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1 Introduction

Investors in cryptocurrencies have the choice between a number of trading venues to

execute their transactions. Among the factors influencing their decisions are more obvious

– and usually measurable – ones, such as transaction cost and available liquidity within

a market. There are, however, additional factors which are not directly observable, such

as price efficiency and the noisiness of prices. Within the context of several competing

exchanges, the most efficient price exists in the market where price discovery is highest.

It is this venue that contributes most to the fundamental value and whose prices reflect

new information faster than prices reported on other markets. Hence, a market with

a high relative price discovery contribution has the potential to attract more clients,

which in turn might have a positive impact on liquidity and other aspects of market

microstructure.

The latter, however, is also the source of a volatility component in the price, namely

market microstructure noise, which is due to, amongst other, price rigidity or tick size

effects. This noise constitutes a source of risk as traders might end up with less efficient

prices due to uninformative price changes. Consequently, a trader’s decision includes a

trade-off between choosing a market whose prices reflect new information first, avoiding

markets where prices are prone to excessive noise levels, and selecting the market with

convenient factors like low transaction fees. Contributions to price discovery and noise

avoidance are two aspects of market quality which play a major role when attracting

investors. In particular in the context of cryptocurrencies, which are traded online and to

the greatest extent without restrictions across markets (and even countries), attracting

traders is vital. We therefore analyze price discovery among cryptocurrency markets,

while accounting for the relative noise levels of the different exchanges.

The question where prices are set is an old one. Since the seminal papers of Hasbrouck

(1995) and Gonzalo and Granger (1995), researchers have two measures at hand which

are able to numerically quantify the contribution to price discovery. The measures are

readily used, in particular for stock markets (Booth et al., 1999; Grammig et al., 2005; So
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and Tse, 2004; Comerton-Forde and Putnin, š, 2015), but also for commodities like gold

(Hauptfleisch et al., 2016) or agricultural products (Dimpfl et al., 2017). Issues related

with the standard measures are that Hasbrouck’s information share is not unique and

that market microstructure frictions have an impact on these measures. The first issue

is addressed and resolved by Lien and Shrestha (2012) and Grammig and Peter (2013).

Related to our article is the second issue which is addressed by Yan and Zivot (2010) and

Putnin, š (2013). The authors show how the measures of Hasbrouck (1995) and Gonzalo

and Granger (1995) can be combined to obtain a price discovery measure that is robust

to potential bias induced by different levels of microstructure noise.

The literature that considers price discovery between cryptocurrency exchanges is still

very recent. Brandvold et al. (2015) investigate price discovery between seven Bitcoin

exchanges between April 2013 and February 2014. They find the Japanese Mt.Gox and

the US BTC-e to be the leaders in price discovery during that period. It should be noted

that both exchanges have been closed down after hacker attacks coupled with potential

fraud. Pagnottoni and Dimpfl (2019) conduct a similar study, accounting for the effects of

fiat currency exchange rates. They find that the Bitcoin price is basically not influenced

by fiat currency prices and that price discovery (during the studied period) takes place

to the greatest extent on OKCoin, a China based platform. Similar to Brandvold et al.

(2015), their identified leading market is not fully operational any longer. Qu (2017)

also considers price discovery, albeit not with the methodologies discussed above, and

finds that the Chinese markets play an important role for trading in China mainland.

Corbet et al. (2018), Baur and Dimpfl (2019), and Kapar and Olmo (2019) consider price

discovery between Bitcoin spot and futures. While the first two studies find that the spot

price is the leader in price discovery, Kapar and Olmo (2019) find the exact opposite.

The second strand in the cryptocurrency literature which is closely related to our study

considers volatility in these markets. Numerous studies find that the volatility of Bitcoin

and other cryptocurrencies is much higher than volatility of stocks (cp. Baur et al., 2018;

Lahmiri et al., 2018; Symitsi and Chalvatzis, 2018) or commodities, in particular gold
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and silver (Klein et al., 2018). Furthermore, Urquhart (2017) finds that prices cluster at

round numbers which might be related to the microstructure of the trading venues.

With the following price discovery analysis of cryptocurrency markets we provide two

contributions to the literature. First, we analyze price discovery for three trading venues

(Bitfinex, Kraken, Poloniex) and five cryptocurrencies using high frequency transaction

data. Second, we examine and explicitly account for the high microstructure noise envi-

ronment of our analysis by estimating relative noise levels and applying the information

shares of Putnin, š (2013). While the impact of noise on price discovery contributions

has been analyzed theoretically or in terms of simulations by Yan and Zivot (2010) and

Putnin, š (2013), empirical validation of these ideas are still missing. Thus, we foster the

understanding of how noise impacts the measurement of price discovery. To this end, we

calculate a measure for market microstructure noise based on Bandi and Russell (2006)

to identify the market with the highest relative noise level. Our results indicate that

Bitfinex is the leading market for all cryptocurrencies in our sample based on the stan-

dard measures. However, the relative contribution seems overestimated as suggested by

Putnin, š’ measure. This is in line with the finding that Poloniex exhibits a considerably

higher noise level which overshadows its contribution to price discovery.

The article proceeds as follows. Section 2 introduces the price discovery measures. Sec-

tion 3 presents some market characteristics and the data along with descriptive statistics.

Section 4 compares microstructure noise across the trading venues and provides insights

into possible sources. Section 5 holds the results from the price discovery analysis and

Section 6 concludes.

