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1. Introduction

Economic agents concentrate a substantial amount of their activities within their networks
of interpersonal relationships. These interpersonal relationships play a prominent role
when centralized institutions such as markets are missing or unable to provide certain
goods or services. Studying them provides valuable insights into many relevant economic
problems, such as information dissemination in small communities (Banerjee et al. 2013)
and informal insurance (Fafchamps and Lund 2003). Interpersonal relationships can
be formalized as directed links between agents. The collection of all links is called the
network. Given their vital role in many policy-relevant problems, it is important to
understand how networks are formed. Consequently, econometricians have endeavored to
estimate models of formation of informal insurance networks in villages (Fafchamps and
Gubert 2007; Leung 2014) or friendship networks in high-schools (Mele 2013).

This paper contributes to the literature by offering a new empirical model of network
formation. Similar to the classical approach by Holland and Leinhardt 1981, link formation
is modelled as a binary choice. An agent establishes a directed link to another agent
if, considering the joint attributes of the pair, the link surplus is deemed large enough.
Conditional on agent attributes, links are formed independently of each other. This is
the defining property of the class of so-called dyadic models. Though frequently applied
in practice (Mayer and Puller 2008; Fafchamps and Gubert 2007), little work has been
done to understand their theoretical properties (Graham 2014).

The main innovation of my model is that it employs a fixed effects approach to
account for relevant attributes that are not observable to the econometrician. Adding
fixed effects substantially complicates inference by introducing a so-called incidental
parameter problem (Neyman and Scott 1948). As a result, confidence intervals computed
from maximum likelihood estimators are not centered at the true parameter values. I
investigate this problem formally in an asymptotic framework that sends the number of
agents to infinity. For the estimands considered in this paper I provide explicit correction
formulas that can be used to center the respective maximum likelihood estimator at the
true parameter value.

Most available alternatives to my approach capture unobserved heterogeneity by
random effects (Holland and Leinhardt 1981; Duijn, Snijders, and Zijlstra 2004; Krivitsky
et al. 2009). A random effects assumption imposes a very simple structure on unobserved
heterogeneity and it does not admit correlations between observed and unobserved agent
characteristics. Fixed effects dispose of such restrictions and allow for very general
unobserved heterogeneity.

My model can capture two features that are frequently observed in real-world networks.
Homophily refers to the tendency of agents to initiate ties to agents who share similar ob-
served characteristics (McPherson, Smith-Lovin, and Cook 2001). This can be interpreted
as a distaste for social distance and is related to the concept of assortative matching
in other areas of economics (Becker 1973). Degree heterogeneity refers to the fact that
agents can exhibit vast differences in the number of in-bound or out-bound links. In my
model, degree heterogeneity is driven by homophily as well as by differences in the ability
of agents to initiate ties (productivity) and to attract links from other agents (popularity).
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Due to the fixed effects approach, determinants of productivity and popularity need
not be observed, allowing observationally equivalent agents to exhibit diverse linking
strategies. This contributes crucially to the ability of the model to disentangle homophily
from unobserved sources of degree heterogeneity (Graham 2014).

A researcher might be interested in the linking model for two reasons. For some
research questions the bilateral linking model itself is of interest. For example, it might be
interesting to investigate whether homophily preferences discriminate against minorities.
In other cases, the researcher wants to learn about the behavior of the stochastic network
induced by the sum of all bilateral linking decisions. For example, the level of segregation
in the network determines how fast information spreads or how susceptible a community
is to outbreaks of sexual diseases (Bearman, Moody, and Stovel 2004).

To my knowledge, I am the first to formally discuss inference on local or global structure
of the network in the context of a dyadic network model. On the population level, it
is straightforward to calculate various features of the network from a known bilateral
linking model. This simplicity does not extend to estimation. In the present paper,
this is illustrated by a detailed discussion of a measure of transitivity. The level of
transitivity observed in a network is driven by agent productivity and popularity, i.e., the
agent-level heterogeneity captured by the fixed effects. Expected transitivity is therefore
a function of the fixed effects. Estimates of the fixed effects are provided as a by-product
of my estimation procedure allowing for a simple plug-in estimator. This highlights
an advantage of my method over alternative approaches in the literature on non-linear
models that condition out the fixed effects (Andersen 1970; Charbonneau 2014). However,
the plug-in estimator is affected by an incidental parameter problem, rendering standard
inference invalid. For the transitivity measure, I propose a procedure that overcomes this
limitation by adjusting for asymptotic bias and by estimating robust standard errors.
The general approach can be extended to other network features of interest, such as
average degree or various clustering coefficients.

Comparing predicted network features to their observed counterparts can serve as a test
of model specification. This paper considers such a test based on predicted transitivity.
The test can be interpreted as looking in the direction of alternatives in which transitive
relationships have explanatory power. The suggested procedure expands on the idea of the
τ2-test in Holland and Leinhardt 1978 by allowing for an estimated reference distribution.
The estimation of model parameters induces an incidental parameter problem for the
test statistic. My testing procedure accounts for the presence of incidental parameters
and produces asymptotically valid critical values. For existing transitivity tests (Holland
and Leinhardt 1981; Karlberg 1997; Karlberg 1999) there are no formal results regarding
their asymptotic distribution. This paper provides for the first time a large sample theory
for a transitivity test for networks.

The finite-sample properties of my methods are investigated in simulations. In my
simulation design, the correction formulas offer considerable improvements. The empirical
coverage of confidence intervals constructed from uncorrected maximum likelihood esti-
mates is up to sixty percentage points below the nominal level. Applying the correction
formulas substantially increases the precision of the estimators and eliminates bias almost
completely. This results in an improved normal approximation that produces confidence
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intervals that hold their nominal coverage level.
Identification in my model is achieved by an exogeneity assumption. Agents evaluate

each potential link in isolation of the rest of the network. In particular, there are no
network externalities. This means that linking decisions are independent of endogenous
network structure. This is plausible if agents do not care about links between other
agents or if the network is imperfectly observable. The exogeneity assumption is refutable
by the model specification test developed in this paper.

The literature on network formation offers some models that allow for network ex-
ternalities. These models do not, however, admit general unobserved heterogeneity.
For some facets of network structure, such as transitivity, network externalities and
unobserved heterogeneity offer competing explanations. To estimate a game of network
formation under asymmetric information, Leung 2014 provides a model in the spirit
of Aguirregabiria and Mira 2007. His approach can account for network externalities
but it requires observationally identical agents to play identical strategies. My model
does not constrain heterogeneity in this way. In applied research, exponential random
graph models (Wasserman and Pattison 1996; Snijders et al. 2006) are a popular way
to endogenize local network structure. Their micro-foundation (Mele 2013) does not
permit unobserved heterogeneity, they can be computationally intractable (Bhamidi,
Bresler, Sly, et al. 2011) and frequentist properties of estimators based on these models
are largely unknown (Chandrasekhar and Jackson 2014). My model does not impose
such restrictions.

Conditional on observed and unobserved agent characteristics, the stochastic network
induced by my dyadic linking model is an Erdős-Rényi graph (Erdős and Rényi 1960).
In real-world networks, unconditional or conditional-on-observables Erdős-Rényi models
often understate transitivity (Davis 1970; Watts and Strogatz 1998; Apicella et al. 2012).
This is commonly attributed to the presence of network externalities and taken to indicate
that agents derive utility from transitive closure. In the context of a stylized example
I offer an alternative explanation for the puzzle by showing that the omission of latent
popularity effects will lead to a downward bias of predicted transitivity.

The relevance of unobserved heterogeneity in a real-world network is investigated in
an empirical application. In the application, the methods developed in this paper are
applied to data on favor networks in Indian villages. The favor networks are constructed
from the survey data of Jackson, Rodriguez-Barraquer, and Tan 2012 and Banerjee
et al. 2013. A directed link from agent i to agent j exists if i nominates j as someone
she would ask for help if she needed to borrow household staples or money. From an
economic perspective these relationships are interesting because they can serve as a
partial insurance device. Predictions for transitivity from the model with fixed effects are
compared to predictions from a simple linking model in which linking decisions are based
solely on observed characteristics. The model with fixed effects predicts a much higher
level of transitivity than the simple model. Notably, the level of transitivity observed
in the sampled networks exceeds the predictions from the simple model by a significant
amount. In contrast, under the model with fixed effects, the transitivity test does not
detect excess transitivity. These results suggest that unobserved agent effects may affect
the evolution of the favor networks in a substantial way. In particular, controlling for
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unobserved effects is essential for replicating the observed level of transitivity. This can
be achieved by using the methods developed in this paper.

In parallel research, Graham 2014 develops a dyadic network model with fixed effects.
My research differs from his contribution in two ways. First, I consider directed links,
whereas Graham 2014’s model assumes an undirected network. The choice of model is
dictated by the nature of the available data. Without data on the direction of links,
productivity and popularity effects can not be distinguished. In my application, there is
no monotone relationship between the two effects, suggesting a complex heterogeneity
pattern that would not be captured well by the kind of one-dimensional heterogeneity
that an undirected model is limited to. Secondly, Graham 2014 focuses on estimation of
the homophily component of link surplus, whereas I also discuss estimation and testing
of local structure.

From a technical perspective, dyadic network models are closely related to long-T
panel models. Consequently, this research ties in with the recent literature on incidental
parameters in non-linear panel models (Hahn and Kuersteiner 2011; Hahn and Newey
2004). In particular, some of the theoretical insights presented in this paper build on
results for maximum likelihood models with incidental parameters in Fernández-Val and
Weidner 2014.

Notation: Some notation from graph theory is helpful. Let V = V (n) = {1, . . . , n} denote
a vertex set and define the corresponding directed edge set E = E(n) = {(v, v′) : v, v′ ∈
V (n), v 6= v′}. The vertices represent agents and the edges represent links. For a given
link e = (v, v′), I refer to v as the sender and to v′ as the receiver of the link. A graph
g on V is a subset of E. For g ⊂ E, (v, v′) ∈ g is taken to mean that in g there is
a directed link from v to v′. I use the terms network and graph interchangeably. For
arbitrary graphs g, define the vertex function V that maps each graph g into the set of
its constituent vertices. For a given graph g, the in-degree of agent i is defined as the
number of links received by i, or din

i (g) =
∑

j 6=i 1
(
(j, i) ∈ g

)
. Similarly, the out-degree of

agent i is defined as the number of links sent by i, or dout
i (g) =

∑
j 6=i 1

(
(i, j) ∈ g

)
. The

degree of agent i is the the sum of her in-degree and her out-degree.

2. The linking model

2.1. Model definition

Agent i = 1, . . . , n may link to any agent j 6= i. Linking decisions follow a static binary
choice model. Consider the link e = (i, j) and let Ye denote a binary variable that is one
if e is realized and zero otherwise. Sender i links to receiver j and Ye = 1 if link surplus
exceeds a link-specific shock,

Ye = 1(Y SP
e ≥ εe).

Y SP
e is the latent link surplus and (εe)e∈E is a vector of stochastically independent shocks

with known distribution F . The assumption of independent surplus shocks precludes
network externalities. For F any sufficiently smooth distribution can be chosen. Other
authors require the shock distribution to be logistic (Holland and Leinhardt 1981; Graham
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2014). For the link e = (i, j) the latent surplus is given by

Y SP
(i,j) = X ′(i,j)θ

0 + γS,0i + γR,0j . (1)

Here, X ′(i,j)θ
0 is a measure of social distance between i and j based on observed charac-

teristics and hence represents the homophily part of the utility function. The parameter
θ0 specifies homophily preferences and is unknown. The link-specific vector of observed
covariates X(i,j) is typically a transformation of (Xi, Xj , Z(i,j)), where Xk are observed
characteristics of agent k and Ze are edge-specific covariates. The covariate profile of the
network is denoted by X = {Xe : x ∈ E}.

The variables γS,0i and γR,0j are unobserved agent effects. Similar to Holland and

Leinhardt 1981, the sender or productivity effect γS,0i encapsulates all aspects related to
agent i’s eagerness to initiate links to other agents. Similarly, the receiver or popularity
effect γR,0j summarizes all of agent j’s qualities that determine her attractiveness as a
linking partner. In Section 6, I give an interpretation of the unobserved effects for a
concrete example.

