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Abstract

Estimation of large �nancial volatility models is plagued by the curse of dimension-

ality. As the dimension grows, joint estimation of the parameters becomes unfeasi-

ble in practice. This problem is compounded if covariates or conditioning variables

("X") are added to each volatility equation. The problem is especially acute for non-

exponential volatility models, e.g., GARCH models, since the variables and parame-

ters in these cases are restricted to be positive. Here, we propose an estimator for a

multivariate log-GARCH-X model that avoids these problems. The model allows for

feedback among the equations, admits several stationary regressors as conditioning

variables in the X-part (including leverage terms), and allows for time-varying con-

ditional covariances of unknown form. Strong consistency and asymptotic normality

of an equation-by-equation least squares estimator are proved, and the results can

be used to undertake inference both within and across equations. The �exibility and

usefulness of the estimator is illustrated in two empirical applications.
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1 Introduction

Estimating the volatility of �nancial returns is crucial, in particular for risk management
(McNeil and Embrechts (2005)), asset pricing (Duan (1995)) and portfolio optimisation
(Santos and Moura (2014)). The standard Autoregressive Conditional Heteroscedasticity
(ARCH) models explain the volatility by using past returns only, and do not incorporate
covariates that could convey relevant exogenous information.

Covariates often help in explaining and forecasting �nancial variability. Examples of
such covariates include, among others, measures of information arrival, e.g., Clark (1973),
Tauchen and Pitts (1983), Lamoureux and Lastrapes (1990), interest rates, e.g., Brenner
et al. (1996), Hagiwara and Herce (1999), central bank interventions (Dominguez (1998)),
bid-ask spreads (Bollerslev and Melvin (1994)), macroeconomic fundamentals (Apergis
and Rezitis (2011)), cross-sectional volatility (Hwang and Satchell (2005)) and volatility
proxies made up of high-frequency data (Engle and Gallo (2006), Hansen et al. (2012),
Shephard and Sheppard (2010)). An example of a study that combines several of these
covariates in a single analysis is Bauwens et al. (2006). Despite the widespread use and
usefulness of such additional information in explaining and forecasting volatility, there
are relatively few results on ARCH models with covariates, i.e., ARCH-X models, where
the assumptions on the X-part are non-restrictive and of general practical interest.

In the univariate case, Han and Kristensen (2014) prove the Consistency and Asymp-
totic Normality (CAN) of the Gaussian QMLE for speci�cations contained in the
GARCH(1,1)-X model, where the X-part consists of a single variable only. Francq and
Thieu (2015) also prove the CAN for the QMLE, but for a much broader model-class: The
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Asymmetric Power GARCH(p; q)-X model, where the X-part can contain more than one
variable. However, as is common in GARCH-speci�cations that are not exponential, all
terms (parameters, the variables in the X-part, etc.) are restricted to being non-negative
in both works. Chen and Song (2015) prove the CAN of a QMLE for a log-GARCH(1,1)
model with no X-part in the classical sense, but where the ARCH parameter varies over
time and is driven by the past values of two covariates that are independent of the stan-
dardised error. This independence assumption is somewhat restrictive, however, since it
excludes feedback e�ects between the covariates and the log-volatility process (this is usu-
ally not ful�lled in empirical practice). Also, it is not clear what the economic motivation
is in making the ARCH parameter � the part of a log-GARCH(1,1) that usually accounts
for the smallest portion of the variation in volatility � time-varying and dependent on
past covariates whose properties are usually not ful�lled in empirical practice. Finally,
to the best of our knowledge, there is no proof of the CAN for multivariate GARCH-X
models.

