Sentimental Business Cycles

Andresa Lagerborg, Evi Pappa, Morten O. Ravn IMF, EUI, UCL, CEPR and CfM

Marseille, July 2019

Introduction

Sources of fluctuations in the economy: Much work estimates impact of 'fundamental shocks' on the economy:

- Technology shocks / investment specific shocks.
- Monetary/ fiscal/ credit/ trade policy shocks.
- Oil price / commodity price shocks.
- TFP uncertainty / policy uncertainty shocks.

Other shocks: Large share of the variances of macro aggregates remains unaccounted for:

- News (about fundamentals) shocks.
- Animal spirits / expectational shocks / non-fundamental shocks.

Non-Fundamental Shocks

This paper: Focus on contribution of non-fundamental "demand shocks."

Do they matter?

Key Challenge: How to estimate causal effects?

- Sentiments hard to translate into observables.
- Multiple equilibria: Some attempts using structural models.
- Animal spirits: Variety of recent attempts
 - Barsky and Sims (2012),
 - Levchenko and Pandalai-Nayar (2018), Forni et al. (2013)
 - Mian, Sufi and Khouskou (2015), Benhabib and Spiegel (2016), Feve and Guay (2018), Lagerborg (2017)

This paper: Central Contributions

- 1. Empirics: Estimate the dynamic causal effects of sentiment shocks:
 - Propose IV strategy for estimation.
- Combine IV with SVAR to estimate dynamic causal effects.
- 2. Theory: Build model and apply it for structural analysis:
 - Incomplete information and Bayesian learning.
 - Heterogeneous Agents New Keynesian with Search and Matching.
 - HANK&SAM provides amplification mechanism.
- 3. Quantification: Estimate key structural parameters:
 - Simulation based estimates of structural parameters.

Sentiments: Draw data from University of Michigan Survey of Consumer Confidence:

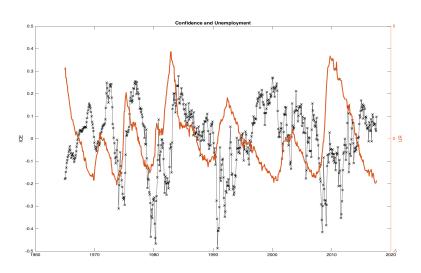
- Conducted since late 1940's:
- Monthly since 1977 (quarterly since 1952);
- 500 randomly drawn persons are interviewed per month;
- Asked about own situation and about US economy;

Three broad indices:

- Index of Consumer Sentiment (ICS): A mix of:
- Index of Current Economic Conditions (ICC), and
- Index of Consumer Expectations (ICE).

ICE is derived from answers to three questions (each given 1-5 score):

PEXP: "Now looking ahead-do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"


- PEXP: "Now looking ahead—do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole-do you think that during the next 12 months we'll have good times financially, or bad times, or what?"

- PEXP: "Now looking ahead—do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole-do you think that during the next 12 months we'll have good times financially, or bad times, or what?"
- BUS5: "...which would you say is more likely-that in the country as a whole we'll have continuous good times during the 5 years or so, or that we will have periods of widespread unemployment or depression, or what?"

- PEXP: "Now looking ahead—do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole-do you think that during the next 12 months we'll have good times financially, or bad times, or what?"
- BUS5: "..which would you say is more likely-that in the country as a whole we'll have continuous good times during the 5 years or so, or that we will have periods of widespread unemployment or depression, or what?"
 - Responses tend to be bimodal (either 1 or 5).

- PEXP: "Now looking ahead—do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole-do you think that during the next 12 months we'll have good times financially, or bad times, or what?"
- BUS5: "..which would you say is more likely-that in the country as a whole we'll have continuous good times during the 5 years or so, or that we will have periods of widespread unemployment or depression, or what?"
 - Responses tend to be bimodal (either 1 or 5).
 - ICE = 100 + "% positive respondents" "% negative respondents" (normalized to 1966 base).

ICE ICE B...

Does Consumer Confidence indices contain valuable information?

• Matsusaka and Sbordone (1995): ICS Granger causes GDP.

Does Consumer Confidence indices contain valuable information?

- Matsusaka and Sbordone (1995): ICS Granger causes GDP.
- Carroll, Fuhrer and Wilcox (1994): ICS has predictive power for consumption growth (controlling for income).

Does Consumer Confidence indices contain valuable information?

- Matsusaka and Sbordone (1995): ICS Granger causes GDP.
- Carroll, Fuhrer and Wilcox (1994): ICS has predictive power for consumption growth (controlling for income).
- **Ludvigson** (2004): ICE has predictive power for aggregate consumption growth (but not after controlling for the consumption-wealth ratio).

Does Consumer Confidence indices contain valuable information?

- Matsusaka and Sbordone (1995): ICS Granger causes GDP.
- Carroll, Fuhrer and Wilcox (1994): ICS has predictive power for consumption growth (controlling for income).
- **Ludvigson** (2004): ICE has predictive power for aggregate consumption growth (but not after controlling for the consumption-wealth ratio).
- Problem: Predictive power / Granger causality no causal interpretation, could be due to news about fundamentals.

Consumer confidence and sentiments: Generic model of ICE:

```
CI = F( fundamentals, news, noise, sentiments)
```

• How do we isolate non-fundamental component?

Consumer confidence and sentiments: Generic model of ICE:

```
CI = F( fundamentals, news, noise, sentiments)
```

- How do we isolate non-fundamental component?
- Propose a proxy:

```
CI = F( fundamentals, news, noise, \underbrace{\text{sentiments}} instrumented
```

Consumer confidence and sentiments: Generic model of ICE:

```
CI = F( fundamentals, news, noise, sentiments)
```

- How do we isolate non-fundamental component?
- Propose a proxy:

$$CI = F($$
 fundamentals, news, noise, sentiments) instrumented

• We adopt Proxy SVAR estimator (Mertens & Ravn, AER, 2013).

Consumer confidence and sentiments: Generic model of ICE:

```
CI = F( fundamentals, news, noise, sentiments)
```

- How do we isolate non-fundamental component?
- Propose a proxy:

$$CI = F($$
 fundamentals, news, noise, sentiments) instrumented

- We adopt Proxy SVAR estimator (Mertens & Ravn, AER, 2013).
- Use an external instrument to proxy for the structural shock.

Consumer confidence and sentiments: Generic model of ICE:

```
CI = F( fundamentals, news, noise, sentiments)
```

- How do we isolate non-fundamental component?
- Propose a proxy:

$$CI = F($$
 fundamentals, news, noise, sentiments) instrumented

- We adopt Proxy SVAR estimator (Mertens & Ravn, AER, 2013).
- Use an external instrument to proxy for the structural shock.
- Can be estimated with 2SLS or 3SLS.

Assume that the dynamics of observables is:

$$\mathbf{X}_t = \mathbf{A}(L)\mathbf{X}_{t-1} + \mathbf{u}_t$$
 innovations $\mathbf{u}_t = \mathbf{B} \mathbf{e}_t$ structural shocks

Structural shocks not observed.

Assume that the dynamics of observables is:

$$\mathbf{X}_t = \mathbf{A}(L)\mathbf{X}_{t-1} + \mathbf{u}_t$$
 innovations $\mathbf{u}_t = \mathbf{B} \mathbf{e}_t$ structural shocks

- Structural shocks not observed.
- We want to identify the relevant column of B.