2 Price Discovery Measures and Microstructure Noise

The two standard approaches commonly applied to measure contributions to price dis-

covery are the component share (CS) based on Gonzalo and Granger (1995) and the in-
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formation shares (HIS) proposed by Hasbrouck (1995).1 Recently, Yan and Zivot (2010)

and Putnin, š (2013) showed that HIS and CS measure price discovery contributions - in

the sense of relative speed of adjustment to new information - correctly only if the markets

under consideration exhibit a similar level of microstructure noise. To account for dif-

ferences in microstructure effects, Putnin, š (2013) proposes a new information leadership

share (ILS).

All models from which the respective information shares are derived, assume that the

unobservable efficient price (mt) of an asset evolves as a random walk as

mt = mt−1 + ut, E[ut] = E[utus] = 0 ∀s 6= t, E[u2t ] = σ2u <∞. (1)

The asset itself is traded simultaneously on n markets. Hence, the n price series on these

markets follow one common stochastic trend. However, the observed prices (pi,t) on each

market i are in general not identical across markets and also differ from the fundamental

value due to market microstructure frictions such that

pi,t = mt + si,t (2)

where si,t is a mean zero i.i.d. component which captures information- and non-information

related components in the sense of Yan and Zivot (2010).

Hasbrouck information shares

The Hasbrouck approach relies on a decomposition of the variance of the efficient price

innovations into contributions of the different markets. Collect the n (non-stationary)
1For a comprehensive discussion and comparison of CS and HIS we refer the interested reader to a

special issue on price discovery by the Journal of Financial Markets, Volume 5, Issue 3, 259-390.
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prices pn,t in a single vector pt. Then the vector of first price differences, ∆pt, can be

modeled by a vector error correction model (VECM)

∆pt = αβ′pt−1 +
k∑

j=1

Γj∆pt−j + εt (3)

where β denotes an (n×n−1) cointegrating matrix, α the (n×n) adjustment coefficient

matrix, and Γj the (n × n) autoregressive parameter matrices. The (n × 1) vector of

price innovations, εt, is serially uncorrelated (E[εtε
′
s] = 0 ∀s 6= t), but potentially con-

temporaneously correlated (E[εtεt] = Σε, where Σε denotes a positive definite covariance

matrix).

Following the law of one price, the theoretical cointegration matrix is given by

β′ =


1 −1 0 . . . 0

1 0 −1 . . . 0
...

...
...

. . .
...

1 0 0 . . . −1

 . (4)

HIS are determined from the decomposition of the variance of the efficient price innova-

tion ut in Equation (1), which relates to the VECM parameters as

σ2u = ψ′Σεψ = ψ′BB′ψ, (5)

where ψ denotes the vector of long-run impact coefficients of the price innovations in the

n markets and is one of the common rows Ξ which in turn can be derived as

Ξ = β⊥[α′⊥(In −
q−1∑
i=1

Γi)β⊥]−1α′⊥, (6)

where a⊥ describes the orthogonal complement of a (Johansen, 1995). Note that Ξ only

consists of identical rows if β′ has the structure as outlined in Equation (4). The matrix

B in Equation (5) measures the contemporaneous effects of the idiosyncratic innovations
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ut and is commonly identified by the lower triangular matrix C derived from a Cholesky

decomposition of the covariance matrix Σε = CC ′. The HIS of market i is then given by

ISi =
([ψ′C]i)

2

ψ′CC ′ψ
, (7)

where the subscript i denotes the i’th element of the row vector [ψ′C]. The Cholesky

decomposition of the covariance matrix of Σε implies a hierarchical ordering of the in-

formation shares in the sense that the first market’s information share is maximized and

the information share of the market ordered last is minimized. Permuting the ordering

of the variables results in upper and lower HIS bounds. The bounds diverge depending

on the contemporaneous correlation between the VECM residuals in Equation (3). To

obtain a unique measure, commonly the midpoints, i.e. the average of lower and upper

HIS bounds, are used.

Gonzalo and Granger component shares

The CS proposed by Gonzalo and Granger (1995) measures contributions to price dis-

covery as the weight of each market’s price innovation in the increment of a common per-

manent factor. This representation belongs to the general class of permanent-transitory

decompositions for which the permanent component is I(1), but not necessarily a random

walk. Following Lehmann (2002) prices (pt) in n markets are given by

pt = ιw′pt + δzt, (8)

where ι denotes a vector of ones. w′pt refers to the price of a weighted portfolio of

the same asset traded on n different markets, where the weights w = (w1 . . . wn)′ are

normalized to sum to 1. zt denotes a stationary component given by zt = β′pt, where β

is defined as in Equation (3). The transitory effects are measured by δ and relate to the

portfolio weights w by:

ıw′ + δβ′ = In. (9)
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Gonzalo and Granger (1995) assume that the transitory component does not Granger-

cause the common factor, which allows to link the portfolio weight w to the adjustment

coefficients matrix α in Equation (3) by

w = α⊥,

that is, w is orthogonal to all n − 1 vectors of adjustment coefficients in α. The CS of

market i is subsequently given by

CSi =
wi∑n
j=1wj

, (10)

measuring the contribution of market i to the price discovery process.