Sucarrat et al. (2015) propose a general framework for the estimation of, and infer-
ence in, univariate and multivariate log-GARCH-X models � with Dynamic Conditional
Correlations (DCCs) of unknown form � via the (V)ARMA-X representation. However,
they do not prove the CAN, neither in the univariate nor in the multivariate case. Here,
we adopt their framework, but provide a proof of strong consistency and asymptotic
normality under mild assumptions. Speci�cally, we do so for a least squares Equation-by-
Equation (EBE) estimator of a multivariate log-GARCH(1,1)-X model that admits DCCs
of unknown form. Moreover, the assumptions on the X-part are very general: It is not
restricted to a single variable, the X-variables are allowed to be subject to feedback e�ects
from volatility, i.e., the X-variables need not be exogenous, and the X-variables need not
be independent of the standardised error. The latter means that asymmetry or leverage
can be accommodated via the X-part. There are several advantages with the VARMA
approach. First, it enables theoretical results of unprecedented economic generality and
�exibility. In one of our applications, for example, we illustrate this in an empirical study
of volatility spillover among stock markets. In ordinary multivariate GARCH models such
tests require complicated restrictions on the parameters, and restrictive assumptions on
the correlations, i.e., constant conditional correlations, see Conrad and Weber (2013), and
Pedersen (2015). By contrast, in our model, complicated restrictions on the parameters
are not needed, and tests are valid under time-varying DCCs of unknown form. More-
over, we can also test whether covariates, e.g., volatility proxies, provide additional � or
alternative � channels of volatility spillover. Second, the EBE nature of our estimator,
together with the VARMA-X representation, means that large systems can readily be
estimated with software that is already widely available. We illustrate this in a second
empirical application by estimating, in just over a minute, a 50-dimensional model that
admits time-varying correlations, and where the X-part contains 5 conditioning variables
in each equation. Next, a DCC model of the 1225 correlation paths is �tted. Third, the
statistical theory we rely upon is much more tractable than for the EGARCH of Nel-
son (1991). Indeed, currently the only proof of CAN for a QMLE is for the univariate
EGARCH(1,1) without covariates, see Straumann and Mikosch (2006), and Wintenberger
(2013). Fourth, estimation via the VARMA-representation is likely to be more e�cient
when the standardised error is fat-tailed, since the application of the logarithm makes
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large (in absolute value) observations less in�uential. Finally, solutions to the log-of-zero
(or inlier) problem is available when log-GARCH models are estimated via the (V)ARMA
representation, see Sucarrat and Escribano (2014), and Sucarrat et al. (2015).

The rest of the paper is organised into four parts. First, in Section 2, we present
the model and its associated notation. Section 3 contains our main theoretical results,
while Section 4 gathers the proofs. Section 5 contains two empirical applications. Finally,
Section 6 concludes. A Table and a Figure are located at the end.

2 Model and notation

Let �t = (�1t; : : : ; �Mt)
> denote anM�1 vector of random variables that are nonzero with

probability one, and let Ft�1 = �f�2ju; X`u : u < t; j = 1; : : : ;M; ` = 1; : : : ; Kg be the
�-�eld generated by the past values of �2t = (�21t; : : : ; �

2
Mt)

> and of some K-dimensional
vector X t = (X1t; : : : ; XKt)

> of covariates. It should be noted that the covariates need
not be exogenous (the exact assumptions on X t are given below). Assume the existence
of the M �M matrix H t, such that

E(�t�
>
t jFt�1) = H t: (2.1)

Assuming the nonsingularity of D2
t = diag(H t), let the M � 1 vector

�t = D�1
t �t: (2.2)

Note that this implies E(�2t ) = (1; : : : ; 1)>, where �2t = (�21t; : : : ; �
2
Mt)

>. Let �2
t be the

M -dimensional vector equal to the diagonal of H t. If, for some vector � with positive
elements, ln� denotes the vector resulting from applying the natural log on � element-
wise, then the M -dimensional log-GARCH(1,1)-X speci�cation with diagonal GARCH
matrix and covariate-vector X t is given by

ln�2
t = !0 +�0 ln �

2
t�1 + �0 ln�

2
t�1 + �0X t�1; (2.3)

where ln�2
t = (ln�21;t; : : : ; ln�

2
M;t)

>, !0 = (!01; : : : ; !0M)>,

�0 =

0B@ �011 � � � �01M
...

. . .
...

�0M1 � � � �0MM

1CA ; �0 =

0B@ �011 � � � �01K
...

. . .
...

�0M1 � � � �0MK

1CA
and the M �M matrix �0 = diag(�011; : : : ; �0MM): In principle, it should be possible to
extend the study to log-GARCH-X of higher orders, but at the price of more complicated
notations and less explicit assumptions.

Under stationarity and moments conditions that will be discussed below, the VARMA-
X representation of this model is given by

ln �2t = c0 + �0 ln �
2
t�1 � �0ut�1 + �0X t�1 + ut; (2.4)
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where �0 = �0 + �0,

c0 = !0 + (IM � �0)E(ln�
2
t ); ut = ln�2t � E(ln�2t );

and where IM is the identity matrix of dimension M . Accordingly, equation j in the
VARMA(1,1)-X system can be written as

ln �2jt = c0j +
MX
`=1

�0j` ln �
2
`;t�1 +

KX
`=1

�0j`X`;t�1 � �0jjuj;t�1 + ujt; (2.5)

c0j = !0j + (1� �0jj)E(ln �
2
jt):

The norm of a matrix M1 � M2 of generic element M(i; j) is de�ned by kMk =PM1

i=1

PM2

j=1 jM(i; j)j. The L2-norm of a random variable X is de�ned by kXk2 =
p
EX2.

