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A TRIANGULAR TREATMENT EFFECT MODEL WITH RANDOM
COEFFICIENTS IN THE SELECTION EQUATION

ERIC GAUTIER AND STEFAN HODERLEIN

Abstract. This paper considers treatment effects under endogeneity with complex

heterogeneity in the selection equation. We model the outcome of an endogenous treat-

ment as a triangular system, where both the outcome and first-stage equations consist

of a random coefficients model. The first-stage specifically allows for nonmonotone se-

lection into treatment. We provide conditions under which marginal distributions of

potential outcomes, average and quantile treatment effects, all conditional on first-stage

random coefficients, are identified. Under the same conditions, we derive bounds on the

(conditional) joint distributions of potential outcomes and gains from treatment, and

provide additional conditions for their point identification. All conditional quantities

yield unconditional effects (e.g., the average treatment effect) by weighted integration.

1. Introduction

To evaluate the effect of a treatment, it is common in social sciences to rely on non-

experimental data. In such a setup, ignoring self selection into treatment results in a

misleading assessment of the effectiveness of the treatment, as causal effects may be

confounded with the effect of endogenous selection. Another important feature of such

real-world applications is the heterogeneity of the effect of treatment across individuals.

The most prominent identification strategy relies on the (instrument) monotonicity as-

sumption of Imbens and Angrist (1994). It means that there are no defiers in the sense
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that as an instrument is shifted from z to z′ (say, a voucher to participate in treatment

is randomly allocated), individuals either stay with their treatment choice or move into

treatment, but no individual reverses his decision. Vytlacil (2002) shows that this as-

sumption is equivalent to modeling the selection as an additively separable latent index

model with a single unobservable, where individuals are increasingly likely to be in the

treatment group as the value of this unobservable increases.

The monotonicity assumption is often too restrictive. The incentives individuals face

might be complex and commonly cost-benefit trade-offs, as exemplified in the Roy model,

are being performed. These considerations depend on several parameters, all of which

may be expected to vary across the population. As such, more complex models of en-

dogenous selection that explicitly allow for complex unobserved heterogeneity should

be considered. A particularly natural specification for the selection equation that ac-

complishes this goal is given by a random coefficients selection equation. Heckman and

Vytlacil (2005) (HV henceforth) call it the benchmark nonseparable, nonmonotic model

of treatment choice and emphasizes the importance of being equally flexible in terms of

unobserved heterogeneity in the outcome and selection (or first-stage) equations. In this

paper, we consider a triangular system where the outcome equation is a linear random

coefficients model with a binary endogenous regressor (i.e., the treatment status) and

the selection equation is a nonlinear random coefficients binary choice model. It allows

for a population with both compliers and defiers. Related literature includes Beran and

Millar (1994), Beran, Feuerverger and Hall (1996) and Hoderlein, Klemelä and Mammen

(2010) for the linear random coefficients model, Lewbel and Pendakur (2012) for a dif-

ferent nonlinear specification, Ichimura and Thomson (1998) and Gautier and Kitamura

(2013) for the random coefficients binary choice model.

Under the monotonicity assumption, the Marginal Treatment Effect (MTE, Björklund

and Moffitt (1987) and HV (2005)) is a key structural parameter to recover a large variety

of effects. In our framework without the monotonicity assumption, we show that marginal

distributions of the potential outcomes, a generalization of the MTE and of the Quantile
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Treatment Effect (QTE, Abadie, Angrist and Imbens (2002)), conditional on the first-

stage random coefficients, are identified. Under the same assumptions, we obtain bounds

on the joint distribution of potential outcomes and the distribution and variance of the

gains, conditional on the first-stage random coefficients. We also provide conditions for

their identification. The conditional effects that we obtain are structural parameters of

interest in their own right, as we argue below. They are also building blocks for average,

quantile or distributional effects.

2. The Theoretical Setup

Throughout this paper, we make use of the following notations. The conditional dis-

tribution of a random vector A given B = b is denoted by PA|B(·|b); its conditional CDF

by FA|B(·|b); its conditional PDF by fA|B(·|b) when it exists; its conditional expectation

(resp. variance) by E[A|B = b] (resp. V ar(A|B = b)) when A is scalar; and the support

of the conditional distribution by supp
(
PA|B(·|b)

)
. The unconditional quantities are de-

noted without |B. We use the notation A ⊥ B|X when A and B are independent given

X , a.s. for almost surely, a.e. for almost everywhere, σ(A) for the sigma algebra gener-

ated by A. All random variables are defined on a probability space (Ω,F ,P) and ω is an

element of Ω. We also denote by 1l the indicator function, by Int(A) the interior of a set

A, by ‖ · ‖ the Euclidian norm, and by A2−L the subvector (A2, . . . , AL) of (A1, . . . , AL).

In the treatment effects framework, Y0 is the outcome in the control group, Y1 is the

outcome in the treated group, ∆ = Y1 − Y0 is the gain from treatment or treatment

effect, D is the binary variable which is equal to 1 when treatment has been selected and

0 otherwise, and Z is a vector of instruments. We denote by Dz(ω) the value of D(ω) if

Z(ω) = (Z1(ω), . . . , ZL(ω)) were externally set to z (one has D(ω) = DZ(ω)(ω)).

2.1. Relaxing monotonicity. Endogenous selection into treatment is often dealt with

by specifying a selection equation with a single unobservable. In its general form, it

can be written as D = 1l {µ(F (Z),Θ) > 0}, where Z is independent of (Y0,∆,Θ), F is

measurable, F (Z) and Θ are scalar, and µ is increasing in F (Z). This equation can be
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written as an additively separable latent index model which, as shown in Vytlacil (2002),

is equivalent to the LATE assumptions of Imbens and Angrist (1994):

(L1) ∀z ∈ supp(PZ) Z ⊥ (Y0, Y1, Dz) and z → P(D = 1|Z = z) is not constant;

(L2) ∀z, z′ ∈ supp(PZ), ∀ω ∈ Ω Dz(ω) ≤ Dz′(ω) or ∀ω ∈ Ω Dz′(ω) ≤ Dz(ω).