Putnin, š’ information leadership shares

As stated above, Yan and Zivot (2010) and Putnin, š (2013) argue that in the presence of

differing microstructure noise across the exchanges, HIS and CS may not correctly iden-

tify the contribution to price discovery. By noise Putnin, š (2013) refers to microstructure

effects caused for instance by tick size or, if transaction data is used, by bid-ask bounces,

but also to liquidity effects or noise trading. Putnin, š (2013) shows that, if the noise

levels of the used price series differ, HIS and CS measure a combination of speed of ad-

justment and noise avoidance. Consequently, the conclusions drawn from these standard

approaches might be misleading, in particular for markets that exhibit different market

structures. He further proposes a combination of HIS and CS which under certain restric-

tions accurately measures contributions to price discovery by canceling out the potential

bias due to different noise levels. The resulting price discovery measure termed ’infor-

mation leadership share’ consequently provides an unbiased estimate for price discovery

contributions, where price discovery is defined as the relative speed of impounding new

information into the price series, i.e. the perception of who moves first. The structural
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model by Yan and Zivot (2010) which leads to the information leadership share proposed

by Putnin, š (2013) is uniquely identified within a bivariate setting.

Considering an asset traded simultaneously on two markets, the combination of the HIS

and CS measures, i.e. the information leadership metric of Yan and Zivot (2010), which

results in an elimination of the bias caused by the relative avoidance of noise is given by

ILi =
HISi
HISj

CSj
CSi

(11)

where i,j=1,2 denote the two markets, HIS and CS denote the Hasbrouck information

share midpoints and component shares given by Equations (7) and (10), where n equals

2. The informational leadership share (ILS) according to Putnin, š (2013) is then given

by the relative informational leadership metric of each market

ILSi =
ILi

ILi + ILj
. (12)

The ILS thus operates within a comparable range to the standard measures, i.e. between

zero and one or as a percentage share. By replicating the results from different studies

and additionally calculating the ILS, Putnin, š (2013) shows that the measure will reliably

identify the market that reacts first to new information. Since cryptocurrency exchanges

differ profoundly with respect to market microstructure related variables, such as avail-

able order types, tick size, liquidity, and bid-ask spreads, applying the standard measures

might lead to wrong conclusions, which can be corrected by relying on the ILS.

3 Market Details and Data Description

Our sample consists of five cryptocurrencies traded simultaneously on three exchanges.

In detail, we use intraday transaction data on Bitcoin (BTC), Ethereum Classic (ETC),

Ethereum (ETH), Litecoin (LTC), and Monero (XMR) traded against the US Dollar. Our
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intraday transaction time series consist of all transactions on the three cryptocurrency

exchanges Bitfinex, Kraken, and Poloniex, which are among the most liquid exchanges

during the time period considered.

Table 1: Characteristics of Trading Venues
The table presents selected market characteristics of Bitfinex, Kraken, and Poloniex (as of July 2018).

Bitfinex Kraken Poloniex

Location Hong Kong USA USA

Fees Maker fee: 0-0.1% Maker fee: 0-0.16% Maker fee: 0-0.1%
Taker fees: 0.1-0.2% Taker fees: 0.1-0.26% Taker fees: 0.1-0.2%

Order Types Limit Limit Limit
Market Market Market
Stop Stop Loss Stop Loss
Stop-Limit Take Profit
Trailing Stop Combined Orders
Fill or Kill
Scaled
One Cancels Other
Hidden
Iceberg
Post-Only Limit

Min. tick 0.005 (BTC) 0.1 to 0.001 (BTC) 0.0001 (BTC)

Margin Trading YES YES YES

The three trading venues differ with respect to a number of features. Table 1 summarizes

selected features of each cryptocurrency exchange. The minimum tick size, for instance,

differs substantially between the exchanges and is also not stable on the exchanges over

time. For Bitcoin, for example, the range is from 0.0001 on Poloniex to 0.1 at Kraken

at the end of our sample period. Tick size on Bitfinex was 0.005 until 24 October 2017

when the exchange introduced a flexible minimum tick size to assure that one tick equals

a range of 10 to 25 USD2.

Rounding issues due to tick size and price discreteness have been discussed as one factor

influencing the microstructure noise level within a market (cp. Glosten and Harris, 1988;
2cp. https://www.bitfinex.com/posts/226
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Diebold, 2006; Putnin, š, 2013, among many others). Differences within the range and scale

of sophistication of the offered order types also impact on microstructure noise: directly

as they offer various degrees of flexibility in order submission and trading strategies, and

indirectly by attracting different groups of investors. In particular, order types which are

related to transparency issues, such as iceberg or hidden orders tend to attract informed

traders rather than noise traders and might thereby influence the noise level within a

market (cp. Anand and Weaver, 2004; Anand et al., 2005; Boulatov and George, 2013).

Hence, our a priori assumption that noise levels on Bitfinex, Kraken, and Poloniex differ

seems justified, albeit, as discussed below, there exist other relevant factors, such as

volume and trading intensity.

Our intraday data consist of transactions time series stamped at milliseconds (Kraken

and Bitfinex) or seconds (Poloniex). All three exchanges offer a free public application

programming interface (API) through which its most important live and historic data

feeds are accessible via compatible software programs.3 For the price discovery analysis

we align Bitfinex, Kraken, and Poloniex transaction prices on a one second frequency. As

the average number of transactions per minute ranges from 1 to 32 higher frequencies do

not seem necessary. The data range from 8th of March 2017 to 8th of November 2017.

All three exchanges operate seven days a week on a 24 hour basis.

