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Abstract

This paper evaluates the dynamic impact of weather shocks on economic ac-
tivity in the three main European countries. To identify changes in weather
patterns, we use a novel composite European Extreme Events Climate In-
dex, summarizing information about the main climatic hazards: cold and heat
stresses, droughts, heavy precipitations and intense winds. A series of country-
specific Bayesian SVAR models is estimated to assess the different impact of
various weather events on sectors of production, namely manufacturing, con-
struction, energy and services. We find clear evidence of a significant impact
of weather shocks on European economic activity, each weather component
impacting heterogeneously across various countries and production sectors. A
non-linear Local Projection approach points out some non-linearities in the
impact of weather shocks on economic activity.
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1 Introduction

Relationships between economic activity, on the one hand, and climate events,
on the other hand, have been shown to be strongly intertwined. It is now widely
acknowledged among experts that economic activity has long-run negative effects on
climate. Empirical evidence of reverse causality from climate shocks to aggregate
economic activity is scarcer, at least until recently. Over the recent months, we have
seen an increase in the number of papers trying to identify the specific role of extreme
climate events on the business cycle (see for example Kim et al., 2021 for the U.S.;
Billio et al., 2020 for European countries). In the terminology used in this literature,
the word climate refers to the joint probability distribution of outcomes describing
the state of the atmosphere, oceans and fresh water including ice. In the remaining
of this paper, we will refer to a specific outcome of climate, that is weather condi-
tions and their variations overtime. Against this background, the literature suggests
that weather shocks tend to have adverse effects on short-run aggregate activity, as
measured by industrial manufacturing production, but with a large country-specific
heterogeneity. It is noteworthy that other economic sectors, beyond agricultural
(Gallic & Vermandel, 2020), are generally neglected when assessing short-run effects.

Weather shocks are often associated to temperature time series as they are avail-
able over a long historical sample. This is for example what has been done by Natoli
(2022) for the U.S. economy or by Burke et al., 2005 and Acevedo et al. (2020) for
a large panel of high- and low-income countries. Some research works also focus on
extreme precipitation events and droughts, as for example Billio et al. (2020) for a
bunch of European economies. In particular, they study the interplay of weather
shocks with the business and financial cycles, and they differentiate between coun-
tries and weather shocks. They mainly focus on the effects of weather shocks on
industrial production growth and find evidence of an uneven impact across the dif-
ferent phases of the business cycle and across the considered countries. Kim et al.
(2021) investigate potential time-varying effects of extreme weather on the U.S. econ-
omy over the past 60 years by using the Actuaries Climate Index (ACI, provided by
American Academy of Actuaries and Canadian Institute of Actuaries). This monthly
ACI summarises physical and meteorological observations of temperatures, rainfall,
drought, wind speed and sea level, into a unique measure of extreme weather. By
estimating a SVAR model accounting for standard macroeconomic variables, the au-
thors show evidence of adverse aggregate macroeconomic impact of weather shocks
that tend to significantly reduce output and increase inflation. Interestingly, they
show by estimating a time-varying model that the economic impact of weather shocks
has increased over time.

Building on the Kim et al. (2021) paper dealing with U.S. variables, our objective
in this paper is to assess the potential macroeconomic effects of weather shocks on
the main European countries. In this respect, we use an original database of Euro-
pean Extreme Events Climate Index (E3CI), published by the IFAB (International
Foundation Big Data and Artificial Intelligence for Human Development), that aims
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at replicating the U.S. ACI index for European countries. We get monthly data for
this composite index starting in January 1981, as well as the five individual compo-
nents: cold and heat stresses, droughts, heavy precipitations and intense winds. This
rich database allows us to not only focus on temperature shocks, as done in most
studies, but also on a variety of weather shocks. In addition, most of the published
papers focus on the effects on industrial production (Billio et al., 2020; Kim et al.,
2021), as a proxy for monthly economic activity. Here, we add an additional layer by
considering various production sectors, namely manufacturing, construction, energy
and services for France, Germany and Italy1. Our methodology relies on the estima-
tion of a Bayesian VAR (BVAR) model for each country, each production sector and
each type of weather shock. For each of the three dimensions, we estimate impulse
response functions (IRFs) of sectoral production to a given weather shock. In the
BVAR model, we control for inflation, unemployment rate and short-term interest
rate for each considered country. In addition, to those main results, we integrate
some non-linearities by estimating IRFs through Local Projections (LPs) as pro-
posed by Jorda (2005).

Empirical results show that weather shocks have significant but heterogeneous
effects across countries (in line with Billio et al., 2020) and sectors of production.
Among the studied countries, France appears as the most resilient, in the sense that
responses are relatively muted, while Italy shows large and significant responses to
extreme weather shocks. In particular, the Italian production appears extremely
responsive to an excess or deficit of rainfall. Among the sectors, manufacturing and
construction are the most sensitive to extreme weather conditions. But interestingly,
the direction of the response is not always the same. For example in Italy, a clear
opposition emerges between the manufacturing and the construction sectors. In-
deed, a weather shock clearly generates a surge in manufacturing production lasting
about 1.5 year, while, in opposition, the construction sector sees a persistent and
significant drop in its activity, up to 2 years after the initial date of the shock. This
latter dive is associated with significantly negative response of inflation and a rise in
unemployment. As regards the construction sector, results suggest that a positive
temperature shock differently impacts a country depending on its latitude. Indeed, a
country in the North of Europe, which can be considered as a cool country compared
to other European countries, tends to see its construction activity positively affected
by a heat stress. In opposition, a Southern European country like Italy, which can
be considered as hot country in Europe, negatively reacts to a heat stress. To the
best of our knowledge, this is the first study that also considers the effects of extreme
weather on the production of services, which tend to respond mildly, but positively,
to all weather shocks, although the analysis can only be conducted for France due
to limited data availability. In addition, non-linear results highlight evidence of dis-
proportionate effects on production of large shocks, compared to effects of shocks of
smaller size, in particular in Germany. Last, we don’t get evidence of non-linearity

1Unfortunately, monthly service production is only available for France for a sufficiently long
period of time.
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to business cycle phases in the responses to weather shocks, in opposition to the
results obtained by Billio et al., 2020.