Assume that the dynamics of observables is:

$$\mathbf{X}_t = \mathbf{A}(L)\mathbf{X}_{t-1} + \mathbf{u}_t$$
 innovations $\mathbf{u}_t = \mathbf{B} \mathbf{e}_t$ structural shocks

- Structural shocks not observed.
- We want to identify the relevant column of B.
- Order CI (wlog) first

Identification

• Aim: Identify structural shock to CI and its effects

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{ extbf{CI},t}
ight)=arphi
eq0$$
 (Relevance) $\mathbb{E}\left(s_{t}e_{
eq extbf{CI},t}
ight)=0$ (Exogeneity)

Identification

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{ extbf{CI},t}
ight)=arphi
eq0$$
 (Relevance) $\mathbb{E}\left(s_{t}e_{
eq extbf{CI},t}
ight)=0$ (Exogeneity)

 \Rightarrow s_t identifies $e_{CI,t}$ and B_{CI} column.

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{ extbf{CI},t}
ight)=arphi
eq0$$
 (Relevance) $\mathbb{E}\left(s_{t}e_{
eq extbf{CI},t}
ight)=0$ (Exogeneity)

- \Rightarrow s_t identifies $e_{Cl,t}$ and B_{Cl} column.
 - From this can compute identified impulse responses etc.

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{ extbf{CI},t}
ight)=arphi
eq0$$
 (Relevance) $\mathbb{E}\left(s_{t}e_{
eq extbf{CI},t}
ight)=0$ (Exogeneity)

- \Rightarrow s_t identifies $e_{CI,t}$ and B_{CI} column.
 - From this can compute identified impulse responses etc.
 - Implements IV with external instrument in a VAR

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{ extbf{CI},t}
ight)=arphi
eq0$$
 (Relevance) $\mathbb{E}\left(s_{t}e_{
eq extbf{CI},t}
ight)=0$ (Exogeneity)

- \Rightarrow s_t identifies $e_{CI,t}$ and B_{CI} column.
 - From this can compute identified impulse responses etc.
 - Implements IV with external instrument in a VAR
 - Proxy needs to be correlated with true shock but not equal to it

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t$ a proxy such that:

$$\mathbb{E}\left(s_{t}e_{ extbf{CI},t}
ight)=arphi
eq0$$
 (Relevance) $\mathbb{E}\left(s_{t}e_{
eq extbf{CI},t}
ight)=0$ (Exogeneity)

- \Rightarrow s_t identifies $e_{Cl,t}$ and B_{Cl} column.
 - From this can compute identified impulse responses etc.
 - Implements IV with external instrument in a VAR
 - Proxy needs to be correlated with true shock but not equal to it
 - Allows for measurement errors and one can correct for scaling issues

Instrument: Fatalities in mass shootings in the US.

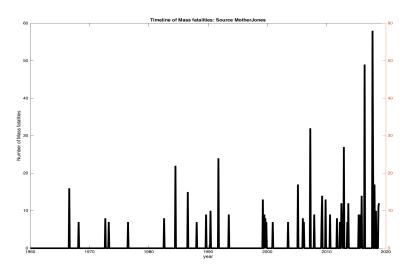
 mass shootings = 7 fatalities or more (perpetrator excluded), lone shooter, public space.

- mass shootings = 7 fatalities or more (perpetrator excluded), lone shooter, public space.
- **Source**: MotherJones 1982-2019, Duwe (2007), News Archives, Wikipedia 1960-81

- mass shootings = 7 fatalities or more (perpetrator excluded), lone shooter, public space.
- Source: MotherJones 1982-2019, Duwe (2007), News Archives, Wikipedia 1960-81
- 46 events in total, 21 had 10 fatalities or more.

- mass shootings = 7 fatalities or more (perpetrator excluded), lone shooter, public space.
- Source: MotherJones 1982-2019, Duwe (2007), News Archives, Wikipedia 1960-81
- 46 events in total, 21 had 10 fatalities or more.
- Most perpetrators (60%) had prior long term mental health problem.

- mass shootings = 7 fatalities or more (perpetrator excluded), lone shooter, public space.
- Source: MotherJones 1982-2019, Duwe (2007), News Archives, Wikipedia 1960-81
- 46 events in total, 21 had 10 fatalities or more.
- Most perpetrators (60%) had prior long term mental health problem.
- 97.5 percent of perpetrators are male.


- mass shootings = 7 fatalities or more (perpetrator excluded), lone shooter, public space.
- Source: MotherJones 1982-2019, Duwe (2007), News Archives, Wikipedia 1960-81
- 46 events in total, 21 had 10 fatalities or more.
- Most perpetrators (60%) had prior long term mental health problem.
- 97.5 percent of perpetrators are male.
- Mass shootings are unpredictable over time.

Instrument

Instrument: Fatalities in mass shootings in the US.

- mass shootings = 7 fatalities or more (perpetrator excluded), lone shooter, public space.
- Source: MotherJones 1982-2019, Duwe (2007), News Archives, Wikipedia 1960-81
- 46 events in total, 21 had 10 fatalities or more.
- Most perpetrators (60%) had prior long term mental health problem.
- 97.5 percent of perpetrators are male.
- Mass shootings are unpredictable over time.
- Each event unlikely to bear much in terms of direct costs.

Fatalities in Mass Shootings

Mechanism: Shooting -> News -> Confidence

Incident	Year	TV cov.	TV time	Articles	Words
Sandy Hook	2012	99	11:27:56	130	118,354
G. Clifford shooting	2011	133	11:19:28	89	91,715
Fort Hood sh.	2009	31	05:05:00	36	35,097
Virginia Tech shooting	2007	59	06:12:12	36	33,473
Aurora sh.	2012	70	08:49:48	31	23,715
Red Lake massacre	2005	15	00:48:40	19	18,519

(Vanderbilt TV News Archive, Schildkraut, Elsass and Meredith, 2017)

 Conclusion: Many (most) Americans would be aware of mass shooting events.

Mechanism: Shooting -> News -> Confidence

Incident	Year	TV cov.	TV time	Articles	Words
Sandy Hook	2012	99	11:27:56	130	118,354
G. Clifford shooting	2011	133	11:19:28	89	91,715
Fort Hood sh.	2009	31	05:05:00	36	35,097
Virginia Tech shooting	2007	59	06:12:12	36	33,473
Aurora sh.	2012	70	08:49:48	31	23,715
Red Lake massacre	2005	15	00:48:40	19	18,519

(Vanderbilt TV News Archive, Schildkraut, Elsass and Meredith, 2017)

- Conclusion: Many (most) Americans would be aware of mass shooting events.
- Lankford (2018): Mass killers (7 biggest shootings since 2012)
 received more news coverage than top sports stars and celebrities.

Mechanism: Shooting -> News -> Confidence

Incident	Year	TV cov.	TV time	Articles	Words
Sandy Hook	2012	99	11:27:56	130	118,354
G. Clifford shooting	2011	133	11:19:28	89	91,715
Fort Hood sh.	2009	31	05:05:00	36	35,097
Virginia Tech shooting	2007	59	06:12:12	36	33,473
Aurora sh.	2012	70	08:49:48	31	23,715
Red Lake massacre	2005	15	00:48:40	19	18,519

(Vanderbilt TV News Archive, Schildkraut, Elsass and Meredith, 2017)

- Conclusion: Many (most) Americans would be aware of mass shooting events.
- Lankford (2018): Mass killers (7 biggest shootings since 2012)
 received more news coverage than top sports stars and celebrities.
- Mass shootings impact on psychological well-being: PTSD symptoms (Hughes et al, 2011), subjective well-being (Clark and Stancanelli, 2017) - potential for direct impact on confidence.