(L2) is called monotonicity. A few papers recently aimed at relaxing (L2). Small and

Tan (2007) gives a formula for the Local Average Treatment Effect (LATE) as a function

of quantities conditional on a latent variable U , but does not study their identification,

and gives a degenerate example where U = (Y1, Y0). Klein (2010) considers a selection

equation with two unobservables and the order of the bias of classical estimators when

one unobservable goes to zero. Fox and Gandhi (2011) studies identification of the

distribution of unobserved heterogeneity in Roy models with discretely supported random

coefficients, without a random intercept in the selection equation.

2.2. The model. In this paper, we consider the triangular random coefficients model

Y = Y0 +∆D,(2.1)

D = 1l

{
Θ− Γ1(Z1 + g(Z2, . . . , ZL))−

L∑

l=2

Γlfl(Zl) > 0

}
, L ≥ 2(2.2)

where f2, . . . , fL and g are unknown. The random elements Y , D, Z are observed, while

Y0, ∆, Θ and Γ are unobserved. The unobservables can be arbitrarily dependent. We do

not assume the existence of densities or rely on parametric assumptions.

When available, conditioning variables X , with common values when D is exogenously

set to 0 or 1, can be introduced for two reasons: (1) to obtain effects for population

subgroups (in which case they are not important in our identification arguments); (2) to

justify the exogeneity of the instruments, or conditional independence assumptions.

The outcome equation (2.1) is a linear random coefficients equation with random coef-

ficients (Y0,∆) and binary endogenous regressor D, namely D and (Y0,∆) are dependent.

This specification imposes no restriction on the outcome equation. The structural param-

eter in this model is FY0,∆. It is in a one-to-one relationship with the joint distribution of
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potential outcomes FY0,Y1
. Important functionals of FY0,∆ include: the average marginal

effect E[∆], also called average treatment effect (ATE), the variance of treatment effects,

and the proportion of people who benefit from treatment P(∆ > 0), among others.

Example RCR: A generalized Roy model with uncertainty and random coeffi-

cients. Individuals select treatment if their ex-ante gain from treatment E[∆|I] exceeds

cost. The ex-post gain from treatment is ∆. The sigma-field I is the information set

individuals have at their disposal at the time of their decision to participate in the treat-

ment. Their cost is defined as Γ0+Γ1(Z1+g(Z2−L))+
∑L

l=2 Γlfl(Zl). The instruments are

cost shifters and the random coefficients reflect the heterogeneous impact of nonlinear

transformations on cost. We assume, for simplicity, that the individuals know the value

of their random coefficients. We obtain model (2.2) where Θ = E[∆|I]−Γ0. The ex-ante

returns from treatment is EAR := E[∆|I]−Γ0−Γ1(Z1+g(Z2−L))−
∑L

l=2 Γlfl(Zl), while

the ex-post returns is EPR := ∆− Γ0 − Γ1(Z1 + g(Z2−L))−
∑L

l=2 Γlfl(Zl) �

Model (2.1)-(2.2) nests the benchmark model put forward in HV (2005) and allows

more general treatment choices than (L2) when Γ2−L has one nondegenerate coordinate.

Because the individual values of a vector of random coefficients cannot be obtained

when its dimension exceeds one, we cannot rely on a type of control function approach

(see Newey, Powell and Vella (1999) and Imbens and Newey (2009)). Kasy (2011) shows

that, when the endogenous regressor is continuous, the control function approach cannot

be used with a random coefficients first-stage. Identification of causal effect requires new

tools, which are the tools that we now develop.

2.3. Main Identifying Assumptions. In this section, we present our main set of iden-

tifying assumptions. Throughout this article, we make the following sign restriction.

Assumption 2.1. Z ⊥ (Θ,Γ)|X and Γ1 has a sign and is not 0 a.s.

Conditioning on Z = z and X = x for (z, x) ∈ Int (supp(PZ,X)), increasing z1 increases

(resp. decreases) P(D = 1|Z = z,X = x) if Γ1 is negative (resp. positive). Therefore,

the sign of Γ1 can be identified. Since it is possible to change Z1 in −Z1, we now assume
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that Γ1 > 0 a.s. We can then divide both sides of the inequality in (2.2) by Γ1 and work

with the coefficients Θ := Θ/Γ1, Γ2 := Γ2/Γ1, . . . , ΓL := ΓL/Γ1.

The same argument shows that we do not have to know which instrument plays the

role of Z1. Indeed, it can be solely determined by P(D = 1|Z = z,X = x). When D is

college attendance, tuition or distance to university could play the role of Z1.

In the linear random coefficients binary choice model, assuming full support of the

instruments and without invoking variables X , a sufficient condition for identification

of the distribution of the random coefficients (Θ,Γ0
1, . . . ,Γ

0
L) up to scale is that, for a

unit vector s, sT (Θ,Γ0
1, . . . ,Γ

0
L) > 0 a.s. This means that that there exists a value z of

the instruments such that Dz = 1 a.s. (in which case we take s = (1, z)/‖(1, z)‖) or

Dz = −1 a.s. (in which case we take s = −(1, z)/‖(1, z)‖). This condition is satisfied if

one coefficient has a sign. More generally, it means that by working with the vector of

transformed instrument AZ where A is invertible and such that the first row of (AT )−1

is sT , we obtain the new random coefficients Θ and Γ = (AT )−1Γ0 where Γ1 > 0 a.s.

In equation (2.2), we replace the linear transformation by a nonlinear transformation,

where Z1 is transformed into Z1 + g(Z2−L).