The rest of this work is structured as follows. Section 2 presents a selected review
of the literature on macroeconomic impact of weather shocks. Section 3 introduces
the methodology that we carry out, by describing the data and the econometric
methods. Section 4 presents the main results expressed in terms of impulse response
functions to various weather shocks. Section 5 contains additional results on ser-
vice production and on non-linear effects of weather shocks and, finally, Section 6
concludes. Additional figures and tables are presented in the Appendix.

2 Selected literature review

There is a large macroeconometric literature trying to assess the aggregate macroe-
conomic dynamic effects of structural shocks. For example, seminal papers include
Romer and Romer, 2004, for monetary policy shocks, Ramey, 2011, for government
spending and fiscal shocks, as well as Bloom, 2009, for uncertainty shocks. However,
in recent years, growing attention has been given to the role of weather shocks, as
there is empirical evidence that climate hazards are more frequent and more intense
and present long-lasting consequences, especially on health, agriculture, the ecosys-
tem and the economy (Tol, 2009, or Dell et al., 2012). Several theoretical models
have been proposed to analyse the impact of climate events on economic activi-
ties, such as integrated assessment models (Nordhaus, 1993, or Hassler and Krusell,
2018), which focus mostly on long-term effects. Recent reviews on the economic
effects of weather and climate-related shocks include Hsiang, 2016, and Giglio et al.,
2021. Empirically, econometric models allow to quantitatively assess the effects on
business cycles of weather shocks as well as their transmission channels (Kamber
et al., 2013, or Mumtaz and Alessandri, 2021). However, most of these studies have
focused on agriculture. For example, Ciscar et al., 2011, quantify the potential con-
sequences of weather change in Europe’s agricultural sector and, in a recent paper,
Gallic and Vermandel, 2020, study the effects of droughts on agricultural produc-
tion and macroeconomic fluctuations in New Zealand, finding that drought shocks
explain more than a third of GDP and agricultural output fluctuations. Beyond
the agricultural sector, less attention has so far been devoted to other sectors of the
economy, such as production (Arent et al., 2015, offer a review of the implications of
weather change on key economic sectors and services). Only few comparative studies
are available, but they highlight a strong heterogeneity of effects across countries,
especially in Europe (Acevedo et al., 2020, or Billio et al., 2020).

Overall, estimating the effects of extreme weather remains a key open issue, with
previous studies finding heterogeneous results, ranging from limited, to no effects,
to even sometimes positive effects (Felbermayr and Gröschl, 2014, Tran and Wilson,
2021, or Hsiang and Jina, 2014). In this paper, we provide new evidence by studying
the impact of various types of extreme weather events on several production sectors,
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using data of three of Europe’s main economies. To the best of our knowledge, there
is no study that considers as many production sectors as we do in this paper.

The research works that are most closely related to ours are the ones by Kim et
al., 2021 and Billio et al., 2020. Kim et al., 2021 propose a Smooth-Transition VAR
(ST-VAR) model to investigate potential time-varying effects of extreme weather
shocks on the U.S. economy over the past 60 years. As weather data, they use the
Actuaries Climate Index (ACI) developed by the American Academy of Actuaries
and Canadian Institute of Actuaries, which summarises physical and meteorologi-
cal observations of temperatures, rainfall, drought, wind speed, and sea level, into
a unique measure of extreme weather conditions. They introduce this ACI index
into a small-scale econometric model that also includes the growth rate of industrial
production, unemployment rate, inflation and short-term interest rates. Their main
building block is a SVAR model estimated with monthly data and identified by as-
suming that economic shocks do not have contemporaneous (that is, within the same
month) effects on the ACI. The model is then extended by allowing for time-varying
parameters, a choice motivated by the clear upward trend of the ACI starting around
1995, to investigate whether the effects of extreme weather have changed over time.
The model is estimated using Bayesian techniques (namely informative priors) and
impulse response functions (IRFs) to various shocks are computed. Overall, they
find that the increase in the ACI causes adverse long-lasting effects on industrial
production, an increase in the unemployment rate, as well as upward inflationary
pressures. Instead of exploring the heterogeneity of effects across the time dimen-
sion, Billio et al., 2020 focus on the interplay of weather shocks with the business and
financial cycles, and they differentiate between countries and weather shocks. They
consider thirteen European countries and three types of weather shocks: high tem-
peratures, drought and very heavy rainfall. They estimate a Panel Markov-Switching
model able to jointly account for the cyclical behaviour of the EU economy at the
country-specific and at the aggregate level, and to account for interaction between
the financial cycle and weather shocks. They mainly focus on the effects of weather
shocks on industrial production growth and find evidence of an uneven impact across
the different phases of the business cycle and across the considered countries. Most of
the economies of Southern Europe are found to be negatively impacted by exposure
to a lengthy spell of summer days, while Central and Northern countries respond
asymmetrically over the business cycle (positively during recessions and negatively
during expansions). Furthermore, extreme drought seems to negatively impact most
of the countries in Northern Europe, while, overall, France is found to be the most
resilient economy to all weather shocks, in particular during recessions. Finally,
they find that the impact of weather shocks on the economy is mostly felt through
the manufacturing sector, which also contributes to explain the asymmetric impact
of extreme weather events on industrial production, more sensitive to business cycles.
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3 Methodology

In this section we present the methodology used in this paper. First, we describe
the monthly data involved in the analysis, then the econometric modelling that relies
on BVAR models and Local Projections.

