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1Università degli Studi di Bologna
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Abstract

Processes of polarization have been documented in several applications. Neverthe-

less most of the theories built so far show how herding behavior and convergence of

opinions tend to be a regularity in several contexts. In this paper we develop a model

where agents correct their heterogeneous initial opinions averaging the opinions of their

neighbors. The key contribution is to let the network take place endogenously. While

the most known results are derived assuming the network to be strongly connected, we

show how this component depends on the initial distribution of opinions. To do so, we

characterize the process letting naive learning be a best reply function for agents. This

allows to study the incentives in linking choices on the primitive process. Results show

that, if opinions are not distributed uniformly, there always exist conditions on the

strength of the social influence to prevent the network to be connected. This causes

polarization both in the transition and in the long run.

Keywords: Homophily, Naive Learning, Polarization, Speed of Convergence

1 Introduction

Understanding the processes of opinion formation is a matter of interest for several reasons.

In a society different social norms can coexist in contexts that share lot of cultural and

environmental features. Or similarly, political opinions tend to be concentrated around two
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different poles. It has been documented also that in the latter specific case, looking at

the process dynamically we observe a reinforcement, and therefore opinions become more

polarized over time.1

Our approach is to explain this issue through strategic network formation. The idea

is that individuals are on one hand influenced by other opinions, but the choice of social

connections, i.e. sources of opinions, is not arbitrary. Thus whether a society ends up

having convergent opinions would strongly depend by the way individuals interact with each

other. Clearly if a society is split and there is no interaction between the several groups, the

evolution of social norm within subgroups is independent from the others, and therefore is

likely to exhibit disagreement.

We assume that evolution of opinions follows a process where agents are boundedly

rational, and then focus on structural conditions on the nature of social relations. Thus we

study a process known as naive learning, and we contribute to the existing stream of literature

endowing agents with additional rationality with respect to the fully myopic scenario, letting

them form the network optimally. Our approach could be described through the formulation

of the DeGroot learning dynamic (see DeGroot (1974)), which simply states that at each

point in time agents have an opinion equal to the average of opinions in their neighborhood

in the previous period. Formally denoting with xi the opinion of an agent i, and with µi the

average of the opinions of i’s neighborhood we have

xi,s = µi,s−1

This process has been studied in several papers, of which we mention among others Hegsel-

mann and Krause (2002), DeMarzo et al. (2003) and Golub and Jackson (2010). In particular

the latter shows that in order to have convergence some conditions on the structure of the

adjacency matrix are needed and, specifically, it has to be irreducible and aperiodic. The

former translates in a network being strongly connected2, while the latter is easily satisfied

assuming agents posing positive weight on their opinions.3

On top of these results, we let agents weight positively their own opinions, focusing there-

fore on conditions for which the network will be endogenously connected or disconnected.

1See Pew Research Center, June, 2014, “Political Polarization in the American Public” for a study on

public in US, Andris et al. (2015) for evidence from the US House of Representatives, and how polarization

is in this case a dynamic process.
2See Brualdi and Ryser (1991) for a formal proof.
3The condition requires that the largest common divisor of the path length is 1. See Jackson et al. (2008)

for a discussion of this issue.
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Thus the process that is going to be examined in this paper is

xi,s = fµi + (1− f)ti,s (1)

where f is a weight that we call flexibility, and we let ti,s = xi,s−1. Through that lot of

emphasis on the first period, where agents have no connections and are endowed exogenously

with an opinion. Hence we have ti,1 = ti,0, since xi,0 = ti,0. Thus we let agents weight

their initial opinions. When the process is initialized the network is not yet formed, and

then afterwards we want it to update according to the evolution of opinions. Formally

the process embeds a strong inertia, because agents update the network according to the

opinion exhibited in the previous period and the opinion of new neighbors. The two are

clearly correlated. Nevertheless, if the original DeGroot process is taken into account, there

will be no evolution of the network, and therefore we need this modification. Moreover, this

is the core of naive learning, because agents reinforce their bias over time. In other words,

they are not able to exploit all the information that is available.

We initialize the problem endowing agents with an opinion, and depending on that they

will form the network optimally. To achieve that we identify a payoff structure, through

reverse engineering, such that the averaging of opinions described by equation 1 is a best

reply function of the game. This allows for an analysis of strategic network formation, with

opinions evolving accordingly.

Through this small change in the structure of the problem we are able to translate the

conditions on the connectedness of the network assumed in existing works, into conditions

on the ex-ante spectrum of opinions. This is a matter of interest because on top of this

process the literature may advance inquiring the possible sources of interference that could

either amplify or weaken the polarization process.

In term of results we first identify the possible equilibria of the network formation stage.

Given a distribution the process boils down to a unique equilibrium characterized by agents

ordered on the opinion space, forming connections with adjacent agents. Therefore the

network in equilibrium exhibits homophily, which is in line with broad evidence on social

networks, and more specifically with the literature on political opinions also, as documented

by Gentzkow and Shapiro (2010), among others.

