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Abstract

This article deals with the pricing of turbo warrants and perpetual turbo
warrants. (Non perpetual) turbo warrants have already been treated in several
articles, but no application has been run to check the validity of the pricing
formula. On another hand, perpetual turbo warrants studies are scarce as they
are recent financial instruments. In this work, an application to Hong Kong
exchange market is provided for the (non perpetual) turbo warrants. Then,
exotic portfolios are constructed for replicating the perpetual turbo warrants
and then to propose a price. Due to a lack of historic data of perpetual turbos,
only numerical simulated results are presented for perpetual turbo warrants.
Properties are presented under the Geometric Brownian Motion model.

Keywords: Down and Out Call option, Down and In look-back option, Perpetual
Turbo Warrants options, Hong Kong exchange market.

∗We would like to thank Ruggero RENZETTI who also originally contributed to this research.
†Corresponding author: Economics and Management Sciences Team, Ecole Centrale de Lyon,

36 avenue Guy de Collongue, F-69134 Ecully cedex, France. Tel: +33 (0)4 72 18 63 34. Fax: +33
(0)4 72 18 67 63. Email: christian.de-peretti@ec-lyon.fr

1



1 Introduction

Turbo warrants are very recent products which appeared firstly in Germany in 2001
and were since widely exchanged in Europe and Hong Kong. Société Générale bank has
been one of the first banks to emit these instruments. These products are commonly
used and issued by both investors and financial institutes as they give specific means
for speculation. These instruments are usually managed in a strictly bullish or bearish
speculations.

Results on pricing finite maturity Turbo warrants are found in a number of articles,
however pricing perpetual turbo warrant has not been specifically treated. The classical
pricing formulas for derivatives (of Black-Scholes type) provide the value of a derivative
product with a finite maturity. However, perpetual Turbo warrants are products with
an infinite maturity. Consequently, the aim of this article is come up with a method
to price perpetual Turbo warrants.

In order to better understand how to price turbo warrant in general, the pricing of
the finite maturity turbo warrants are first presented. Since turbo warrants are very
exotic products, classical pricing methods such as for vanilla options cannot be used.
However, exact formulas for pricing this instrument exist in the literature.

However, in the literature, we did not find any application to real data to check the
validity of the formula. Consequently, in this paper, the validity of these formulas is
checked on historical data from Hong Kong Exchange markets. Empirical results are
satisfying.

This article then focuses on perpetual (i.e. infinite maturity) Turbo warrants. In-
spired by results on finite maturity turbo warrants, we found an appropriate replicating
portfolio composed by exotic products and we used this portfolio to price perpetual
turbo warrant. The properties of our pricing model are first tested on simulated un-
derlying assets. Secondly, our model will be tested on historical data.

Section 2 exposes the state of the art. In section 3, we recall the case of finite ma-
turity turbo warrants, their replicating portfolio as well as their pricing formula under
Geometric Brownian Motion (GBM) model are brought to light. These results will
help us then explain the perpetual case. In Section 4, we propose several implementa-
tions of the finite maturity turbo warrant pricing formula. We also present our pricing
formula for perpetual turbo warrant. section 5 provides an application on historical
data. And finally, section 6 concludes.

2 State of the art

At our knowledge, there is no article in the literature that proposes a pricing formula
for perpetual Turbo warrants. In this section, we then recall the state of the art of two
king of financial options that will serv as a basis for the perpetual Turbo warrants: the
turbo warrant and the perpetual options.

2.1 Turbo warrants

Turbo warrants first appeared in Germany at the end of 2001. They have experienced
enormous growth in Northern Europe and Hong Kong. Turbo warrants are down-and-
out barrier options in which the rebate is another exotic option. Eriksson [2006] was
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the first to derive the valuation formula for a turbo warrant, based on the geometric
Brownian motion (GBM) of the underlying asset.

The turbo warrants pricing has been studied by [Wong and Chan, 2008] using the
CEV model and a stochastic volatility model. The authors obtained analytical solutions
for turbo warrants under the stochastic volatility model to examine the behaviour
and sensitivity of turbo warrants to implied volatility. Wong and Lau [2008] use a
jump-diffusion model. They derived analytical solutions of turbo warrants based on
the double exponential jump diffusion model, using a Laplace transform to study the
sensitivity of the turbo warrant to jump parameters. Eriksson [2006] used the classical
GBM model. Le et al. [2014] examined the turbo warrants pricing in the hybrid
stochastic and local volatility model provided by Choi et al. [2013]. An finally, Ji-Hun
and Chang-Rae [2016] focused on the pricing of turbo warrants within the framework
of the SEV model.