Implementation: US time series data:

Monthly data.

- Monthly data.
- Consider 1965:1 2007:8 sample to avoid confusing with GFC.

- Monthly data.
- Consider 1965:1 2007:8 sample to avoid confusing with GFC.
- Estimate VAR with 18 lags.

- Monthly data.
- Consider 1965:1 2007:8 sample to avoid confusing with GFC.
- Estimate VAR with 18 lags.
- Benchmark VAR:

$$\mathbf{X}_t = \left(egin{array}{ll} CI_t & (ext{log consumer confidence}) \ Y_t & (ext{log industrial production}) \ U_t & (ext{unemployment rate}) \ P_t & (ext{log CPI}) \ R_t & (ext{Federal funds rate}) \ SP_t & (ext{SP 500 / CPI}) \ \Phi_t & (ext{Uncertainty, Jurado et al}) \ \end{array}
ight)$$

Implementation: US time series data:

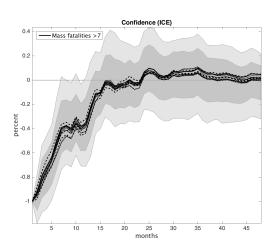
- Monthly data.
- Consider 1965:1 2007:8 sample to avoid confusing with GFC.
- Estimate VAR with 18 lags.
- Benchmark VAR:

$$\mathbf{X}_t = \left(egin{array}{ll} CI_t & (ext{log consumer confidence}) \ Y_t & (ext{log industrial production}) \ U_t & (ext{unemployment rate}) \ P_t & (ext{log CPI}) \ R_t & (ext{Federal funds rate}) \ SP_t & (ext{SP 500 / CPI}) \ \Phi_t & (ext{Uncertainty, Jurado et al}) \end{array}
ight)$$

• Detrend all apart from R_t with 4th order time polynomial.

- Monthly data.
- Consider 1965:1 2007:8 sample to avoid confusing with GFC.
- Estimate VAR with 18 lags.
- Benchmark VAR:

$$\mathbf{X}_t = \left(egin{array}{ll} CI_t & (ext{log consumer confidence}) \ Y_t & (ext{log industrial production}) \ U_t & (ext{unemployment rate}) \ P_t & (ext{log CPI}) \ R_t & (ext{Federal funds rate}) \ SP_t & (ext{SP 500 / CPI}) \ \Phi_t & (ext{Uncertainty, Jurado et al}) \ \end{array}
ight)$$


- Detrend all apart from R_t with 4th order time polynomial.
- Instrument: Detrended fatalities in shootings with ≥ 7 fatalities

Relevance

A. Benchmark VAR						
	Proxy	F-test value				
Sample		F ^{HOM}	F ^{MOP}			
1965:1-2007:8	MassFat ₇	11.3	17.6			
1965:1-2015:12	$MassFat_7$	11.8	6.3			
1965:1-2018:11	$MassFat_7$	5.4	2.4			
1965:1-2007:8	$MassFat_3$	8.9	7.3			

• Use Montiel Olea, Stock and Watson (2017) parametric bootstrap with Newey-West HAC-robust covariance matrix

Relevance

- Significant drop in ICE for approximately 2 years.
- Relevance √

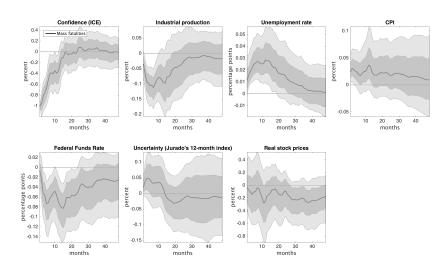
Impulse Responses

Dynamic Causal Effects: Now look at dynamic causal effects of autonomous changes in consumer sentiments.

• Normalization: 1 percent drop in consumer confidence.

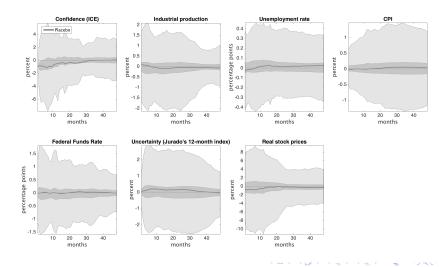
Impulse Responses

Dynamic Causal Effects: Now look at dynamic causal effects of autonomous changes in consumer sentiments.


- Normalization: 1 percent drop in consumer confidence.
- Augment with other variables.

Impulse Responses

Dynamic Causal Effects: Now look at dynamic causal effects of autonomous changes in consumer sentiments.


- Normalization: 1 percent drop in consumer confidence.
- Augment with other variables.
- Look at relationship to other shocks.

Benchmark VAR

Placebo: Random Reshuffling of Shootings

IV with random reshuffling of mass fatalities

Dynamic Causal Effects: Robustness and impact on other variables:

Robust to using news coverage.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to removing individual big shootings.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to removing individual big shootings.

Other variables:

Drop in consumption.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to removing individual big shootings.

- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to removing individual big shootings.

- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.

Dynamic Causal Effects: Robustness and impact on other variables:

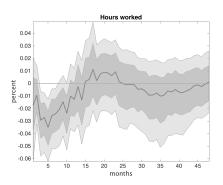
- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to removing individual big shootings.

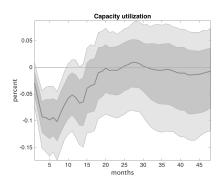
- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.
- Nominal exchange rate depreciates.

Dynamic Causal Effects: Robustness and impact on other variables:

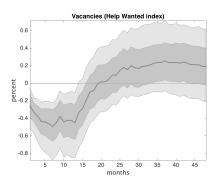
- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to removing individual big shootings.

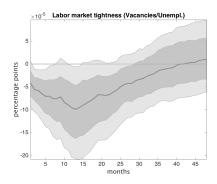
- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.
- Nominal exchange rate depreciates.
- TFP: No impact.

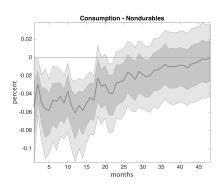

Dynamic Causal Effects: Robustness and impact on other variables:

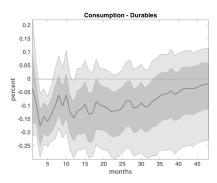

- Robust to using news coverage.
- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to removing individual big shootings.

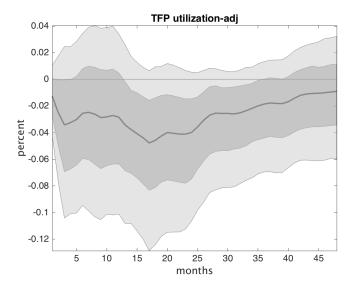
- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.
- Nominal exchange rate depreciates.
- TFP: No impact.
- Relationship to uncertainty: No significant impact.