Hence we derive conditions on the initial distribution of opinions, sampled from an ar-

bitrary distribution, such that in equilibrium the network will be either connected or dis-

connected. In particular we detect conditions on how profitable are connections, and how

sensible are agents to others’ opinions so that, when the distribution of agents is such that

there is a mass of opinions that is relatively less represented than in its neighborhoods, the

3



network will be disconnected. This leads to persistent divergence of opinion into a soci-

ety. We believe it is an important contribution, especially considering that opinions take

initially place under the influence of external factors. This could be the case in political

opinions when considering media and politicians. Additional considerations could be drawn

letting these external entities act strategically with respect to the network. That is another

fundamental question that we leave for future work.

2 Literature Review

The literature has tried to explain disagreement using several techniques, clearly showing

different possible outcomes. We want to contribute to the understanding of this issue using

a network approach. This is not new, since research in networks has focused substantially on

these issues. We could broadly define two approaches within this field, the bayesian learning

and naive learning.

The former assumes fully rational agents that are thus able to exploit at best the infor-

mation in their possess. In this context herding behavior is a natural result, and it is hard

to escape from convergence of opinions. Therefore we should depart from full rationality. In

this context researchers have been focusing on minimal conditions on bounded rationality

such that non-convergence could be achieved as a result. One example of that is given by

Yildiz et al. (2013) which assumes the presence of stubborn agents which do not pay attention

to the information available, but simply stick to their own opinion. Our approach differ from

this stream of literature since we assume a boundedly rational process, and add rationality

on top of it.

Indeed this paper is closely related to the literature on naive learning, which began with

the paper by DeGroot (1974). More recently this framework has been investigated in several

other works that are a fortiori related to this paper.

DeMarzo et al. (2003) brings explicitly the network into the process of updating, and

assumes an environment with persuasion bias and uni-dimensional opinions. The former

means that agents hear the news, and then are influenced according to an exogenously

given listening matrix, without accounting for repetition of information. This pushes toward

convergence since the sources of information are over-counted because of the social structure

brought in by the network. Uni-dimensional opinions instead means that opinions can be

summarized by a single opinion. Although this is a result in that paper, we use here opinions

that are uni-dimensional and can thus be summarized on an interval of a line.

Golub and Jackson (2010) exploiting some of the results in the paper summarized above,
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derive general conditions on the structure of the adjacency matrix such that consensus may

occur. One of the main results, among others, is that the network should be strongly

connected and its adjacency matrix be aperiodic, which means that the highest common

divisor of the cycles length must be one. This is easily satisfied allowing for self cycles, with

agent then taking into account their own opinion. Thus we keep this assumption but we

study conditions on the distribution of opinions such that the network will be endogenously

disconnected, which would then prevent consensus to happen. To the best of our knowledge,

no other works attempts to do so.

With a completely different approach, Krause (2000) and Hegselmann and Krause (2002)

do not analyze directly the network, but assume that the hearing matrix, which is in fact

a stochastic matrix that summarizes a Markov process, is such that agents exhibit bounded

confidence. This is implemented through an exogenous rule for the opinions to be taken into

account only if they are similar enough. Under this circumstances, if this distance parameter

is too relevant, consensus is not achieved. In our paper such a rule is not exogenous but is

a consequence of the endogenous network, although follows from the payoff structure. The

results are richer because they take into account relevant parameters to analyze different

scenarios, and are derived for arbitrary distributions of opinions.

Another closely related paper to ours is Melguizo (2015) where the evolutions of opinions

is based on salience of attributes, meaning the difference in behavior between individuals

sharing a characteristic or lacking it. Agents are endowed with a vector of characteristics,

and if there is a unique most salient characteristic the agents will assign, dynamically, growing

weight to those who share the same trait. Since characteristics are binary groups can at most

be two, and that is the case in which disagreement occurs. While this can be reasonable in

several contexts, we believe the modeling explicitly the strategic network formation allows

for a better understanding of the drivers of such results, and to derive richer results, too.

Most of the analysis of the model is here focused on the first period of the dynamic

process, since this will determine the full evolution of opinions in the society. Nevertheless

we contribute also to the existing literature on the speed of convergence to consensus. In

this stream of literature we find Golub and Jackson (2012), among others. They study a

process with agents belonging to a finite set of groups, and assume that interactions are more

frequent toward same-type agents. In such a context convergence will always be reached, and

thus it is shown how the stronger the same-group interactions (homophily), the slower the

convergence to consensus. Here we show how, on top of this result, the speed of convergence

is non linear due to the endogeneity of the network. In particular we identify thresholds

on the diameter of the network such that the process speeds up dramatically and converge.
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Thus more homophilous networks tend to exhibit slower speed of convergence, but because

of the endogenous network they will show also a more prominent non-linearity in the latest

stages.