2.2 Perpetual options

Section in progress.

3 Technical reminder of finite maturity turbo war-

rants

3.1 Definition of Turbo warrants

The classical turbo warrants have a Finite Maturity, denoted T , and are European
style contracts. Let St denotes the underlying asset price at time t. Let K denotes the
strike price, and H the barrier. Let us define τH the time when St has crossed H for
the first time: τH = inf(t ≥ 0;St ≤ H). Let define:

ma,b = inf{St, a ≤ t ≤ b}, (1)

Ma,b = sup{St, a ≤ t ≤ b}. (2)

A turbo call (respectively put) warrant pays the owner (ST − K)+ (respectively
(K − ST )+) at date T if St has not crossed H. If t = τH the first warrant contract is
cancelled, and another contract for the rebate begins. This new contract is generally
a European call(respectively put) warrant on the minimum (respectively maximum)
of the underlying asset’s price, with the same strike price but with a shorter Maturity
date, called Rebate Maturity, T0: mτH ,τH+T0 (respectively MτH ,τH+T0 . Hence, the pay-
off of a such a contract is (mτH ,τH+T0 −K)+ (respectively (K −MτH ,τH+T0)

+).

It should be noted that in all the call (respectively put) contracts H ≥ K (respec-
tively H ≤ K)and the initial underlying price is normally above (respectively below)
the Barrier. The owner of the call contract has a bullish speculation as the payoff
increases when the price goes up, but has a little rebate if the price goes down to hit
the barrier.

For simplicity, only call turbo warrant contracts will be considered in the following.
Same results are applicable in the case of a put turbo warrant.
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3.2 Replicating Portfolio for a Call Turbo-Warrant

When time t ≤ τH , the price of a Turbo warrant is not only given by the price of the
first contract but also by the expectation that the rebate part may occur. In order to
price this turbo warrant, it should be noted that its price variations can be replicated
by a portfolio of simpler instruments. Le et al. [2014] explain that a turbo warrant can
be separated into two structured products: a Down and Out Call option and a Down
and In look-back option. The price of the turbo warrant is simply the sum of the prices
of these two elements.

Down and Out Call option

The first product is a Down and Out Call (denoted DOC) option. This is an exotic
barrier option. Its pay-off is the same as for a call option but this contract is only
active until the underlying asset price is above a Barrier H. When the price hits the
barrier, this contract is cancelled. The DOC’s price when it is activated is give by
Equation 3:

DOC(t, s) = EQ[e−r(T−t)(ST −K)+1τH>T |St = s], (3)

where r denotes the risk free interest rate. EQ denotes the expectation following a risk
neutral probability Q.

For replicating the turbo warrant, the DOC option needs to have the same under-
lying asset, Maturity T , Strike K, and barrier H as the turbo warrant.

Down and In look-back option

The second product is a Down and In Look-back (denoted DIL) option. The Payoff
of such an option is based on the historic underlying price. In our case, the pay-off
is calculated according to the minimum price that the underlying asset has reached
between τH and τH + T0. The DIL option is hence a call option on the minimum value
of the underlying asset with respect to the same strike but with a smaller maturity
denoted T0. Its price is given by Equation 4:

DIL(t, s;T0) = EQ[e−r(τH+T0−t)(mτH ,τH+T0 −K)+1τH≤T |St = s], . (4)

This DIL option can also be decomposed into simpler instruments by noticing that this
option has the same pay-off than a look-back (denoted LB) option if the underlying
asset price hits the barrier. Consequently, the DIL is decomposed into two parts: the
first one is the LB option itself, which is priced separately from the event of hitting
the barrier, and the second one is the expectation of such an event happening.