3 Equation-by-equation estimation

Assume that

(�>t ;X
>
t )
> is stationary and ergodic, (3.1)

where �t is centred and satis�es (2.1) and (2.3) with

the spectral radius of �0 being strictly less than 1, and j�0jjj < 1 for all j. (3.2)

Given a stationary and ergodic sequence (X t) of covariates, one way to generate a process
(�t) satisfying the requirement (3.1) consists of drawing an iid sequence (��t ) with zero
mean and variance IM , independently of (X t). Under (3.2), it then su�ces, for instance,
to set �t = �t�

�
t ; where the functions of vectors are de�ned element-wise, and

ln�2
t =

1X
k=0

�k
0

�
!0 +�0 ln�

�2
t�k�1 + �0X t�k�1

�
:

Note that, in this case, we have �t = ��t . More generally, from (2.2), it is equivalent to
assume (3.1) or to assume that

(�>t ;X
>
t )
> is stationary and ergodic,

Note also that the stationary and ergodic solution of (2.4) is then given by

ln �2t =
1X
k=0

�k
0 (c0 + �0X t�k�1 � �0ut�k�1 + ut�k) :
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Moreover, the model is invertible, in the sense that

ut =
1X
k=0

�k
0

�
ln �2t�k � �0 ln �

2
t�k�1 � c0 � �0X t�k�1

�
:

Remark 3.1 Note that, contrary to the log-GARCH model, the stationarity and invert-
ibility conditions of the standard multivariate GARCH models are quite complicated (see
Boussama et al. (2011) for the BEKK model), or remain unknown (as for the DCC-
MGARCH model proposed by Engle, 2002). An advantage of the log-GARCH is that its
ARMA representation has a noise which depends on �t only. In the ARMA represen-
tations of the other GARCH formulations, the innovations generally depend on the past
observations themselves (they are typically of the form ut = �2t � E(�2t j Ft�1)), and thus
these ARMA representations are of no use for �nding stationarity conditions and are
hardly usable for estimation purposes.

Under the moment conditions

E
ln�2t2 <1 and EkX tk2 <1 (3.3)

we have E kln �2tk2 <1 and Ekutk2 <1, and we can de�ne the Hilbert spaceHt�1 that is
generated by the linear combinations of the ln �2js's and the X`;s's for s < t, j = 1; : : : ;M;
and ` = 1; : : : ; K, and by their limits in L2. Note that Ht�1 is also equal to the Hilbert
space generated by fX`s; ujs : s < tg, and equivalently to the Hilbert space generated by
fX`s; ln �

2
js : s < tg. One can thus interpret (ut) as a linear innovation process:

ut = ln �2t � E(ln �2t j Ht�1);

where E(ln �2t j Ht�1) denotes the orthogonal projection of ln �2t onto Ht�1. Similarly, we
de�ne

vt =X t � E(X t j Ht�1):

It will be assumed that the matrix

� := Ew1w
>
1 ; where w1 = (u>1 ;v

>
1 )
>; is positive de�nite. (3.4)

Note that this assumption rules out the possibility of exact linear relations between the
explanatory variables involved in the log-volatility ln�2

t , which is obviously a necessary
identi�ability condition.

In order to accommodate certain types of dynamic conditional correlation (DCC)
models, we assume (instead of the usual assumption that (�t) is iid) that

for any j 2 f1; : : : ;Mg, �jt is independent of Ft�1: (3.5)

This is a mild assumption. If, for example, �t = R1=2(�t)�t, where (�t) and (�t) are two
independent processes, �t is independent of Ft�1, R(�t) is a correlation matrix for any
value of �t, and (�t) is an independent sequence of, say, N (0; IM)-distributed vectors,
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then (3.5) is satis�ed. Indeed, conditionally on �t and Ft�1, the variable �jt is N (0; 1)-
distributed. Since this distribution does not depend on Ft�1 nor on �t, (3.5) holds true.
The N (0; IM)-distribution can be replaced by any other spherical distribution, as shown
in Proposition 3.1 of Francq and Zakoïan (2015). A special case of (3.5) is

(�t) is an iid sequence and �t independent of fXu; u < tg : (3.6)

In this case, we have a constant conditional correlation (CCC) model, such that

H t =DtRDt; R := E�t�
>
t :

Note that (3.6) is not satis�ed in the previous example where �t = R1=2(�t)�t, since
�t is not independent of Ft�1. Moreover, empirical evidence of non-constant conditional
correlations are often found, meaning that (3.6) is generally not satis�ed.

