals C̃(α)c

1+1/α
3 with C̃(α) as

in Lemma D.5 (the dependence on α is suppressed there) and c3 as in the last line of the proof of
Theorem 5.1 one has that

sup
(F 1,F 2)∈S0

E[Rn(π, F
1, F 2)] ≥ sup

(F 1,F 2)∈S

E[Rn(π, F
1, F 2)] ≥ cl(α)n

1−
γ(1+α)
2γ+d ≥ cl(α)n

1− γ
2γ+dn−ε.

Since α depends on ε, we write cl(ε) instead of cl(α).

Proof of Theorem 5.4. Throughout this proof we shall use notation defined in the proof of Theorem 5.1.
Fix a policy π ∈ Π̃ and let m1 = 2m with m = ⌈0.5P d−αγ⌉. Note that m1 ≤ P d for P ≥ P0 for P0

sufficiently large. Set P = P0. Define ω(1) := (ιm,−ιm), where ιm is a row vector of ones of length m,
and let ω(−1) := −ω(1). Set fi = fω(i) for i ∈ {−1, 1}. Given f ∈ {f1, f−1} ⊆ Cm1 , define Pf,1, P1/2,1,
P1/2,−1 and Pt

π,f as in Step 2 of the proof of Theorem 5.1. From the argument given in Step 3 of that
proof it follows that

C1 := {(Hgf(x), Hg1/2) : f ∈ {f1, f−1}} ⊆ S. (189)

Next, we define Z̃t = (Yπt(Zt−1),t, ..., Yπ1,1), and we denote the distribution of Z̃t by P̃t
π,f . We claim

that P̃t
π,f1

= P̃t
π,f−1

for every t ≥ 1. To this end, note first that from π ∈ Π̃ it follows that Z̃t =
Ft(Yt, . . . , Y1) for some measurable function Ft. Hence, since the Yt are i.i.d., in order to prove the claim
it is enough to verify that the distribution of the random vector Y1 does not depend on f ∈ C1. Using
the notation in Step 2 of the proof of Theorem 5.1 this is equivalent to: Pf1,1/2(A1 × A2 × [0, 1]d) =
Pf−1,1/2(A1 ×A2 × [0, 1]d) for all Borel sets A1, A2 in [0, 1]. To verify this equivalent condition, we write
Pf1,1/2(A1 × A2 × [0, 1]d) = P1/2,−1(A1)

∫

Pf1,1(A2, x)PX(dx) as

P1/2,−1(A1)

P d
∑

j=1

∫

Bj

Pf1,1(A2, x)PX(dx) = P1/2,−1(A1)

P d
∑

j=1

∫

Bj

Pf−1,1(A2, x)PX(dx), (190)

the latter coinciding with Pf−1,1/2(A1 × A2 × [0, 1]d), which proves the claim. Here we have used that
ω(1) = −ω(−1) implies

∫

Bj

Pf1,1(A2, x)PX(dx) =

∫

B2m+1−j

Pf−1,1(A2, x)PX(dx) for j = 1, . . . , 2m, (191)
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and that
∫

Bj

Pf1,1(A2, x)PX(dx) =

∫

Bj

Pf−1,1(A2, x)PX(dx) for j = 2m+ 1, . . . , P d. (192)

Now, to prove the theorem, by Lemma D.5 it suffices to show that supS E[Sn(π)] increases linearly in n.
Using Equation (189) we see that supS E[Sn(π)] ≥ supC1 E[Sn(π)] = supf1,f−1

En
π,f [Sn(π)]. Next, arguing

as in Equation (187) and exploiting π ∈ Π̃ we obtain

sup
f1,f−1

En
π,f [Sn(π)] ≥ sup

i∈{−1,1}

m
∑

j=1

n
∑

t=1

Et−1
π,fi

[

PX

(

πt(Z̃t−1) 6= i, Xt ∈ Bj

)

]

= sup
i∈{−1,1}

m
∑

j=1

n
∑

t=1

Pt−1
π,fi

(

πt(Z̃t−1) 6= i
)

PX(Bj)

= P−d sup
i∈{−1,1}

m
∑

j=1

n
∑

t=1

P̃t−1
π,fi

(

πt(Z̃t−1) 6= i
)

≥ (2P d)−1

m
∑

j=1

n
∑

t=1

(

P̃t−1
π,f1

(

πt(Z̃t−1) 6= −1
)

+ P̃t−1
π,f−1

(

πt(Z̃t−1) 6= 1
)

)

=
mn

2P d
≥ 1

4P αγ
0

n,

where we used independence of Xt and Z̃t−1 to obtain the first equality, that each summand in the last
double sum equals one (recall that P̃t−1

π,f1
= P̃t−1

π,f−1
) to obtain the last equality, and the definition of m to

obtain the final lower bound.
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