3.1 Data

To carry out our empirical analysis, we collect monthly data for France, Germany
and Italy on the E3CI index, on production by sector, as well as three macro aggregate
variables (unemployment, inflation and short-term ECB interest rates). The dataset
covers the period from January 1990 to December 2019.2

3.1.1 Weather data

To measure extreme weather we take advantage of the European Extreme Events
Climate Index (E3CI), which is a new dataset of indexes aiming at providing infor-
mation about the areas affected by various types of weather-induced hazards and
the severity of such events. This data set is produced by the International Foun-
dation Big Data and Artificial Intelligence for Human Development (IFAB3) and is
based on the corresponding index developed for North America (Actuaries Climate
Index, ACI4), which has been used recently by (Kim et al., 2021). The E3CI index
is available at the country level and is the combination of five components collect-
ing information about the main weather hazards: cold and heat stresses, droughts,
extreme precipitations, and extreme winds. The estimation of those components
exploits ERA5, the fifth-generation atmospheric reanalysis produced by European
Centre for Medium-Range Weather Forecasts. ERA5 covers the entire Globe on
regular latitude-longitude grids at 0.25 x 0.25 degree resolution from January 1950
to present. Interestingly, ERA5 is updated daily with a latency of about 5 days
permitting a constant update of the components. Note that the reference values are
computed on the 1981-2010 time span. So overall, those components can be seen
as deviation to average over 1981-2010, the exact computation is presented in the
Appendix. Components of the E3CI index for Germany, France and Italy are pre-
sented in the Appendix in Figures 18, 19 and 20, respectively. The components do
not exhibit any strong auto-correlation, and are thus close to white noise processes,
and they do not present significant cross-correlations if we except the negative corre-
lation of about -0.40 between precipitations and droughts. In fine, these components
are summarized into a unique extreme weather index, computed as the average of
the five components and referred to as the E3CI index, and presented in Figure 1 in
addition to its smoothed version, a simple asymmetric moving-average over 5 years.

2All data are available after 2019 but given the large volatility of macroeconomic data during
the Covid period, we decided to not integrate for the moment this period into the sample.

3www.ifabfoundation.org
4actuariesclimateindex.org
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We don’t observe any clear changes in trends, in spite of a slight upward trending
common movement starting around 2015.

Figure 1: Composite E3CI indexes for Germany, France and Italy

7



3.1.2 Aggregate and sectoral macro data

The aggregate macroeconomic data that we integrate into our analysis are sim-
ilar to those from Kim et al., 2021, namely unemployment rate (in level), inflation
(annual growth rate of harmonized consumer price index) and ECB main refinancing
interest rate (3-month Euribor, in level). Those series are standard macroeconomic
variables and are often integrated into small-scale SVAR models to assess the dy-
namic impact of shocks of aggregate macroeconomic activity.

Instead of proxying output by industrial production as in Kim et al., 2021, we are
using various sectoral production series for each country. The sectoral classification
is NACE Rev.2 proposed by Eurostat. We consider sectors from section B to section
N (with the exception of section K, financial and insurance activities). The consid-
ered sections, reported in Table 1, are: Mining and quarrying (B); Manufacturing
(C); Electricity , gas, steam and air conditioning supply (D); Water supply, sewer-
age, waste management and remediation activities (E); Construction (F); Wholesale
and retail trade, repair of motor vehicles and motorcycles (G); Transportation and
storage (H); Accommodation and food service activities (I); Information and commu-
nication (J); Real estate activities (L); Professional, scientific and technical activities
(M); Administrative and support service activities (N). Unfortunately, the services
sections G to N are only available for France on a monthly basis. We do not include
section A Agricultural production (which we could expect as being one of the most
impacted by weather shocks and has been extensively studied by previous literature),
because most of the series are aggregated at the yearly frequency and very few data
are available on a monthly frequency. Also note that there are likely to be large
seasonal effects in this sector.

Section Division

B MINING AND QUARRYING
C MANUFACTURING
D ELECTRICITY, GAS, STEAM AND AIR CONDITIONING SUPPLY
E WATER SUPPLY; SEWERAGE, WASTE MANAGEMENT AND REMEDIATION ACTIVITIES
F CONSTRUCTION
G WHOLESALE AND RETAIL TRADE; REPAIR OF MOTOR VEHICLES AND MOTORCYCLES
H TRANSPORTATION AND STORAGE
I ACCOMMODATION AND FOOD SERVICE ACTIVITIES
J INFORMATION AND COMMUNICATION
L REAL ESTATE ACTIVITIES
M PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES
N ADMINISTRATIVE AND SUPPORT SERVICE ACTIVITIES

Table 1: Sections from NACE Rev.2

3.2 Econometric modelling

The econometric modelling has for objective to estimate impulse response func-
tions (IRFs) to a given weather shock, in a given country. In this respect, we will use
two approaches, namely SVAR models and Local Projections (LPs) as put forward
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by Jordà, 2005. Recently, Plagborg-Møller and Wolf, 2021 proved that the two ap-
proaches asymptotically lead to similar results when the lag structure is unrestricted.

3.2.1 SVAR modelling

In this respect, we estimate small-scale SVAR model for each of the 3 countries
of the following reduced form:

yt = A0 + A1yt−1 + · · ·+ Apyt−p + ut (3.2.1)

where yt contains all the variables of the system in the following order: weather
shock, production, unemployment rate, inflation and short-term interest rate. Thus
matrices Aj for j = 1, . . . , p are 5×5 coefficients matrices. Reduced-form residuals ut
from this model are supposed to be such that ut ∼ N(0,Σ) where Σ is the covariance
matrix. In order to get the underlying structural shocks εt of the system, we impose
a linear relationship between εt and ut such that εt = Γut where Γ is the matrix
of contemporaneous relationships, that is within the month. Identification of Γ is
obtained via the Cholesky decomposition of Σ, using the predefined ordering. By
imposing this ordering, we thus assume that any unexpected change in economic
variables does not have any influence on extreme weather events within the same
month. But obviously, medium-run evolution of economic variables can in turn
influence extreme weather shocks.

Parameter estimation of the SVAR model is carried within a Bayesian framework
in the spirit of Giannone et al., 2015. The priors for the SVAR coefficients are taken
from the Normal-Inverse-Wishart family of the following form:

β|Σ ∼ N(b,Σ⊗ Ω),

Σ ∼ IW(Ψ,d),

where b, Ω, Ψ and d can be expressed as function of the lower-dimensional vector
of hyper-parameters γ. Here, β is the vector of listed coefficients of the Aj matrices.
This class has two advantages: it includes the priors most commonly used in the
literature and, since the priors are conjugate with respect to the likelihood function,
the marginal likelihood is available in closed form. Giannone et al., 2015 set the
degrees of freedom of the inverse-Wishart distribution to d = n + 2, where n is the
number of variables included into the model, which is the minimum value that guar-
antees the existence of the mean of the IW distribution of Σ which in this case is

Φ
d−n−1

. The matrix Φ is diagonal with the vector ϕ on the main diagonal. We refer
to the Appendix for additional details.