For different reasons, this paper is also related on the literature of network games with

endogenous networks. On of the first attempts in this context is provided by Galeotti and

Goyal (2010), and followed by Kinateder and Merlino (2014). These papers examine games of

public goods and thus they differ substantially from the game proposed here, which formally

is a game of complements. A similar model to the one in this paper is analyzed in Bolletta

(2015). The main difference is that here we study directed networks, following therefore a

fully non-cooperative approach. In that paper instead the model is solved under pairwise

Nash stability, and the undirected network allows to focus on the agents less prone to form

links. Under a perspective of optimal policy design that aim to foster interactions, the

analysis identifies individuals more susceptible to incentives.

The rest of the paper is organized as follows. Next section describes the model, analyzed

in steps assuming exogenous network first in section 3.1, then letting it be endogenous in

section 3.2. The latter contains the main results of the paper. Thus we analyze the full

dynamic process and speed of convergence in section 4. Discussion in section 5 concludes.

Proofs are in Appendix.

3 The model

3.1 Network as given

Consider the following one-shot game between two players.4 Each player i is characterized

by an opinion (or type) ti ∈ [0, 1] and by a flexibility f ∈ [0, 1]. The action of each player i

is xi ∈ R, and the payoff for agent i is, given the action xj of the other player,

πi(xi, xj) = V − f(xi − xj)2 − (1− f)(xi − ti)2 , (2)

V is the value from the interaction, and then there are some costs for adaptation and

coordination. V here could represent the idea that other agents have information that is

useful, and we assume that it is linear and symmetric across agents.5 The parameter f

weights these two components, and that is why we have called it flexibility. One can already

4The two players version of this game is similar to Bisin et al. (2006).
5This is a simplification. However introducing an extra layer of heterogeneity in this dimension would

only complicate the nature of the results, without delivering interesting insights.
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see that agents with low flexibility weigh more adaptation. High flexibility agents weigh

more the coordination term.

Now consider a directed network with n agents, where the neighbors of node i are given

by the set di, with cardinality ki = |di|. We let the network be directed for two main reasons.

In terms of interpretation we believe that in opinion formation, where the structure of social

interactions has been often represented through a “listening matrix” is more consistent with

what we observe. Moreover there is a technical reason, that is we solve the model through

a fully non-cooperative approach.6 The same game as above is played on the network but

now an agent must choose the same action as before, taking into account all her neighbors’

choices. The payoff structure considering the network thus become:7

πi(xi,xj) =
∑
j∈di

(
V − f(xi − xj)2 − (1− f)(xi − ti)2

)
= ki

(
V − (1− f)(xi − ti)2

)
− f

∑
j∈di

(xi − xj)2 . (3)

where the unique best response for agent i is

x∗i (xj) = fµi + (1− f)ti , (4)

where we have called µi ≡
∑

j∈di
xj

ki
. This is equation 1, already described in the introduction.

At this stage we analyze one period only, and in a later section we discuss dynamics of the

model.

The timing of the on period game is as follows.

Definition 1. TIMING:

• Opinions t are exogenously assigned to agents

• Agents form the network

• Opinions are updated into x, according to the network and best replies

6See Bolletta (2015) for the study of a similar model under undirected network. There it is shown that it

is still feasible to perform the analysis, although some extra conditions are required in terms of rationality

to refine multiplicity of equilibria in the network formation stage. In that paper farsightedness is used as a

refinement. We preferred here to stand to a more realistic assumption on individual’s rationality, which in

addition allows us to solve the model through the concept of Nash equilibrium.
7Note that although we focus on the following payoff structure, what really matters for the results that

follow is the best reply scheme. Indeed one could redirect the analysis that follows to a payoff structure

consistent with other parametric forms already used in the literature, such as Calvó-Armengol et al. (2009)

among others.
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From the timing we introduce the equilibrium concept. Formally we see this as a se-

quential game, that we can therefore solve by backward induction. In particular we focus

now in the solution of the system of best replies, when the network is given, and therefore

µi is uniquely defined for all i. Then in the next section we move to the previous stage

letting agents form the network, to finally move to the very initial stage on the distribution

of opinions to characterize the possible equilibria.

To proceed, let us introduce some more notation to rewrite the system of best replies in

matrix form. To do so we call:

• F the diagonal matrix of all flexibilities, so that F ≡

 f1 0
. . .

0 fn

;

• t the vector of all types;

• and D the adjusted adjacency matrix such that Dij ≡

{
1
ki

if j ∈ di,
0 otherwise.

Note that we let f be homogeneous, although the model could account for heterogeneity in

this dimension. Moreover we underline once again that the entries into the matrix D have

to be determined in equilibrium. Then a compact way to write (4) is

(I − FD)x = (I − F )t . (5)

Lemma 1. Equation (5) has a unique solution x ∈ [0, 1]n.