We now invoke moments, instrument independence, and large support assumptions.

Assumption 2.2. (A1) E[|Y0|+ |∆|] < ∞;

(A2) Z ⊥ (Yd,Θ,Γ2−L) |X for d = 0, 1;

(A3) 0 < P(D = 1|X) < 1 a.s.;

(A4) ∀(z2−L, x) ∈ supp
(
PZ2−L,X

)
,

supp
(
PZ1|Z2−L,X(·|z2−L, x)

)
⊇ supp

(
PΘ−g(z2−L)−

∑
L

l=2
Γlfl(zl)|X

(·|x)
)
.

(A1) allows us to consider conditional expectations of Y0 and ∆. (A2) allows (Y0,Θ,Γ2−L)

and (Y1,Θ,Γ2−L) to depend on Z, as long as we have at hand control variables X which

yield independence. These variables X can either be observed directly, or they may be

constructed from another additional equation, say, as control functions. Moreover, they

need not exist at all. (A3) states that there is a fraction of the population that par-

ticipates in treatment, and one that does not. (A4) means that Z1 has a large enough
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support. A similar assumption is made in Lewbel (2007). (A4) implies the existence of

unselected samples when Z1 (only) approaches the lower and upper bounds of its sup-

port, which could be tested. Traditional “identification at infinity”makes inefficient use

of the data, while (A4) allows to build estimators that use the entire data (see Gautier

and Hoderlein (2012)). Finally, though “identification at infinity”arguments allow to ob-

tain effects that depend on FYd
for d = 0, 1, they do not yield the structural parameters

conditional on first-stage unobservables.

In a preliminary step, these assumptions may be taken to identify the nonlinear ele-

ments in (2.2). Observe that using (A2), for every (z, x) ∈ supp (PZ,X),

P (D = 0|Z = z,X = x) = P

(
Θ− g(z2−L)−

L∑

l=2

Γlfl(zl) ≤ z1|X = x

)
.

Therefore, using (A4), identification in (2.2) is implied by identification in

W = g(Z2−L) +

L∑

l=2

Γlfl(Zl)−Θ

where Z2−L ⊥ (Γ2−L,Θ)|X . We now make integrability and location normalizations.

Assumption 2.3. (N1) E

[
|g(Z2−L)|+

∑L

l=2 |Γl|+ |fl(Zl)|
]
< ∞;

(N2) For l = 2, . . . , L, E[g(Z2−L)|Zl, X ] = 0 a.s.;

(N3) For l = 2, . . . , L, E[Γl|X ] = 1 a.s.;

(N4) For l = 2, . . . , L, E [fl(Zl)|X ] = 0 a.s.

The following theorem shows identification of the nonlinear elements in (2.2).

Theorem 2.1. fl for l = 2, . . . , L and g are identified under Assumption 2.3.

Writing Z1 := −Z1 + g(Z2−L) and Z l := fl(Zl) for l = 2, . . . , L, we now work with

(2.3) D = 1l

{
−Θ +

L∑

l=2

ΓlZ l < Z1

}

where E[Γl|X ] = 1 for l = 2, . . . , L.

When the large support assumption (A4) is not satisfied, it is replaced by (A4’):
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(A4’a) Model (2.2) does not have unknown functions;

(A4’b) ∀x ∈ supp (PX), ∀R ≥ 0, E
[
exp

(
R|Θ|

)∣∣X = x
]
< ∞;

(A4’c) ∀(z2−L, x) ∈ supp
(
PZ2−L,X

)
, Int

(
supp

(
PZ1|Z2−L,X

(·|z2−L, x)
))

is not empty.

Finally, we invoke either of the two following assumptions on supp(PZ2−L|X
).

Assumption 2.4. ∀x ∈ supp (PX), supp
(
PZ2−L|X

(·|x)
)
= R

L−1.

Assumption 2.5. ∀x ∈ supp (PX),

(S1) ∀R ≥ 0, E
[
exp

(
R
∥∥Γ2−L

∥∥)∣∣X = x
]
< ∞;

(S2) Int
(
supp

(
PZ2−L|X

(·|x)
))

is not empty.

(S1) corresponds to the existence of a moment generating function of Γ2−L, which can

be relaxed as in Gaillac and Gautier (2015). Beran and Millar (1994) assumes that the

support of the random coefficients, including the random intercept, is compact.

3. Parameters Based on the Marginals of Potential Outcomes

3.1. Identification of Marginals Conditional on First-stage Unobservables. The

following result is central in our analysis.

Theorem 3.1. Under Assumption 2.2 with (A4) or (A4’) and either Assumption 2.4 or

2.5, FYd,Θ,Γ2−L,X
for d = 0, 1 are identified.

This result shows identification of FY0+∆d|Θ,Γ2−L,X
and FY0+∆d|X for d = 0, 1, and of

the average and quantile structural functions. This means that we have resolved the

endogeneity issue in model (2.1) entirely and the difficulty in identifying the structural

parameter FY0,∆|X now stems solely from the fact that the regressor is binary.

As will be obvious, Theorem 3.1 may be used to establish identification of many

parameters. For instance, it directly yields identification of the following parameter.

Definition 3.1. The Unobservables Conditioned Quantile Treatment Effect (UCQTE)

is defined, for (θ, γ2−L, x) in supp(PΘ,Γ2−L,X
), as

UCQTE(θ, γ2−L, x, τ) := FY1|Θ,Γ2−L,X
(·|θ, γ2−L, x)

−1(τ)− FY0|Θ,Γ2−L,X
(·|θ, γ2−L, x)

−1(τ) .
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Integrating out the first-stage unobserved heterogeneity, we obtain

QTE(x, τ) = FY1|X(·|x)
−1(τ)− FY0|X(·|x)

−1(τ), τ ∈ (0, 1)

without monotonicity or rank invariance (Chernozhukov and Hansen (2005)).