Sender and receiver effects are treated as fixed effects, allowing for arbitrary correlations
between productivity, popularity and observed characteristics. Due to the fixed effects
approach, agent effects may subsume unobserved determinants of linking behavior such
as heterogeneous preferences or agent strategies in a latent game of social interaction.
Since inference is conditional on unobserved agent effects, strategies can be arbitrarily
correlated.

As in Holland and Leinhardt 1981, identification of the location of the unobserved
effects is achieved by the normalization∑

i∈V (n)

(γS,0i − γR,0i ) = 0. (2)

The specification of link surplus in (1) introduces three implicit assumptions. First, the
three components homophily, productivity and popularity are required to be additively
separable. This rules out, for example, linking behavior based on homophily preferences
that change according to how popular a potential linking partner is. Note, however, that
the separability assumption does not restrict correlations between the three components
of link surplus. Secondly, it is assumed that the homophily component belongs to a
known parametric family. Thirdly, all characteristics contributing to the homophily
component are assumed to be observable to the econometrician.

The observability assumption is relaxed in latent space models (Hoff, Raftery, and
Handcock 2002; Krivitsky et al. 2009). In these models, the mutual attraction between
agents is allowed to depend on distance in a low-dimensional latent space. The class of
latent space models does not, however, nest my model. The models in this class impose
a relatively simple structure of unobserved heterogeneity that can make it impossible to
correctly disentangle homophily from unobserved heterogeneity (Graham 2014).

To establish a baseline, I compare my linking model to a related model without fixed
effects. For this model equation (1) is replaced by

Y SP
(i,j) = X ′(i,j)θ

H,0 +X ′iθ
S,0 +X ′jθ

R,0, (3)
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Transitive triple Potentially transitive triple

Figure 1: A transitive and a potentially transitive triple.

where θH,0, θS,0 and θR,0 parameterize productivity, attractiveness and homophily, re-
spectively. For e = (i, j), let Xe = (X ′e, X

′
i, X

′
j)
′ denote the variables predicting the

generation of link e and let θP,0 = (θH,0
′
, θS,0

′
, θR,0

′
)′. As this model does not account

for heterogeneity in a nonparametric way, it will be referred to as the parametric model
in the remainder of the paper. The nonparametric specification for the sender effect γSi
is replaced by X ′iθ

S,0. Similarly, the receiver effect γRj is specified as X ′jθ
R,0.

It is convenient to let π(i,j) = γS,0i + γR,0j denote the unobserved component of the
surplus of link e = (i, j). This way, equation (1) can be written more succinctly as
Y SP
e = X ′eθ

0 + πe. Also, let γS = (γS1 , . . . , γ
S
n )′, γR = (γR1 , . . . , γ

R
n )′ and φ0 = (γS

′
, γR

′
)′,

and let pe = F (X ′eθ
0 + πe) denote the conditional probability of Ye = 1. Throughout,

Ē denotes the expectation operator conditional on unobserved effects and the covariate
profile, and E denotes the unconditional expectation operator.

2.2. Local structure

This section explores ramifications of the linking model for larger structures in the network
by considering network relationships within triads (groups of three). I will focus on a
triadic configuration called transitivity. Agents i, j and k are in a transitive relationship
if, possibly upon reshuffling the labels within the triad, the network contains the links
(i, j), (j, k) and (i, k). A tendency for transitive closure will result in a large number of
links between connected nodes. In this regard, transitivity is a driver of local clustering.

To define measures of transitivity, let (i, j, k) denote a triple of distinct vertices. For a
given graph g the triple is transitive if {(i, j), (j, k), (i, k)} ⊂ g. Figure 1 gives a visual
representation of a transitive triple. Define the set of all possible transitive triples1

B ={β ⊂ E(n) : β is a transitive triple}
={{(v1, v2), (v2, v3), (v1, v3)} : {v1, v2, v3} ⊂ V, |{v1, v2, v3}| = 3}.

For every β ∈ B take β = {β1, β2, β3}, noting that the labelling of the edges is arbitrary.
Let Tβ = Yβ1Yβ2Yβ3 denote the binary indicator that is one if β is realized and zero

1 The set B coincides with the set of all transitive triples in the complete graph on n vertices gn = E(n).
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otherwise. Measures of transitivity are based on the count of transitive triples

Sn =
∑
β∈B

Tβ =
∑
β∈B

Yβ1Yβ2Yβ3 .

The simplest approach is to normalize Sn by the number of all possible transitive
triples |B| = n3. This is the statistic discussed in this paper. It translates a concept
for undirected networks considered in Karlberg 1997 to directed networks. A popular
alternative is to normalize by the number of potentially transitive triples (Karlberg 1999;
Jackson 2008, p. 37, see also the right panel in Figure 1). This yields the clustering
coefficient

Cln =
Sn∑

i∈V
∑

j∈V \{i}
∑

k∈V \{i,j} Y(i,j)Y(i,k)
. (4)

In Section 7, I indicate how my analysis can be extended to the clustering coefficient. Most
of the time, I will drop the normalization and refer to Sn as realized or observed transitivity,
and to its population counterpart ĒSn as predicted transitivity. The normalization is
expendable when comparing networks with the same number of agents.

It is well known that to correctly describe the transitivity of a graph, it is important
to account for degree heterogeneity (Karlberg 1999). In the context of my model, this
means that ignoring the unobserved effects can vastly distort predicted transitivity. This
is best illustrated by way of a simple example.

Example 1 Suppose that the set of agents can be partitioned into a set of normal
agents with cardinality n◦ and a set of popular agents (the “attractors”) with cardinality
n?. Each edge to a normal agent has probability p◦, and each edge to an attractor
has probability p?. Assume that popularity is the only relevant variable and that it
can not be observed by the econometrician. Call this model M0 and compare it to its
projection Mproj onto the space of models that ignore popularity. In the projected model
the common link probability is given by

p =
n◦

n
p◦ +

n?

n
p?.

Now, adopt an asymptotic framework by considering a sequence of models M0
n and

compare transitive triple counts between the true and the projected model. In the
appendix it is shown that if p◦

p? → α, 0 ≤ α < 1, and n◦

n? → λ > 0 then

EM0
n
[# transitive triples]

E
Mproj

n
[# transitive triples]

→ 1 + e(α, λ),

where

e(α, λ) =
(1− α)2λ

(1 + αλ)2
> 0.

Plots of the function e are provided in Figure 6 in the appendix. Details on the calculations
are in Appendix C.1. Realizations of the models M0 and Mproj for the parametrization
n? = 1, n◦ = 4, p? = .8 and p◦ = .2 are depicted in Figure 2.
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True model (Sn = 3) Projected model (Sn = 1)

Figure 2: Realizations of the true model M0 and the projected model Mproj from Ex-
ample 1. The rectangle represents the attractor, circles represent normal
agents.

The stylized model shows that estimates of network transitivity based on a dyadic linking
model that ignores unobserved heterogeneity can vastly understate the true amount of
transitivity present in the network.

The stochastic network induced by a correctly specified dyadic model replicates the
behavior of the observed network. In particular, under asymptotics that take the number
of agents to infinity, observed transitivity Sn is consistent for predicted transitivity ĒSn.
A natural approach for checking the validity of the dyadic model is to test the equality of
these two quantities. Using transitivity to evaluate model performance is well-motivated.
The dyadic model competes with alternative models that allow for network externalities.
For some applications, evidence for agent preferences for transitive closure has been
gathered (Leung 2014; Mele 2013). Thus, observing transitivity that surpasses the level
predicted by the dyadic model indicates that the dyadic model should be abandoned in
favor of a model that admits network externalities. To make this interpretation plausible,
it is crucial to specify a reference model that can account for all drivers of transitivity
that are permitted in a dyadic model. As argued above, this includes possibly unobserved
sources of degree heterogeneity. In Section 4.4, I develop a transitivity test based on a
feasible version of the test statistic

T̃n = n−3(Sn − ĒSn).

The prediction ĒSn is derived from the dyadic linking model from equation (1) and can
therefore account for degree heterogeneity.

The idea of testing a network model by considering its predictions for network features
that are not targeted by the model was first explored in Holland and Leinhardt 1978.
Karlberg 1999 also offers transitivity tests based on this paradigm. In his models, degree
heterogeneity does not have a structural interpretation. Its effect on transitivity is
eliminated by conditioning on the observed degree sequence. Karlberg 1999 does not
provide a large sample theory for the test and uses a simulation procedure to compute
critical values. My test statistic is asymptotically normal and approximate critical values
can be computed from this asymptotic distribution.
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In the following some additional notation will be convenient. Consider a transitive
triple β. For given observed and unobserved agent characteristics, let ρβ =

∏
βj∈β pβj

denote the probability of β being observed. Conditional on the realization of link e, this
probability is denoted

ρ−e(β) =
∏
βj∈β
βj 6=e

pe.

Also, define βne = 1
n

∑
β∈B:β3e ρ−e(β).

3. Parameter estimation and incidental parameter bias

3.1. Conditional ML estimation

To estimate the linking model from equation (1) the agents effects are treated as additional
parameters to be estimated. The maximum likelihood estimator (θ̂, φ̂) of the vector
of structural parameters (θ0, φ0) maximizes a conditional likelihood criterion under a
constraint that imposes the normalization from equation (2). Formally, (θ̂, φ̂) solves

max
θ,φ

1

n

∑
(i,j)∈E(n)

`(i,j)(X(i,j), γ
S
i , γ

R
j )

subject to:
∑

i∈V (n)

(γSi − γRi ) = 0
(5)

with

`(i,j)(X(i,j), γ
S
i , γ

R
j ) =Y(i,j) logF

(
X(i,j)θ + γSi + γRj

)
+ (1− Y(i,j)) log

(
1− F

(
X(i,j)θ + γSi + γRj

))
.

For the theoretical analysis it is convenient to impose the normalization indirectly by
penalizing the likelihood rather than by optimizing under a constraint (Fernández-Val and
Weidner 2014). Let v = (ι′n,−ι′n)′, with ιn denoting an n-vector of ones. The following
penalized program is equivalent to (5). For fixed b > 0

(θ̂, φ̂) ∈ arg maxθ,φ
1

n

{ ∑
(i,j)∈E(n)

`(i,j)(X(i,j), γ
S
i , γ

R
j )− b

(
v′φ
)2}

. (6)

3.2. Asymptotic framework and incidental parameter bias

The asymptotic framework considered in this paper sends the number of agents n to
infinity. The number of parameters estimated by the program (5) is increasing in n. For
every agent that is added to the network two additional parameters, namely the agent
specific sender and receiver effects, have to be estimated. This renders the maximum
likelihood estimator non-standard and leads to an incidental parameter problem (Neyman
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and Scott 1948). In the context of the network model this means that certain parameters
are estimated with a bias that is of the same order as the stochastic part of the estimator.
Let µ denote a generic parameter of the model. In the remainder of the paper I will
explicitly consider µ = θ and µ = n−3 ĒSn. Let µ̂ML denote the plug-in estimator of µ
using the maximum likelihood estimates from (5), and let Vµ = limn→∞ var µ̂ML denote
its asymptotic variance. Similar to non-linear panel models (Hahn and Newey 2004;
Fernández-Val and Weidner 2014) the estimator µ̂ML has a representation

µ̂ML = µ+ n−1biasµ + n−1N (0, Vµ) + op
(
n−1

)
,

where biasµ is an unobserved deterministic term. Due to the presence of this bias term,
confidence intervals based on the normal approximations may not be centered on the true
parameter and tests may not hold their nominal level. The estimator µ̂ML is, however,
consistent.

In this paper I propose a procedure for analytical bias correction. I derive an explicit
expression for the leading term of the asymptotic bias in terms of observed and estimable
quantities. The bias can then be consistently estimated by plugging in the maximum
likelihood estimates. Subtracting the estimated bias from the maximum likelihood
estimator yields an estimator that is asymptotically normal and centered at the true
value.

Network data is fundamentally different from sampled panel data. In a panel, it is
a reasonable approximation to treat individuals as isolated clones of one generic agent.
In an asymptotic thought experiment we can keep adding more and more independent
copies of the same individual to the pool. As the pool grows larger, we eventually learn
the covariate generating distribution. The thought experiment does not translate well to
networks. Agents interacting in a network are typically not strangers. Networks are built
on top of older social structures that have shaped agent characteristics in the past.