3.2.2 Local Projections

As an alternative to VAR models, Jordà, 2005, introduced the Local Projection
(LP) approach to estimate IRFs. This approach has the great advantage of being
simple to implement and extremely flexible to integrate non-linearities, as we do in
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Section 5. In addition, recent theoretical research proved that IRFs stemming from a
LP approach converge to the ones obtained through a SVAR model (Plagborg-Møller
and Wolf, 2021). LPs allow to directly estimate IRFs for a given variable of interest
xt in a easier way through this horizon-specific equation, for each horizon h:

xt+h = ch + βhνt + Γh(B)yt−1 + uht+h for h = 0, 1, · · · , H (3.2.2)

where νt is the structural weather shock, yt a set of control variables similar to those
included into the SVAR model in equation (3.2.1). It can be shown that βh is the
response of x at t+ h after a shock at t and the IRF is estimated by the sequence of
βh.

The LP equation (3.2.2) can be easily adapted to a non-linear framework by
assuming there exists two regimes in the nature for which parameters are not equal.
In this respect, we simply interact the right hand side of equation (3.2.2) once with
(1 − F (s)), the probability of the economy being in the first regime, and once with
F (s), the probability of being in the second. This non-linear pattern is integrated
into the previous horizon-dependent equation as follows:

xt+h = (1−F (st−1))[c
h
1+β1,hνt+Γ1,h(B)yt−1]+F (st−1)[c

h
2+β2,hνt+Γ2,h(B)yt−1]+u

h
t+h.

(3.2.3)
The F (.) function maps real values to the interval [0, 1] and a customary choice

is the logistic function:

F (st) =
e−γŝt

1 + e−γŝt
, ŝt =

st − µ

σs
(3.2.4)

where st is the transition variable taken as indicative of the regime with respect to
which potential non-linear effects are estimated. For example, if we take st as an
indicator of the business cycle, F (st) will be close to 0 during the low phases of the
business cycle (regime 1) and close to 1 during the high phases of the cycle (regime
2). This is what we will do to test the hypothesis put forward by Billio et al., 2020.
As an output, we get IRFs to various weather shocks in each regime.
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4 Main empirical results

This section presents the main results from our empirical analysis. We start by
assessing the macroeconomic effects of a composite weather shock, then we will con-
sider the specific-weather shocks. Additional results are presented in the next section.

4.1 Macro effects of a composite weather shock

Let’s first have a look at the global effects of the composite E3CI index on all
sectors for the three countries involved in the analysis (Germany, France, Italy). For
a given country we assess the sectoral impact of the composite weather shock by
considering production in three sectors: manufacturing, energy and construction.
To get dynamic responses to shocks in each country, we sequentially employ in this
section the SVAR model described in equation (3.2.1) by always keeping the following
standard ordering of variables: weather shock, sectoral production, unemployment
rate, inflation and short-term interest rates. Recursive identification and estimation
steps are described in section 3.

IRFs for all the economic variables included in the SVAR model to a one standard
error shock on the composite weather index, as well as the 68% confidence bounds,
are presented in Figures 2 to 4 for Germany, Figures 5 to 7 for France and Figures
8 to 10 for Italy5

In Germany, a weather-induced shock leads to similar expected reaction of man-
ufacturing and energy sectors as the production initially significantly drops following
the initial extreme weather shock then rapidly converges to zero after the the first
few months (3 to 5 months). This shock tends to push inflation higher, though not
significantly, and unemployment slightly decreases by about -0.02 percentage points
(pp) after one year, but in a statistically significant way. In opposition, a weather
shock tends to increase activity in the construction sector, over the 12 months after
the shock. The response of unemployment is still positive as we observe a signifi-
cant decline. In general, the interest rate tends to significantly increase by few pp
(maximum of 0.03pp after one year). Overall, a weather shock in Germany could be
characterized as being close to a positive aggregate demand shock as unemployment
decreases and inflation increases.

In France, a composite weather shock first leads to a decline in production for all
sectors following the initial impact, with heterogeneous degrees of persistence. While
the shock rapidly vanishes for the manufacturing and energy sector, it tends to be
much more persistent for construction, the effects being still visible 20 months after
the impact date. An extreme weather shock in France acts as an aggregate negative
demand shock in the medium run as it steers a drop in inflation and central bank
rate, as well as a surge in unemployment rate. Interest rates react negatively in all
cases, reflecting a more accomodative monetary policy reaction. When construction

5Note that by convention, the IRFs start at date t = 1 which is the date of the initial impact.
Consequently they stop at date t = 41, that is 40 months after the impact.
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is considered, macroeconomic effects are larger than in other sectors and are highly
persistent.

In Italy, a clear opposition emerges between the manufacturing and the construc-
tion sectors. Indeed, a weather shock clearly generates a surge in manufacturing
production lasting about 1.5 year. On impact, the one standard error shock leads
to 0.4pp increase in production of manufactured goods, then progressively vanishes.
This movement is however associated to a slight increase in unemployment. In op-
position, the construction sector sees a persistent and significant drop in its activity,
until 2 years after the initial date of the shock. This dive is associated with signifi-
cantly negative response of inflation and a rise in unemployment. In particular, the
unemployment rates reaches a peak of 0.07pp after two years. Overall, interest rates
do not strongly react. As regards the energy sector in Italy, we observe a positive
reaction of production one month after the impact, followed by a drop the month
after. Then, there is no clear evidence of significant response over the rest of the
horizon. Compared to France and Germany, Italy seems to more sharply react to
weather shocks, positively and negatively.
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Figure 2: Germany: IRFs to E3CI shock for Manufacturing production

Figure 3: Germany: IRFs to E3CI shock for Energy production

Figure 4: Germany: IRFs to E3CI shock for Construction production
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Figure 5: France: IRFs to E3CI shock for Manufacturing production