Table 2 presents descriptive statistics of daily trading volume, the average number of

transactions, as well as buys and sells of the five cryptocurrencies across the three ex-

changes. The first three columns show statistics on the trading volume. For all five

currencies the transacted volume (over the whole sample period) on Bitfinex exceeds

those of the other two exchanges. For BTC, ETC, LTC, and XMR Kraken constitutes

the least liquid trading venue. The average volume per transaction does not differ sub-

stantially between the three exchanges.
3For further information, see the detailed documentations of Bitfinex’ API at http://docs.

bitfinex.com/docs, Kraken’s API at https://www.kraken.com/help/api, and Poloniex’s API at
https://poloniex.com/support/api/. We retrieved the data using R-packages httr (Wickham, 2018)
and jsonlite (Ooms, 2014).
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Descriptive statistics on the transaction prices (minimum, maximum, mean and standard

deviation) can be found in Table 3. We observe a slightly higher standard deviation on

Poloniex for all five currencies. The range of prices, i.e. minimum and maximum, however

do not deviate substantially across the trading venues.

Table 3: Descriptive Statistics On Transaction Prices
The table presents descriptive statistics on the transaction prices on Bitfinex, Kraken, and Poloniex for
Bitcoin, Ethereum, Ethereum Classic, Litecoin, and Monero.

Bitfinex Kraken Poloniex
Price

BTC MIN 888.20 881.89 888.99
MAX 7899.90 7788.00 7771.00
MEAN 3648.43 3338.75 3361.35
STD 1687.56 1463.72 1773.30

ETC MIN 1.22 1.21 1.18
MAX 23.30 24.00 24.00
MEAN 12.94 13.84 12.95
STD 4.88 5.02 5.22

ETH MIN 16.25 15.56 16.22
MAX 395.03 404.99 408.13
MEAN 251.75 241.45 231.57
STD 86.22 88.82 95.74

LTC MIN 3.74 3.62 3.55
MAX 90.91 95.00 93.67
MEAN 42.70 45.45 44.21
STD 17.64 16.94 18.72

XMR MIN 12.25 12.15 12.10
MAX 154.99 159.90 153.43
MEAN 80.95 78.19 65.21
STD 37.12 38.07 38.86

In order to pre-test whether the data are suitable for our analysis, we conduct unit

root tests which clearly indicate that the transaction prices of all cryptocurrencies on all

three exchanges are non-stationary. Cointegration tests reveal that the prices of the same

cryptocurrency which is observed on three different platforms follow the same stochastic

trend.
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4 Market Microstructure Noise – Level and Sources

Cryptocurrency markets, and in particular Bitcoin, have been documented to be highly

volatile. Prior to analyzing price discovery in the presence of microstructure noise, we

shed some light on the noise levels across the cryptocurrency markets and discuss its

sources. As an empirical measure for microstructure noise we rely on the literature on

realized volatility (cp. Andersen et al., 2003; Aït-Sahalia et al., 2011; Andersen et al.,

2011) which documents a bias of realized volatility due to microstructure noise at high

frequencies. The common solution is to resort to lower, e.g. 5 minute intervals. Bandi and

Russell (2006) show that for a model as in Equation (2), the daily variance of the noise

component si,t (denoted by mni,t) is consistently estimated from the squared intraday

returns at the highest available frequency as

mni,t =
1

2M

M∑
j=1

r2k,t
p→

M→∞
E
[
s2t
]
, (13)

where rk,t is the kth intradaily return on day t and M is the number of intervals during

the day. In order to compare the level of microstructure noise mn across the exchanges,

we calculate the relative noise level as m̃ni,t = msi,t/
∑

imni,t across the exchanges i.

Figure 1 illustrates the daily relative noise level m̃st across the sample period for Bitcoin.

The respective graphs for the remaining cryptocurrencies can be found in the Appendix

in Figure A.1. The first observation is that the noise levels are not static, but vary

substantially across the sample period. Furthermore, while there are some spikes in the

relative noise levels, Figure 1 indicates that Poloniex exhibits the largest relative noise

level. This observation holds for the remaining cryptocurrencies as well.

In order to get an overall impression of the relative noise level, Table 4 provides the

average and – due to the spikes observed in the previous graph – the median of the

absolute daily noise level mn across the entire sample for the three considered trading

venues and all cryptocurrencies. The median values confirm that on average the noise

level on Poloniex is substantially larger compared to Bitfinex and Kraken for all five

13
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Figure 1: Time series of daily relative noise level.
The figure presents the evolution of the daily relative level of market microstructure noise of the three
exchanges Bitfinex (black), Kraken (dark gray), and Poloniex (light gray) for Bitcoin.

currencies. The same holds for the average noise except for ETH. For ETH we observe

the largest average noise level on Kraken.

The higher noise level on Poloniex is also visible from the volatility signature plot for

Bitcoin in Figure 2. However, it is only present when considering a frequency higher

than 10 seconds, while at lower frequencies the noise level on Kraken slightly exceeds the

one on Poloniex. We observe a similar pattern for ETC and LTC. For all five currencies

Bitfinex exhibits the lowest realized volatility estimates at any frequency. Volatility

signature plots have first been used by Andersen et al. (1999) to illustrate the effect

of the sampling frequency on the estimation of realized volatility. If we compare our

Bitcoin signature plot to their Figure 6 it turns out that Bitcoin resembles an illiquid

asset in the stock market, even though Bitcoin is the most liquid amongst our considered

cryptocurrencies.
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Table 4: Average noise level
The table shows the mean and median of daily noise levels mn (×100) calculated according to Equa-
tion (13) for Bitcoin (BTC), Ethereum Classic (ETC), Ethereum (ETH), Litecoin (LTC), and Monero
(XMR) on Bitfinex, Kraken, and Poloniex.