To address this concern, I will interpret all estimations as conditional on observed
covariates and unobserved effects. This comes at a cost, as it renders me unable to
answer some questions that might be of economic interest. I can answer the question
“What is the expected transitivity in a network consisting of a given set of agents with a
certain configuration of covariates and unobserved effects?” However, I am unable to
quantify fluctuations in observed transitivity that are due to random perturbations of
agent characteristics. This is because the asympotic framework does not allow me to
learn the generating process for agent characteristics.

3.3. Alternatives to analytical bias removal

In panel models, procedures following a similar approach of analytical bias removal
have been shown to work well in a variety of models (Hahn and Newey 2004; Hahn and
Kuersteiner 2011; Fernández-Val 2009; Fernández-Val and Weidner 2014). The main
drawback of this method is that it relies on an explicit expression for the asymptotic bias.
Even small changes to the model set-up can have repercussions for the asymptotic bias
approximation, forcing the researcher to re-do tedious derivations. Also, implementing
the bias formula can be a time consuming and error prone process. It is tempting to try
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out methods that are less model specific, in that they are able to detect and remove the
bias without the researcher having to specify what it looks like. In the context of panel
methods, bootstrap and jackknife-based methods fulfil this requirement.

Bootstrap-based bias correction (Kim and Sun 2013) tries to replicate the estimation
problem by re-sampling from the error distribution. This approach has been thoroughly
explored in the research leading up to this paper. Most networks are rather sparse and
linking probabilities tend to be very small. Exploratory simulations have shown that in
this setting a naive bootstrap procedure can be numerically unstable, and can occasionally
suggest corrections that vastly overstate the true bias. Developing a bootstrap procedure
that can cope with a sparse network structure is an interesting avenue for future research.

Jackknife corrections (Hahn and Newey 2004; Dhaene and Jochmans 2010; Fernández-
Val and Weidner 2014) assume that the estimation problem is scalable in the following
sense. Parameter estimation is associated with an asymptotic bias that can be well-
approximated by a constant divided by the sample size. If the estimation procedure is
applied to a subset of the original data, the estimator admits a similar representation
with the same constant.

Under the scalability assumption, the constant can be recovered by noting that the
difference between estimates from a small and a large sample is a known multiple
of the constant. In panel models the invariance of the constant is justified by laws
of large numbers that rest on assumptions limiting the between-individuals and time
dependence of individual characteristics. Such assumptions are much harder to justify in
a network setting, as I discussed above. Even with generous independence assumptions
on individual characteristics, the link-specific covariates will still exhibit a substantial
amount of correlation. To see this, note that n individual-specific covariates are mapped
into n(n− 1) link-specific covariates.

From an implementation point of view, jackknifing is a very attractive option for panels.
The observations can be partitioned into two sets that can be interpreted as observations
from two distinct panel models. Estimating the shorter panel models is cheap, since the
panel model has already been implemented. In contrast, it is not possible to estimate
dyadic network models from partitioning sets of link-specific observations. While this
does not invalidate jackknife inference in networks, it certainly makes it less appealing.

4. Analytical correction for incidental parameter bias

4.1. Assumptions and notation

For convenience of notation we introduce some abbreviations. Let

F(i,j) = F(i,j)(X(i,j)θ
0 + γS,0i + γR,0j )

denote the distribution function of the (i, j) observation evaluated at the true index and
let fe = ∂Fe and ∂fe = ∂2Fe denote its first and second derivatives also evaluated at the
true index. Let He = fe/(Fe(1− Fe)) and ωe = feHe.

Assumption 1 (Regularity conditions)
(i) The link function F is three times continuously differentiable.

12



(ii) Let f
(k)
e = ∂kfe, k > 0, and f

(0)
e = fe. For all non-negative integers k1, k2 such

that k1 + k2 ≤ 2

lim sup
n→∞

max
e∈E(n)

∣∣∣∣∣ f (k1)
e f

(k2)
e

Fe(1− Fe)

∣∣∣∣∣ <∞.
Moreover,

lim sup
n→∞

max
e∈E(n)

fe
Fe(1− Fe)

<∞.

(iii) For a positive constant bL and almost all e ∈ E(n)

ωe =
f2
e

Fe(1− Fe)
≥ bL.

(iv) The population version of the penalized objective function (6) is strictly concave.

Assumption 1 imposes the smoothness conditions from Assumption 4.1 in Fernández-
Val and Weidner 2014 on the network model. Part (i) of the assumption requires the
link function F to be sufficiently smooth. Popular choices such as the probit or the
logit link satisfy the requirement. Item (ii) ensures that higher-order derivatives of the
likelihood are well-behaved. In general, this assumption restricts both the shape of the
link function and the distribution of the true latent indices. For some link functions,
such as the one-dimensional Gaussian family, this assumption is satisfied for arbitrary
index distributions. Item (iii) guarantees that the inverse of the penalized Hessian is
well-behaved. This assumption is included primarily for technical convenience. For the
probit model, it is satisfied if the latent index is bounded away from infinity. This in turn
means that link probabilities are not allowed to vanish. In particular, it is not permitted
to enforce asymptotic sparsity of the generated graph by letting the unobserved effects
approach negative infinity. This might seem too restrictive. However, as I illustrate for a
model without unobserved effects in Appendix C.2, explicitly modeling sparsity does not
require strong additional assumptions, nor does it change the analysis in a substantial
way. Therefore, in practical applications and for a given sample size, the link function can
be interpreted as incorporating the appropriate sparsity constant. Lastly, the concavity
assumption (iv) ensures that — at least asymptotically — there is a unique solution to
the program (5). It will typically be met if the parametric part of the model describes a
symmetric distance measure and if there is sufficient between-individual variation in the
observed covariates.

Fernández-Val and Weidner 2014 show that certain projections are helpful in describing
the asymptotic bias. To define corresponding projections for the network model, let PφA,
for any A = (Ae)e∈E , denote the orthogonal projection onto the space spanned by the

fixed effects under an inner product weighted by ω
1/2
e . In particular, (PA)i,j = γ̄Si + γ̄Rj

for any (γ̄Si , γ̄
R
i )i∈V solving

min
γSi ,γ

R
j

∑
i 6=j

ω(i,j)

(
A(i,j) − γSi − γRj

)2
.
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Let X̃e denote the component-wise residual of a projection of the Xe onto the space
spanned by the fixed effects, i.e., for k = 1, . . . ,dim(Xe) and A = (Xe,k)e∈E let X̃e,k =
Xe,k − (PφA)e.

4.2. Inference on homophily parameter

We will first consider estimation of the homophily parameter θ. The following theorem
gives the asymptotic distribution of θ̂, the maximum likelihood estimator of θ solving
the program (5).

Theorem 1 (Estimation of homophily parameter) Let

B∞ = − lim
n→∞

1

2n

∑
i∈V

∑
j:j 6=iH(i,j)∂f(i,j)X̃(i,j)∑

j:j 6=i ω(i,j)

D∞ = − lim
n→∞

1

2n

∑
j∈V

∑
i:i 6=j H(i,j)∂f(i,j)X̃(i,j)∑

i:i 6=j ω(i,j)

W̃∞ = lim
n→∞

1

n2

∑
e∈E(n)

ωeX̃eX̃
′
e.

Suppose that Assumption 1 holds and the above limits exist conditionally on (X, φ0) and
that W̃∞ > 0. Then conditional on (X, φ0)

n(θ̂ − θ0)
d−→ W̃−1

∞ B∞ + W̃−1
∞ D∞ +N (0, W̃−1

∞ ).

The theorem states that upon appropriate normalization the difference between the
estimator and the true parameter is asymptotically normal and centered at biasθ =
W̃−1
∞ B∞ + W̃−1

∞ D∞. The asymptotic bias term is due to the unobserved effects that
enter the estimation problem as an incidental parameter. The first term in the expression
for the asymptotic bias can be attributed to the estimation of the sender effects and the
second term can be attributed to the estimation of the receiver effects.

The rate of convergence to the limiting distribution is O(n). Note that we observe
n(n−1) potential links. so that n behaves like the square root of the total number of link
observations. Therefore, convergence is at the usual parametric rate (cf. Graham 2014).

Note that the theorem implies a version of the stochastic expansion sketched in
Section 3.2. For biasθ as defined above

θ̂ = θ0 + n−1biasθ + n−1N
(
0, W̃−1

∞
)

+ op
(
n−1

)
.

To center the estimator at the true value we want to remove the second term in this
expansion. Direct application of the theorem is infeasible as the asymptotic bias biasθ
is a function of the true latent index, which is unobserved. Since we have consistent
estimators of θ0 and φ0 at our disposal, we can construct a consistent plug-in estimator
of the asymptotic bias.

14



Define ˆ̃W−1
n , B̂n and D̂n as W̃−1

∞ , B∞ and D∞, respectively, with the true latent index
replaced by Xeθ̂ + π̂e and limits replaced by finite sums over the observed vertex set.
Here, π̂(i,j) = γ̂Si + γ̂Rj . The estimator with analytical bias correction is given by

θ̂A = θ̂ − n−1 ˆ̃W−1
n B̂n − n−1 ˆ̃W−1

n D̂n.

Theorem 1 is closely related to a result for the binary choice panel model from Example 1
in Fernández-Val and Weidner 2014. To see this more clearly, we need to explore the
relationship between my network model and panel models.

First off, we have to think of each individual as occupying two distinct roles. For some
links the individual will take on the role of the sender, and for other links it will take on
the role of the receiver. Similar to certain arguments in game theory, this changes the
setting from one where n agents interact to one where 2n agents interact. In the network
model, two unobserved effects feed into the equation determining the linking behavior
for link (i, j), namely, the sender effect of sender i and the receiver effect of receiver j.
This is similar to a binary choice panel model with individual and time fixed effects. In
the panel model, the binary choice of individual i in period t depends on two unobserved
effects, namely, the individual effect of individual i and the time effect for period t. In
this sense, an (i, j) observation in the network model maps to an (i, t) observation in the
panel model. This relationship is obfuscated by the fact that senders and receivers in
the network model share the same labels, whereas the individual and time dimensions in
a panel model are labeled differently. The network model is, however, not completely
congruent to the panel model. Note that self-links are not allowed. Therefore, sender
i will meet all receivers j 6= i but will never meet receiver i. This is different from the
panel model where all individuals are observed at all time periods.

4.3. Inference on local structure

This section discusses estimation of predicted transitivity ĒSn. For link formation, I
consider the linking model with unobserved effects from equation (1), as well as the
parametric model from equation (3).

Measuring features of local structure such as transitivity is a network-specific estimation
problem with no counterpart in panel models. From a technical perspective, however, it
is noted that predicted transitivity averages over structural parameters in a way that is
reminiscent of a marginal effect in a panel model. This relationship can be exploited in
the theoretical analysis.

To emphasize that the success probabilities for transitive triples are functions of the
structural parameters and the observed covariate profile, I will write ρβ = ρβ(X, φ0, θ0)
for transitive triples β when discussing the model with unobserved effects. The number
of transitive triples predicted by the dyadic linking model is

ĒSn =
∑

β∈B(n)

ρβ =
∑

β∈B(n)

ρβ(X, φ0, θ0) =
∑
β∈B

∏
e∈β

Fe(Xeθ
0 + π0

e).
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A plug-in estimator of this quantity can be constructed by replacing the structural
parameters by their maximum likelihood estimators,

ÊSn =
∑

β∈B(n)

ρβ(X, φ̂, θ̂0). (7)

Let Dn
e = feβ

n
e and

Rθ,n =
1

n3

∑
β∈B

∂θρβ =
1

n2

∑
e∈E(n)

Dn
eXe.

For the model without unobserved effects I adopt similar notation.
As in the discussion of the homophily parameter, all inference will be conditional on

unobserved effects and the observed covariate profile. For the limiting distribution to
be well-defined, certain limits will be required to exist. For the parametric model, I
will investigate the plausibility of this assumption by providing conditions on the data
generating process that guarantee that the required limits exist. I conjecture that similar
arguments can be made for the model with unobserved effects. Consider the following
assumption about the data generating process for the covariates.