The price of this LB option at time τH is:

LB(τH , SτH ;T0) = EQ,τH [e−rT0(mτH ,τH+T0 −K)+]. (5)

Following Domingues [2012], it can be deducted that:

LB(τH , SτH ;T0)) = LB(0, H, T0). (6)

The expectation of the event of hitting the barrier happening (adjusted for risk free
interest rate) is:

EQ[e−r(τH−t)1τH≤T |St = s],
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so that:
DIL(t, s;T0) = LB(0, H, T0)EQ[e−r(τH−t)1τH≤T |St = s]. (7)

The look-back (LB) part can be seen according to a look-back call with a floating
strike (LCfl) which is a call in which the strike is a moving parameter. Domingues
[2012] detail how to obtain the look-back part, and we conclude that:

DIL(t, s, T0) = [LCfl(0, H,K, T0)− LCfl(0, H,H, T0)]E[exp−r(τH−t) 1τH≤T |St = s],
(8)

where LCfl(t, St, K, T0) is the price of look-back floating strike call with strike equals
to K and a maturity T0.

Knowing that the turbo warrant is the sum of this two products, the price of a
turbo warrant can be writen as:

TC(t, s) = DOC(t, s) +DIL(t, s), (9)

= DOC(t, s) + LB(0, H, T0)EQ[exp−r(τH−t) 1τH≤T |St = s] (10)

= DOC(t, s) + [LCfl(0, H,K, T0)− LCfl(0, H,H, T0)]DR(t, s), (11)

where,
DR(t, s) = E[exp−r(τH−t)1τH≤T |St = s].

This provides a replicating portfolio for the turbo warrant. To examine the character-
istics of each element (DOC and DIL) each component is represented in Figure 1. We
notice that the DIL price is positive even when the price is above the barrier. This
price increases when the underlying price gets closer to the barrier. The DOC part
is maximum if the underlying price is far above the barrier and it decreases when the
underlying price approaches the barrier to become null from the moment it hits it.

Figure 1: DOC and DIL value according to the underlying asset’s price

3.3 Pricing of Finite Maturity Turbo warrants

The Geometric Brownian Motion (GBM) is used as a model of the underlying asset
and describes its price as:

dSt = (r − d)Stdt+ σStdWt, (12)
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where Wt is a standard Brownian Motion, r is the risk free interest rate, and d is the
dividend yield. Usual hypotheses are assumed: r and σ are constant, r is the same
for all maturities, the short selling of securities is permitted, there are no transactions
costs, the assets are perfectly divisible, there are no riskless arbitrage opportunities,
time t is continuous.

The pricing formulas are given in Domingues [2012]: The exact expressions of each
part of Equation 11 is obtained by using Laplace Transformation, trying to have simpler
differential equations and then inverting the Laplace Transformation (see Domingues
[2012] for the exact demonstration).

In the case of the look-back call, the price is:

LCfl(t, St,m0,t, T ) = Ste
−dτΦ[dbs1(St,m0,t)]−m0,te

−rτΦ[dbs(St,m0,t)]

+
St
δ
e−rτ (

St
m0,t

)−δΦ[dbs(m0,t, St)]− e−dτΦ[−dbs1(St,m0,t)],(13)

and in the case of the down and Out Call, the price is:

DOC(t, s) = Ste
−dτΦ[dbs1(St, H)]−He−rτΦ[dbs(St, H)]

−
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√
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where Φ[.] is the normal cumulative distribution function and

dbs(Y,X) =
ln( Y

X
) + r − d− σ2

2
τ

σ
√
τ

, (16)

dbs1(Y,X) = dbs(Y,X) + σ
√
τ , (17)

δ =
2(r − d)

σ2
, (18)

θ = sign[ln(
St
H

)], (19)

β =

√
(r − d− σ2

2
)2 + 2rσ2, (20)

α± =
r − d− σ2

2
± β

σ2
. (21)

4 Methodology

4.1 Implementation of Turbo Warrants Pricing

4.1.1 Data description

Data on turbo warrants are taken from the from c©Hong Kong Exchanges and Clearing
Limited. They represent daily prices on the Hong Kong exchange market (HKEx):
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called Callable Bull Bear Contract (CBBC). The underlying asset’s prices are taken
from Yahoo! Finance. Figure 2 shows the underlying asset’s price and the CBBC price.
Both of them are normalized with respect to the mean of each data.