Remark 3.2 The VARMA-X representation (2.4) can be used to make linear h-step

ahead predictions bZt+hjt = E(Zt+h j Ht) of Zt+h := ln �2t+h. Since the covariates X t

are exogenous, their predictions cannot be obtained from the log-GARCH-X model. We
thus assume that, at time t, the value of X t+h�1 (or its prediction) is available. For some
applications, this implies that X t actually corresponds to a variable measured at time
t� h+ 1, or before that date. Under (3.5), the predictions are then recursively obtained,
for k = 1; : : : ; h, by

bZt+kjt = c0 + �0
bZt+k�1jt � �0but+k�1jt + �0X t+k�1;

where bZtjt = Zt, butjt = ut and, for k � 2,

but+k�1jt = bZt+k�1jt � c0 � �0
bZt+k�2jt � �0but+k�2jt � �0X t+k�2:

3.1 Estimator and strong consistency

Denote by
#
(j)
0 = (c0j; �0j1; : : : ; �0jM ; �0jj; �0j1; : : : ; �0jK)

>

the vector of the unknown parameters involved in the j-th equation (2.5) of the VARMA-
X model. This parameter of dimension d = M + K + 2 is assumed to belong to some
compact parameter space � � R

M+1 � (�1; 1) � RK that does not depend on j. Let B
be the backshift operator. For any # = (c; �1; : : : ; �M ; �; �1; : : : ; �K)

> 2 �, let

ujt(#) =
1� �jB

1� �B
ln �2jt �

c

1� �
�
X
` 6=j

�`B

1� �B
ln �2`t �

B

1� �B

KX
`=1

�`X`;t:

Given observations �1; : : : ; �n and X1; : : : ;Xn, the ujt(#)'s are approximated by the re-
cursions

eujt(#) = ln �2jt � c�
MX
`=1

�` ln �
2
`;t�1 �

KX
`=1

�`X`;t�1 + �euj;t�1(#);
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for t = 2; : : : ; n, with the initial value euj1(#) = 0. An equation-by-equation least squares
estimator of the VARMA-(1,1)-X model is then de�ned by

b#(j)

n = argmin
#2�

eQ(j)
n (#); eQ(j)

n (#) =
1

n

nX
t=1

eu2jt(#): (3.7)

Denote by #0 =
�
#
(1)>

0 ; : : : ;#
(M)>

0

�>
the vector of all the parameters of the VARMA-X

equation (2.4). This parameter vector belongs to the parameter space �M , whose generic

element is denoted by # =
�
#(1)> ; : : : ;#(M)>

�>
. The least squares estimator of the whole

parameter #0 is de�ned by

b#n = arg min
#2�M

nX
t=1

eu>t (#)eut(#); eut(#) =
�eu21t(#(1)); : : : ; eu2Mt(#

(M))
�>

: (3.8)

Since
Pn

t=1 eu>t (#)eut(#) =
PM

j=1

Pn
t=1 eu2jt(#), one can see that the collection of the

equation-by-equation estimators is nothing else than the global least squares estimator:

b#n =

�b#(1)>

n ; : : : ; b#(M)>

n

�>
:

It is, however, clearly easier to compute b#n by solving the d-dimensional optimisations
(3.7), for j = 1; : : : ;M , than the Md-dimensional optimisation (3.8).

Theorem 3.1 Assume the log-GARCH(1,1)-X model (2.1)-(2.3) with (3.1), (3.2), (3.3),
(3.4) and (3.5). If #(j)

0 belongs to the compact set � and �0jj 6= �0jj, i.e., �0jj 6= 0, thenb#(j)

n ! #
(j)
0 almost surely as n!1.

Remark 3.3 Note that �0jj 6= �0jj is an identi�ability condition. It appears naturally
when considering (2.5) as an ARMA(1,1)-X model for ln �2jt, with covariates ln �2`;t�1 (` 6=
j) and X`;t�1 (` 2 f1; : : : Kg).

To obtain a consistent estimator of the log-GARCH-X parameters, it remains to �nd

a consistent estimator of E ln�21 := � = (�1; : : : ; �M)>. Denote by bujt = eujt(b#(j)

n ) the
residuals of the j-th ARMA-X equation.