Assumption 2
The Xe, e ∈ E(n), are identically distributed and

V (e) ∩ V (e′) = ∅ ⇒ Xe ⊥⊥ Xe′ .

Moreover, the components of Xe have bounded fourth moments.

To interpret this assumption, recall that the function V returns the vertices of a graph
so that for e = (i, j) we have V (e) = {i, j}. The assumption restricts the dependence
between edge-specific covariates. As discussed above, it is not appropriate to assume full
independence of the edge-specific covariates. Assumption 2 offers a substantially weaker
alternative by requiring independence of covariates only for edges that have no common
vertices.

The following result characterizes the asymptotic distribution of the estimator of
predicted transitivity in the model without unobserved effects.

Theorem 2 (Predicted transitivity without unobserved effects) Consider the
model without unobserved effects from equation (1). Suppose that the link function
F is bounded away from zero and one on the support of the latent index, and that it is
three times continuously differentiable. Let Rθ,∞ = limn→∞Rθ,n,

W∞ = lim
n→∞

1

n2

∑
e∈E(n)

ωeXeX ′e,

V
(a)
T = lim

n→∞

1

n2

∑
e∈E(n)

ωe
{

(Rθ,∞)′W−1
∞ Xe

}2
.
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Suppose that conditional on X all limits exist and that V
(a)
θ > 0. Then

n−2
(
ÊSn − ĒSn

)
d−→ N

(
0, V

(a)
T

)
conditionally on X. If Assumption 2 holds, then on a set with probability approaching one

Rθ,∞, W∞ and V
(a)
T exist. In particular, Rθ,∞ = E

[
∂θρβ(X, θ0)

]
and W∞ = E [ωeXeX ′e].

Remark 1 The assumption that pe is bounded away from zero is undesirable in a
network context. It will lead to networks that are asymptotically dense. An analogue
result for a model with link function Fn = a−1

n F depending on n can be found in the
Appendix. Here, an is a known deterministic sequence. The main restriction is that
a−1
n n2 → ∞. This assumption is not too strong. In particular, it allows for degree

sequences that are bounded away from infinity.

It should be noted that sometimes ĒSn might not be the right quantity to estimate. For
applications such as comparing transitivity across different networks, the unconditional
mean ESn is more informative. Under appropriate conditions on the sampling process
of the covariates and the unobserved effects, ÊSn consistently estimates ESn. However,

V
(a)
T given in Theorem 2 will not capture the true variance of ÊSn as an estimator of

ESn as it fails to take into account fluctuations of ĒSn around ESn as a source of
variation. Under common specifications of the data generating process, these fluctuations
can dominate the asymptotic distribution, rendering parameter estimation asymptotically
negligible (cf. Fernández-Val and Weidner 2014).

In this paper, I focus on transitivity for a given set of agents, and on testing predicted
transitivity against observed transitivity. For these purposes, ĒSn is an appropriate
measure.

To present the companion result to Theorem 2 for the model with unobserved effects,
it is convenient to introduce new notation. We will need certain derivatives of predicted
transitivity with respect to sender and receiver effects. Let

δSi = n

∂(γSi )2
1

n3

∑
β∈B

ρβ

 and δRj = n

∂(γRj )2
1

n3

∑
β∈B

ρβ

 .

Also, note that

∂γSi

( 1

n3

∑
β∈B

ρβ

)
=

1

n2

∑
j:j 6=i

Dn
(i,j)

and that a corresponding equation holds for derivatives with respect to receiver effects.
For A = (−Dn

e /ωe)e∈E and Pφ defined as above let Ψe = (PφA)e.

Theorem 3 (Predicted transitivity with unobserved effects) Consider the model
with unobserved effects from equation (1). Let

Ξn =
1

n2

∑
e∈E

Dn
e X̃e
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and Ξ∞ = limn→∞ Ξn. For B∞, D∞ and W̃∞ as defined in Theorem 1 let

BTT
∞ = Ξ′∞W̃

−1
∞ B∞ + lim

n→∞

1

2n

∑
i

∑
j:j 6=i

(
δSi +H(i,j)Ψ(i,j)∂f(i,j)

)∑
j:j 6=i ω(i,j)

and

DTT
∞ = Ξ′∞W̃

−1
∞ D∞ + lim

n→∞

1

2n

∑
j

∑
i:i 6=j

(
δRj +H(i,j)Ψ(i,j)∂f(i,j)

)
∑

i:i 6=j ω(i,j)
.

Let

VT = lim
n→∞

1

n2

∑
e

ωe

{
Ξ′∞W̃

−1
∞ X̃e −Ψe

}2
.

Assume that, conditional on (X, φ0), Assumption 1 holds, all limits are well defined and
finite, and VT > 0. Conditional on (X, φ0)

n−2
(
ÊSn − ĒSn

)
d−→ BTT

∞ +DTT
∞ +N (0, VT ).

Remark 2 If θ̂ in equation (7) is replaced by the bias corrected estimator θ̂A the
respective first term in the expression for BTT

∞ and DTT
∞ drops out. This is similar to a

corresponding result for marginal effects in Fernández-Val and Weidner 2014.

Theorem 3 shows that the plug-in estimator of predicted transitivity is affected by
incidental parameter bias. The first component of the asymptotic bias, BTT

∞ , is due to
the estimation of the sender effects, and the second component of the bias, DTT

∞ , is due
to the estimation of the receiver effects.

Note that ĒSn is of the same order as n3, so that convergence is, again, at the
parametric rate n.

As before, the expression for the asymptotic bias offers a recipe for analytical bias
correction. Define B̂TT

n and D̂TT
n as BTT

∞ and DTT
∞ , respectively, with the true latent

index replaced by Xeθ̂ + π̂e and limits replaced by finite sums over the observed vertex
set. The bias corrected estimator is given by

ÊSn
A

= ÊSn − n2B̂TT
n − n2D̂TT

n .

4.4. Testing local structure

This section formalizes the test idea developed in Section 2.2. In T̃n, replace ĒSn by its
estimator ÊSn to arrive at the feasible test statistic

Tn = n−3
(
Sn − ÊSn

)
.

The transitivity test rejects for large values of the test statistic. As null models I will
consider both the model with and the model without unobserved effects.
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Theorem 4 (Testing transitivity without unobserved effects) Consider the
model without unobserved effects from equation (1) and suppose that the conditions of
Theorem 2 are satisfied. Moreover, let

V
(a)
S = lim

n→∞

1

n2

∑
e∈E(n)

Fe(1− Fe)
{
βne −He (Rθ,∞)′W−1

∞ Xe
}2
.

Suppose that, conditional on X, V
(a)
S exists and that V

(a)
S > 0. Then

nTn = n−2
(
Sn − ÊSn

)
d−→ N

(
0, V

(a)
S

)
.

conditional on X.

Remark 3 In the Appendix it is shown that V
(a)
S can be replaced by

V
(b)
S = lim

n→∞

1

n2

∑
e∈E(n)

∑
β,β′

β∩β′={e}
|V (β)∩V (β)|=2

(ρ−e(β)− 1
3X

♦
e )(ρ−e(β

′)− 1
3X

♦
e )

n2
Fe(1− Fe)

where X♦
e = He (Rθ,∞)′W−1

∞ Xe. This shows that the asymptotic variance is a function
of all subgraphs that are formed by taking two transitive triples that share exactly two
vertices and one edge. Note that this representation of the variance is not well suited for

computational purposes as compared to V
(a)
S it increases computational complexity from

O(n3) to O(n4).

For a brief heuristic description of how to derive the asymptotic distribution of the test
statistic, write

nTn = −n−2(ÊSn − ĒSn) + n−2(Sn − ĒSn).

For the first term we can exploit a stochastic expansion derived in the proof of Theorem 2.
Characterizing the second term is related to deriving the asymptotic distribution of the
triad census in the analysis of the original τ2-test (Holland and Leinhardt 1978). In
seminal work, Holland and Leinhardt 1970 and Holland and Leinhardt 1976 give an
explicit formula for the variance under their choice of reference distribution and conjecture
asymptotic normality. To date, I am unaware of a formal statement supporting this
conjecture. My proof of asymptotic normality exploits similarities between the count of
transitive triples and a certain class of U -statistics. For many reference distributions, the
distributional analysis of the triad census is amendable to the same approach.

In the model with unobserved effects we have to account for incidental parameter bias.

Theorem 5 (Testing transitivity with unobserved effects) Consider the model
with unobserved effects from equation (1). Suppose that the conditions of Theorem 3 are
satisfied. Moreover, let

υe = βne −He

(
Ξ′∞W̃

−1
∞ X̃e −Ψe

)
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and

VS = lim
n→∞

1

n2

∑
e

Fe(1− Fe)υ2
e .

Assume that, conditional on (X, φ0), VS exists and VS > 0. Conditional on (X, φ0)

nTn = n−2
(
Sn − ÊSn

)
d−→ −BTT

∞ −DTT
∞ +N (0, VS).

This result can be used to construct a bias corrected test statistic

TAn = n−3
(
Sn − ÊSn

)
+ n−1B̂TT

n + n−1D̂TT
n .

The bias corrected test statistic is asymptotically centered at zero, and critical values
can be computed from the normal distribution with variance VS .

In Section 2.2, I pointed out a useful relationship between predicted transitivity and
marginal effects in panel models. It is worth mentioning that the similarities do not
extend to the testing problem. Marginal effects are properties of the population model
that do not correspond to directly observable quantities. Therefore, they do not lend
themselves to tests of model specification in the same way that predictions for local
network structure do.

5. Simulations

In this section I report simulations that investigate the finite-sample performance of the
analytical bias correction both for the estimator of the homophily parameter as well as
for the estimator of predicted transitivity.

Agents i = 1, . . . , n are characterized by independent draws from the joint distribution
of (Xi, γ

S
i , γ

R
i ). Here Xi is an agent-specific observed covariate distributed according to

a Beta(2, 2) distribution (cf. the specification in Graham 2014). This distribution will
endow a majority of agents with similar characteristics and concentrates deviations from
the network average in a small, heterogeneous group of agents. This imitates a similar
pattern observed in the application. The unobserved effects are generated according to

γSi = λ(Xi − c) + (1− λ)(Beta(0.5, 0.5)− c) and

γRi = λ(Xi − c) + (1− λ)(Beta(0.5, 0.5)− c),

where the two Beta distributions are independent. The parametrization of the Beta
distributions concentrates probability mass at the boundaries of the unit interval. This
results in individuals being clustered into groups with low and high unobserved effects,
similar to what is observed in the application. The parameter λ ∈ (0, 1) controls
correlation between unobserved heterogeneity and observed attributes and the positive
constant c shifts the success probability. In the simulations rather large values of
c are chosen to emulate the small linking probabilities encountered in practice. For
e = (i, j) the link-specific homophily variables is given by Xe = |Xi −Xj |. Note that
with this specification the (Xe)e∈E are not independent but Assumption 2 is satisfied for
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bias CI coverage

n λ c C NC C NC

80 0.0 1.5 0.09 0.51 97.2 92.4
1.7 0.03 0.52 96.8 92.6

0.5 1.5 0.02 0.45 95.8 93.2
1.7 −0.01 0.51 96.6 92.8

50 0.0 1.5 −0.01 0.41 96.2 94.4
1.7 0.05 0.54 97.0 91.6

0.5 1.5 −0.00 0.43 95.6 92.6
1.7 0.21 0.75 97.0 90.0

Table 1: Simulation results for the homophily parameter θ0. Columns labeled C refer to
the bias-corrected estimator and columns labeled NC refer to the uncorrected
estimator. The bias is in terms of the standard error of the estimator and the
nominal level of the confidence interval is 1− α = 95%. Results are reported for
B = 500 simulations.