Proof. See Appendix.

This simple result states that for a given network there is a unique Nash equilibrium

of the game. This is crucial because we can now move forward and go study the network

formation. Before doing that we focus on the payoff structure and derive a formula for the

payoff in equilibrium, which dramatically helps us in the analysis of agents’ strategies. Thus

let us move back to the Nash equilibrium. From (3) and (4), the payoff in equilibrium is8

πi = ki (V − f(1− f)(µi − ti)2 − fσ2
i ) (6)

where we have called σ2
i ≡

∑
j∈di

(xj−µi)2

ki
the variance of the actions of i’s neighbors. Given that

the payoff structure is quadratic, it is not surprising that second moments of the distribution

of behaviors appear in the analysis. Nevertheless, this is a result that is not highlighted from

8See Appendix for the complete derivation

8



previous works, although it is particularly meaningful. Interestingly, we see how fully flexible

agents (f = 1) have preferences only for homogeneous groups, and they would not care about

which opinion the group exhibits. Therefore they will form the group with agents that share

the most similar opinions. For agents that instead are not prone to change their opinion

(f = 0), others’ opinion are completely irrelevant, and therefore connections are formed

at cost 0. For intermediate values of flexibility (f = 1/2), agents both care about having

homogeneous and similar opinion groups. Next Remark formally states some comparative

statics on f on the payoffs.

Remark 1. The payoff of an agent in equilibrium depends:

• quadratically on µi, with a maximum when µi = ti – this effect is the most detrimental

when f = 1
2
;

• linearly on σ2
i – this effect is the most detrimental when f → 1.

So, the payoff seems always maximum when f = 0, so that xi = ti (but it could be a

problem to find neighbors when the network is endogenous).

The first order effect (i.e. fixing others’ best responses) of increasing flexibility up to 1
2

decreases welfare, but when f > 1
2

an larger f could increase welfare if the actions of

neighbors have low variance.

3.2 Endogenous network

The concept of equilibrium here is sub-game perfect Nash equilibrium. Since the network

is directed the solution is fully non-cooperative, and it is worked out in two stages, by

backward induction. In fact the agent will first choose their neighbors, and then will update

their behaviors according to equation 4. In the previous section we established uniqueness

of equilibrium for a given network and we can therefore focus now on the network formation

stage.

Before moving to the result, we propose here a definition that allows us to partially

characterize the equilibrium.

Definition 2. An equilibrium is ordered if each agent in a network g has an interval of

neighbors {i− ai, i+ bi} such that ai+1 ≤ ai + 1 and bi ≥ bi+1 + 1.

The above definition can be described as follows. We call an equilibrium to be ordered if

agents are matched only with their closest neighbors. Clearly every agent will have different
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bounds on their neighborhood, and we could characterize those only departing from a given

distribution of opinions. The following result formally states that this configuration is the

unique that can arise in equilibrium.

Proposition 2. An ordered equilibrium exists and it is unique.

Proof. See Appendix.

To get an intuition on this result, let us recall equation 6. In particular we could broadly

interpret the payoff deriving from a set of links as follows. First agents want that the

average behavior in their neighborhood is close enough to their initial opinion. That is

agents are homophilous. Therefore agents with similar opinions will tend to match together.

This already pushes strongly towards uniqueness of the equilibrium. In addition to that we

should consider the second term of equation 6, which shows how agents have preference over

the diversity of opinions inside their neighborhood. Therefore we can say that agents will

tend to match with their most similar agents, and the reference groups are well defined since

the variance term ensures sharp bounds on it.

Given the previous result we can now determine the conditions on the initial distribution

of opinions such that the network will be disconnected. In particular we will have that

the spread of opinions is greater than the initial distribution of opinions if the network is

disconnected, while lower if instead the network is connected.

The model allows to define a triple 〈V, f, T 〉 which will map into a network configuration

and a distribution of opinions 〈G,X〉. Thus it is a matter of interest to understand under

which condition the distribution of ex-post opinions is more polarized than the distribution

of initial opinions. Simply defining a Gini type of measure, we can compare the vector x

with the vector t. As it turns out, the weighted adjacency matrix is all matters here. Such a

result is therefore comparable with all the literature on DeGroot processes. We need to find

condition on aperiodicity, irreducibility and other Markov Chain results for the adjacency

matrix.

To test for the polarization into the population of interest, we should first define a Gini

type coefficient for our specific context. To do so, let us introduce a vector

ξ̄′ = (−n+ 1,−n+ 3, ..., n− 1, n+ 1)

Thus, if we calculate ξ̄′x̄ with x̄ being the vector of actions in equilibrium, we have a measure

of dispersion of actions. Clearly this will not be between 0 and 1 as the typical Gini index,

since we would need to weight it, but we are rather interested in the difference in dispersion

between equilibrium behaviors x̄ and initial opinions t̄. We want then to analyse the sign
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of our measure of polarization P (g, t) = ξ̄′(x̄ − t̄). If positive we would have polarization,

if negative we would have centralization, and if 0 then we would have that the endogenous

network would not matter at all. Interestingly, if we use equation 5, we could simplify this

measure, as shown by the following simple algebra.