Figure 2: Data of Trencent Holdings

It can be noticed that the CBBC has the same fluctuation than the underlying
asset but with higher variations. This is due to the gearing effect of a Turbo warrant.
In fact, turbo warrant are used because of their important leverage effect: the price
of a turbo warrant is lower than a call option (with same parameters) for example, it
has the same pay-off when the speculation is right. Operators use it to maximize their
profit for lesser premium. In the case of Trencent Holdings (Chinese Company), the
underlying asset does not touch the Barrier (see Figure 2), giving us more data to work
on until maturity.

The annualized short term US treasury bills rate is used as a proxy of the risk free
interest rate.

4.1.2 Pricing Formula Implementation under GBM model

As for the volatility, we use the initial implied volatility 1. In our case, the implied
volatility is computed using Newton-Raphson algorithm by minimizing the difference
between the real CBBC price and the calculated price using GBM model.

We work also with the delayed implied volatility, meaning that we take at time t
the implied volatility that had our CBBC in time t−N ∗ days.

The question of which volatility to consider is still very important, but the results
we found using the implied volatility at time 0 are very satisfying.

Matlab software is used.

1We recall that the implied volatility is the volatility that once put in the GBM pricing model
leading to the exact market price for the calculated CBBC price.
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4.2 Perpetual Turbo warrant

4.2.1 Definition of a Perpetual Turbo warrant

Perpetual turbo warrant is a kind of turbo warrant that does not have a finite maturity.
This implies also an American character, because if it has not an American style, this
product would pay always only the rebate. Those characteristics naturally apply only
to the active part of the turbo warrant as the rebate is always based on a short maturity
(in general the 3-days maturity) and if not the contract would become useless (as it
is not exchangeable after it has touched the barrier and wouldn’t reach maturity).

4.2.2 Pricing of Perpetual turbo warrant

To price the perpetual Turbo warrant, a replicating portfolio of two exotic options
deducted from the finite case is constructed. This portfolio contains an American
Down and Out call (ADOC) which is a DOC with an infinite maturity and a simple
DIL. The DIL part does not change because it is related to the probability that the
underlying hits the barrier which is independent from the maturity Consequently, the
price of a perpetual turbo warrant is equal to:

PTW (t, s) = ADOC(t, s) +DIL(t, s). (22)

Down-and-In Lookback Call option price

Considering the definition of the perpetual turbo warrant, the pricing of the rebate
part is exactly the same as for the finite maturity product. The following formula is
then used:

DIL(t, s) = [LCfl(0, H,K, T0)− LCfl(0, H,H, T0)]DR(t, s). (23)

The DR part can be calculated by Monte Carlo method: we simulate a large number
of GBM models and see the implicit time in which the underlying hits the Barrier. We
then calculate exp−r(τH−t) and find the expectation E[exp−r(τH−t) |St = s] where τH is
that implicit time, by calculating the mean of a large number of simulations.

The Down-and-Out Call option price

Regarding the DOC in the case of finite maturity case, we find two major differences:

1. American character: the PTW is always exercisable. This fact imposes a new
condition on the price as the value is the maximum between the expected payoff
and the spot payoff.

2. Perpetual character: the PTW does not have a finite maturity. This implies the
use of new pricing techniques that take into account all possible times of barrier
touch

The problem of the perpetual DOC has been widely explored in the literature
and in particular by M. Jeanblanc [2009]. In their work, the price for a Parisian
perpetual DOC presented (an evolution of the perpetual DOC) that is deactivated
only if underlying asset is below the barrier level for at least a certain time (called
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delay D). The perpetual DOC we are considering here is then a Parisian perpetual
DOC with a 0 delay. We will use those results for our perpetual turbo warrant.

The Parisian Perpetual DOC is priced as follows, when the underlying asset follows
a GBM model:

ADOP (S0, H,D) =

(
1− Ψ(−κ

√
D)

Ψ(κ
√
D)

e2lκ
)

1

σκ

(
S0

Hc

)γ ( γHc

γ − 1
− r

γ
K

)
(24)

with κ =
√

2r + ν2, γ = −ν+
√
2r+ν2

σ
, ν = 1

σ
(r − d − σ2

2
) and l = 1

σ
ln(H

S0
). The exercise

boundary Hc is defined implicitly by:

Hc −K =
1

σκ

1− Ψ(−κ
√
D)

Ψ(κ
√
D)

(
H

Hc

) 2κ
σ

( γHc

γ − 1
− r

γ
K

)
. (25)

4.2.3 Implementation of perpetual Turbo warrant pricing model

The minor difficulty is to solve the implicit equation for the dynamic barrier Hc. It
is easy-done on VBA thanks to the built-in solver but it is a little more complex on
MatLab, as the solutions are not always real and the appropriate one has to be selected
manually. That is not a big deal for a constant volatility (as it is only one equation)
but poses real issues on an evolving volatility (as there is one equation each time).