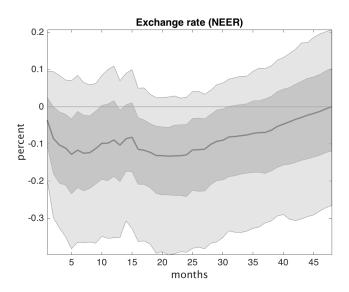

Inputs




Labor Market



Consumption



Fernald Capacity Util. Adj. TFP

Nominal Exchange Rate

Business Cycles

Table 3: Forecast Error Variance Decomposition							
	Forecast horizon (months)					hs)	
Variable	1	3	6	12	48	120	
Index of consumer expectations	75	70	59	49	36	28	
Unemployment rate	26	34	40	44	25	20	
Vacancies	39	40	37	34	17	13	
Labor market tightness	20	20	19	18	16	15	
hours worked per worker	3	15	19	16	7	8	
Capacity utilization	11	18	21	19	7	7	
Industrial production	12	19	25	25	14	13	
Consumption of non-durables	16	28	31	37	38	32	
Consumption of durables	8	21	23	18	20	15	
Inflation rate	25	20	14	11	4	4	
Federal funds rate	3	9	17	20	18	15	
Stock prices	3	4	4	5	12	13	
Uncertainty	9	7	6	4	3	4	

Theory

Households:

- Search for jobs.
- Face uninsurable unemployment risk.
- Save in bonds and equity.

Firms:

- Monopolistically competitive.
- Face Rotemberg (1982) quadratic price adjustment costs.
- Hire labor in frictional matching market.

Monetary Authority:

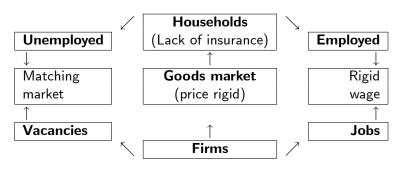
• Sets short term nominal interest rate.

Theory

Fundamental Shocks:

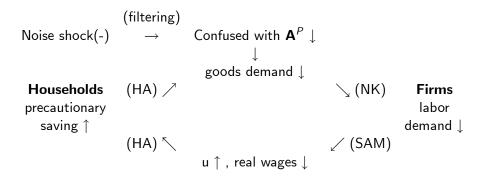
- Persistent aggregate productivity shocks.
- Transitory aggregate productivity shocks.
- Monetary policy shock.

Information:


 Imperfect common information: Only sum of productivity shocks observed.

Non-fundamental shock:

Noisy signal about persistent productivity shock.


Model

Agents and Markets:

$$\begin{array}{ccc} & & \text{(filtering)} \\ \text{Noise shock(-)} & \rightarrow & \text{Confused with } \mathbf{A}^P \downarrow \end{array}$$

$$\begin{array}{ccc} \text{(filtering)} \\ \mathsf{Noise\ shock(-)} & \to & \mathsf{Confused\ with\ } \mathbf{A}^P \downarrow \\ & \downarrow \\ & \mathsf{goods\ demand\ } \downarrow \end{array}$$

Households - Preferences

Composition: Continuum of single-member households. **Preferences**:

$$\mathcal{V}_{it} = \max \widehat{\mathbb{E}}_t \sum_{s=t}^{\infty} \beta^{s-t} \left(rac{\mathbf{c}_{i,s}^{1-\mu} - 1}{1-\mu} - \zeta \mathbf{n}_{i,s}
ight)$$
 ,

Consumption:

$$\mathbf{c}_{i,s} = \left(\int \left(c_{i,s}^{j}
ight)^{1-1/\gamma} dj
ight)^{1/(1-1/\gamma)}$$

Employment Status and Earnings:

$$\mathbf{n}_{i,s} = \begin{cases} 0 \text{ if not employed at date } s, \text{ home production } \vartheta \\ 1 \text{ if employed at date } s, \text{ earns wage } w_{i,s} \end{cases}$$

Technology - Production and Hiring

Technology:

$$\mathbf{y}_{j,s} = \exp\left(\mathbf{A}_{s}
ight) \left(\mathbf{z}_{js}\mathbf{k}_{js}
ight)^{ au} \mathbf{n}_{j,s}^{1- au}$$

Employment Dynamics:

$$\mathbf{n}_{j,s} = (1-\omega)\mathbf{n}_{j,s-1} + \mathbf{h}_{j,s}$$

Hiring:

$$\mathbf{h}_{j,s} = \mathbf{q}_s \mathbf{v}_{j,s}$$

• $v_{j,s} \ge 0$, flow cost $\kappa > 0$ per unit.

Capital accumulation:

$$\mathbf{k}_{j,s+1} = (1 - \delta\left(\mathbf{z}_{j,s}\right))\mathbf{k}_{j,s} + \mathbf{i}_{j,s}$$

Matching technology

Timing: (i) job losses, (ii) hiring, (iii) production.

Matching function:

$$\mathbf{M}_s = \overline{m} \mathbf{u}_s^{lpha} \mathbf{v}_s^{1-lpha},$$
 $\mathbf{v}_s = \int_j \mathbf{v}_{j,s} dj$

Matching rates: Let $\theta_s = \mathbf{v}_s/\mathbf{u}_s$ denote labor market tightness:

job finding rate:
$$\eta_s = \frac{\mathsf{M}_s}{\mathsf{u}_s} = \overline{m}\theta_s^{1-\alpha}$$

vacancy filling rate:
$$\mathbf{q}_s = \frac{\mathbf{M}_s}{\mathbf{v}_s} = \overline{m}^{1/(1-\alpha)} \eta_s^{-\alpha/(1-\alpha)}$$

Prices, Wages, Interest Rates

Price Setting: Monopolistically competition firms, price adjustment costs:

$$\max \widehat{\mathbb{E}}_t \sum_{s=t}^{\infty} \Lambda_{j,t,s} \left[\frac{\mathbf{P}_{j,s}}{\mathbf{P}_s} \mathbf{y}_{j,s} - \mathbf{w}_s \mathbf{n}_{j,s} - \kappa \mathbf{v}_{j,s} - \mathbf{i}_{j,s} - \frac{\phi}{2} \left(\frac{\mathbf{P}_{j,s} - \mathbf{P}_{j,s-1}}{\mathbf{P}_{j,s-1}} \right)^2 \mathbf{y}_s \right]$$

subject to:

$$\begin{aligned} \mathbf{y}_{j,s} &= \exp\left(\mathbf{A}_{s}\right) \left(\mathbf{z}_{j,s} \mathbf{k}_{j,s}\right)^{\tau} \mathbf{n}_{j,s}^{1-\tau} \\ \mathbf{n}_{j,s} &= \left(1-\omega\right) \mathbf{n}_{j,s-1} + \mathbf{h}_{j,s} \\ \mathbf{k}_{j,s+1} &= \left(1-\delta\left(\mathbf{z}_{j,s}\right)\right) \mathbf{k}_{j,s} + \mathbf{i}_{j,s} \\ \mathbf{y}_{j,s} &= \left(\frac{\mathbf{P}_{j,s}}{\mathbf{P}_{s}}\right)^{-\gamma} \mathbf{y}_{s} \end{aligned}$$

• $\Lambda_{j,t,s}$: firm owners' intertemporal discount factor.

Wages, Interest Rates, Asset Markets

Wages: Wage function:

$$\mathbf{w}_s = \overline{\mathbf{w}} \left(rac{\eta_s}{\overline{\eta}}
ight)^{\chi}$$

- Simplifies marginally by avoiding having wealth dependent wages.
- Correspond to Nash bargaining solution depending on parameters.