P (g, t) = ξ̄′(x̄− t̄)

= ξ̄′[I − f

1− f
(I − fD)]x̄

=
f

1− f
ξ̄′[D − I]x̄

(7)

From this we see clearly how the sign depends only on D, while it is independent of f . In

particular the equation above is going to be positive if D is disconnected, negative otherwise.

This is to put emphasis once more on the relevance of the network formation stage in the

process analyzed here. Provided that, we move now to the main result of the paper, which

provide sufficient conditions on the distribution of opinions such that the network is going

to be disconnected in equilibrium.

Proposition 3. If F (t) is not uniform, there is a V̄ such that for every V ∈ (0, V̄ ) there

exists a f̄ such that any f ∈ (f̄ , 1) the network is not empty and exhibits multiple components.

Proof. See Appendix.

From the above result we learn that any distribution where there is a mass of opin-

ions which is more represented leads the network to be disconnected. In particular there

is a couple of values V, f that summarizes the sufficient condition for the network to be

disconnected.

The result hold for any distribution but the uniform, since we can always identifies some

values low enough such that for the less representative group it is not profitable to form

connections with the larger group. The intuition is that if not uniform there must be an

interval in [0, 1] such that the mass of agents is higher than in another point.

Interestingly in order to have multiple components we need agents to weight enough social

influence from neighbors. This is not immediately intuitive, since on one hand a higher f

pushes towards conformism of opinions which makes the network easier to be connected.

Nevertheless this implies also that in the first place agents prefer to have homogeneous

neighborhood, and that is why in equilibrium they are likely to take place locally, with

segregation arising.
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In the next example we show simulations of the model for several distributions, showing

how the uniform would be strongly connected, while other distributions, namely a bimodal

and a normal, favor the arousal of more groups not inter-connected.

Example 1. We show in this numerical example what happens with given initial distribu-

tions of opinions. Through simulations of the model we show how the system, under some

fixed set of parameters, reacts differently if we let sample the initial opinions from different

distributions. In each of the figures it is shown on the left the non parametric approxima-

tion of the distribution of opinions generated to initialize the model. Then the figures on

the right show the equilibrium network arisen after we let the agents form their links opti-

mally. Moreover it is shown on the horizontal axis the value for each node of the equilibrium

behaviors.

Parameters are chosen to be, throughout all the simulations, n = 100, V = 0.001, f = 0.7.

Thus we generate respectively a uniform, bimodal and normal distribution. As we can see,

while in the uniform the network is strongly connected, in the other cases several components

arise.

(a) (b)

Figure 1: The network is strongly connected.

4 Dynamic setting

In this section we extend the result shown before to a dynamic setting. In particular we could

simply assume that at any point in time an agent’s opinion correspond to her ex-post opinion,

determined in equilibrium in the previous period. Formally we have then ti,s = xi,s−1, where

s ∈ {0, 1, .., S} denotes discrete time and with ti,0 = ti. Clearly we want the process to be

myopic. In fact agents at every step s will only maximize utility at that given point in time.
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(a) (b)

Figure 2: Two components of similar size arise.

(a) (b)

Figure 3: Three components arise, with a big central group, and smaller groups on the tails.

In this way we are able to initialize the model with a distribution of times and study

both the long-run behavior of the society and the step-by-step evolution of the process. In

particular we are able also to see deeper how the result obtained before relate to the well

known results found in DeMarzo et al. (2003) and Golub and Jackson (2010). This papers

show how if the network is strongly connected and weighted adjacency matrix is primitive

and aperiodic (as it turns out the latter implies the former), consensus is always reached.

Our model could be in fact compared to the model by Krause (2000) and Hegselmann

and Krause (2002), where he shows that if agents give weight only to those who have similar

opinions, convergence of opinions will be ensured only within each component, even if the

network is strongly connected. Somehow in these models connections do not matter, as it

matter instead the agents to which it is given weight in the process of opinions updating.

The rule to determine the closest neighbors to which pay attention is imposed exogenously,

while again our model generate that in equilibrium through the endogenous formation of the

network.
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Remark 2. Convergence takes place within every component of the network that is endoge-

nously determined in the first time step.

The result follows from the analysis in Hegselmann and Krause (2002), with the only

difference brought in by the endogenous network, and therefore we omit a formal proof.

Nevertheless, we have that if the network is disconnected at the first time step it will remain

disconnected, and viceversa. Consensus will take place only partially within every component

that arouse from the network.