X(i,j) = (X ′(i,j), γ
S
S , γ

R
j )′. The true value of the homophily parameter is θ0 = 1.5 and the

link-specific disturbance is standard normally distributed.
Table 1 summarizes the behavior of the corrected and the uncorrected estimator of

the homophily parameter in B = 500 simulations for different parameter values and
two sample sizes. It reports the bias of the estimator in terms of its standard error as
well as the empirical coverage of a confidence interval with nominal level 1− α = 95%.
For the uncorrected estimator we observe a positive bias roughly the size of half a
standard deviation. The bias is very effectively removed by the analytical bias correction,
resulting in parameter estimates that are centered around the true value. This shows
that, even in finite samples, bias correction based on an asymptotic approximation can
be a powerful tool for increasing the precision of the estimates. Confidence intervals for
the uncorrected estimator are slightly undersized. After analytical bias correction the
coverage probabilities are fairly close to the nominal size. The improvement is, however,
not as substantial as it is for the bias.

Turning to predicted transitivity, I will also consider an estimator for the parametric
model from equation (3). For the link e = (i, j), the parametric model uses the observed
covariates Xi and Xj to approximate sender and receiver effects. It is obvious from the
specification of the data generating process that for λ 6= 1 this approximation will be
imperfect.

Table 2 reports simulation results for three estimators of predicted transitivity. The
estimates from the parametric model severely understate transitivity. This confirms the
theoretical considerations from Section 2.2, showing that failure to account for unobserved
sources of degree heterogeneity can result in severely down-biased transitivity estimates.
Note that confidence intervals constructed from estimates based on the parametric model
almost never contain the true parameter.

The fixed-effects estimator without bias correction exhibits a positive bias of about
one-and-a-half to slightly over two standard deviations. Confidence intervals constructed
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bias CI coverage ÊSn

n λ c C NC P C NC P C NC P

80 0.0 1.5 0.08 1.49 −3.31 92.2 64.8 0.0 501 583 303
1.7 0.05 1.91 −2.21 96.4 51.4 0.0 73 104 38

0.5 1.5 0.06 1.66 −1.03 95.8 61.0 0.0 216 265 179
1.7 0.14 2.20 −0.67 97.4 33.4 0.0 25 39 19

50 0.0 1.5 0.01 1.49 −2.00 88.6 63.4 0.0 125 152 77
1.7 −0.19 1.69 −1.41 94.8 60.0 0.0 18 30 10

0.5 1.5 0.07 1.72 −0.54 94.0 58.4 0.0 54 76 45
1.7 −0.12 2.02 −0.46 95.0 43.0 0.4 6 12 5

Table 2: Simulation results for the estimator of predicted transitivity. Columns labeled C
refer to the bias-corrected estimator, columns labeled NC refer to the uncorrected
estimator and columns labeled P refer to the estimator based on the parametric
model. Bias is reported in terms of standard deviations and the nominal level
of the confidence interval is 1− α = 95%.

from uncorrected estimates cover the true parameter with probability less than two-thirds.
This is a substantial deviation from the nominal level of 95%. In the designs with low
linking probability (c = 1.7), empirical coverage is as low as 30-40% in some cases.

In this simulation design, the analytical correction has very favorable finite sample
properties. It picks up the bias almost completely. After applying the correction formula,
the remaining bias is but a small fraction of a standard deviation. This considerably
improves the normal approximation. The empirical coverage of confidence intervals
computed from the asymptotic distribution is now very close to the nominal level of 95%.

6. Application: Favor networks in Indian villages

I use the Indian village data from Banerjee et al. 2013 and Jackson, Rodriguez-Barraquer,
and Tan 2012. This data set contains survey data from 75 Indian villages. In each village,
about 30 - 40% of the adult population were handed out detailed questionnaires that
elicited network relationships to other people in the same village as well as a wide range
of socio-economic characteristics.

For this application, networks are defined on the village level. Therefore, the data
set contains 75 network observations. For each village, the set of agents is given by the
surveyed villagers. Links are defined by a social relationship related to anticipated favor
exchanges.

In the presentation of my estimation results for the homophily component I will only
consider a single village. To investigate the level of transitivity predicted by different
dyadic models, I take advantage of the full data set and use all villages.

The directed network considered in this application is constructed from the survey
questions “If you suddenly needed to borrow Rs. 50 for a day, whom would you ask?”
and “If you needed to borrow kerosene or rice, to whom would you go to?”. To set up
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i jSender Receiver
link

i asks j for help

maybe flow of goods

Figure 3: Definition of link: There is a link from i to j if, under a hypothetical situation,
i would go to j to ask for help.

the network, I let every surveyed individual send directed links to each of the individuals
nominated in one of the two questions, provided that the nominee was also included in
the survey. The network generated in this way is defined to be the network of interest.
This avoids identification issues that arise when using a partial sample for inference on an
imperfectly observed population network (Chandrasekhar and Lewis 2011). Addressing
such problems is beyond the scope of this paper.

A link from agent i to agent j indicates that, in times of need, i would ask j for help.
Note that, if j accedes to the request, the direction of the flow of goods will be opposite
to the direction of the link. Figure 3 illustrates the behavior of two linked villagers under
the hypothetical situation from the survey question.

It is instructive to discuss the significance of productivity, popularity and homophily in
the context of this application. When deciding about whether to establish a link to some
agent j, a sender i ponders whether j is able and willing to grant the request. Agent j’s
ability to provide help is affected by her own wealth and liquidity as well as i’s ability to
repay the loan or return the favor in the future. In the context of my model, the first
effect contributes to j’s popularity, and the second effect adds to i’s productivity. Agent
j’s willingness to help is a function of how altruistic she is, of i’s skill in negotiating the
favor, and of how sympathetic j is towards i’s plight. The first two considerations are,
again, subsumed in j’s popularity and i’s productivity, respectively. It is plausible to
assume that j is more sympathetic towards i the more similar the two of them are. This
tendency is a manifestation of homophily. For example, j might have a high willingness
to offer assistance to members of her own family, and have little inclination to help out
individuals assigned to a different caste.

In the highly stylized decision model sketched in the previous paragraph, many drivers
of productivity and popularity such as an innate predisposition towards acts of altruism,
or expectations about future liquidity are inherently unobservable. In the dyadic linking
model these unobserved factors will be captured by the unobserved agent effects. If the
network is based on survey data, the sender effect can also subsume reporting behavior.
This makes the estimator of the homophily parameter robust to some common forms of
measurement error. The taste for homophily is captured by the parametric part of the
latent index and it is assumed that all drivers of homophily are observed.

The fundamental assumption at the heart of the dyadic linking model is that for all
linking decisions the dyad (or pair) is the relevant point of reference. This is an exogeneity
assumption under which individuals evaluate each link in isolation of all other links. In
particular, they do not care about the future network positions of their potential linking
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Variable Description

same caste i and j belong to the same caste
age difference absolute value of age difference between i and j
same family i and j belong to the same family
same latrine i and j both live in a house with an own latrine
same status both i and j are household heads
same gender i and j have the same gender
same village native both i and j were born in the village
educ None-Primary one of i and j has no education,

the other has finished primary education
educ None-SSLC one of i and j has no education,

the other has a obtained a SSL certificate
educ Primary-SSLC one of i and j has finished primary education,

the other has obtained a SSL certificate

Table 3: Description of variables measuring homophily (Xe).

partners. In the context of the favor network this assumption is compelling for two reasons.
First, as the network is based on a hypothetical, it is and remains largely unobserved,
which makes it hard for individuals to condition their actions on network realizations.
Secondly, the hypothetical transfer of goods that defines the network relation only affects
the individuals within the dyad. This stands in stark contrast to other network relations,
such as friendship networks, where it is natural to assume that individuals derive utility
from links between their friends.

In other work the exogeneity assumption has been challenged. Jackson, Rodriguez-
Barraquer, and Tan 2012 argue that reciprocation of favors is best enforced by the threat
of other agents in the network to withhold future favors from shirking individuals. Leung
2014 provides estimates for preferences for local structure in favor networks. Since his
model does not allow for unobserved sources of degree heterogeneity it is, however, hard
to say whether the estimated effects are genuine or spurious (cf. Section 2.2). I will
maintain the exogeneity condition as a working assumption. Below, I use the model
specification test developed in this paper to critically assess its validity.

I now present detailed results for village 60, the largest village in the sample (n = 414).
The estimation is based on the dyadic linking model with unobserved effects developed
in this paper.

Table 3 lists all variables that are used in the specification for the homophily component.
For the variables related to education, individuals are sorted into one of three bins
according to their reported years of formal schooling. Individuals are assigned to the bin
“SSLC” if they have obtained a Secondary Schooling Leaving Certificate. In India, this
certificate is awarded to students who pass an examination at the end of grade 10. It is a
prerequisite for enrolling in pre-university courses. All other individuals are assigned to
“no education” if they have completed less than five years of schooling, and to “primary
education” if they report at least five years of schooling. For caste membership I adopt
the fairly broad categorization from the data set. Individuals are described as members
of scheduled tribes, scheduled castes, other backwards castes (OBC’s) or general castes.
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Coef se T p-value

same caste 0.80 0.0484 16.44 0.0000
age difference -0.01 0.0022 -5.97 0.0000

same family 2.45 0.0943 26.01 0.0000
same latrine 0.07 0.0331 1.97 0.0486
same status 0.05 0.0467 1.05 0.2921
same gender 0.53 0.0483 11.02 0.0000

same village native 0.04 0.0351 1.09 0.2735
educ None-Primary -0.10 0.0428 -2.38 0.0173

educ None-SSLC -0.19 0.0504 -3.82 0.0001
educ Primary-SSLC -0.10 0.0499 -2.07 0.0388

Table 4: Homophily estimates for village 60.

Table 4 reports bias-corrected estimates and standard errors for the homophily compo-
nent. Family ties are a dominating factor for determining targets for favor requests. This
reflects a strong sense of solidarity between family members. Same caste membership
and same gender are other strong determinants of the network relation. This is in line
with findings in Leung 2014 who studies similar favor networks. The “same latrine”
dummy, which is included as a proxy of similarities in wealth, has a comparably small
estimated effect that is significant at the five percent but not at the one percent level.
This indicates that the aversion to connecting to members of other castes is not driven
solely by economic disparities. The education dummies are jointly significant at the one
percent level (p-value = .0003). The estimated effect is almost linear, with a difference
in education levels corresponding to one bin, decreasing the link surplus by roughly 0.1
points.

The unobserved type of agent i corresponds to the tupel (γSi , γ
R
i ). Thus, every agent

type can be represented as a point on a two-dimensional plane. A plot of estimated types
is provided in Figure 4 with sender and receiver effects centered at their common empirical
mean2. The graph reveals an interesting pattern of unobserved heterogeneity. Types
cluster into four distinct groups. The largest cluster consists of agents with relatively
large sender and receiver effects (attractor-producers). The second largest cluster is
composed of agents with relatively large sender effects and relatively small receiver effect
(producers). The set of agents with below average sender effects splits neatly into a group
with relatively large receiver effects (attractors) and a group with relatively small receiver
effects (isolates).

This clustering pattern has interesting implications. First, there is no monotone
relationship between sender and receiver effects. This suggests that productivity and
popularity are distinct phenomena rather than two manifestations of one underlying
variable such as social skill. This exemplifies the value of using data on the direction of
links. Models for directed networks, such as Graham 2014, are by necessity restricted to

2Note that the normalization from equation (2) imposes equality of the empirical mean of the sender
effects and the empirical mean of the receiver effects.
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Figure 4: Unobserved heterogeneity in village 60. Unobserved types for agents i =
1, . . . , n.

modelling one-dimensional types and can therefore not reflect as rich a picture of the
unobserved heterogeneity. Secondly, as most agents belong to clusters with large sender
effects, unobserved heterogeneity will drive linking behavior mainly through variations in
receiver popularity. Sender productivity plays a less defining role.

The clusters can be compared along a wide range of observed characteristics such
as age profiles (Figure 9). In the clusters with below-average receiver effects young
and old people are over-represented, whereas individuals in their prime working age
are under-represented. In the clusters with above-average receiver effects the pattern
is inverted. About 12% of the agents in the attractor-producer cluster participate in
self-help groups (SHGs). This is contrasted by almost non-existent participation rates
in the other clusters. SHGs are savings and loan clubs organized at the village level.
They might be related to productivity and popularity by attracting wealthier or more
entrepreneurial villagers who are interested in depositing savings or taking out loans.
Additional comparisons of cluster characteristics are provided in Table 6 in the appendix.