Monetary Policy: Interest Rate Rule:

$$\mathbf{R}_{s} = \mathbf{R}_{s-1}^{\delta_{R}} \left(\overline{R} \left(\frac{\Pi_{s}}{\overline{\Pi}} \right)^{\delta_{\pi}} \left(\frac{\theta_{s}}{\overline{\theta}} \right)^{\delta_{\theta}} \right)^{1-\delta_{R}} \exp \left(\mathbf{e}_{s}^{R} \right)$$

Assets and Borrowing Constraints: Limited participation

Bonds: $b_{i,s}$ - in zero net supply.

Equity: $x_{i,s}$ - positive net supply - only held by small subset of rich entrepreneurs

Tractable Equilibrium

Euler Equations:

$$\begin{split} \mathbf{c}_{r,s}^{-\mu} &\geq \beta \widehat{\mathbb{E}}_{s} \frac{\mathbf{R}_{s}}{\Pi_{s+1}} \mathbf{c}_{r,s+1}^{-\mu}, \\ \mathbf{c}_{u,s}^{-\mu} &\geq \beta \widehat{\mathbb{E}}_{s} \frac{\mathbf{R}_{s}}{\Pi_{s+1}} \left((1 - \eta_{s+1}) \, \mathbf{c}_{u,s+1}^{-\mu} + \eta_{s+1} \mathbf{c}_{e,s+1}^{-\mu} \right), \\ \mathbf{c}_{e,s}^{-\mu} &\geq \beta \widehat{\mathbb{E}}_{s} \frac{\mathbf{R}_{s}}{\Pi_{s+1}} \left(\omega \left(1 - \eta_{s+1} \right) \, \mathbf{c}_{u,s+1}^{-\mu} + \left(1 - \omega \left(1 - \eta_{s+1} \right) \right) \mathbf{c}_{e,s+1}^{-\mu} \right), \end{split}$$

- Entrepreneurs face no idiosyncratic risk.
- Asset poor unemployed will be in a corner.
- Asset poor employed will be on their Euler equation.
- Asset poor employed price the bonds.

Shocks and Information

Technology: Sum of persistent and transitory component:

$$\begin{split} \mathbf{A}_s &= \mathbf{A}_s^P + \boldsymbol{\varepsilon}_s^T, \ \boldsymbol{\varepsilon}_s^T \sim \operatorname{nid}\left(0, \sigma_T^2\right) \\ \mathbf{A}_s^P &= \rho_A \mathbf{A}_{s-1}^P + \boldsymbol{\varepsilon}_s^P, \ \boldsymbol{\varepsilon}_s^P \sim \operatorname{nid}\left(0, \sigma_P^2\right) \end{split}$$

Information: Imperfect common information.

- $\mathbf{A}_s \in I_s$ but $\mathbf{A}_s^P, \varepsilon_s^T \notin I_s$.
- Agents receive a signal on \mathbf{A}_s^P :

$$\Psi_s = \mathbf{A}_s^P + \varepsilon_s^S$$
, $\varepsilon_s^S \sim \operatorname{nid}\left(0, \sigma_S^2\right)$

 $oldsymbol{arepsilon}_{s}$: sentiment / expectational shock.

Monetary Policy:

$$\mathbf{e}_{s}^{R}=arepsilon_{s}^{R},\ arepsilon_{s}^{R}\sim\operatorname{nid}\left(0,\sigma_{R}^{2}
ight)$$

• Sentiments impact directly and indirectly on monetary policy.

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R} \widehat{\mathbb{E}}_{s} \widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t} \widehat{\Pi}_{t+1} - \beta \overline{R} \Theta^{F} \mathbb{E}_{t} \widehat{\eta}_{t+1} \right)$$

① Discounting: $\widehat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R} \widehat{\mathbb{E}}_{s} \widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t} \widehat{\Pi}_{t+1} - \beta \overline{R} \Theta^{F} \mathbb{E}_{t} \widehat{\eta}_{t+1} \right)$$

- **1 Discounting**: $\widehat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.
- Incomplete markets wedge:

$$\Theta^{F} \equiv \underbrace{\omega \eta \left((\vartheta/w)^{-\mu} - 1 \right)}_{\text{unemployment risk}} - \underbrace{\chi \mu \omega \left(1 - \eta \right)}_{\text{wage risk}}$$

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R} \widehat{\mathbb{E}}_{s} \widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t} \widehat{\Pi}_{t+1} - \beta \overline{R} \Theta^{F} \mathbb{E}_{t} \widehat{\eta}_{t+1} \right)$$

- **1 Discounting**: $\widehat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.
- Incomplete markets wedge:

$$\Theta^{F} \equiv \underbrace{\omega \eta \left((\vartheta/w)^{-\mu} - 1 \right)}_{\text{unemployment risk}} - \underbrace{\chi \mu \omega \left(1 - \eta \right)}_{\text{wage risk}}$$

• procyclical if $\Theta^F < 0$: Stabilization

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R} \widehat{\mathbb{E}}_{s} \widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t} \widehat{\Pi}_{t+1} - \beta \overline{R} \Theta^{F} \mathbb{E}_{t} \widehat{\eta}_{t+1} \right)$$

- **1 Discounting**: $\widehat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.
- Incomplete markets wedge:

$$\Theta^{F} \equiv \underbrace{\omega \eta \left((\vartheta/w)^{-\mu} - 1 \right)}_{\text{unemployment risk}} - \underbrace{\chi \mu \omega \left(1 - \eta \right)}_{\text{wage risk}}$$

- procyclical if $\Theta^F < 0$: Stabilization
- countercyclical if $\Theta^F > 0$: Amplification/Propagation

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R} \widehat{\mathbb{E}}_{s} \widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t} \widehat{\Pi}_{t+1} - \beta \overline{R} \Theta^{F} \mathbb{E}_{t} \widehat{\eta}_{t+1} \right)$$

- **1 Discounting**: $\widehat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.
- Incomplete markets wedge:

$$\Theta^{F} \equiv \underbrace{\omega \eta \left((\vartheta/w)^{-\mu} - 1 \right)}_{\text{unemployment risk}} - \underbrace{\chi \mu \omega \left(1 - \eta \right)}_{\text{wage risk}}$$

- procyclical if $\Theta^F < 0$: Stabilization
- countercyclical if $\Theta^F > 0$: Amplification/Propagation
- **acyclical** if $\Theta^F = 0$: No endogenous risk feedback.

Countercyclical risk: Amplification

- Countercyclical risk: Amplification
- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.

- Countercyclical risk: Amplification
- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.
- Procyclical risk: Stabilization

- Countercyclical risk: Amplification
- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.
- Procyclical risk: Stabilization
- recession ⇒ lower real wage ⇒ less precautionary savings demand ⇒ demand expands at the current real interest rate ⇒ stabilization.

- Countercyclical risk: Amplification
- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.
- Procyclical risk: Stabilization
- recession ⇒ lower real wage ⇒ less precautionary savings demand ⇒ demand expands at the current real interest rate ⇒ stabilization.
- Hence, key to the endogenous risk channel is whether unemployment risk or wage risk matters most.

Estimation: Divide parameters into two sets:

• Θ_1 : Calibrated.