Mean Median

Bitfinex Kraken Poloniex Bitfinex Kraken Poloniex

BTC 1.71 1.93 3.10 0.48 0.76 1.64
ETC 2.63 1.89 3.18 1.23 0.67 1.55
ETH 2.36 3.81 3.25 0.93 1.33 1.61
LTC 2.04 2.06 3.10 1.02 0.99 1.25
XMR 2.33 1.66 2.06 0.63 0.41 0.89

The sources of microstructure noise are manyfold, but do not display a consistent charac-

ter across the exchanges. As we have already discussed in Section 3, the tick size (and in

particular the change of the tick size across time) might be one source of microstructure

noise. However, we would have expected a higher noise level on Bitfinex and Kraken

than on Poloniex if this was the only one. In contrast, we find lower noise levels on these

two markets. An additional source might be trading volume and intensity (proxied by

the number of trades) as presented in Table 2. Considering traded volume as a measure

for liquidity, we would expect the most liquid markets to be less prone to microstructure

noise. This conjecture is supported by the data in so far as relative higher liquidity seems

to be related to a lower noise level. However, trading volume and trading intensity are

not sufficient to uniquely determine the ordering of the markets with respect to their

relative noise levels: If we consider Bitcoin, the most liquid market is Bitfinex which also

exhibits the lowest noise level. However, Kraken is the least liquid market, but still shows

a noise level which is lower than the one on Poloniex. For Monero, we find that Poloniex

is the most active market and also shows on average a lower noise level than Bitfinex.

However, the noise level on Kraken is substantially lower albeit trading of XMR is very

thin there.

A second measure for liquidity and, thus, a potential driver of market microstructure

noise, is the spread. Descriptive statistics on daily spread estimates based on 30 second
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Figure 2: Volatility signature plots
The graphic presents signature plots of realized volatility of Bitcoin (BTC), Ethereum Classic (ETC),
Ethereum (ETH), Litcoin (LTC), and Monero (XMR) for sampling frequencies from 1 to 300 seconds.
The black solid line represents calculations for Bitfinex prices, the blue dashed line is Kraken, and the
orange long dashes are Poloniex.

quote data are presented in Table 5. On average, we find the spread to be smallest on

Bitfinex and highest on Kraken for all considered cryptocurrencies. As Poloniex has the

smallest possible tick size, we would have expected a smaller spread on average than

on the two other exchanges, but that does not seem to be the case. The relation to

our microstructure noise estimate is therefore, again, not such that a narrower spread

16



guarantees a lower noise level. While this holds for Bitfinex, it does not hold for Kraken

and Poloniex. If we consider again the example of Bitcoin, the average spread is roughly

1 USD on Bitfinex while it is 3.22 USD on Poloniex and 5.88 USD on Kraken. Hence,

the noise component should be lowest on Bitfinex which is what we find and document

in Table 4. However, Kraken should then have a higher noise level than Poloniex which

is not in line with our results.

Table 5: Descriptive Statistics on Spreads
The table presents descriptive statistics on the quoted and relative spread calculated from 30s bid/ask
quotes on Bitfinex, Kraken, and Poloniex for Bitcoin (BTC), Ethereum Classic (ETC), Ethereum (ETH),
Litecoin (LTC), and Monero (XMR)

Quoted Spread Relative Spread in %
Bitfinex Kraken Poloniex Bitfinex Kraken Poloniex

BTC MEAN 0.924 5.875 3.215 0.036 0.157 0.124
STD 0.432 36.525 1.313 0.021 0.112 0.056

ETC MEAN 0.032 0.139 0.056 0.304 0.905 0.519
STD 0.022 0.809 0.032 0.136 0.499 0.162

ETH MEAN 0.228 0.416 0.462 0.163 0.301 0.244
STD 0.194 0.217 0.235 0.138 0.255 0.082

LTC MEAN 0.050 0.179 0.104 0.217 0.765 0.363
STD 0.023 0.086 0.046 0.203 0.698 0.220

XMR MEAN 0.288 6.453 0.270 0.631 1.406 0.523
STD 0.121 91.986 0.142 0.306 0.968 0.190

One potential factor causing the higher noise level on Poloniex compared to the other

two platforms might lie within the way trading occurs on Poloniex as opposed to Kraken

or Bitfinex. The latter provide a wallet for the user where she can store fiat currency

which is then used to buy and sell any cryptocurrency. On Poloniex, traders use USDC,

a stable coin that is worth 1 USD. In theory, the price of 1 USDC should always exactly

equal 1 USD. However, it seems that this is not the case. Between March and December

2017, USDC varied between 0.91 and 1.06 USD4, hence presenting an additional source

of noise on Poloniex which is not an issue on any of the two other markets. This special

feature on Poloniex might be the driver for the generally higher noise level on Poloniex.
4Daily data on USDC are available from coinmarketcap.com.
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While a comparison of the noise level across the cryptocurrency exchanges provides useful

insights for the subsequent price discovery analysis, it does not yet reveal how much

noise versus fundamental information there is in cryptocurrency prices. If we argue

that prices reflect information, then the conclusion by Cheah and Fry (2015), that the

fundamental value of Bitcoin is zero, would suggest that there is no information and

cryptocurrency prices reflect only noise. Given that there are some useful applications

of cryptocurrencies (even though some of these may not always be regarded as useful by

society or may even be illegal), the fundamental value should not be zero. At least costs

for power and computer resources should be reflected in the price of Bitcoin as initially

miners generated income only from mining and only in the last years moved to collecting

fees (Easley et al., 2019).