Unobserved agent effects determine in a fundamental way which links are formed. In
Figure 7 and Figure 8 in the appendix, unobserved types are plotted against observed
in-degrees and observed out-degrees, respectively. Agents belonging to the clusters with
low receiver effects do not attract any links, and agents belonging to the clusters with
low sender effects do not nominate any linking partners.

I now turn to estimating predicted transitivity and testing it against realized transitivity.
To this end, I compare the model with unobserved effects to a benchmark given by
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the parametric model from equation (3). The parametric model approximates agent
productivity and popularity using a rich array of observed characteristics detailed in
Table 7 in the appendix. Results for almost all villages3 in the dataset are summarized
in Table 5 in the appendix.

For the model with unobserved effects, bias-corrected estimates are larger than the
uncorrected estimates. On average, the size of the correction is about two-and-a half
standard deviations. The magnitude of the estimated bias implies that for this application
the bias correction is an essential part of the testing procedure. Failure to implement the
correction will lead to substantially different test results.

As argued in Section 2.2, a model that does not account for all determinants of
productivity and popularity will understate transitivity. The transitivity estimates
from the parametric model are substantially lower than those obtained from the model
with fixed effects, capturing on average only roughly 12% of the transitivity estimated
by the model with unobserved heterogeneity. The degree to which the two estimates
diverge suggests that unobserved heterogeneity plays a substantial role in driving degree
heterogeneity. In other words, agent productivity and popularity are not explained well
by observed characteristics.

The vast differences between the two models in terms of estimated level of transitivity
are also reflected in the transitivity test. Figure 5 plots values of the test statistic for both
models. The choice of model crucially affects the statistical significance of the difference
between observed and predicted transitivity.

The parametric model rejects the null hypothesis of correct model specification for all
villages (significance level α = 0.05). In contrast, for the model with unobserved effects
the null is rejected only for about a quarter of the villages. It is unavoidable that passing
to a more complex model adds additional statistical noise. However, the differences in
test results are only partially due to larger standard errors in the model with unobserved
effects.

All Tn-values for the parametric model are positive, suggesting that the linking model
underestimates the network’s tendency towards transitive closure. A popular candidate
for the cause of such a failure is the notion that agents derive utility from transitive
relations. If this were true, then agents would care about endogenous attributes of the
network, violating the exogeneity assumption. For the model with unobserved effects
the test statistic takes on positive as well as negative values. All rejections are for
negative values of Tn. While this is still suggestive of non-random behavior, it invites a
fundamentally different interpretation of the way in which the model fails. A distaste for
transitivity does not have much theoretical appeal, leading the researcher to consider
other mechanisms, such as systematic under-reporting of transitive relations in the survey.

This illustrates well that specification tests can offer more than a binary indication
of model validity. Some rejections provide evidence that the model misrepresents the
economic context in a fundamental way. Other rejections have less severe repercussions
and might still allow the researcher to maintain the model as a useful approximation.

3Some smaller villages for which collinearity issues in the specification of the parametric model arise,
have been excluded.
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Figure 5: Comparing test statistics under the model with unobserved effects to test
statistics under the model without unobserved effects for all networks in data
set. The shaded region gives the interval in which a two-sided test does not
reject at level α = .05.

For the favor networks in Indian networks, it seems that accounting for unobserved
sources of degree heterogeneity may be sufficient to dismantle circumstantial evidence for
network externalities.

7. Conclusion

The ideas explored in this paper open up several avenues for future research into network
formation models.

An obvious extension is to replace independence of the link-specific shocks by a less
restrictive exogeneity assumption. It is natural to allow for correlation between the
two shocks that are relevant for the links between a given pair of agents. This can be
accomplished by passing to a model that imposes an iid assumption on tuples (ε(i,j), ε(j,i)),
i 6= j. Such a model is a network version of a bivariate probit model with fixed effects.
The analysis of this model can proceed along similar steps as those outlined in this paper
for the simpler model. In the bivariate model, the correlation between the within-dyad
shocks is an additional parameter of economic interest. Similar to a corresponding
parameter in the model of Holland and Leinhardt 1981 this correlation describes agent
preferences for reciprocating links. An alternative approach is to put more structure
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on the dyadic interaction by formulating link formation as an appropriate multinomial
choice problem that lets each pair of agents jointly decide which of the four possible
link configurations within the dyad they want to have. This approach requires that the
economist has sufficient prior knowledge about the nature of the dyadic interaction to
set up a meaningful choice model.

I have presented results for transitivity as an example of local structure. Depending on
the specific application in mind other features might be of interest. It is an interesting
challenge to provide a unified theory of inference in the presence of unobserved hetero-
geneity for a broad class of local network features. The difficulty of such an endeavor lies
in finding a general expression for the asymptotic bias.

In this paper, I focus on a relatively simple transitivity measure. This is mainly for
expositional convenience. In fact, the asymptotic distribution of a plug-in estimator of
the clustering coefficient from equation 4 is provided by a straightforward corollary to my
results. To see this, note that upon suitable normalization of the clustering coefficient,
the denominator can be replaced by its probability limit at the expense of an op(1) term.
Then, Theorem 3 and an appeal to the delta-method give the desired distribution.

My transitivity test improves on previous tests (Holland and Leinhardt 1978; Karlberg
1999) along two dimensions. First, it is asymptotically normal. Approximate critical
values can be obtained from the asymptotic distribution. This obviates the need for
computationally intensive simulations. Secondly, it explicitly takes into account the
estimation error from estimating the reference distribution. This caters to many empirical
applications in which knowledge about an appropriate reference distribution is limited.
These two achievements are possible because of the way the model controls for degree
heterogeneity. The unobserved effects approach allows for a flexible degree distribution
while also admitting a large sample theory. It seems that other testing problems in
networks could benefit from this framework as well. Further research is needed.

As I have shown above, controlling for unobserved heterogeneity is essential for giving
an accurate description of local network features. In my application, a model that does
not admit unobserved heterogeneity estimates spurious excess transitivity. Controlling
for unobserved sources of degree heterogeneity reverses the verdict regarding transitivity.
The level of transitivity predicted from the model without unobserved effects is not
significantly higher than the observed level of transitivity. Recently, the econometric
research on network formation models has focused on allowing agents to care for en-
dogenous network attributes. Some significant progress has been made in this direction
(Mele 2013; Sheng 2014; Miyauchi 2014; Leung 2014), but this has come at the expense
of neglecting ramifications of unobserved heterogeneity. In particular, as I argue for
transitivity, unobserved heterogeneity and agent preferences for endogenous network
features (“network externalities”) are competing explanations when it comes to justifying
the prevalence of certain local structures. In some economic settings one explanation
might seem more plausible, for others, the other explanation is more compelling. In
settings in which both explanations have a claim to validity, identification strategies will
have to be developed to disentangle the two effects.
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Appendix

A. Notation

In this part of the appendix I introduce notation from Fernández-Val and Weidner
2014 (henceforth FVW) that will be helpful in the subsequent proofs. We let φ =
(γS1 , . . . , γ

S
n , γ

R
1 , . . . , γ

R
n ) denote the incidental parameter vector. The unobserved effect

for the link (i, j) is π(i,j) = γSi + γRj . The likelihood contribution of edge e is

`e(θ, φ) = Ye log pe + (1− Ye) log(1− pe)
= Ye logFe(Xeθ + πe) + (1− Ye) log(1− Fe(Xeθ + πe)).

We write `e = `e(θ
0, φ0) for the likelihood contribution evaluated at the true parameters.

Note that ∂π`e = He(Ye − pe) and ∂θ`e = (∂π`e)Xe (compare also Example 1 in FVW).
The empirical likelihood is

L(θ, φ) =
1

n

∑
e

`e(θ, φ)− b
(
(ι′n,−ι′n)φ

)2
/2,

where the last term is a penalty that imposes the restriction
∑

i(γ
S
i − γRi ) = 0 on the

incidental parameter and b is an arbitrary positive constant. We write L = L(θ, φ) and
L̄ = ĒL and use corresponding notation for the derivatives of the likelihood. Furthermore
we let

S = ∂φL =


[

1
n

∑
j:j 6=i ∂π`(i,j)

]
i∈V[

1
n

∑
i:i 6=j ∂π`(i,j)

]
j∈V


denote the likelihood score with respect to the incidental parameter evaluated at the true
parameters and let H = −∂φφ′L denote the corresponding Hessian. Let H̄ = ĒH and
H̃ = H− H̄.

B. Proofs of main theorems

Proof of Theorem 1: The proof follows the same line of arguments as the proof of
Theorem 4.1 in FVW. The only difference is that, while in the panel set-up all time
periods are observed for each individual, in the network model only n − 1 out of n
possible links to receivers are permitted. Namely, my model does not allow self-links.
This, however, can be accommodated. For example, note that the score with respect to
the incidental parameter can be written as

S =

[
Mιn
M ′ιn

]
where M is the n×n matrix with entries Mi,j = ∂π`(i,j) for i 6= j and Mi,j = 0 otherwise.
This is the representation assumed in the application of Lemma D.11 of FVW and one can
proceed as in their proof. For the other projection arguments one proceeds similarly. �
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Proof of Theorem 2: The theorem follows form an expansion in the proof of Theo-
rem 5. �

Proof of Theorem 3: The theorem follows from an expansion in the proof of Theo-
rem 6. �

Proof of Theorem 4: The result follows from Theorem 6 in conjunction with Corol-
lary 1 setting an = a = 1. �

Proof of Theorem 5: Let ρ̂β =
∏
e∈β pe(Xe, π̂e, β̂). We decompose

n−2
(
Sn − ÊSn

)
= n−2

∑
β
(Te − ρβ)−

(
n−2

∑
β
ρ̂β − n−2

∑
β
ρβ

)
.

For the first term, argue similarly to the proof of Theorem 6 that

n−2
∑

β
(Te − ρβ) = n−1

∑
e

(Ye − pe)βne + op(1).

For the second term let ∆ = n−3
∑

β ρβ and ∆̂ = n−3
∑

β ρ̂β. Note that ∆ behaves
like the partial effect considered in FVW and employ their Theorem B.4 to show that
conditional on observables and unobserved effects

∆̂−∆ =
[
∂θ′∆ + (∂φ′∆)H̄−1(∂φθ′L̄)

]
(θ̂ − θ0) + U

(0)
∆ + U

(1)
∆ + op

(
n−1

)
with

U
(0)
∆ =(∂φ′∆)H̄−1S,

U
(1)
∆ =− (∂φ′∆̄)H̄−1H̃H̄−1S

+
1

2
S ′H̄−1

∂φφ′∆ +

dimφ∑
g=1

[
∂φφ′φg L̄

] [
H̄−1(∂φ′∆)

]
g

 H̄−1S.

Define the n× n matrix Dn by

Dn =

{
Dn

(i,j) for i 6= j

0 otherwise

and note that

∂φ∆ =
1

n2

(
Dn ιN

(Dn)′ ιN

)
and

∂θ∆ =
1

n2

∑
e∈E

 1

3n

∑
β3e

∂θρβ

 =
1

n2

∑
e∈E

(∂θpβ)
1

n

∑
β3e

ρ−e(β)

 =
1

n2

∑
e∈E

(∂πpβ)βneXe.
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Using ∂πpβ = fe the projection argument from Lemma B.11 in FVW gives

∂θ′∆ + (∂φ′∆)H̄−1(∂φθ′L̄) = Ξn.

Arguments similar to the ones employed in the proofs of Theorem C.1 and Theorem 4.2
in FVW give

n

1

2
S ′H̄−1

dimφ∑
g=1

[
∂φφ′φg L̄

] [
H̄−1(∂φ′∆)

]
g

 H̄−1S − (∂φ′∆)H̄−1H̃H̄−1S


= lim
n→∞

1

2n

∑
i

∑
j:j 6=iH(i,j)Ψ(i,j)∂f(i,j)∑

j:j 6=i ω(i,j)
+ lim
n→∞

1

2n

∑
j

∑
i:i 6=j H(i,j)Ψ(i,j)∂f(i,j)∑

i:i 6=j ω(i,j)
+ op(1).