Estimation: Divide parameters into two sets:

- Θ₁: Calibrated.
- Θ_2 : Estimated by a simulation estimator:

$$\widehat{\Theta}_{2} = \arg\min_{\Theta_{2}} \left[\left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right)^{\prime} \Sigma_{\textit{d}}^{-1} \left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right) \right]$$

Estimation: Divide parameters into two sets:

- Θ₁: Calibrated.
- Θ_2 : Estimated by a simulation estimator:

$$\widehat{\Theta}_{2} = \arg\min_{\Theta_{2}} \left[\left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right)^{\prime} \Sigma_{\textit{d}}^{-1} \left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right) \right]$$

• $\widehat{\Lambda}_T^d$: Moments that are matched:

$$\widehat{\Lambda}_{T}^{d} = \left[\mathbf{F} - \mathbf{stat}, \sigma_{\mathbf{Solow}}^{2}, \mathbf{IRF}_{nfore} \right]$$

 $\mathsf{IRF}_{nfore} = [\mathsf{identified} \; \mathsf{impulse} \; \mathsf{resp.} \; \mathsf{to} \; \mathsf{sentiments}]_1^{nfore}$

Estimation: Divide parameters into two sets:

- Θ_1 : Calibrated.
- Θ_2 : Estimated by a simulation estimator:

$$\widehat{\Theta}_{2} = \arg\min_{\Theta_{2}} \left[\left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right)^{\prime} \Sigma_{\textit{d}}^{-1} \left(\widehat{\Lambda}_{T}^{\textit{d}} - \Lambda_{T}^{\textit{m}} \left(\Theta_{2} | \Theta_{1} \right) \right) \right]$$

• $\widehat{\Lambda}_T^d$: Moments that are matched:

$$\widehat{\Lambda}_{T}^{d} = \left[\mathbf{F} - \mathbf{stat}, \sigma_{\mathbf{Solow}}^{2}, \mathbf{IRF}_{nfore}\right]$$

$$\mathbf{IRF}_{nfore} = \left[\mathrm{identified\ impulse\ resp.\ to\ sentiments}\right]_{1}^{nfore}$$

• $\Lambda^m_T\left(\Theta_2\middle|\Theta_1\right)$: Model equivalents of $\widehat{\Lambda}^d_T$ obtained by simulation.

Assume (Barsky-Sims, 2012):

$$\mathbf{CI}_{t} = \zeta_{1}\left(\mathbf{a}_{t} - \mathbf{a}_{t-1} - \mathbf{g}_{t|t-1}\right) + \zeta_{2}\left(\mathbf{g}_{t|t} - \rho_{\mathsf{a}}\mathbf{g}_{t|t-1}\right) + \zeta_{2}\varepsilon_{c,t}$$

Assume (Barsky-Sims, 2012):

$$\mathbf{CI}_{t} = \zeta_{1}\left(\mathbf{a}_{t} - \mathbf{a}_{t-1} - \mathbf{g}_{t|t-1}\right) + \zeta_{2}\left(\mathbf{g}_{t|t} - \rho_{\mathsf{a}}\mathbf{g}_{t|t-1}\right) + \zeta_{2}\varepsilon_{c,t}$$

2 Simulate model to generate:

$$\mathbf{X}_t^{theory} = \left(egin{array}{ll} CI_t & ext{(log consumer confidence)} \ Y_t & ext{(log industrial production)} \ U_t & ext{(unemployment rate)} \ P_t & ext{(log CPI)} \ R_t & ext{(Federal funds rate)} \end{array}
ight)$$

Assume (Barsky-Sims, 2012):

$$\mathbf{CI}_{t} = \zeta_{1}\left(\mathbf{a}_{t} - \mathbf{a}_{t-1} - \mathbf{g}_{t|t-1}\right) + \zeta_{2}\left(\mathbf{g}_{t|t} - \rho_{\mathsf{a}}\mathbf{g}_{t|t-1}\right) + \zeta_{2}\varepsilon_{c,t}$$

2 Simulate model to generate:

$$\mathbf{X}_t^{\textit{theory}} = \left(egin{array}{ll} \textit{CI}_t & (ext{log consumer confidence}) \ \textit{Y}_t & (ext{log industrial production}) \ \textit{U}_t & (ext{unemployment rate}) \ \textit{P}_t & (ext{log CPI}) \ \textit{R}_t & (ext{Federal funds rate}) \end{array}
ight)$$

3 Add measurement error to $\widetilde{\mathbf{X}}_t^{theory} = \mathbf{X}_t^{theory} + m_{1,t}$, detrend.

Assume (Barsky-Sims, 2012):

$$\mathbf{CI}_{t} = \zeta_{1}\left(\mathbf{a}_{t} - \mathbf{a}_{t-1} - \mathbf{g}_{t|t-1}\right) + \zeta_{2}\left(\mathbf{g}_{t|t} - \rho_{\mathsf{a}}\mathbf{g}_{t|t-1}\right) + \zeta_{2}\varepsilon_{c,t}$$

2 Simulate model to generate:

$$\mathbf{X}_{t}^{\textit{theory}} = \left(egin{array}{ll} \textit{CI}_{t} & (ext{log consumer confidence}) \\ \textit{Y}_{t} & (ext{log industrial production}) \\ \textit{U}_{t} & (ext{unemployment rate}) \\ \textit{P}_{t} & (ext{log CPI}) \\ \textit{R}_{t} & (ext{Federal funds rate}) \end{array}
ight)$$

- **3** Add measurement error to $\widetilde{\mathbf{X}}_t^{theory} = \mathbf{X}_t^{theory} + m_{1,t}$, detrend.
- **①** Use 23 largest realizations of $\varepsilon_t^S + m_{2,t}$ as proxy for sentiment shock.

Assume (Barsky-Sims, 2012):

$$\mathbf{CI}_{t} = \zeta_{1}\left(a_{t} - a_{t-1} - g_{t|t-1}\right) + \zeta_{2}\left(g_{t|t} - \rho_{\mathsf{a}}g_{t|t-1}\right) + \zeta_{2}\varepsilon_{c,t}$$

2 Simulate model to generate:

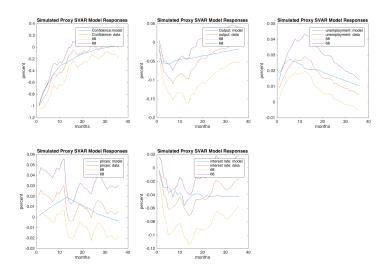
$$\mathbf{X}_t^{\textit{theory}} = \left(egin{array}{ll} \textit{CI}_t & (ext{log consumer confidence}) \ \textit{Y}_t & (ext{log industrial production}) \ \textit{U}_t & (ext{unemployment rate}) \ \textit{P}_t & (ext{log CPI}) \ \textit{R}_t & (ext{Federal funds rate}) \end{array}
ight)$$

- **3** Add measurement error to $\widetilde{\mathbf{X}}_t^{theory} = \mathbf{X}_t^{theory} + m_{1,t}$, detrend.
- **1** Use 23 largest realizations of $\varepsilon_t^S + m_{2,t}$ as proxy for sentiment shock.
- $\textbf{ § Estimate Proxy SVAR N times on theory data and obtain } \Lambda^m_T\left(\Theta_2\big|\Theta_1\right)$

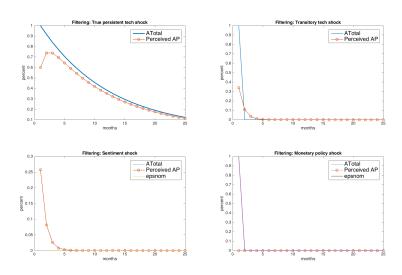
$$\Lambda_{T}^{m}\left(\Theta_{2}\middle|\Theta_{1}\right) = \frac{1}{N}\sum_{i=1}^{N}\Lambda_{T}^{m}\left(\Theta_{2}\middle|\Theta_{1}\right)_{i}$$