Figure 6: France: IRFs to E3CI shock for Energy production

Figure 7: France: IRFs to E3CI shock for Construction production

14



Figure 8: Italy: IRFs to E3CI shock for Manufacturing production

Figure 9: Italy: IRFs to E3CI shock for Energy production

Figure 10: Italy: IRFs to E3CI shock for Construction production
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Previous results show evidence of heterogeneity in the response of countries to
composite severe weather shocks, as well as variations among sectors of production,
in line with the results from Billio et al., 2020. To compare countries and sectors
in an easier way, we put on the same graph the cumulated impulse responses after
six and twelve months, as well as their confidence bounds at 68% (see Figure 11).
Overall, France appears to be the most resilient to weather shocks as the amplitude
of responses is lower than the one for Germany and Italy. France has a negative
significant response to composite weather shock for Mining and quarrying (B) and
for Construction (F). In both Germany and Italy, it turns out that a weather shock
leads to a strong positive response of the Mining and quarrying sector. Interestingly,
the Construction sector (F) is asymmetrically impacted in those countries: positively
in Germany but negatively in Italy. As construction is an outdoor activity, it is likely
that some specific weather conditions have a strong impact (see below). Note also
that Italy is the only country to see a significantly positive response of the Manu-
facturing sector to the composite weather shock.

Figure 11: Cumulated responses to a shock in the E3CI for the main
Sections. The whiskers represent 68% confidence intervals.
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4.2 Macro effects of weather-specific shocks

A major concern when using the composite E3CI index is that it summarizes all
kinds of extreme weather events into a single index, while different types of extreme
weather shocks might impact production in different ways, and potentially offset each
other. This might also help explain why we find such heterogeneity across countries
and across sectors. In this respect, we now look at the impact of the individual
components of the E3CI index on sectoral production of countries.

For each of the three countries, we assess the impact of the five weather-specific
shocks, namely heat stress, cold stress, drought, heavy precipitation and intense
winds, on the three various production sectors (manufacturing, construction and en-
ergy). So we now have three dimensions in our results: country, weather shocks and
production sectors. To summarize the results in graphs, we only consider IRFs to
specific weather shocks at 6 months (red bars) and 12 months (red bars). Cumulated
responses are shown along with their 68% confidence bounds.

Figure 12 reports the cumulated responses of the manufacturing production. We
point out the usefulness of disagregating the composite index, as responses to some
shocks appear now significant for France and Germany, while the manufacturing
impact of the composite index was weak and non-significant for h = 6 and h = 12
months (see Figures 2 and 5). Again, we note the overall resilience of France to the
various weather shocks compared to the other two countries. In Germany, responses
to shocks are slightly significantly positive, except for the response to a drought
shock which turns out to be largely negative. In opposition, a drought shock tends
to generate a cumulated positive response of the Italian manufacturing production of
about 5% after one year. Symmetrically, an excess of precipitation generates a large
drop in manufacturing production of about 3% after one year. This high sensitivity

Figure 12: Cumulated responses of manufaturing production to the 5
weather shocks. The whiskers represent 68% confidence intervals.
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Figure 13: Cumulated responses of construction production to the 5
weather shocks. The whiskers represent 68% confidence intervals.

of the Italian manufacturing sector to an excess or a deficit of rainfall is a salient
fact of our results. Overall, this largely contributes to the strong positive response
of the sector to a composite shock, as can be seen in Figure 8.

Figure 13 reports the cumulated IRFs of the construction sector to various
weather shocks. The dynamic effect of the composite weather shock points out a
divergence between, on the one hand, France and Italy showing a drop in produc-
tion (Figures 7 and 10), and Germany, on the other hand (Figure 4). It turns out
that the positive reaction of the German construction sector is mostly driven by a
heat stress that generates a cumulated response of more than 3% after 6 and 12
months. At the same time, other shocks do not generate significant responses in this
country. Interestingly, a similar shock leads to a large dive in Italy, while France
doesn’t show any significant reaction to this shock. These results suggest that a
positive temperature shock differently impacts a country depending on its latitude.
Indeed, a country in the North of Europe, which can be considered as a cool country
compared to other European countries, tends to see its construction activity pos-
itively affected by a heat stress. In opposition, a Southern European country like
Italy, which can be considered as hot country in Europe, negatively reacts to a heat
stress. Construction is an outdoor economic activity that seems to be sensitive to
high temperatures, positively or negatively depending on the latitude. We also note
that all the climate-specific shocks in Italy contribute significantly to the construc-
tion sector, either positively or negatively, making the country the most responsive
to the diversity of severe weather shocks in this specific sector.

The production in energy is the sector that shows the lowest heterogeneity among
countries. Indeed, as expected, a cool stress generates a positive cumulated response
of energy production in all countries, while a heat stress leads to a significant fall in
production across the board. Again, Italy is the most sensitive country as we also
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Figure 14: Cumulated responses of energy production to the 5 weather
shocks. The whiskers represent 68% confidence intervals.

get a strongly significant reaction to drought and precipitation shocks on the sector.
Indeed, an excess of precipitation steers a large fall in energy production, while in
opposition a sequence of days of droughts conducts to an increase. Therefore, it turns
out that the overall rather weak response to the composite weather shock hinders
large positive and negative responses to various weather-specific shocks (positive for
cool stress and droughts, negative for heat stress and precipitation).

5 Additional results

In this section, we present additional empirical results focusing first on service
production, then on some non-linear patterns in the response to composite weather
shocks. The first type of non-linearity that we consider is an asymmetric response
of production to the size of the shock as pointed out by Burke et al., 2005. The
second type of non-linearity that we check is a sensitivity to business cycle phases,
as responses to weather shocks can differ whether the economy is in recession or
expansion as highlighted in Billio et al., 2020. To assess evidence of non-linearities,
we focus on the composite E3CI shock that we integrate into a non-linear Local
Projection approach as described in equation (3.2.3) in order to estimate IRFs.