Accommodating our model to a dynamic version we see that all that matters for con-

vergence is the formation of the network in the first period. Then one or more components

arise accordingly, and over time we observe a contraction of opinions toward a unique one,

in each component that has arouse. At the same time, the network will become more and

more connected over time, converging to the complete one.

The endogenous network shapes the adjacency matrix into blocks, and then over time

there is an increase in density of positive entries because the actions are closer and closer.

As a result we get a reinforcement over the process of convergence. We can surely say that

an increase in V and in f would push both over a faster convergence. This is intuitive, but

considering the flexibility, we know also that it makes easier to break up the network.

Figure 4: Non parametric approximation of the distribution of opinions over time. Parameters

are chosen to be f = 0.5, V = 0.005, N = 100, and t uniformly distributed. Curves represent

different steps in time denoted by S. At S = 50 we represented the network after convergence,

with random coordinates on the vertical axis, and opinions in the horizontal one, which converged

to x = 0.5017.

Figures 4 and 5 show the results of a simulation focusing respectively on the distribution

of opinions over time, and on the speed of convergence v̀ıs a v̀ıs with the average degree.

14



Figure 5: Speed of convergence and average degree. Time is on the horizontal axis, and distance

between vector of opinions and expected convergence point, given by 0.5. Scale omitted since

what really matters is the slope of this curve. Convergence happens after 36 periods, and there is a

significant increase in speed when the network start converging to the complete one, which happens

suddenly in period 24. This figure refers to the same simulation explained in Figure 1.

Parameters are chosen to be S = 50 periods, with n = 100 agents and t uniformly distribute.

From Proposition 3, we know that the network is surely connected, if not considered the banal

case where it is empty.

5 Discussion

In this paper we showed how through the endogenous network tend to be disconnected. In

particular this happens when forming connections is not too profitable, and agents are par-

ticularly sensible to social influence from their neighborhoods. This conditions lead opinions

in the long run to diverge, and thus consensus is never reached.

In several real world examples the choice from the agents of their neighbors is non-

negligible. From this results we learn therefore that considering a network formation process

has dramatic results on several dimensions, namely the network configuration, equilibrium

behaviors, long run opinions and speed of convergence.

We wanted to contribute in this sense to the existing literature on opinion formation

processes, because this could really open new research questions. In particular it comes

natural the question regarding possible nuisances that may alter the distribution of opinions

at any given point in time. This could explain cyclic behavior of political parties, strategic

provision of information from media and evolution of social norms. These are relevant
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questions well explored in the literature, but we believe that this work can consistently

contribute having a richer understanding of them.

APPENDIX

Payoff in equilibrium

From (3) and (4), the payoff in equilibrium is

πi = ki
(
V − f 2(1− f)(µi − ti)2

)
− f

∑
j∈di

(x∗i − xj)2

= ki
(
V − f(1− f)(µi − ti)2

)
− f

∑
j∈di

[
(x∗i − xj)2 + (1− f)2(µi − ti)2

]
= ki

(
V − f(1− f)(µi − ti)2

)
− f

∑
j∈di

(xj − µi)2

= ki
(
V − f(1− f)(µi − ti)2 − fσ2

i

)
, (8)

where we have called σ2
i ≡

∑
j∈di

(xj−µi)2

k
the variance of the actions of i’s neighbors.

5.1 Proof of Lemma 1

Proof: There is clearly a unique solution to the unconstrained equation (5), because (I−F )

and (I − FD) are always full rank matrices.

Now suppose that the maximum element of x, call it xm is such that xm > 1. Then, by (4), it

is a convex combination of
∑

j∈dm
xj

`m
and tm. But since tm < 1, it must be that

∑
j∈dm

xj

`m
> xm,

which contradicts the initial assumption.

In the same way it is impossible that the minimum element of x is less than 0.

5.2 Payoff differential

Recall the payoff in equilibrium

πi = ki(V − f(1− f)(µi − ti)2 − fσ2
i ) (9)

From which we can define the additional payoff deriving from the addition of a link with an

agent j

πi→j = (ki + 1)(V − f(1− f)

(
µiki + xj
ki + 1

− ti
)2

− fσ2
i→j) (10)
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Given equation 10, we can now define the payoff differential, simply given by the difference

∆πi→j = (πi→j − πi)

∆πi→j = V − f(1− f) ((ki + 1)θ′ − kiθ)− f
(
(ki + 1)σ2

i→j − kiσ2
i

)
(11)

where θ′ =
(
µiki+xj
ki+1

− ti
)2

and θ = (µi − ti)2. Let us now focus on this difference. Thus

(ki + 1)θ′ − kiθ =

= (ki + 1)

(
µiki + xj
ki + 1

− ti
)2

− ki(µi − ti)2

= (ki + 1)

(
(µi − ti)−

1

ki + 1
(µi − xj)

)2

− ki(µi − ti)2

= (µi − ti)2 +
1

ki + 1
(µi − xj)2 − 2(µi − ti)(µi − xj)