3.2. The Unobservables Conditioned Average Treatment Effect (UCATE).

3.2.1. Definition and Properties. MTE is a key structural parameter (see HV (2005))

which relies on the additively separable latent index model for the first-stage, thus on

monotonicity. To extend this concept to our framework, we introduce the following

generalization of the MTE. It is clearly identified from Theorem 3.1.

Definition 3.2. The Unobservables Conditioned Average Treatment Effect (UCATE)

is defined, for (θ, γ2−L, x) in supp(PΘ,Γ2−L,X
), as

UCATE(θ, γ2−L, x) := E[∆|Θ = θ,Γ2−L = γ2−L, X = x] .

UCATE shares the same interpretation and attractive properties as MTE. It is the

average effect for a subpopulation with X = x which would be indifferent between

participation and nonparticipation in the treatment, if it were exogenously assigned a

value z of Z such that −Θ +
∑L

l=2 Γlzl = z1. Due to (A2), this parameter is policy

invariant (i.e., it is independent of the values of the instruments)

E
[
∆|Θ,Γ2−L, X, Z

]
= E[∆|Θ,Γ2−L, X ] .

Like MTE, UCATE is an economically important parameter. To fix ideas, think of

the treatment as attending college, and of the j-th cost factor as college tuition. If an

individual has a high value of Γl, she is responsive to a change in college tuition. This

may be because she is liquidity constrained. For a policy maker who is deciding about

tuition rates, the difference in treatment effects across these groups is a key variable in

assessing the effect of a change in the incentive structure. For targeted policy measures,

it is interesting to see how the effect of treatment varies with unobserved sensitivity to

tuition and observed X (e.g., race).
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Finally, note that, if UCATE(θ, γ2−L, x) is not constant in one of the γl’s, it is an

indication that monotonicity does not hold. This allows to test monotonicity.

3.2.2. Example RCR: UCATE as the Ex-ante Gains From Treatment. In this model,

UCATE is a core structural effect. We invoke the following assumption.

Assumption 3.1. (U1) I ⊇ σ(Γ2−L, X)

(U2) σ(Γ2−L, X) = σ(Γ0,Γ1, . . . ,ΓL, X) .

Under Assumption 3.1, individuals have perfect knowledge of their cost function, but

can be uncertain about the potential outcomes.

(U2) is satisfied when (Γ0,Γ1, . . . ,ΓL) = ϕ(Γ2−L) for some measurable function ϕ.

This restricts the unobserved heterogeneity entering (2.2). However, it does not restrict

its dimension. Example RCR also involves E[∆|I] in (2.2), so that, when the superset

symbol in (U1) is strict, (2.2) depends on a nondegenerate vector of unobservables of

dimension L. A sufficient condition for (U2) to hold is that one Γl for l = 1, . . . , L is

σ(X)-measurable and P(Γl = 0) = 0, and Γ0 is σ(Γ1, . . . ,ΓL, X)-measurable. Still, it is a

richer specification than the extended Roy model where the cost function is not random.

Define the errors ηd for d = 0, 1 as

(3.1) ηd := E[Yd|I]− E[Yd|Γ2−L, X ] .

When Example RCR models sectorial choice, they could be interpreted as sector specific

skills known by the individuals at the time the choice is made and unobserved by the

econometrician. Because Θ = (E[Y1 − Y0|I]− Γ0)/Γ1 = (E[Y1 − Y0|Γ2−L, X ] + η1 − η0 −

Γ0)/Γ1, Assumption 3.1 implies

(3.2) σ(Θ,Γ2−L, X) = σ(Γ2−L, η1 − η0, X) ⊆ σ(Γ2−L, η1, η0, X) ⊆ I .

Even if σ(Θ,Γ2−L, X) is a strict subset of I, the following result holds.

Theorem 3.2. Under Assumption 3.1 with (A4) or (A4’), UCATE(Θ,Γ2−L, X) = E[∆|I].

Moreover, if E[∆|I] is not σ(Γ2−L, X)-measurable, FEAR|Z,X is identified.
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3.2.3. UCATE as a Building Block to Obtain Treatment Effects that Depend on Averages.

Like MTE, UCATE is a building block to obtain treatment effect parameters that depend

on averages. For example, the ATE and Treatment on the Treated (TT) are given by

ATE(x) =

∫

RL

UCATE(θ, γ2−L, x)dPΘ,Γ2−L|X
(θ, γ2−L|x) ,

TT(x) =

∫

RL

hTT(θ, γ2−L, x)UCATE(θ, γ2−L, x)dPΘ,Γ2−L|X
(θ, γ2−L|x) ,

where hTT(θ, γ2−L, x) = E [D|X = x]−1
E

[
1l
{
−θ +

∑L

l=2 γlZ l < Z1

}∣∣∣X = x
]
.

UCATE also allows to derive Policy Relevant Treatment Effect (PRTE) parameters.

In our setup where an individual self-select into treatment, these parameters inform

the decision maker about the effect of a change in the structure of the variables or

incentives she can control, namely the distribution of instruments. For example, the

alternative policy can consist in changing Z1 to Z1 + α (e.g., increasing tuition by α).

HV (2001) formalizes this idea. Denote by Eα the expectation under a policy α and

E0 the expectation under the baseline policy. The PRTE parameter is defined, for x in

supp(PX), as

PRTE(α, x) :=
Eα[Y |X = x]− E0[Y |X = x]

Eα[D|X = x]− E0[D|X = x]
.

Marginal Policy Relevant Treatment Effects (MPRTE, Carneiro, Heckman and Vytlacil

(2010)) are defined as

MPRTE(x) := lim
α→0

PRTE(α, x) .