Volatility signature plots present another possibility to examine the information ver-

sus noise relationship in financial assets. Calculating realized volatility at the highest

available frequency provides an estimate for the variance of the microstructure noise

component. In addition, when calculated at a lower frequency (commonly 5 minutes),

the realized variance is a good estimate for the variance of the stochastic process in ques-

tion (cp. Bandi and Russell, 2006). Consequently, a comparison of the two components

gives a hint as to how much information versus noise is contained in the price. Indeed,

the plots presented in Figure 2 imply an average signal-to-noise ratio between 13% for

Bitcoin and almost 40% for Monero. The fact that for Bitcoin the ratio is lowest is in

line with the conclusions drawn from the PIN estimates.

5 Price Discovery between Cryptocurrency Exchanges

5.1 Results from Traditional Measures

We examine the price discovery contributions of Bitfinex, Kraken, and Poloniex starting

with a trivariate setting and estimate the standard price discovery measures given by

Equations (7) and (10). Table 6 shows CS and HIS estimates for the three markets and
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five cryptocurrencies based on averages over daily estimation of the VECM in Equa-

tion (3). Considering the CS, Bitfinex is the dominant market in terms of price discovery

for all five cryptocurrencies, except for Monero (XMR). With the exception of Bitcoins,

Kraken shows the smallest price discovery contribution ranging between 13.4% for Lite-

coin (LTC) and 21,7 % for Monero (XMR). The Hasbrouck information share midpoints

(HIS) emphasize the leadership of Bitfinex for all currencies but Monero (XMR) even

more with HIS midpoint estimates ranging from 61.6% for Ethereum Classic (ETC) to

89.7% for Bitcoin (BTC). The increased price discovery contribution based on the Has-

brouck approach (compared to the CS results) of Bitfinex is predominantly due to a

smaller price discovery contribution of Kraken when relying on Hasbrouck midpoints

rather than the component share.

The HIS bounds have been estimated as the average of all possible permutations with the

market of interest ordered first for the upper and ordered last for the lower bound. The

estimated HIS lower and upper bounds are very tight for all currencies and exchanges,

indicating that there is almost no contemporaneous correlation present at a one second

sampling frequency. Consequently, the midpoints can be used as a valid proxy for the

information share based on the Hasbrouck methodology.5

5.2 Price Discovery in the Presence of Noise

Table 7 shows the correlation of daily HIS and CS of all exchanges with the relative

daily noise level for Bitcoin.6 We find that the component shares exhibit statistically

significant negative correlation with the own market’s noise level. The correlations with

the other exchanges’ noise level are either positive or not statistically significant. This
5Figure A.2 illustrates the daily HIS midpoints and CS over the sample period. Corresponding to the

findings of Mizrach and Neely (2008) the daily information shares exhibit a rather high degree of variation.
Considering the HIS and CS of Bitcoin as an example, the Bitfinex price discovery measures exhibit
particularly high volatility during April and June. A possible explanation might be found within several
announcements of Bitfinex via their internet page and social media that the exchange is experiencing
delays in the processing of outbound USD wires to customers. Additionally, Bitfinex reported to be
under Distributed-Denial-of-Service (DDoS) attacks in mid June.

6Correlations for the remaining four currencies can be found in Table A.1 in the Appendix.
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Table 6: Price discovery measures in a trivariate system.
The table shows average components shares (CS) and Hasbrouck information shares (HIS) based on a
daily VECM estimates including 1 second transactions from Bitfinex, Kraken, and Poloniex.

Component Share Hasbrouck Information Share

Bitfinex Kraken Poloniex Bitfinex Kraken Poloniex
Mid Low Up Mid Low Up Mid Low Up

BTC 82.2 10.0 7.8 89.7 89.4 90.0 4.7 4.7 4.8 5.5 5.3 5.8
(10.0) (7.3) (6.0) (10.4) (10.6) (10.3) (6.3) (6.2) (6.3) (7.1) (7.0) (7.2)

ETC 54.4 20.5 25.2 61.6 60.8 62.5 12.7 12.6 12.8 25.7 24.8 26.5
(10.2) (10.7) (7.8) (11.4) (11.6) (11.4) (9.9) (9.9) (10.0) (9.6) (9.6) (9.8)

ETH 57.8 17.7 24.5 62.3 61.6 62.9 11.2 11.1 11.3 26.5 25.9 27.1
(16.6) (10.9) (13.9) (21.5) (21.7) (21.3) (10.2) (10.1) (10.2) (19.6) (19.4) (19.7)

LTC 61.5 13.4 25.1 68.5 67.8 69.2 6.9 6.8 7.0 24.6 23.9 25.2
(13.9) (9.8) (10.6) (17.0) (17.2) (16.9) (8.2) (8.2) (8.2) (15.0) (14.9) (15.2)

XMR 46.2 21.7 32.0 48.8 48.0 49.6 15.7 15.6 15.9 35.5 34.6 36.3
(12.1) (13.1) (8.8) (14.8) (14.7) (14.9) (13.6) (13.6) (13.6) (12.2) (12.1) (12.3)

corresponds to the idea put forth in Yan and Zivot (2010) and Putnin, š (2013) that

conventional price discovery methodologies quantify a mix of speed of adjustment and

noise avoidance and are potentially biased. Consequently, as an example, the daily CS

of Bitfinex might be biased downwards whenever its daily noise level relative to Kraken

and Poloniex increases, resulting in a negative correlation as observed in Table 7.

Interestingly we do not observe significant correlations between daily HIS and the relative

daily noise level for Bitcoin. For the remaining currencies, Table A.1 in the appendix

shows significant correlations of noise and HIS in several cases, however, overall the corre-

lations between CS and the relative noise level are stronger compared to the correlations

between relative noise and HIS. This observation is consistent with the analytical results

of Yan and Zivot (2010), who show that CS is more closely related to the relative avoid-

ance of noise, while HIS measures a mixture of relative noise avoidance and informational

leadership. It is also consistent with the simulation study by Putnin, š (2013), who reports

that compared to CS, HIS puts more emphasis on measuring who moves first relative to

avoidance of noise.