= (ti − xj)2 −
ki

ki + 1
(µi − xj)2

(12)

Now let us focus on the term
(
(ki + 1)σ2

i→j − kiσ2
i

)
(
(ki + 1)σ2

i→j − kiσ2
i

)
=

=
ki + 1

ki + 1

(∑
h

(xh − µ′i)2 + (xj − µ′i)2
)
−
∑
h

(xh − µi)2

=

(∑
h

(
xh −

kiµi + xj
ki + 1

)2

+

(
xj −

kiµi + xj
ki + 1

)2
)
−
∑
h

(xh − µi)2

=
∑
h

(
xh −

kiµi
ki + 1

− xj
ki + 1

)2

−
(

ki
ki + 1

(xj − µi)
)2

−
∑
h

(xh − µi)2

=
∑
h

(
xh − µi +

µi
ki + 1

− xj
ki + 1

)2

− k2i
(ki + 1)2

(xj − µi)2 −
∑
h

(xh − µi)2

=
∑
h

(xh − µi)2 +
∑
h

(
1

ki + 1
(µi − xj)2

)
− 2

∑
h

(
1

ki + 1
(xh − µi)(µi − xj)

)
+

− k2i
(ki + 1)2

(xj − µi))2 −
∑
h

(xh − µi)2

=
ki

ki + 1
(1− ki

ki + 1
)(µi − xj)2

(13)
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Therefore combining the two previous results we get

∆πi→j = V − f(1− f)

(
(ti − xj)2 −

ki
ki + 1

(µi − xj)2
)

− f
(

ki
ki + 1

(1− ki
ki + 1

)(µi − xj)2
)

= V − f(1− f) (ti − xj)2 − f
ki

ki + 1

(
f − ki

ki + 1

)
(µi − xj)2

(14)

5.3 Proof of Proposition 1

Proof. We proceed by steps, first addressing existence constructing the equilibrium. In

particular we show that any equilibrium configuration must be ordered, as defined in 2,

which then partially characterizes the equilibrium, too. Finally we show that it is also

unique.

It is easy to check that if the equilibrium is ordered we have that

xi > xj ↔ ti > tj

xi < xj ↔ ti < tj

xi = xj ↔ ti = tj

(15)

Given that, we show that it cannot exist another equilibrium different from a ordered one,

such that any of the above conditions hold true. Consider now the minimum xi in the

population, and call it x0. Without loss of generality we let x0 ≤ x1 ≤ ... ≤ xN , and to

prove the result basically we want to match every action with a type such that ti 7→ xi for all

i ∈ N . Thus we claim that i is such that ti is the minimum initial opinion in the population,

calling it t0. We can see this through the payoff in equilibrium, which we recall

ki
(
V − f(1− f)(µi − ti)2 − fσ2

i

)
Recalling the equation we see that the highest utility can be achieved minimizing the value

of µi, given that we are considering t0, and the variance term ensures sharp bounds on it.

To see it rigorously we derive the payoff differential deriving from the addition of a link, and

which is given by

∆πi→j = V − f(1− f) (ti − xj)2 − f
ki

ki + 1

(
f − ki

ki + 1

)
(µi − xj)2 (16)

Therefore links are added as long as the equation above is positive. Moreover any non-ordered

scenario would let profitable deviation for t0, and thus that would not be an equilibrium.
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Note that this holds for any f ∈ (0, 1). Indeed if f < ki
ki+1

the second term on the right

hand side would be positive. Nevertheless if f < ki
ki+1

then f(1 − f) > f ki
ki+1

(
f − ki

ki+1

)
is

always true, and thus this does not alter the scheme we have built. If f = 0 all links would

be added, and if instead f = 1 then f > ki
ki+1

. This shows that in equilibrium the lowest ti

will exhibit the lowest xi. Similarly this holds for xN and tN .

Now let us focus on the second lowest value of x, x1. Following a similar argument, we

claim that it should belong to the agent with the second lowest opinion in the population,

t1. This is slightest more tedious to prove, since agent i can form links both at her right and

left. We can in fact reproduce the procedure we used to prove that t0 7→ x0, with the extra

step set by the presence of agent t0. Similarly with respect to agent t0, agent t1 would form

links with agents x2 ≤ x3 ≤ ... ≤ xb1 , where b1 is the optimal threshold as in the definition

of ordered equilibrium. Moreover it is likely that agent t1 would form a link with t0. To see

this we should see again payoff in equilibrium. The addition of such link would generate an

increase in σ2
1, but a decrease of the term (µ1 − t1)2. Clearly it can happen that such a link

is not optimal, but in either case it would not contradict the ordered equilibrium scenario.

Symmetrically this holds for tN−1.

Therefore we showed that in equilibrium ti 7→ xi for i ∈ {0, 1, N − 1, N}. Iterating the

reasoning, with the due differences because of the availability of agents at both sides, the

result holds for all other agents.