In our setup, PRTE(α, x) can be obtained from UCATE like TT(x) replacing the weight

hTT(θ, γ2−L, x) by hPRTE(θ, γ2−L, α, x) defined by

Eα

[
1l
{
−θ +

∑L

l=2 γlZ l < Z1

}∣∣∣X = x
]
− E0

[
1l
{
−θ +

∑L

l=2 γlZ l < Z1

}∣∣∣X = x
]

Eα

[
1l
{
−Θ+

∑L

l=2 ΓlZ l < Z1

}∣∣∣X = x
]
− E0

[
1l
{
−Θ +

∑L

l=2 ΓlZ l < Z1

}∣∣∣X = x
] .
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In a similar manner, MPRTE(x) can be obtained using the weight

hMPRTE(θ, γ2−L, x) =
∂α Eα

[
1l
{
−θ +

∑L

l=2 γlZ l < Z1

}∣∣∣X = x
]∣∣∣

α=0

∂α Eα

[
1l
{
−Θ+

∑L

l=2 ΓlZ l < Z1

}∣∣∣X = x
]∣∣∣

α=0

.

The weights hTT , hPRTE and hMPRTE can be obtained by Monte-Carlo techniques.

4. Parameters Based on the Joint Distribution of Potential Outcomes

In this section, we consider identification of the structural parameter FY0,∆|X in model

(2.2). The importance of distributional treatment effects is emphasized by Heckman,

Smith and Clements (1997) (HSC henceforth) and Abbring and Heckman (2007). We

present partial identification results under the same assumptions as in Section 3 and

present assumptions that allow to identify distributional effects.

4.1. Partial Identification of Distributional Effects. Theorem 3.1 yields that, un-

der our maintained assumptions, FYd|Θ,Γ2−L,X
for d = 0, 1 are identified. Under the

same assumptions, we obtain sharp bounds on structural parameters that depend on

FY0,Y1|Θ,Γ2−L,X
. We use the following notations:

FL

Y0,Y1|Θ,Γ2−L,X
(y0, y1|θ, γ2−L, x) := max

{
FY0|Θ,Γ2−L,X

(y0|θ, γ2−L, x) + FY1|Θ,Γ2−L,X
(y1|θ, γ2−L, x)− 1, 0

}

FU
Y0,Y1|Θ,Γ2−L,X

(y0, y1|θ, γ2−L, x) := min
{
FY0|Θ,Γ2−L,X

(y0|θ, γ2−L, x), FY1|Θ,Γ2−L,X
(y1|θ, γ2−L, x)

}

FL

∆|Θ,Γ2−L,X
(δ|θ, γ2−L, x) := sup

y∈R
max

{
FY1|Θ,Γ2−L,X

(y|θ, γ2−L, x)− FY0|Θ,Γ2−L,X
(y − δ|θ, γ2−L, x), 0

}

FU
∆|Θ,Γ2−L,X

(δ|θ, γ2−L, x) := 1+inf
y∈R

min
{
FY1|Θ,Γ2−L,X

(y|θ, γ2−L, x)− FY0|Θ,Γ2−L,X
(y − δ|θ, γ2−L, x), 0

}

and FL
Y0,Y1

(y0, y1|x), F
U
Y0,Y1

(y0, y1|x), F
L
∆(δ|x), and FU

∆ (δ|x) are the expectation of above

quantities evaluated at the random vectors. For example, we define

FL
Y0,Y1

(y0, y1|x) :=

∫

RL

FL
Y0,Y1|Θ,Γ2−L,X

(y0, y1|θ, γ2−L, x)dPΘ,Γ2−L|X
(θ, γ2−L|x) .
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Theorem 4.1. Under the assumptions of Theorem 3.1, for (θ, γ2−L, x) ∈ supp(PΘ,Γ2−L,X
),

(y0, y1, δ) ∈ R
3,

FL
Y0,Y1|Θ,Γ2−L,X

(y0, y1|θ, γ2−L, x) ≤ FY0,Y1|Θ,Γ2−L,X
(y0, y1|θ, γ2−L, x) ≤ FU

Y0,Y1|Θ,Γ2−L,X
(y0, y1|θ, γ2−L, x)

FL

∆|Θ,Γ2−L,X
(δ|θ, γ2−L, x) ≤ F∆|Θ,Γ1−2,X

(δ|θ, γ2−L, x) ≤ FU

∆|Θ,Γ2−L,X
(δ|θ, γ2−L, x) .

All bounds are sharp. Bounds on functionals of the unobservables conditioned joint

distribution of potential outcomes can be obtained like in Fan, Guerre and Zhu (2014).

Corollary 4.1. Under the assumptions of Theorem 3.1, for x ∈ supp(PX), (y0, y1, δ) ∈

R
3,

FL
Y0,Y1|X

(y0, y1|x) ≤ FY0,Y1|X(y0, y1|x) ≤ FU
Y0,Y1|X

(y0, y1|x)

FL
∆|X(δ|x) ≤ F∆|X(δ|x) ≤ FU

∆|X(δ|x) .

Bounds on the above quantities have been obtained in the case of randomized experi-

ments or selection on observables (see HSC (1997) for FY0,Y1
, Fan and Park (2010) and

Firpo and Ridder (2008) for F∆). The bounds of this section hold when there is endoge-

nous selection into treatment and without mononoticity. It is possible to deduce bounds

which are unconditional on (some) X by integration against PX . These are sharper than

the ones obtained without conditioning (see Firpo and Ridder (2008)). Similarly, the

bounds of Corollary 4.1 are sharper than bounds obtained without monotonicity (see

Kitagawa (2009) for FY0,Y1
) and without conditioning on the first-stage unobservables.

4.2. Point Identification of Distributional Effects. We start by strengthening (A2):

(A2’) Z ⊥ (Y0, Y1,Θ,Γ2−L) |X .