5.1 Impact on the service sector

As far as the production of services is concerned, we unfortunately have only
access to French data on a monthly basis.6 We compute IRFs from various weather-
specific shocks by integrating service production into a SVAR model, as we did in

6According to Eurostat, data for most German services are only available from 2016 onwards
and are not available for Italian services.
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Figure 15: Cumulated responses of services production in France to the 5
weather shocks. The whiskers represent 68% confidence intervals.

the previous section. We only focus on responses after 6 and 12 months. Figure 15
contains the cumulated responses of the various sub-sectors in production of services,
ranging from G (Wholesale and retail trade) to N (Administrative and support service
activities) (see Table 1). Overall, compared to other sectors considered in the previ-
ous section, the response of service production to the various weather-specific shocks
is relatively muted, though generally positive. Periods of heat and cool stresses tend
to be associated with slightly positive responses of service production, though most
of them are not significant. An excess of precipitations leads to negative responses
of production in three sub-sectors: Wholesale and retail trade, Transportation and
storage and Accommodation and food services. It is also noteworthy that a drought
shock implies a positive response after 12 months of production in the Transporta-
tion and storage activity. Finally, we note that a wind shock does not seem to affect
service production as all the IRFs lie within the confidence bounds after 6 and 12
months. We should be careful with the interpretation of results for services, as we
already noted that France is overall less responsive than the other two countries to
weather shocks.

5.2 Non-linearity to the size of the shock

It seems quite intuitive to assume that a major weather event, of unusual ampli-
tude, is likely to have a disproportionate impact of production compared to a shock
of more standard size. This hypothesis has been confirmed by Burke et al., 2005,
who show that global productivity around the world is non-linear in temperature,
with productivity peaking at a temperature of 13 degrees Celsius and then declining
strongly for higher temperature. Their analysis is however limited to temperatures
and it would be interesting to generalize to other weather-specific shocks. This is
our objective here, through the estimation of IRFs obtained via non-linear LPs (see
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section 3.2.2). We use the lagged (at t− 1) composite E3CI index as transition vari-
able. This corresponds to checking for potential non-linear effects to the size of the
shock. Therefore, we are implicitly assuming that there are two regimes: a regime
of large weather shocks and a regime of small shocks.

Figure 16 shows the IRFs of manufacturing production in Germany to a compos-
ite weather shock when the amplitude of the shock is small (low regime, black lines)
and when it is large (high regime, blue lines), as well as 68% confidence bounds. Sim-
ilar graphs for France and Italy are presented in the Appendix in Figures 21 and 22,
respectively. We first note that the IRFs of manufacturing production go in opposite
directions: while a small shock tends to generate a significant positive response, a
large shock clearly leads to a persistent drop in production. This differential between
the two types of weather shock is interesting to underline as the total impact the com-
posite index on manufacturing production was rather muted, excepted one month
after impact (Figure 2). Similar differences in the evolution of the IRF overtime
can be seen for inflation: a large shock leads to persistent disinflationary pressures,
while a small shock steers inflation tensions. As regards unemployment rate and the
short-term interest rate, they show differentiation in regimes but only after a certain
horizon of about two years. In France, results are more mixed. However, we see
a differentiation in the response of unemployment rate that strongly increase after
a large weather shock. Last, Italy does not show any clear non-linear patterns in
the response of manufacturing production to the size of the composite weather shock.

Figure 16: Germany: Non-linear IRFs of manufacturing production and
macro variables with respect to the size of the composite weather shock
E3CI, as well as 68% confidence intervals.
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5.3 Non-linearity to the business cycle

Lastly, we would like to check a result put forward by Billio et al., 2020, accord-
ing to which there is evidence of non-linearity with respect to the business cycle,
namely there is a stronger impact on production of weather shocks during recessions
than during expansions. In this respect, we estimate IRFs to a composite weather
shock E3CI on the manufacturing production for the three countries. The approach
relies on a non-linear LP framework as above. We allow for two regimes of economic
growth using as transition variable the European Sentiment Index (ESI), a composite
sentiment index of various surveys released by the European Commission. The ESI
reflects business cycle conditions in the sense that the ESI reaches low values during
phases of low economic growth and reaches high values during phases of high eco-
nomic growth. This index is widely used by practitioners to track euro area business
cycles in real-time. IRFs of manufaturing production in both regimes of growth are
presented in Figure 17 for France, Figure 23 for Germany and Figure 24 for Italy
(the two latter figures can be found in the Appendix). Blue lines correspond to IRFs
within the low growth regime and dark lines to IRFs within the high growth regime.

We do not find any significant differences between the IRFs of manufacturing pro-
duction in the two alternative regimes of growth, for all the countries, suggesting thus
that the hypothesis from Billio et al., 2020 does not hold against our background7.
Interestingly, if we focus on France (Figure 17), we note that other aggregate macro
variables do respond differently in the two regimes. In particular, unemployment
rate shows a clear rise after a weather shock during the low growth regime, while

7This wedge could possibly be due to differences in the definition of business cycle phases.

Figure 17: France: Non-linear responses with respect to the business cy-
cle of manufacturing production and macro variables to the composite
weather shock E3CI, as well as 68% confidence intervals.
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the reaction is muted during the high growth regime. Similarly, we observe the same
pattern in the response of central bank interest rates, moving significantly downward
after a weather shock during the low growth regime. In comparison to France, Italy
and Germany appear to be less sensitive to the business cycle in the reaction of
macroeconomic variables to extreme weather conditions.

6 Conclusions

This paper presents an assessment of the dynamic impact of extreme weather
events on aggregate macroeconomic variables in the three largest European countries,
namely Germany, France and Italy. For each country we carry out an econometric
modelling analysis based on SVAR modelling to compute impulse response functions
(IRFs) to weather shocks. Weather data come from the IFAB Foundation and con-
tain a composite index summarizing information about the main climatic hazards,
as well as its five components, that is cold and heat stresses, droughts, heavy precip-
itations and intense winds. In addition, we also disentangle the responses according
to production sectors of the economy, namely manufacturing, energy, construction
and services.