The set of relations described by 15 is always true in equilibrium. We have shown that if

the above set of condition holds the equilibrium must be ordered and that in equilibrium the

ordered scenario is the only possible outcome. This thus addresses existence and the partial

characterization.

To show that it is unique, we just have to consider that with a given distribution of

opinions t, there is unique possible ordering scheme that we may call Z, that would hold.

Assume it is not, this means that some agent i has formed an ordered neighborhood Z ′ with

bounds differing from Z, because in all other cases it would not be ordered. Nevertheless this

is not possible in equilibrium, since either there would exist profitable deviations by adding

links from Z to Z ′, or severing links, or viceversa. As a small caveat, it can happen as an

extremely specific case, that two or more agents share the same initial opinion. Therefore

some other agents may be indifferent over any of these links. Under the standard hypothesis

that agents would then randomize over such links, multiple equilibria may arise. Nevertheless

if two or more agents share the same t, their position on the space of types is permutation

free, thus we can always relabel agents to fit definition 2. Moreover the final configuration

of the network is isomorphic, and the distribution of x will not be affected by that.
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This concludes the proof.

5.4 Proof of Proposition 2

Proof. Let us begin with a definition.

Definition 3. Call S the matrix with agents in columns ordered according to their type,

and with rows all the possible set of links. Thus S is an N ×
N∑
k=0

2k. Moreover at any entry

Sij such that i < j and j is such that
j−2∑
k=0

2k the set of links is such that i is connected with

all j.

From this it heuristically follows the Lemma below.

Lemma 4. If all i ≤ j choose a Sih s.t. h ≤
j−2∑
k=0

2k, and all i > j a Sih′ s.t h′ >
j−2∑
k=0

2k, then

the network is disconnected.

Now let us define a simple equation that shows the differential of payoff when comparing

two different set of links. Note that a set of links characterizes a triple 〈di, µi, σ2
i 〉, which

summarizes all the relevant information to the agents. Comparing every possible couple of

set of links s, s′, the set s is preferred to s′ if and only if

V >
fi(1− fi)(di(µi − ti)2 − d′i(µ′i − ti)2) + fi(diσ

2
i − d′iσ2′

i )

di − d′i
(17)

If agents draw their types from a uniform distribution F uni(t) we have that dF uni(t)/dt = 1,

for every t. It is therefore a 45◦ degree line if plotting F (t) over t. Now take any other F (t).

We can compare such distributions studying the derivative of F (t) around the 45◦ degree

line.

Call t1 and t2 the levels of t such that dF (t)/dt = dF uni(t)/dt. Finally call t̄ the level of t

such that dF (t)/dt is minimal in t ∈ (0, 1). Note that by construction t1 < t̄ < t2. Therefore

we have to show that for every t ∈ (t1, t̄) there exists a set of links Sih such that Lemma 4 is

satisfied, i.e. Sih such that h ≤
j−2∑
k=0

2k, and that set of links is going to be preferred to any

other. By symmetry it would hold for agents between t ∈ (t2, t̄).

To show that assume that there exists an alternative set of links S ′ih such that h >
j−2∑
k=0

2k

that would lead any agent i with t ∈ (t1, t̄) better off, i.e. Ui(Sih) < Ui(S
′
ih). Recalling now

equation 17 one can see that for an agent to be better off it must be that, with a little abuse

of notation, 〈d′i, µ′i, σ2′
i 〉 �i 〈di, µi, σ2

i 〉, meaning that she would prefer S ′ih to Sih.
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Now assume that di = d′i, while σ2
i < σ2′

i by construction. It follows then that |µi− ti| Q
|µ′i − ti| for all i with t ∈ (t1, t̄). Therefore the differential in variance leads always the

agent worse off, and therefore everything depends by the relation between the new µi. In

particular, given the configuration we are studying, if we take any agent with ti < t̄, and

with ti > t1 (or conversely ti > t̄, ti < t2), µ
′
i > µi (or µ′i < µi). Therefore agent i would

experience a benefit in this case. Nevertheless, since the variance increases, it all depends on

the weight f , and the local sampling of types t around the point where dF (t)/dt in t ∈ (0, 1)

is minimal. In other words when there is a “hole” in the distribution we need that agents

weight enough the variance term in order to direct all their links to a single direction, rather

than to both.

Moreover, V must be small enough. Clearly we are not interested in the trivial case where

V = 0, and thus the network will be empty. This case is completely non informative, and

thus we consider V > 0. To see that imagine V is really large. Then the optimal network

would be the complete network. Therefore there must exist a threshold value V̄ such that

all said above holds true. Similarly, we must have f̄ large enough. Imagine there are some

agents with fi = ε with ε > 0 arbitrarily small. For those agents equation 17 holds true

for any V small enough, leading these agents to connect the network. Therefore there is a

threshold value of f̄ such that, again, all said above holds true.
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