We now present three alternative identifying assumptions and give sufficient conditions

for them to hold in the case of Example RCR under Assumption 3.1.

Assumption 4.1. Y0 ⊥ Y1 |Γ2−L, X .

Assumption 4.2. Y0 ⊥ Y1 |Θ,Γ2−L, X .

Assumption 4.3. (i) Y0 ⊥ ∆ |Θ,Γ2−L, X ;
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(ii) Either (1) for a.e. t ∈ R, E[eitY0 |Θ,Γ2−L, X ] 6= 0 a.s.

or (2) ∀R ≥ 0, E
[
exp (R|∆|)|Θ,Γ2−L, X

]
< ∞ a.s.

HSC (1997) makes a similar assumption as Assumption 4.3 (i), but it is not conditional

on the first-stage unobservables. Condition (ii) (1) is the condition in Devroye (1989) for

the deconvolution problem Y1 = ∆ + Y0 where Y0 is the error with known distribution.

Condition (ii) (2) imposes no restriction on the distribution of Y0.

We can relabel state 0 as state 1 in the first two assumptions, as well as in Assump-

tion 4.3 (i) if the agents have perfect foresight of the outcomes in both states. This is

important when the two states are two sectors in the economy.

Consider now Example RCR. Define ǫd := Yd−E[Yd|I] for d = 0, 1, which could be in-

terpreted as state specific unexpected shocks. Consider the three following assumptions:

(B1) η0 + ǫ0 ⊥ η1 + ǫ1 |Γ2−L, X ;

(B2) Assumption 3.1 holds, ǫ0 ⊥ ǫ1 |Γ2−L, η1 − η0, X , and η0 is σ(Γ2−L, η1 − η0, X)

measurable;

(B3) Assumption 3.1 holds and η0 + ǫ0 ⊥ ǫ1 − ǫ0 |Γ2−L, η1 − η0, X .

(B1) and (B2) restrict the unobserved heterogeneity in (2.2). (B1) implies

Y0 − E[Y0|Γ2−L, X ] ⊥ Y1 − E[Y1|Γ2−L, X ] |Γ2−L, X ,

and thus Assumption 4.1. (B2) implies

Y0 − E[Y0|Θ,Γ2−L, X ] ⊥ Y1 − E[Y1|Θ,Γ2−L, X ] |Θ,Γ2−L, X

and thus Assumption 4.2. (B3) implies Assumption 4.3 (i). It is the less restrictive

on the unobserved heterogeneity entering the first-stage equation. It is satisfied, for

example, when there is no uncertainty on the outcome in the base state (i.e., ǫ0 = 0)

and ǫ1 ⊥ η0, η1,Γ2−L|X . Assumptions 4.1 - 4.3 (i) can hold more generally, in particular

without Assumption 3.1 which restricts the unobserved heterogeneity entering (2.2).

The next theorem shows point identification under either of the three assumptions.
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Theorem 4.2. Under the assumptions of Theorem 3.1 replacing (A2) by (A2’), FY0,Y1|Γ2−L,X

is identified under Assumption 4.1, while FY0,Y1|Θ,Γ2−L,X
is identified under Assumption

4.2 or 4.3.

The following result is consequence Theorem 3.2. Carneiro, Hansen and Heckman

(2003) and Cunha and Heckman (2007) rely on a factor model to obtain related results.

Theorem 4.3. Suppose (2.2) corresponds to model RCR. Under the assumptions of

Theorem 4.2 with Assumption 4.2 or 4.3, and Assumption 3.1, F∆,E[∆|I]|X is identified.

Moreover, if E[∆|I] is not σ(Γ2−L, X)-measurable, then FEAR,EPR|Z,X is identified.

UCATE is a building block to obtain effects that depend on averages. The structural

parameter that we now introduce plays a similar role, but allows to obtain all effects

that depend on FY0,Y1|X . It is clearly identified from Theorem 4.2 and policy invariant.

Definition 4.1. The Unobservables Conditioned Distribution of Treatment Effects is

defined, for δ in R and (θ, γ2−L, x) in supp(PΘ,Γ2−L,X
), as

UCDITE(δ, θ, γ2−L, x) := f∆|Θ,Γ2−L,X
(δ|θ, γ2−L, x) .

UCDITE is a key quantity to obtain all effects that depend on FY0,Y1|X , for example

P (∆ > 0|X = x) =

∫

R

1l {δ > 0}

∫

RL

UCDITE(δ, θ, γ2−L, x)dPΘ,Γ2−L|X
(θ, γ2−L|x)

fY0,Y1|X(y0, y1|x) =

∫

RL

UCDITE(y1 − y0, θ, γ2−L, x)dPY0,Θ,Γ2−L|X
(y0, θ, γ2−L|x)

f∆|D=1,Y0,X(δ|y0, x) =

∫

RL

hTT(θ, γ2−L, x)UCDITE(δ, θ, γ2−L, x)dPY0,Θ,Γ2−L|X
(y0, θ, γ2−L|x) .

Appendix 1: Modifications When Some of the Instruments are Discrete

Because of its importance in applications, we consider the case where some instruments

are discrete. For simplicity, we only detail the case with one additional instrument B

which is binary and use (A4). We replace (2.2) by

(4.1) D = 1l

{
Θ− αB − Γ1(Z1 + g(Z2−L, B))−

L∑

l=2

Γlfl(Zl, B) > 0

}
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where α := α/Γ1, g(Z2−L, B) and fl(Zl, B) are integrable. Replace (A2), (A2’), (A4) by

(AB2) (Z,B) ⊥ (Yd,Θ,Γ2−L) |X for d = 0, 1;

(AB4) ∀(x, z2−L, b) ∈ supp
(
PX,Z2−L,B

)
,

supp
(
PZ1|Z2−L,B,X(·|z2−L, b, x)

)
⊇ supp

(
PΘ−αb−g(z2−L,b)−

∑
L

l=2
Γlfl(zl,b)|X

(·|x)
)
;

(N1)-(N4) by (NB1)-(NB4) where we work with fl(Zl, B) for l = 2, . . . , L, fl(Zl) and

g(Z2−L, B); and the conditioning on X by conditioning on X and B.