Consequently, we estimate the ILS for all three bivariate combinations of cryptocurrency

exchanges for each of the five cryptocurrencies. The results are presented in Table 8.

Considering the bivariate setting including Bitfinex and Kraken, we observe only small
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Table 7: Correlation between CS, HIS and relative noise level
The table reports the Pearson correlation coefficients between HIS, CS and the relative noise level m̃s on
Bitfinex, Kraken, and Poloniex. p-values associated with a test whether the correlation is statistically
significant are in parentheses.

BTC

Bitfinex Noise Kraken Noise Poloniex Noise

Bitfinex CS -0.304 0.028 0.201
(0.000) (0.662) (0.002)

Bitfinex HIS 0.031 -0.040 0.007
(0.632) (0.529) (0.907)

Kraken CS 0.298 -0.191 -0.075
(0.000) (0.003) (0.239)

Kraken HIS 0.039 -0.045 0.005
(0.545) (0.488) (0.943)

Poloniex CS 0.144 0.187 -0.244
(0.024) (0.003) (0.000)

Poloniex HIS -0.079 0.098 -0.015
(0.216) (0.124) (0.815)

differences between CS, HIS, and ILS as all of them identify Bitfinex as the leading

exchange with a contribution to price discovery of more than 85%. The differences in

the noise level on Bitfinex and Kraken are therefore not pronounced enough to severely

bias the standard measures. Turning to the bivariate setting including Bitfinex and

Poloniex, CS and HIS clearly indicate Bitfinex’ leadership in price discovery for Bitcoin

(BTC), Ethereum (ETH), Ethereum Classic (ETC) and Litecoins (LTC). However, the

ILS estimates reveal an upward bias of the standard measures and report contribution for

Bitfinex, which are 10 to 15 percentage points lower. Keeping in mind the considerably

higher noise level on Poloniex (as documented in Figure 2 and Table 4) this result matches

the conclusions by Yan and Zivot (2010) and Putnin, š (2013) that the ILS can alleviate

the bias in the standard measures due to noise avoidance. In the case of Monero (XMR)

we even observe a switch of the leading exchange from Bitfinex to Kraken, when using

the potentially unbiased ILS estimate. Analysing price discovery between Kraken and

Poloniex, the average noise levels given in Table (4) indicate an upward bias of the CS

and HIS measures of Kraken due to the considerably higher noise level on Poloniex. The
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results support our expectations, as the ILS estimates are clearly below the standard

measures for all five currencies and the Poloniex’ leadership over Kraken with respect to

price discovery is more pronounced compared to the results presented in Tables 6.

Overall, our results emphasize the caveats of the standard measures for price discovery

and support the conclusions of Putnin, š (2013) that accounting for different levels of

noise when measuring the contributions to price discovery of different trading venues is

essential.

6 Conclusion

We investigate the microstructure noise component on and price discovery between three

trading platforms for five cryptocurrencies. We find that the levels of microstructure

noise are substantially different across the exchanges. While the tick size, the bid/ask

spread, or trading intensity seem to play a role in explaining these differences, their

impact on the noise component is not clear-cut. A special case is Poloniex as trading

occurs against a stable coin (USDC) instead of fiat currencies like the euro or the US

dollar which most likely poses an additional source of volatility such that Poloniex turns

out to be prone the most to market microstructure noise.

Our price discovery analysis reveals that overall Bitfinex is the leading exchange, followed

by Poloniex and Kraken. Recently, Yan and Zivot (2010) and Putnin, š (2013) argue that

the presence of microstructure noise, in particular if it is not harmonic across different

exchanges, prevents the traditional information share measures of Gonzalo and Granger

(1995) and Hasbrouck (1995) to correctly identify the contribution to price discovery. We

show that for Poloniex (which is the market which has on average the highest level of mi-

crostructure noise) the traditional measures suggest a lower information share compared

to the information leadership share proposed by Putnin, š (2013) which accounts for the

noise component in the price series. In other words, the higher level of microstructure

noise on Poloniex overshadows its contribution to price discovery such that traditional
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measures cannot reliably detect the true contribution which is understated by the Has-

brouck information share and the Gonzalo/Granger component share.
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Table 8: Bivariate information leadership analysis
The table reports the component share (CS) of Gonzalo and Granger (1995), the Hasbrouck (1995)
information share (HIS), and the information leadership share (ILS) of Putnin, š (2013). The shares are
averages of daily estimates with standard deviations in parentheses.