Empirical results show an overall significant impact of weather shocks on sectoral
production, as well as on other macroeconomic variables, with a strong heterogeneity
among countries and sectors. In particular, France appears as the most resilient to
weather shocks, while, on the contrary, Italy strongly reacts. Among the sectors,
manufacturing and construction are the most sensitive to extreme weather condi-
tions. But interestingly, the direction of the response is not always the same. For
example in Italy, a clear opposition emerges between the manufacturing and the con-
struction sectors. Indeed, a weather shock clearly generates a surge in manufacturing
production lasting about 1.5 year, while, in opposition, the construction sector sees
a persistent and significant drop in its activity, up to 2 years after the initial date
of the shock. This latter dive is associated with significantly negative response of
inflation and a rise in unemployment. As regards the construction sector, results
suggest that a positive temperature shock differently impacts a country depending
on its latitude. Indeed, a country in the North of Europe, which can be considered as
a cool country compared to other European countries, tends to see its construction
activity positively affected by a heat stress. In opposition, a Southern European
country like Italy, which can be considered as hot country in Europe, negatively
reacts to a heat stress.

In addition, we also check for evidence of non-linear patterns in the results.
We first find that the size of the weather shock matters in the sense that a large
shock leads to disproportionate IRFs. This is especially true in Germany where
manufacturing production and inflation sharply fall following a large weather shock.
There is less evidence of non-linearity to the business cycle phases as regards sectoral
production, but macro variables do show a clear non-linear response depending on
the phase of the business cycle, especially in France.
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This paper builds on previous results obtained for the U.S. economy by Kim et
al., 2021 and contributes to point out that, nowadays, extreme weather hazards do
not only affect low income countries and the agricultural sector, but also advanced
economies and other sectors of production such as manufacturing and construction.
This obviously supports a global solution to climate change issues and a strong in-
volvement of advanced countries.
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Jordà, Ò. (2005). Estimation and inference of impulse responses by local projections.
American economic review, 95 (1), 161–182.

Kamber, G., McDonald, C., Price, G., et al. (2013). Drying out: Investigating the
economic effects of drought in new zealand (tech. rep.). Reserve Bank of New
Zealand Wellington.

Kim, H. S., Matthes, C., & Phan, T. (2021). Extreme weather and the macroecon-
omy. Available at SSRN 3918533.

Mumtaz, H., & Alessandri, P. (2021). The macroeconomic cost of climate volatility.
Available at SSRN 3895032.

Natoli, F. (2022). The macroeconomic effects of temperature surprise shocks. Avail-
able at SSRN 4160944.

Nordhaus, W. D. (1993). Optimal greenhouse-gas reductions and tax policy in the”
dice” model. The American Economic Review, 83 (2), 313–317.

Plagborg-Møller, M., & Wolf, C. (2021). Local projections and vars estimate the
same impulse responses. Econometrica, 89 (2), 955–980.

Ramey, V. (2011). Identifying government spending shocks: It’s all in the timing.
The Quarterly Journal of Economics, 126 (1), 1–50.

Romer, C., & Romer, D. (2004). A new measure of monetary shocks: Derivation and
implications. American Economic Review, 94 (4), 1055–1084.

Tol, R. S. (2009). The economic effects of climate change. Journal of economic per-
spectives, 23 (2), 29–51.

Tran, B. R., & Wilson, D. J. (2021). The local economic impact of natural disasters.

26



Appendix

Appendix 1: Weather data

To measure extreme weather we take advantage of the The European Extreme
Events Climate Index (E3CI), which is a new dataset of indexes aiming at providing
information about the areas affected by different types of weather-induced hazards
and the severity of such events. The E3CI, which is available at the country level,
includes five components collecting information about the main weather hazards:
cold and heat stresses, droughts, extreme precipitations, and extreme winds. Each
component uses an indicator as proxy for several hazards. The reference value is
computed on the 1981-2010 time span while, at monthly basis, the E3CI shows a
standardized anomaly with respect to this reference value. Components are defined
as follows:

1. Heat stress: on the reference period 1981-2010, for each calendar day, the
maximum temperature of the surrounding five days is considered. The 95th per-
centile among the 150 values (5 days times 30 years) is computed and assumed
as threshold. For each month j, the mean value µ (j, Tmax) and the stan-
dard deviation σ (j, Tmax) of the number of days exceeding the corresponding
threshold are calculated. Finally, the index is obtained by standardizing the
number of days exceeding the corresponding threshold HSj,k for each month j
and year k, according to the formula:

HSstd,j,k =
HSj,k − µ (j, Tmax)

σ (j, Tmax)

2. Cold stress: on the reference period 1981-2010, for each calendar day, the
minimum temperature of the surrounding five days is considered. The 5th per-
centile among the 150 values (5 days times 30 years) is computed and assumed
as threshold. For each month j, the mean value µ (j, Tmin) and the stan-
dard deviation σ (j, Tmin) of the number of days lower than the corresponding
threshold are calculated. Finally, the index is obtained by standardizing the
number of days exceeding the corresponding threshold CSj,k for each month j
and year k, according to the formula:

CSstd,j,k =
CSj,k − µ (j, Tmin)

σ (j, Tmin)

3. Drought: the Standard Precipitation Index (SPI) is assumed as reference in-
dicator considering 3 months as accumulation period of interest (SPI-3). Over
1981-2010, for each month j, the 30 cumulated values are fitted to a gamma
probability distribution which is then transformed into a normal distribution.
For each month j and year k, the SPI − 3j,k value represents units of stan-
dard deviation from the long-term reference mean. According to the canonical
approach, positive SPI indicate values greater than median precipitation and
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negative values indicate less than median precipitation. In E3CI, to main-
tain the consistency with the other components, the opposite of SPI − 3j,k is
considered.