Based on (AB2), (AB4), (NB1)-(NB4), the functions g and fl for l = 2, . . . , L are

identified and we can assume that the first-stage equation is

(4.2) D = 1l

{
−Θ+ αB +

L∑

l=2

ΓlZ̃L < Z̃1

}

where Z̃1 := −Z1 + g(Z2−L, B) and Z̃l := fl(Zl, B) for l = 2, . . . , L. We make Assump-

tions 2.4 and 2.5 on supp(PZ2−L|B,X) where we also condition on B.

Under such assumptions, Theorem 3.1 holds with PYd,Θ+αb,Γ2−L,X
for d = 0, 1 and

b = 0, 1. Thus, UCATE and UCQTE are identified when we replace conditioning on

Θ,Γ2−L, X by Θ + αb,Γ2−L, X for (θ, γ2−L, b, x) in supp
(
PΘ+αB,B,Γ2−L|B,X

)
. This gives,

for b = 0, 1, two formulas for the effects which are weighted integrals.

UCDITE is identified when we replace (AB2) by (Z,B) ⊥ (Y0, Y1,Θ,Γ2−L) |X , As-

sumption 4.2 by Y0 ⊥ Y1 |Θ + αb,Γ2−L, X , and Assumption 4.3 (i) by Y0 ⊥ ∆ |Θ +

αb,Γ2−L, X . Without appealing to such assumptions, we obtain intersection bounds, for

example, for x in supp(PX) and (y0, y1) ∈ R
2,

FL
Y0,Y1|X(y0, y1|x) ≤ FY0,Y1|X(y0, y1|x) ≤ FU

Y0,Y1|X(y0, y1|x)

where, defining FL

Y0,Y1|Θ+αb,Γ2−L,X
(y0, y1|θ, γ2−L, x) and FU

Y0,Y1|Θ+αb,Γ2−L,X
(y0, y1|θ, γ2−L, x)

like FL
Y0,Y1|Θ,Γ2−L,X

(y0, y1|θ, γ2−L, x) and FU
Y0,Y1|Θ,Γ2−L,X

(y0, y1|θ, γ2−L, x),

FL
Y0,Y1

(y0, y1|x) := max
b=0,1

∫

RL

FL
Y0,Y1|Θ+αb,Γ2−L,X

(y0, y1|θ, γ2−L, x)dPΘ+αb,Γ2−L|X
(θ, γ2−L|x)
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FU
Y0,Y1

(y0, y1|x) := min
b=0,1

∫

RU

FU

Y0,Y1|Θ+αb,Γ2−L,X
(y0, y1|θ, γ2−L, x)dPΘ+αb,Γ2−L|X

(θ, γ2−L|x) .

Alternatively, effects conditional on {Θ = θ, α = a,Γ2−L = γ2−L, X = x} are identified

under Assumption 4.3, replacing Y0,∆ by Θ, α and without conditioning on Θ.

Appendix 2: Variance of Treatment Effects

We now assume that E [Y 2
0 + Y 2

1 ] < ∞, take (θ, γ2−L, x) ∈ supp(PΘ,Γ2−L,X
), and use

V U
1 (θ, γ2−L, x) := 2

(
E
[
Y 2
0

∣∣Θ = θ,Γ2−L = γ2−L, X = x
]
+ E

[
Y 2
1

∣∣Θ = θ,Γ2−L = γ2−L, X = x
])

V U
2 (θ, γ2−L, x) := E

[
Y 2
0

∣∣Θ = θ,Γ2−L = γ2−L, X = x
]
+ E

[
Y 2
1

∣∣Θ = θ,Γ2−L = γ2−L, X = x
]

− 2E
[
Y0|Θ = θ,Γ2−L = γ2−L, X = x

]
E
[
Y1|Θ = θ,Γ2−L = γ2−L, X = x

]
.

Under the assumptions of Theorem 3.1 and assuming

E[(Y0 − E[Y0|Θ,Γ2−L, X ])(Y1 − E[Y1|Θ,Γ2−L, X ])|Θ,Γ2−L, X ] ≥ 0 a.s.

for (4.3) below, we easily obtain that

V ar
(
∆|Θ = θ,Γ2−L = γ2−L, X = x

)
≤ V U

1 (θ, γ2−L, x)

V ar
(
∆|Θ = θ,Γ2−L = γ2−L, X = x

)
≤ V U

2 (θ, γ2−L, x)(4.3)

These upper bounds yield unconditional bounds when taking expectation of the above

inequalities evaluated at the random vectors.

Based on the fact conditional variance of the sum of two uncorrelated variables is the

sum of the conditional variances, replacing Assumption 4.3 by the weaker assumption

E[(Y0 − E[Y0|Θ,Γ2−L, X ])(∆− E[∆|Θ,Γ2−L, X ])|Θ,Γ2−L, X ] = 0 a.s.

yields

V ar(∆|Θ,Γ2−L, X) = V ar(Y1|Θ,Γ2−L, X)− V ar(Y0|Θ,Γ2−L, X) .
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Appendix 3: Proofs

Proof of Theorem 2.1. We have E[W |X ] = −E[Θ|X ], while for l = 2, . . . , L,

E[W |Zl, X ] = −E[Θ|X ] + E[Γl|X ]fl(Zl), thus fl(Zl) = E[W |Zl, X ] − E[W |X ]. This

identifies the functions fl on supp(PZl
) for l = 2, . . . , L. Finally, g is identified using

g(Z2−L) = E[W |Z2−L, X ]− E[W |X ]−
L∑

l=2

fl(Zl) .