For the remaining term the arguments in FVW do not apply as ∂φφ′∆ does not exhibit
as symmetric a structure as the corresponding derivative of a partial effect. Instead write

n
(
∂φφ′∆

)
=

[
AφSS AφSR(
AφSR

)′
AφRR

]
=

[
ĀφSS + ÃφSS ĀφSR + ÃφSR(
ĀφSR + ÃφSR

)′
ĀφSS + ÃφRR

]

with Āφk a diagonal matrix such that ‖Āφk‖max = Op(1) and Ãφk such that ‖Āφk‖max =
Op(n

−1) for k ∈ {SS, SR,RR}. By Lemma D.8 in FVW the expected Hessian with
respect to the incidental parameter has the same structure

H̄−1 =

[
H̄−1
SS H̄−1

SR(
H̄−1
SR

)′ H̄−1
RR

]
=

 ¯̄H−1
SS + ˜̄H−1

SS
¯̄H−1
SR + ˜̄H−1

SR(
¯̄H−1
SR + ˜̄H−1

SR

)′ ¯̄H−1
RR + ˜̄H−1

RR

 .
Now note that, for D1, D2 diagonal stochastic matrices with ‖Dk‖max = Op(1), k = 1, 2,
and M1,M2 stochastic matrices such that ‖Mk‖max = Op(n

−1), k = 1, 2, D1 ×D2 is a
stochastically bounded diagonal matrix, and D1 ×M1 and M1 ×M2 are bounded by an
Op(n

−1) term. All bounds are in terms of the matrix maximum norm. Let Υ denote a
n × n random matrix with entries Υi,j = ∂π`(i,j) if i 6= j and Υi,j = 0 otherwise. The
score with respect to the incidental parameter can be written as

S =

[
SS
SR

]
=

1

n

[
Υ ιn
Υ′ ιn

]
.

Multiplying out the partitioned matrices and employing Lemma 2 multiple times gives

n
(
S ′H̄−1∂φφ′∆H̄−1S

)
= E

[
S ′S ¯̄H−1

SSĀ
φ
SS

¯̄H−1
SSSS

]
+ E

[
S ′R ¯̄H−1

RRĀ
φ
RR

¯̄H−1
RRSR

]
+ op(1).

Now

E
[
S ′S ¯̄H−1

SSĀ
φ
SS

¯̄H−1
SSSS

]
=

1

n2
E


∑
i

(ĀφSS)i,i

∑
j:j 6=i

(
∂π`(i,j)

)2(
1
n

∑
j:j 6=i ω(i,j)

)2


=

1

n

∑
i

(n− 1)(ĀφSS)i,i∑
j:j 6=i ω(i,j)

+ o(1),

32



where the second equality follows from a Bartlett identity. By symmetry

E
[
S ′R ¯̄H−1

RRĀ
φ
RR

¯̄H−1
RRSR

]
=

1

n

∑
j

(n− 1)(ĀφRR)j,j∑
i:i 6=j ω(i,j)

+ o(1).

Since
(
ĀφSS

)
i,i

= δSi and
(
ĀφRR

)
j,j

= δRj ,

n
(
U

(1)
∆

)
= lim
n→∞

1

2n

∑
i

∑
j:j 6=i

(
H(i,j)Ψ(i,j)∂f(i,j) + δSi

)∑
j:j 6=i ω(i,j)

+ lim
n→∞

1

2n

∑
j

∑
i:i 6=j

(
H(i,j)Ψ(i,j)∂f(i,j) + δRj

)
∑

i:i 6=j ω(i,j)
+ op(1).

Using similar arguments as in the proofs of Theorem C.1 in FVW one can show that

U
(0)
∆ = − 1

n

∑
e

Ψe∂π`e.

From the proof of Theorem 3

W̃∞ n
(
θ̂ − θ0

)
= B∞ +D∞ +

1

n

∑
e

(
∂β`e − ∂π`e(Xe − X̃e)

)
+ op(1).

Plugging in for the binary choice model gives

∂π`e = He(Ye − pe) and ∂β`e = (∂π`e)Xe.

Therefore, the stochastic part of n−2
(
Sn − ÊSn

)
can be written as

1

n

∑
e

(Ye − pe)
(
βne −He(Ξ

′
nW̄

−1
∞ X̃e −Ψe)

)
=

1

n

∑
e

(Ye − pe)
(
βne −He(Ξ

′
∞W̄

−1
∞ X̃e −Ψe)

)
− 1

n

∑
e

(Ye − pe)He

(
(Ξn − Ξ∞)′W̃−1

∞ X̃e −Ψe

)
.

It can be shown by standard arguments that the second term is op(1). For the first
term, an appeal to the Lindeberg-Feller central limit theorem gives the desired normal
distribution. Collecting terms gives an asymptotic bias of BTT

∞ +DTT
∞ . �

C. Auxiliary results

C.1. Example 1

The claim in the example follows from the following lemma.

33



Lemma 1 Let ρ◦n = n◦n
n p
◦
n and let ρ?n = n?

n
n p

?
n. Then

lim inf
n

EMsimple,n

[
# transitive triples

]
E
Mproj

simple,n

[
# transitive triples

] ≥ 1 + lim inf
n

en.

with

en =
(p?n − p◦n)2

p?np
◦
n

(
ρ?n
ρ◦n

)(
1 +

ρ?n
ρ◦n

)−2

.

Proof Let Rn denote the ratio on the right-hand side. For a positive integer m define
the factorial power mk = m(m− 1) · · · (m− k + 1). We first ignore the n subscript and
the asymptotic framework and give an exact calculation for fixed n. For the denominator
of the ratio above we can write

E
Mproj

simple

[
# transitive triples

]
= n3p3 = n3

(
n◦

n
p◦ +

n?

n
p?
)
def
= n3Dn.

Turning to the nominator we partition all transitive triples (TTs) by the number of
attractor nodes that they contain.

0 attractors The number of TTs with exactly zero attractor nodes is(
n◦

3

)
Iso(transitive triple) = (n◦)3,

where Iso(G) is the number of isomorphisms of the graph G. Since all positions in a
transitive triple are unique, the number of isomorphisms of a transitive triple is equal to
the permutations of node labels, i.e., Iso(transitive triple) = 3!. Each of these TTs has
probability (p◦)3. The contribution to the expectation is (n◦)3(p◦)3.

1 attractor There are
(
n◦

2

)
n? ways of selecting the nodes. Given three nodes there are

2! TTs with probability (p◦)3

2! TTs with probability (p◦)2p?

2! TTs with probability p◦(p?)2.

In sum, the contribution of these TTs to the expectation is

n?(n◦)2(p◦)2p?
(

1 +
p◦

p?
+
p?

p◦

)
= (n◦)2n?(p◦)2p?(3 + wn),

where

wn =
(p? − p◦)2

p?p◦
.

2 attractors There are n◦
(
n?

2

)
ways of selecting the nodes. Given three nodes there

are

2! TTs with probability (p?)3
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2! TTs with probability (p?)2p◦

2! TTs with probability p?(p◦)2.

The contribution of these TTs to the expectation is

n◦
(
n?

2

)
(p?)2p◦

(
1 +

p◦

p?
+
p?

p◦

)
= n◦(n?)2p◦(p?)2(3 + wn),

where wn is defined as above.
3 attractors Arguing as above it is easy to see that the contribution to the expectation

is (n?)3(p?)3.
Putting the results from above together we get

EMsimple

[
# transitive triples

]
=(n◦)3(p◦)3 + (3 + w)(n◦)2n?(p◦)2p? + (3 + w)n◦(n?)2p◦(p?)2 + (n?)3(p?)3.

Returning to the asymptotic framework, dividing nominator and denominator by n3 and
expanding Dn it is now easy to see that

Rn = 1 + wn

(n◦)2n?

n3 (p◦)2p? + n◦(n?)2

n3 p◦(p?)2

Dn
+ o(1)

= 1 + wn
(ρ◦n)2ρ?n + ρ◦n(ρ?)2

Dn
+ o(1).

Since
Dn = (ρ◦n)3 + 3(ρ◦n)2ρ? + 3ρ◦n(ρ?n)2 + (ρ?n)3

we have
Dn

(ρ◦n)2ρ?n
= f

(
ρ?n
ρ◦n

)
.

for f(x) = 3 + x2 + 3x+ x−1 and hence by symmetry

Dn

ρ◦n(ρ?)2
= f

(
ρ◦n
ρ?n

)
.

Now noting that f(x−1) = xf(x) straightforward calculations yield

[f (x)]−1 +
[
f
(
x−1

)]−1
=

x

(1 + x)2
.

�

C.2. Sparse dyadic model without unobserved effects

In this appendix we consider a variation of the model (3) where the link function is
allowed to depend on n. We assume that the link function is given by Fn = a−1

n F for
a deterministic sequence an and a base link function F . For an → ∞ this allows for
asymptotically sparse networks. Both an and F are assumed to be known. For notational
convenience we redefine ρ−e(β) =

∏
βj∈β
βj 6=e

Fe.
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Theorem 6 Suppose that an ≥ 1 and a−1
n n2 →∞. Assume that the base link function F

is bounded away from zero and one, and that it is three times continuously differentiable.
Let Rθ,∞ = limn→∞Rθ,n,

W̆∞ = lim
n→∞

1

n2

∑
e∈E(n)

f2
e

Fe(1− a−1
n Fe)

XeX ′e,

V̆
(a)
S = lim

n→∞

1

n2

∑
e∈E(n)

Fe(1− a−1
n Fe)

{
βne −X♦

e

}2
,

V̆
(b)
S = lim

n→∞

1

n2

∑
e∈E(n)

∑
β,β′

β∩β′={e}
|V (β)∩V (β)|=2

(ρ−e(β)− 1
3X

♦
e )(ρ−e(β

′)− 1
3X

♦
e )

n2
Fe(1− a−1

n Fe),

where X♦
e = (Rθ,∞)′ W̆−1

∞ feXe/(Fe(1− a−1
n Fe)). Suppose that conditional on X all limits

exist and that V̆
(a)
S > 0. Then conditionally on X

n−2
(
Sn − ÊSn

)
d−→ N

(
0, V̆

(a)
S

)
.

Moreover,

V̆
(b)
S

V̆
(a)
S

→ 1.

Proof We work conditionally on X. First, we compute the variance of Sn. Since
triangles β and β′ are independent provided that β ∩ β′ = ∅ we get

varSn =E

∑
β∈B

(Tβ − ETβ)

2

=a−4
n

∑
(β,β′)∈B×B
|β∩β′|=1

E
[
(Tβ − ETβ)(Tβ′ − ETβ′)

]
+Hn

=a−5
n

∑
e

∑
(β,β′)∈B×B
β∩β′={e}

Fe(1− a−1
n Fe)ρ

t
−e(β)ρt−e(β

′) +Hn,

where Hn captures the contribution to the expectation from triangle pairs that share 2
or 3 edges. The number of triangle pairs that share 2 edges and the number of triangle
pairs that share 3 edges (these are just the pairs (β, β), β ∈ B) are both of the same
order as n3. Note that since F is bounded away from zero there is a constant C1 such
that the contribution to the expectation is less than C1a

−4
n and C1a

−3
n for each pair of

triangles with 2 and 3 common nodes, respectively. Hence,

Rn = O
(
a−4
n n3 + a−3

n n3
)

= O
(
a−3
n n3

)
.
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Let Ŝn denote the Hajek-Projection of Sn − ESn onto the (Ye)e∈E , i.e.,

Ŝn =
∑
e

E [Sn − ESn | Ye] =
∑
e

∑
β

E [Tβ − ETβ | Ye] .

Obviously, E [Tβ − ETβ | Ye] = 0 if e /∈ β. Otherwise,

E [Tβ − ETβ | Ye] = a−2
n

(
Ye − a−1

n Fe
)
ρ−e(β).

Therefore,

Ŝn = a−2
n

∑
e

∑
β3e

(
Ye − a−1

n Fe
)
ρ−e(β)

and

var Ŝn = a−4
n

∑
e

∑
(β,β′)∈B×B
β∩β′={e}

ρ−e(β)ρ−e(β
′)E

(
Ye − a−1

n Fe
)2

= a−5
n

∑
e

∑
(β,β′)∈B×B
β∩β′={e}

Fe(1− a−1
n Fe)ρ−e(β)ρ−e(β

′).