The major difficulty has been to find reliable data on perpetual turbo warrants. As
for the time of the publication we did not manage to have any data on any underlying
asset for this product. We can still evaluate the goodness of this model but we have
no way of proposing an expectation neither for the error nor for the parameters of the
model (interest rate, dividend rate and volatility). We have created an Excel Template
for the Perpetual with a constant volatility but not one for the evolving volatility as
in this environment there are still same issues over the convergence of the volatilities.

Following the lack of reliable data, we decided to price perpetual turbo warrant
over underlying assets that are used also for finite maturity turbo warrants on which
we have official data. This allows us to compare the behaviour of the perpetual with
the finite maturity one.

5 Empirical results

5.1 Results for Turbo Warrants

5.1.1 Empirical Results under GBM model

Figure 3 compares the theoretical prices of the turbo warrant under the GBM model
with the real market prices.

The theoretical formula gives us a very good approximation of the real CBBC price
as the error is around 11% on average.

5.1.2 Pricing Formula Implementation under extended model

We have also implemented an Excel VBA Template that allows a fast evaluation of
the price of the Turbo Warrant. It offers the possibility to use a constant volatility or
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Figure 3: Real CBBC price and calculated price under GBM model in HKD

to propose a dynamic one. For the constant volatility model, it estimates the implied
volatility of the turbo by minimizing the difference between the issue price and the one
calculated using the historical volatility. To have an evolution of the implied volatility,
we fix the number N of days we look back and minimize the difference of the price N
days before and the one calculated.

While overlooking the non-convergence of some values (that are possible using the
faster but more imprecise Excel solver), the results using an evolving volatility are not
so much better of the one using a constant one, and in the latter we have around 1/200
of the calculation time needed. We advise to use the more precise one only when you
disregard the cost (and time) of calculation in favour of absolute precision.

WORK IN PROGRESS TO PROVIDE FIGURES

[picture of the constant case]

[picture of the multi-volatility case]

5.2 Results for Perpetual Turbo Warrants

5.2.1 Preliminary empirical results

Using pricing formulas in Equation 22 and Equation 24, the price of the perpetual
turbo warrant is obtained for the case of Trencent Holdings:

From our simulation shown in Figure 4 we found that:

1. The perpetual Turbo warrant follows the fluctuation of the underlying asset

2. The closer the underlying asset’s price gets to the barrier, the closer the price of
the PTW gets to the normal one.
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Figure 4: Perpetual and normal Turbo prices in HKD

Let us explain some of the results, the closer the underlying asset’s gets to the
barrier, the higher the probability to hit it gets, and the prices of finite and perpetual
turbo warrant become the closest because the down and out part loses value and the
DIL part gains value. Since the DOC part is the essential difference between the two
instruments, their prices become closer when the DOC part loses value.

The American aspect of the turbo makes it more identical to the fluctuation of the
underlying asset. The fact that the perpetual CBBC is represented cheaper than the
normal one may be a source of doubt of the results, we actually think that it is only due
to a difference in the entitlement ratio which is the number of warrant necessary to buy
one share. It is 100 for the Trencent Holdings normal turbo warrant, we believe that if
there was a perpetual turbo on Trencent Holdings it would have a smaller Entitlement
Ratio.

5.2.2 Numerical results: sensitivité analysis

Work in progres

5.2.3 Application to real historical data on perpetual turbo warrants

Work in progres

6 Conclusion

In this article, we analysed the pricing of turbo warrants under GBM model and we
came up with a solution to price the infinite Turbo warrant by finding an appropriate
replicating portfolio and treating each element apart. In the case of the finite maturity
turbo, results are compared with real data and we were satisfied with them. In the
infinite maturity case, we compared finite and infinite Turbos and tried to explain the
differences. We still have to validate results but no real data has been found. This
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article is one of a few (if not the first one) to treat the pricing of infinite Turbo warrant,
it can be a start to further research.
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