Calibrated parameters (monthly)

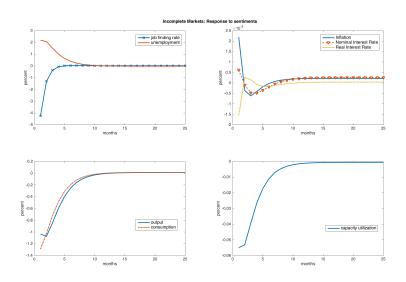
Parameter	Meaning	Value
ū	st.st. unemployment rate	6 percent
$\overline{\eta}$	st.st. job finding rate	34 percent
α	matching function parameter	0.6
$(\kappa/\overline{\mathbf{q}})/(3\overline{\mathbf{w}})$	st.st. hiring cost	4.5 percent
ζ	price contract length	6 months
γ	elasticity of substitution	8
au	output elasticity to capital	0.35
$\xi_{\delta,z}$	elast. of depr. rate to cap.ut.	1
δ	depreciation rate (annually)	7.1 percent
$\overline{\mathbf{R}}/\overline{\Pi}$	st.st. gross real rate	$1.04^{1/12}$
$\overline{\Pi}$	st.st. gross inflation rate	1
δ_R	interest rate smoothing	0.5
σ_m	st. dev., monetary pol. shock	0.1 percent
μ	CRRA parameter	2
$(c_e-c_u)/c_e$	st.st. cons. drop upon unempl.	15 percent

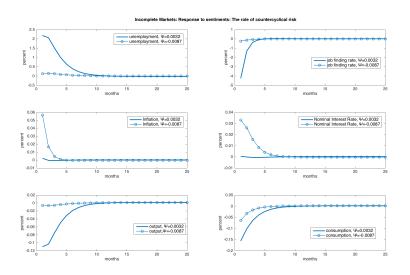

Estimated Parameters

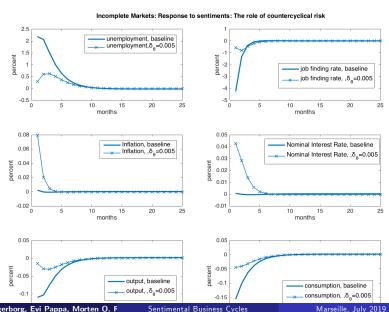
Parameter	Meaning	Estimates
$\overline{\chi}$	real wage elasticity	0.0211
$ ho_A$	persistence of TFP shocks	0.9165
δ_Π	interest rate resp. to infl.	1.166
$\delta_{ heta}$	interest rate resp. to tightness	0.0005
β	implied disc. factor (annually)	0.87
Θ^F	implied risk wedge	0.0034

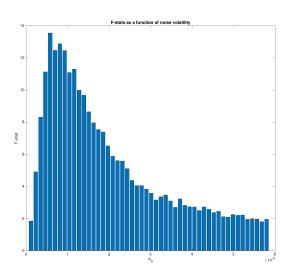

Estimated Parameters

Parameter	Meaning	Estimate
σ_P	std., persistent TFP shock	0.09 percent
σ_T/σ_P	std., trans. TFP shock	1.144 percent
σ_{S}/σ_{P}	std., sentiment shock	1.318 percent
$ ho_{ extsf{CI}}$	confidence persistence	0.923
ϑ_1	confidence parameter	342
ϑ_2	confidence parameter	28.4
σει	measurement error, confidence	0.01 percent


Matched VAR IRFs (1)


True Model IRFS


True Model IRFS


Role of Countercyclical Risk

Role of monetary stabilization

Role of Noise

Key contributions:

• Proposed dynamic causal estimation of consumer sentiment shocks

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Confidence matters for labor market

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Confidence matters for labor market
- Interaction with monetary policy

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Confidence matters for labor market
- Interaction with monetary policy
- Proposed HANK&SAM model with imperfect information to account for this

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Confidence matters for labor market
- Interaction with monetary policy
- Proposed HANK&SAM model with imperfect information to account for this
- Find countercyclical risk wedge to be important

Confidence and Sentiments: Think of consumer confidence as:

CI = F (fundamentals, news, noise, sentiments)

• How can one isolate the expectational/non-fundamental component?

Confidence and Sentiments: Think of consumer confidence as:

CI = F (fundamentals, news, noise, sentiments)

- How can one isolate the expectational/non-fundamental component?
- Barsky and Sims: Estimate VAR:

$$\begin{aligned} \mathbf{X}_t &= \left[\begin{array}{c} \mathbf{C} \mathbf{I}_t \\ \mathbf{C}_t \\ \mathbf{Y}_t \end{array} \right] \\ \mathbf{X}_t &= \mathbf{A} \left(L \right) \mathbf{X}_{t-1} + \mathbf{u}_t \end{aligned}$$

Confidence and Sentiments: Think of consumer confidence as:

CI = F (fundamentals, news, noise, sentiments)

- How can one isolate the expectational/non-fundamental component?
- Barsky and Sims: Estimate VAR:

$$egin{align} \mathbf{X}_t &= \left[egin{array}{c} \mathbf{C} \mathbf{I}_t \\ \mathbf{C}_t \\ \mathbf{Y}_t \end{array}
ight] \ \mathbf{X}_t &= \mathbf{A}\left(L
ight) \mathbf{X}_{t-1} + \mathbf{u}_t \end{aligned}$$

Look at response to innovation to CI_t.

Confidence and Sentiments: Think of consumer confidence as:

CI = F (fundamentals, news, noise, sentiments)

- How can one isolate the expectational/non-fundamental component?
- Barsky and Sims: Estimate VAR:

$$egin{aligned} \mathbf{X}_t &= \left[egin{array}{c} \mathbf{C} \mathbf{I}_t \\ \mathbf{C}_t \\ \mathbf{Y}_t \end{array}
ight] \ \mathbf{X}_t &= \mathbf{A}\left(L
ight) \mathbf{X}_{t-1} + \mathbf{u}_t \end{aligned}$$

- Look at response to innovation to CI_t.
- Do not claim causality

Barsky and Sims: Construct NK model with imperfect information.

TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{a},t} \\ \mathbf{g}_t &= (1 - \rho_{\mathsf{a}}) \, \mathbf{g}^* + \rho_{\mathsf{a}} \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{g},t} \end{aligned}$$

Barsky and Sims: Construct NK model with imperfect information.

TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{a},t} \\ \mathbf{g}_t &= (1 - \rho_{\mathsf{a}}) \, \mathbf{g}^* + \rho_{\mathsf{a}} \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{g},t} \end{aligned}$$

• $\varepsilon_{a,t}$: Technology shocks.

Barsky and Sims: Construct NK model with imperfect information.

TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{a},t} \\ \mathbf{g}_t &= (1 - \rho_{\mathsf{a}}) \, \mathbf{g}^* + \rho_{\mathsf{a}} \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{g},t} \end{aligned}$$

- $\varepsilon_{a,t}$: Technology shocks.
- $\varepsilon_{g,t}$: News shocks.

Barsky and Sims: Construct NK model with imperfect information.

TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{a},t} \\ \mathbf{g}_t &= (1 - \rho_{\mathsf{a}}) \, \mathbf{g}^* + \rho_{\mathsf{a}} \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{g},t} \end{aligned}$$

- $\varepsilon_{a,t}$: Technology shocks.
- $\varepsilon_{g,t}$: News shocks.
- Agents observe:

$$s_t = g_t + \varepsilon_{s,t}$$

Barsky and Sims: Construct NK model with imperfect information.

TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{a},t} \\ \mathbf{g}_t &= \left(1 - \rho_{\mathsf{a}}\right) \mathbf{g}^* + \rho_{\mathsf{a}} \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{g},t} \end{aligned}$$

- $\varepsilon_{a,t}$: Technology shocks.
- $\varepsilon_{g,t}$: News shocks.
- Agents observe:

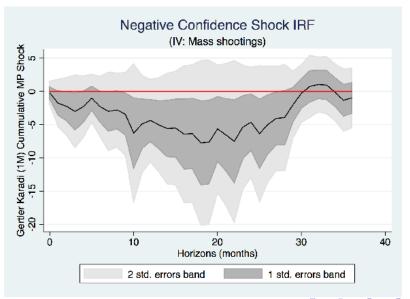
$$s_t = g_t + \varepsilon_{s,t}$$

• $\varepsilon_{s,t}$: Sentiments/animal spirits (pure expectational shocks).

Barsky and Sims: Construct NK model with imperfect information.

TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{a},t} \\ \mathbf{g}_t &= (1 - \rho_{\mathsf{a}}) \, \mathbf{g}^* + \rho_{\mathsf{a}} \mathbf{g}_{t-1} + \boldsymbol{\varepsilon}_{\mathsf{g},t} \end{aligned}$$


- $\varepsilon_{a,t}$: Technology shocks.
- $\varepsilon_{g,t}$: News shocks.
- Agents observe:

$$s_t = g_t + \varepsilon_{s,t}$$

- $\varepsilon_{s,t}$: Sentiments/animal spirits (pure expectational shocks).
- Barsky-Sims model-equivalent of Cl_t is:

$$\mathbf{CI}_{t} = \zeta_{1}\left(\mathbf{a}_{t} - \mathbf{a}_{t-1} - \mathbf{g}_{t|t-1}\right) + \zeta_{2}\left(\mathbf{g}_{t|t} - \rho_{\mathsf{a}}\mathbf{g}_{t|t-1}\right) + \zeta_{2}\varepsilon_{c,t}$$

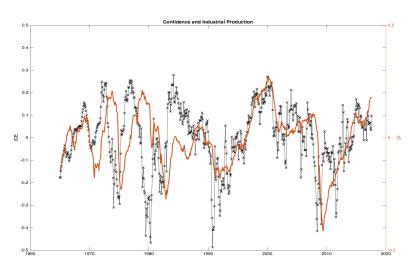
Impact on Gertler-Karadi MP Shock

Calibrated parameters (monthly)

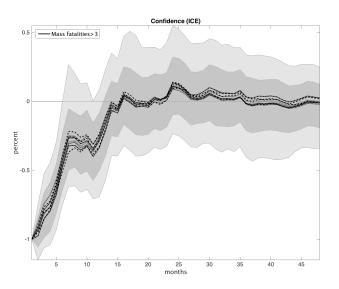
Parameter	Meaning	Value	
ū	st.st. unemployment rate	6 percent	
$\overline{\eta}$	st.st. job finding rate	34 percent	
α	matching function parameter	0.6	
$(\kappa/\overline{\mathbf{q}})/(3\overline{\mathbf{w}})$	st.st. hiring cost	4.5 percent	
ζ	price contract length	6 months	
γ	elasticity of substitution	8	
au	output elasticity to capital	0.35	
$\xi_{\delta,z}$	elast. of depr. rate to cap.ut.	1	
δ	depreciation rate (annually)	7.1 percent	
$\overline{\mathbf{R}}/\overline{\Pi}$	st.st. gross real rate	$1.04^{1/12}$	
$\overline{\Pi}$	st.st. gross inflation rate	1	
δ_R	interest rate smoothing	8.0	
σ_m	st. dev., monetary pol. shock	0.1 percent	
μ	CRRA parameter	2	
$(c_e-c_u)/c_e$	st.st. cons. drop upon unempl.	15 percent	

Estimated Parameters

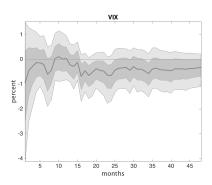
Parameter	Meaning	Estimate
$\overline{\chi}$	real wage elasticity	0.043
$ ho_{\mathcal{A}}$	persistence of TFP shocks	0.977
δ_Π	interest rate resp. to infl.	1.002
$\delta_{ heta}$	interest rate resp. to tightness	0.0004
β	implied disc. factor (annually)	0.87
Θ^F	implied risk wedge	0.0024>0

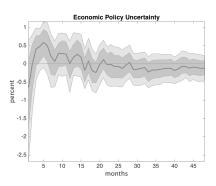

Estimated Parameters

Parameter	Meaning	Estimate
$\overline{\sigma_T}$	std., transitory TFP shock	0.10 percent
σ_P	std., innov. to perst. TFP	0.07 percent
$\sigma_{\mathcal{S}}$	std., sentiment shock	0.07 percent
$ ho_{ extsf{CI}}$	confidence persistence	0.90
ϑ_1	confidence parameter	1.27
ϑ_2	confidence parameter	39.15
σει	measurement error, confidence	2.5 percent


Mass Shootings with 12 or More Fatalities

Incident	Location	Date	Fat.	Inj.
U. of Texas Tower shooting	Austin, Tx	Aug 1966	18	31
San Ysidro's McD massacre	San Ysidro, Cal	Jul 1984	22	19
U.S. Postal Service shooting	Edmond, Okl	Aug 1986	15	6
Luby's massacre	Killeen, TX	Oct 1991	24	20
Columbine High massacre	Littleton, Col	Apr 1999	13	24
Virginia Tech massacre	Blacksburg, VA	Apr 2007	32	23
Binghampton shootings	Binghampton, NY	Apr 2009	14	4
Fort Hood massacre	Fort Hood, TX	Nov 2009	13	30
Aurora Theatre shooting	Aurora, Col	Jul 2012	12	70
Sandy Hook massacre	Newtown, Conn	Dec 2012	28	2
Wash. Navy Yard shooting	Washington, D.C.	Sep 2013	12	8
San Bernadino mass shooting	San Bernadino, Cal	Dec 2015	14	21
Orlando Nightclub massacre	Orlando, FL	Jun 2016	49	53
Las Vegas Strip massacre	Las Vegas, Nevada	Oct 2017	58	546
Texas First Baptist Church mass.	Sutherland Springs, TX	Nov 2017	26	20
Marjory Stonemann Douglas High School	Parkland, FL	Feb 2018	17	17


ICE ICE B...



Relevance

Uncertainty

Relevance

B. Alternative VAR-specifications, 1965:1-2007:8

			F-test va	F-test value	
Confidence	Observables	Lags	F ^{HOM}	F^{MOP}	
ICC	Benchmark	18	3.2	3.8	
ICS	Benchmark	18	9.7	12.7	
BUS5	Benchmark	18	5.3	5.6	
BUS12	Benchmark	18	9.0	19.0	
ICE	CPI inflation	18	10.1	13.4	
ICE	no SP500	18	9.4	17.2	
ICE	no U12	18	9.2	12.9	
ICE	no SP500, U12	18	7.3	12.6	
ICE	Benchmark	12	8.9	7.2	

 Use Montiel Olea, Stock and Watson (2017) parametric bootstrap with Newey-West HAC-robust covariance matrix