As F is bounded away from zero for some constant C

var Ŝn ≥ Ca−5
n n4

and therefore
varSn

var Ŝn
≤ 1 +O

(
1

a−2
n n

)
.

As Hn ≥ 0 we also have varSn ≥ Ŝn and therefore

varSn

var Ŝn
→ 1

so that by Theorem 11.2 in Van der Vaart 2000

Sn − ESn − Ŝn = op

(√
var Ŝn

)
= op

(
a
5/2
n n−2

)
.

Then

Sn − ÊSn = Sn − ESn −
(
ÊSn − ESn

)
= Ŝn −

(
ÊSn − ESn

)
+ op

(
a
5/2
n n−2

)
.

Turning first to the second term note that

ÊSn − ESn =a−3
n n3Rθ,n(θ0)

(
θ̂ − θ0

)
+

1

2
a−3
n

(
θ̂ − θ0

)′[∑
β

∂θθ′(Fβ1Fβ2Fβ3)(θ̃)
](
θ̂ − θ0

)
=a−3

n n3Rθ,n
(
θ̂ − θ0

)
+Op

(
a−3
n n3‖θ̂ − θ0‖2

)
,
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where θ̃ is an intermediate value. It is easy to show that θ̂ has an asymptotically linear
representation

a−1
n n

(
θ̂ − θ0

)
=

1

n

∑
e∈E(n)

ψe +Op

(
1

a−1
n n

)
with influence function

ψe = W̆−1
∞

fe

Fe(1− a−1
n Fe)

Xe(Ye − a−1
n Fe).

Plugging in the linear representation gives

a
5/2
n

ÊSn − ESn
n2

=a
1/2
n Rθ,na

−1
n n

(
θ̂ − θ0

)
+ op(1)

=
a
1/2
n

n

∑
e∈E(n)

X♦
e

(
Ye − a−1

n Fe
)

+ op(1).

Therefore

a
5/2
n

Sn − ÊSn
n2

=
a
1/2
n

n

∑
e∈E(n)

(∑
β3e ρ−e(β)

n
−X♦

e

)(
Ye − a−1

n Fe
)

+ op(1).

The variance of the first term on the right-hand side is V̆
(a)
S + o(1). It is straightforward

to verify that Lindeberg’s condition is satisfied. The claim about V̆
(b)
S follows by noting

that (∑
β3e ρ−e(β)

n
−X♦

e

)2

=

(∑
β3e

ρ−e(β)− 1
3X

♦
e

n

)2

and expanding the square. It is then easy to see that the resulting sum is dominated by
pairs of triangles that share exactly two vertices. �

Under a distributional assumption about the Xe the limits in Theorem 6 can be shown
to exist and the asymptotic variance can be expressed as a function of subgraphs on the
vertex set {1, 2, 3, 4}. To this end, let

B+v = {β : β is a TT on {1, 2, v}, (1, 2) ∈ β}.

Corollary 1 Suppose that the assumptions of Theorem 6 and in addition Assumption 2
hold. Suppose also that an → a. Let

V
(c)
θ =

∑
β∈B+3

β′∈B+4

E
{(

ρ−(1,2)(β)− 1

3
X♦

(1,2)

)(
ρ−(1,2)(β

′)− 1

3
X♦

(1,2)

)
F(1,2)

(
1− a−1F(1,2)

)}
.
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Then

W̆∞ = E
{ f2

e

Fe(1− a−1Fe)
XeX ′e

}
,

Rθ,∞ = E
{
∂θρβ(X, θ0)

}
on a set with probability approaching one and

n−2a
5/2
n

(
Sn − ÊSn

) d−→ N
(
0, V̆

(c)
S

)
.

Proof The first two statements follow by standard arguments using the Markov in-

equality. Note that V̆
(c)
S = E V̆ (b)

S . The distributional result follows by Theorem 6 if we
show

V̆
(b)
S

E V̆ (b)
S

p−→ 1.

It suffices to show that the variance of the ratio on the left-hand side vanishes. To this
end, let

B̃ = {(β, β′) ∈ B ×B : |β ∩ β′| = 1; |V (β) ∩ V (β′)| = 2}

and extend the vertex pairs of TTs. Let

(β, β′) = β ∪ β′ and V ((β, β′)) = V (β) ∪ V (β′).

Using these definitions, V̆
(b)
S can be written as limn→∞

∑
k∈B̃ Uk and it suffices to show

that
limn→∞ E

{∑
k,l∈B̃(Uk − EUk)(Ul − EUl)

}
(
limn→∞ E

∑
k∈B̃ Uk

)2 → 0.

Note that for E(Uk − EUk)(Ul − EUl) 6= 0 we require V (k) ∩ V (l) 6= ∅. Hence, pairs k, l
giving non-zero expectation have to comprise at most 5 vertices and are therefore at
most of order n5. �

C.3. Lemmas

Lemma 2 Let Υ denote an n×n random matrix with entries Υi,j = Yi,j for independent,
mean-zero random variables Yi,j that satisfy EY 4

i,j ≤ C for a finite constant C. Moreover,
let M denote a random matrix with ‖M‖max = Op (n) and let D denote a random diagonal
matrix with ‖D‖max = Op(1). Then for A,B ∈ {Υ,Υ′}

(A ιn)′MB ιn = op
(
n2
)
,

(A ιn)′DB ιn = E (A ιn)′DB ιn + op
(
n2
)
,

and E (Υ ιn)′DΥ′ ιn = o
(
n2
)
.
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Proof It suffices to consider the cases A = B = Υ (case 1), and A = Υ and B = Υ′

(case 2). Let ai and bj denote generic columns of A and B, respectively. Write

Wn =
1

n2
(A ιn)′MB ιn =

1

n2

∑
i,j

1

n
a′ibj [nmi,j ] =

1

n2

∑
i,j

1

n
wi,j

for wi,j = 1
n

∑
k ai,kbj,k. By assumption, there is a positive constant C1 such −C1 <

nmi,j < C1, uniformly in i, j. For case 1, wi,j = n−1
∑

k Yk,iYk,j and Ewi,j = 0 for i 6= j
and Ewi,j is uniformly bounded otherwise and therefore EWn = o(1). Moreover,

Ewi,jwi′,j′ =
1

n2

∑
k

EYk,iYk,jYk,i′Yk,j′ +
1

n2

∑
k 6=k′

EYk,iYk,jYk′,i′Yk′,j′ = O
(
n−1

)
+ 0

uniformly over all i, i′, j, j′ such that i 6= i′ or j 6= j′ and uniformly bounded otherwise.
This implies E (Wn)2 = o(1). For case 2 wi,j = n−1

∑
k Yk,iYj,k. Note that Ewi,j = 0 if

either i 6= k or j 6= k and Ewi,j is uniformly bounded otherwise. Hence EWn = o(1).
The term Ewi,jwi′,j′ can be bounded as above. The other statements can be proven in a
similar way. �

D. Tables

Village n Sn ÊSn

A
ÊSn ÊSn

P
TA
n TP

n

1 203 58 62 23 6 -0.31 37.89
2 203 32 61 20 6 -1.17 12.21
3 345 50 56 15 5 -0.42 51.75
4 256 52 80 18 7 -0.86 27.60
5 164 18 64 11 4 -2.27 12.88
6 110 17 68 12 5 -4.47 9.39
7 172 96 133 39 19 -0.73 20.63
8 109 47 106 33 17 -2.17 7.12
9 247 67 99 23 8 -0.83 38.68

11 142 46 164 30 14 -3.58 9.54
12 195 76 96 23 12 -1.08 18.34
14 150 93 195 53 17 -2.68 19.52
15 212 36 141 28 13 -4.71 6.70
16 178 83 151 46 19 -2.38 17.24
17 200 40 86 28 10 -2.29 13.74
18 284 32 101 21 8 -2.77 14.01
19 243 77 150 41 20 -2.16 13.79
20 159 69 143 42 14 -3.17 17.98
21 210 46 132 26 9 -2.85 17.62
23 280 84 132 26 9 -1.65 41.66
25 304 61 114 25 10 -1.06 30.07
26 149 67 116 31 14 -1.09 18.19
27 174 32 170 24 12 -1.11 6.58

Continued on next page
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Table 5 – continued from previous page

Village n Sn ÊSn

A
ÊSn ÊSn

P
TA
n TP

n

28 395 66 83 25 8 -0.55 41.61
29 303 123 211 49 24 -1.42 21.32
30 170 94 287 34 16 -2.21 24.48
33 219 82 137 36 15 -1.25 19.92
34 181 93 282 33 19 -1.65 18.30
35 216 136 143 47 18 -0.17 32.07
36 293 245 239 92 29 0.11 56.52
37 132 108 114 43 17 -0.14 26.71
38 182 34 134 25 10 -2.66 10.26
39 370 117 173 46 23 -1.26 20.00
40 266 355 267 91 45 1.27 50.65
41 181 272 227 74 37 0.67 36.60
42 206 131 160 54 30 -0.49 18.02
43 227 226 170 55 27 0.95 51.46
44 258 245 163 65 32 1.60 45.06
45 263 66 143 24 11 -1.52 20.84
48 217 107 156 57 26 -1.08 18.01
49 184 79 102 44 25 -0.62 11.47
50 261 259 216 78 48 0.63 33.18
51 309 298 254 108 56 0.69 33.83
52 395 344 329 124 53 0.17 50.43
53 170 183 213 67 35 -0.36 26.43
54 124 64 159 49 27 -1.56 6.95
55 279 201 249 71 37 -0.52 29.68
60 413 151 259 71 35 -1.39 20.59
62 242 161 138 52 25 0.52 34.35
64 294 158 155 39 17 0.07 50.28
65 341 344 325 115 57 0.20 38.40
66 189 41 67 19 7 -1.21 23.28
67 231 33 72 19 7 -1.38 15.77
68 164 17 119 21 9 -2.34 4.24
69 220 281 324 132 70 -0.45 21.51
71 298 169 203 55 32 -0.35 24.10
72 238 50 149 25 10 -2.12 17.30
73 217 98 142 47 21 -1.14 20.68
74 193 109 450 45 28 -1.88 14.39
76 269 137 159 41 20 -0.46 34.51
77 172 98 164 52 24 -1.15 17.40

Table 5: Estimating and testing predicted transitivity. Estimates for predicted transitivity

with bias correction (ÊSn
A

) and without bias correction (ÊSn). The transitivity

estimate for the model without unobserved effects is given by ÊSn
P

. Test
statistics for the model with and without unobserved effects are given by TAn
and TPn , respectively.
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A AP I P

age 39 39 39 34
house has own latrine 0.60 0.42 0.79 0.64

no. of rooms 3.65 2.57 3.16 3.29
has savings account 0.30 0.40 0.21 0.27
participates in SHG 0.00 0.12 0.00 0.04

female 0.40 0.54 0.47 0.61
household head 0.45 0.42 0.32 0.27

spouse of household head 0.35 0.42 0.21 0.24
scheduled caste or tribe 0.20 0.32 0.16 0.25

general caste 0.05 0.02 0.00 0.02

Table 6: Village 60: means of observed covariates by type cluster (A = attractors, AP =
attractor-producers, I = isolates, P = producers).

Variable Description

age age of respondent
age2 square of age
female respondent is female
latrine respondent lives in a house with an own latrine
obc respondent’s caste is considered an OBC (Other Backward Caste)
general respondent’s caste is considered a General caste
educ Primary respondent has completed primary education
educ SSLC respondent has obtained a Secondary Schooling Leaving Certificate
has savings respondent has at least one savings account
has shg respondent participates in a SHG (Self Help Group)
is hhhead respondent is head of her household
is village native respondent was born in village

Table 7: Description of variables approximating productivity (Xi) and popularity (Xj).
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E. Figures
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Figure 6: The function e from Example 1 plotted for various fixed values of λ.
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Figure 7: Unobserved type vs. observed in-degree for village 60.
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Figure 8: Unobserved type vs. observed out-degree for village 60.
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Figure 9: Age profiles by cluster for village 60. The unobserved type clusters are:
attractor-producers (AP), attractors (A), producers(P) and isolates (I).
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