4. Heavy precipitation: on the reference period 1981-2010, for each month j,
the 95th percentile of daily precipitation is computed. Then, the exceedance
value at monthly basis is computed as: EP j,k =

∑nj

i=1max [0; Pi,j,k − P95,j]
where Pi,j,k represents the daily precipitation (day i, month j, year k). Over the
reference period, for each month j, the mean value µ ( EP j) and the standard
deviation σ ( EP j) of the exceedance value are calculated. Finally, the index
is obtained by standardizing the exceedance value for each month j and year
k, according to the formula:

EP std,j,k =
EP j,k − µ (EP j)

σ ( EP j)

5. Intense winds: on the reference period 1981-2010, for each month j, the
95th percentile of daily maximum wind speed w95,j is computed. Then, on a
monthly basis, the Local Loss Index (Donat et al., 2011) is calculated as:

LLIj,k =

nj∑
i=1

max

[
0;

(
wmax,i,j,k
w95,j

− 1

)3
]

where wmax,i,j,k is the maximum wind speed computed considering mean hourly
values. Over the reference period, for each month j, the mean value µ ( LLIj)
and the standard deviation σ (LLIj) are calculated. Finally, the index is ob-
tained by standardizing the exceedance value for each month j and year k,
according to the formula:

LLIstd,j,k =
LLIj,k − µ ( EP j)

σ ( EP j)
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Figure 18: E3CI components for Germany
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Figure 19: E3CI components for France
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Figure 20: E3CI components for Italy
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Appendix 2: Bayesian estimation

Giannone et al. (2015) propose to use three priors pertaining to the normal-
inverse-Wishart family. The Minnesota (Doan et al., 1984), formalizes the idea that,
ex ante, all the individual variables are expected to follow random walk processes.
We specify it as follows. The conditional mean of the prior distribution is given by:

E[(As)ij|Σ] =

{
1 if i = j and s = 1

0 otherwise
,

so that an impact on a given variable only affects that variable at the next period in
time, without affecting any variable at different lags. The conditional covariance of
the prior distribution is given by:

cov[(As)ij, (Ar)kl|Σ] =

{
λ2 1

sα
Σik

ψj/(d−n−1)
if l = j and r = s

0 otherwise
,

where λ is the main hyperparameter and it controls the relative importance of prior
and data (that is, the variance associated to the prior, in other words, the degree of
confidence attributed to the prior). When λ→ 0, no weight is given to the data and
vice versa for λ→ ∞. α is an hyperparameter that controls how fast this covariance
should decrease with the number of lags and ψj is the j

th entry of ψ, which controls
the variance associated to each variable. Some refinements of the Minnesota prior
have been proposed in order to favour unit roots and cointegration, grounded on the
common practices of many applied works. These take the form of additional priors
that try to reduce the importance of the deterministic component of the VAR model.

The sum-of-coefficients prior is based on the idea that a “no-change” forecast is
a good forecast at the beginning of the period. It is implemented by adding at the
beginning of the sample artificial data constructed in the following way:

y+
n×n

= diag

(
ȳ0
µ

)
=


ȳ1
µ

0 · · · 0

0 ȳ2
µ

· · · 0
...

...
. . . 0

0 0 0 ȳn
µ


x+

n×(1+np)
=

[
0

n×1
, y+, · · · , y+

]
,

where ȳj denotes the average of the first p observations for each variable j = 1, · · · , n.
This prior implies that the sum of the coefficients of each variable on its lags is 1
and that the sum of the coefficients of each variable on the other variables’ lags
is 0. It also introduces correlation among the coefficients of the same variable in
that variable’s equation. The hyperparameter µ controls the variance of these prior
beliefs: as µ → ∞, the prior becomes uninformative, while µ → 0 implies the
presence of a unit root in each equation and rules out cointegration.

Since in the limit this prior does not allow for cointegration, the single-unit-
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root (also called dummy initial observation) prior can be implemented to push the
variables towards the presence of cointegration. This is designed to remove the
bias of the sum-of-coefficients prior against cointegration, while still addressing the
overfitting of the deterministic component issue. It is implemented by adding one
artificial data point at the beginning of the sample:

y++

1×n
=

( ȳ0
δ

)′
=

[ ȳ1
δ
, · · · , ȳn

δ

]
x++

1×(1+np)
=

[
1
δ
, y++, · · · , y++

]
,

The hyperparameter δ controls the tightness of the prior implied by this artificial
observation. As δ → ∞, the prior becomes uninformative. As δ → 0, the model
tends to a form in which either all variables are stationary with means equal to the
sample averages of the initial conditions, or there are unit root components without
drift terms.

The three priors illustrated depend on the hyperparameters λ (the tightness of the
Minnesota prior), µ (the tightness of the sum-of-coefficients prior), δ (the tightness of
the single-unit root prior) ψ (which specifies the prior variance associated with each
variable) and α (which relates to the decay of the covariance of coefficients relative
to more lagged variables). We use the following parametrization: λ ∼ Γ with mode
equal to 0.2 and standard deviation equal to 0.4; , µ ∼ Γ with mode equal to 1 and
standard deviation equal to 1; δ ∼ Γ with mode equal to 1 and standard deviation
equal to 1; α ∼ Γ with mode equal to 2 and stadard deviation equal to 0.25. The
hyperprior for the elements in ψ is set to an inverse-Gamma with scale and shape
equal to 0.0004. Note that these are not flat hyperpriors. This guarantees the
tractability of the posterior and it helps to stabilize inference when the marginal
likelihood happens to show little curvature with respect to some hyperparameters.
Please refer to the original paper for additional technical details.
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Appendix 3: Non-linear IRFs to composite weather shock of
manufacturing production and other macro variables, with
respect to the business cycle (France and Italy)

Figure 21: France: Non-linear IRFs of manufacturing production and
macro variables with respect to the size of the composite weather shock
E3CI, as well as 68% confidence intervals.

Figure 22: Italy: Non-linear IRFs of manufacturing production and
macro variables with respect to the size of the composite weather shock
E3CI, as well as 68% confidence intervals.
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Appendix 4: Non-linear IRFs to composite weather shock of
manufacturing production and other macro variables, with
respect to the business cycle (Germany and Italy)

Figure 23: Germany: Non-linear responses with respect to the business
cycle of manufacturing production and macro variables to the composite
weather shock E3CI, as well as 68% confidence intervals.

Figure 24: Italy: Non-linear responses with respect to the business cycle of
manufacturing production and macro variables to the composite weather
shock E3CI, as well as 68% confidence intervals.
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