Proof of Theorem 3.1. (A2) implies that for (z, x) ∈ supp(PZ,X), y1 ∈ R

E
[
1l{Y ≤ y1}D|Z = z,X = x

]
= E

[
1l{Y1 ≤ y1}D|Z = z,X = x

]

= E

[
1l{Y1 ≤ y1}1l

{
−Θ +

L∑

l=2

Γlzl < z1

}∣∣∣∣∣X = x

]
.

Using (A3) and (A4), this yields that FY1,−Θ+
∑

L

l=2
Γlzl|X

(·|x) is identified. Thus, for every

t, s in R, x ∈ supp(PX), and z2−L in supp(PZ2−L|X(·|x)), E
[
exp

(
itY1 − isΘ + is

∑L

l=2 Γlzl

)∣∣∣X = x
]

is identified. Under Assumption 2.5, (A1) implies that we can extend as an entire

function z2−L → E

[
exp

(
itY1 − isΘ+ is

∑L

l=2 Γlzl

)∣∣∣X = x
]
and (S2) that for every

t, s ∈ R and z2−L ∈ R, E
[
exp

(
itY1 − isΘ+ is

∑L

l=2 Γlzl

)∣∣∣X = x
]
is identified. Thus,

(t, s, z2−L) ∈ R
2 × (R \ {0})L−1 → E

[
exp

(
itY1 + isΘ+ i

∑L

l=2 Γlzl

)∣∣∣X = x
]
is identi-

fied. We obtain directly this result if we make Assumption 2.4 instead of Assumption 2.5.

Now, by continuity, the Fourier transform of PY1,Θ,Γ2−L|X
(·|x) is identified everywhere.

The injectivity of the Fourier transform of measures allows to conclude.

If we maintain (A4’) instead of (A4), the above argument yields that PYd,−Θ+
∑

L

l=2
Γlzl

for

j = 0, 1 is identified on R×supp(PZ1|Z2−L,X(·|z2−L, x)) for every (z2−L, x) in supp(PZ2−L,X).

(A4’b) and (A4’c) now implies that, for every t, s in R, (z2−L, x) in supp
(
PZ2−L,X

)
and

z1 in supp
(
PZ1|Z2−L,X

(·|z2−L, x)
)
, E
[
exp

(
itY1 − isΘ+ iz1

∑L

l=2 Γlzl

)∣∣∣X = x
]
is iden-

tified. Now, we can either conclude under Assumption 2.4 or Assumption 2.5.

Identification of FY0,Θ,Γ2−L
is obtained in the same way replacing D by 1−D.
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Proof of Theorem 3.2. This follows from the fact that, based on (3.1)-(3.2), we have

E[Y1 − Y0|Γ2−L, η1 − η0, X ] = E
[
E[Y1 − Y0|I]|Γ2−L, η1 − η0, X

]

= E
[
E[Y1 − Y0|Γ2−L, X ] + η1 − η0

∣∣Γ2−L, η1 − η0, X
]

= E[Y1 − Y0|Γ2−L, X ] + η1 − η0 = E[∆|I] .

Now, because E[∆|I] is not σ(Γ2−L, X)-measurable and we assume (U2), for every

(γ2−L, x) ∈ supp(PX), there are two draws θ1 6= θ2 from FΘ|Γ2−L,X
(·|γ2−L, x) such that

Γ1(γ2−L, x)(θ1 − θ2) = UCATE(θ1, γ2−L, x)− UCATE(θ2, γ2−L, x) 6= 0 .

Thus Γ1(γ2−L, x) and Γ0(γ2−L, x) = UCATE(θ1, γ2−L, x) − Γ1(γ2−L, x)θ1 are identified.

Stated otherwise, conditioning on a fixed value of (Γ2−L, X), Γ0 and Γ1 are constant and

parameters in a regression without error. Thus EAR is uniquely determined once we

condition on a fixed value of (Θ,Γ2−L, X) and Z. This yields the result by integration.

Proof of Theorem 4.1. The first inequality is based on the Frechet-Hoeffding bounds

applied to the conditional CDFs which are CDFs as well. The second one is a consequence

of the Makarov bounds (Makarov (1981)) for the same reason. Sharpness is discussed in

Firpo and Ridder (2008). The last two inequalities are obtained by simple manipulations.

Proof of Corollary 4.1. The bounds are obtained by taking expectations of the

inequalities in Theorem 4.1 evaluated at the random vectors.

Proof of Theorem 4.2. Assumption 4.1 implies that

FY0,Y1|Γ2−L,X
(y1, y0|γ2−L, x) = FY0|Γ2−L,X

(y0|γ2−L, x)FY1|Γ2−L,X
(y1|γ2−L, x) ,

similarly, Assumption 4.2 implies that

FY0,Y1|Θ,Γ2−L,X
(y0, y1|θ, γ2−L, x) = FY0|Θ,Γ2−L,X

(y0|θ, γ2−L, x)FY1|Θ,Γ2−L,X
(y1|θ, γ2−L, x)

and the right-hand sides are identified.
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Let us now consider Assumption 4.3. Based on Theorem 3.1, FY0|Θ,Γ2−L,X
(·|θ, γ2−L, x)

and FY0+∆|Θ,Γ2−L,X
(·|θ, γ2−L, x) are identified. Estimating F∆|Θ,Γ2−L,X

(·|θ, γ2−L, x) and

thus FY0,Y1|Θ,Γ2−L,X
(·|θ, γ2−L, x) is a deconvolution problem under (i).

Proof of Theorem 4.3. This is a consequence of theorems 4.2 (and its proof) and 3.2.
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