Bitfinex Kraken
CS HIS ILS CS HIS ILS

BTC 88.6 94.6 88.0 11.4 5.4 12.0
(8.3) (6.8) (14.1) (14.1) (14.4) (13.7)

ETC 71.4 81.6 78.6 28.6 18.4 21.4
(12.4) (11.7) (12.4) (12.4) (11.7) (12.4)

ETH 73.4 80.2 74.3 26.6 19.8 25.7
(14.6) (16.4) (17.7) (14.6) (16.4) (17.7)

LTC 79.6 88.1 84.5 20.4 11.9 15.5
(13.9) (12.5) (13.1) (13.9) (12.5) (13.1)

XMR 66.0 73.2 70.8 34.0 26.8 29.2
(16.2) (17.2) (14.9) (16.2) (17.2) (14.9)

Bitfinex Poloniex
CS HIS ILS CS HIS ILS

BTC 91.1 93.8 78.9 8.9 6.2 21.1
(7.0) (8.1) (21.2) (7.0) (8.1) (21.2)

ETC 69.0 71.9 57.9 31.0 28.1 42.1
(8.3) (10.0) (11.9) (8.3) (10.0) (11.9)

ETH 70.1 70.0 55.6 29.9 30.0 44.4
(15.7) (20.9) (20.8) (15.7) (20.9) (20.8)

LTC 71.2 73.9 61.0 28.8 26.1 39.0
(12.1) (15.9) (18.2) (12.1) (15.9) (18.2)

XMR 58.9 58.1 48.6 41.1 41.9 51.4
(9.6) (12.6) (13.8) (9.6) (12.6) (13.8)

Kraken Poloniex
CS HIS ILS CS HIS ILS

BTC 41.5 27.4 16.9 58.5 72.6 83.1
(20.0) (21.0) (13.6) (20.0) (21.0) (13.6)

ETC 49.8 40.9 31.7 50.2 59.1 68.3
(14.5) (16.2) (11.4) (14.5) (16.2) (11.4)

ETH 44.9 35.6 27.4 55.1 64.4 72.6
(18.4) (20.7) (14.2) (18.4) (20.7) (14.2)

LTC 39.0 28.4 23.9 61.0 71.6 76.1
(17.0) (18.0) (13.7) (17.0) (18.0) (13.7)

XMR 44.6 36.8 32.4 55.4 63.2 67.6
(15.2) (17.5) (12.4) (15.2) (17.5) (12.4)
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Figure A.1: Time series of daily relative noise level on Bitfinex, Kraken, and Poloniex.
The figure presents the evolution of the daily relative level of market microstructure noise of the three
exchanges Bitfinex (black), Kraken (dark gray), and Poloniex (light gray) for Ethereum (ETH), Ethereum
Classic (ETC), Litecoin (LTC), and Monero (XMR)
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(e) Daily HIS ETH

C
om

po
ne

nt
 S

ha
re

0

10

20

30

40

50

60

70

80

90

100

08MAR 08APR 08MAY 08JUN 08JUL 08AUG 08SEP 08OCT 08NOV

Bitfinex Kraken Poloniex

(f) Daily GG ETH

Figure A.2: Daily HIS and CS estimates.
The figure reports daily estimates for HIS and GG for Bitcoin (BTC), Ethereum (ETH), Ethereum
Classic (ETC), Litecoin (LTC) and Monero (XMR).
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Figure A.2: Daily HIS and CS estimates (continued).
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Table A.1: Correlation between HIS, CS and relative noise level.
The table reports the Pearson correlation coefficients between HIS, CS, and the relative noise level m̃s on
Bitfinex, Kraken, and Poloniex for ETC, ETH, LTC, and XMR. p-values associated with a test whether
the correlation is statistically significant are in parentheses.

ETC

Bitfinex Noise Kraken Noise Poloniex Noise

Bitfinex CS -0.529 0.343 0.107
(0.000) (0.000) (0.095)

Bitfinex HIS -0.249 0.191 0.018
(0.000) (0.003) (0.777)

Kraken CS 0.312 -0.510 0.270
(0.000) (0.000) (0.000)

Kraken HIS 0.188 -0.309 0.164
(0.003) (0.000) (0.010)

Poloniex CS 0.275 0.244 -0.513
(0.000) (0.000) (0.000)

Poloniex HIS 0.103 0.089 -0.190
(0.108) (0.165) (0.003)

ETH

Bitfinex Noise Kraken Noise Poloniex Noise

Bitfinex CS -0.495 0.102 0.335
(0.000) (0.112) (0.000)

Bitfinex HIS -0.242 -0.094 0.330
(0.000) (0.143) (0.000)

Kraken CS 0.580 -0.637 0.204
(0.000) (0.000) (0.001)

Kraken HIS 0.498 -0.463 0.078
(0.000) (0.000) (0.226)

Poloniex CS 0.137 0.379 -0.562
(0.032) (0.000) (0.000)

Poloniex HIS 0.007 0.344 -0.403
(0.914) (0.000) (0.000)
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Table A.1: Correlation between HIS, CS and relative noise level (continued).

LTC

Bitfinex Noise Kraken Noise Poloniex Noise

Bitfinex CS -0.501 0.300 0.072
(0.000) (0.000) (0.262)

Bitfinex HIS -0.252 0.180 0.003
(0.000) (0.005) (0.960)

Kraken CS 0.408 -0.545 0.281
(0.000) (0.000) (0.000)

Kraken HIS 0.269 -0.402 0.233
(0.000) (0.000) (0.000)

Poloniex CS 0.276 0.105 -0.345
(0.000) (0.101) (0.000)

Poloniex HIS 0.147 0.001 -0.121
(0.022) (0.988) (0.058)

XMR

Bitfinex Noise Kraken Noise Poloniex Noise

Bitfinex CS -0.459 0.284 0.150
(0.000) (0.000) (0.019)

Bitfinex HIS -0.074 0.210 -0.121
(0.248) (0.001) (0.060)

Kraken CS 0.323 -0.467 0.131
(0.000) (0.000) (0.041)

Kraken HIS 0.200 -0.368 0.151
(0.002) (0.000) (0.018)

Poloniex CS 0.133 0.323 -0.402
(0.037) (0.000) (0.000)

Poloniex HIS -0.137 0.164 -0.026
(0.033) (0.010) (0.688)
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