Lemma 3.1 Let the assumptions of Theorem 3.1, E�4jt <1 and E j�jtj�s <1 for some
s > 0. Almost surely, as n!1 we have

b�jn := � ln
1

n

nX
t=1

ebujt ! �j:

Let �(j)0 = (!0j; �0j1; : : : ; �0jM ; �0jj; �0j1; : : : ; �0jK)
> be the parameter involved in the

j-th equation of the log-GARCH model (2.3). The whole log-GARCH parameter �0 =
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(�
(1)>

0 ; : : : ; �
(M)>

0 )> is a function of the VARMA-X parameter:

�0 = 	('0) where '0 = (#>0 ; �
>)>:

The following result is an immediate consequence of Theorem 3.1 and Lemma 3.1.

Corollary 3.1 Let b�n = 	(b'n), with b'n =
�b#>n ; b�>n�>, and b� n =

�b�>1n; : : : ; b�>Mn

�>
.

Under the assumptions of Lemma 3.1, b�n is a strongly consistent estimator of �0.

3.2 Asymptotic normality

We now show the asymptotic normality of the equation-by-equation estimator b#n.

Theorem 3.2 Suppose that the assumptions of Lemma 3.1 hold and that #
(j)
0 belongs to

the interior of � for j = 1; : : : ;M . As n!1, we have

p
n
�b#n � #0

� L! N �0;J�1IJ�1� ;
where J is a block diagonal matrix with j-th d� d block J (j) = E

@ujt
@#

@ujt
@#>

(#
(j)
0 ) and I is a

matrix whose block (i; j) of size d� d is I(i; j) = EuitujtE
@uit
@#

(#
(i)
0 )

@ujt
@#>

(#
(j)
0 ):

Note that the theorem implies

p
n
�b#(j)

n � #(j)
0

� L! N
�
0;Eu2jt

�
J (j)

��1�
(3.9)

as n!1, for j = 1; : : : ;M . The matrices J (j) and I(i; j) can be estimated by

bJ (j)
=

1

n

nX
t=1

b�jt
b�>
jt;

bI(i; j) = 1

n

nX
t=1

buitbujt b�it
b�>
jt; with b�jt =

@eujt
@#

(b#(j)

n );

the b�jt being recursively computed, for t = 2; : : : ; n, by

b�jt = edj;t�1 + b�(j)n
b�j;t�1; (3.10)

with b�(j)n being the estimate of �0jj and

edj;t�1 = (�1;� ln �21;t�1; : : : ;� ln �2M;t�1; buj;t�1;�X1;t�1; : : : ;�XK;t�1)>

and the initial value b�j1 = 0d.

Proposition 3.1 Under the assumptions of Theorem 3.2, for all i; j = 1; : : : ;M we have

bJ (j) ! J and bI(i; j)! I(i; j) a.s. as n!1:
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We now give the asymptotic distribution of all the VARMA-X parameters b'n =

(b#0; b� )>.
Theorem 3.3 Under the assumptions of Theorem 3.2 and Lemma 3.1

p
n (b'n �'0)

L! N (0;�') ;

where �' can be estimated by b�' = cM b��cM>
with

cM =

 
�bJ�1 0Md�MbDbJ�1 bE

!
; bD =

0BB@
bD>
1 0

. . .

0 bD>
M

1CCA with bDj =
1

n

nX
t=1

b�jt;

bE = �diag(eb�1 ; : : : ; eb�M ) and b�� = 1
n

Pn
t=1
b�t
b�>
t with

b�t =
�bu1t b�>

1t; � � � ; buMt
b�>
Mt; e

bu1t � e�b�1 ; � � � ; ebuMt � e�b�M
�>

:

To deduce the asymptotic distribution of b�n from that of b'n we need to compute the
Md�M(d+ 1) matrix @	('0)

@'>
. For instance, in the case K = 1 and M = 2, we have

@	('0)

@'>
=

0BBBBBBBBBBBBBB@

1 0 0 �1 0 0 0 0 0 0 �011 � 1 0
0 1 0 �1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 �2 0 0 �022 � 1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 �1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

1CCCCCCCCCCCCCCA
:

More generally, for j = 1; : : : ;M , the line d(j � 1) + 1 of that matrix is given by

@	d(j�1)+1('0)

@'>
=
�
0
>
d(j�1) 1 0

>
M �j 0

>
K 0

>
d(M�j) 0

>
j�1 �0jj � 1 0

>
M�j

�
;

the line d(j � 1) + 1 + j is given by

@	d(j�1)+1+j('0)

@'>
=
�
0
>
d(j�1) 0

>
j 1 0

>
M�j �1 0

>
K 0

>
d(M�j) 0

>
M

�
;

the line d(j � 1) + 1 + k for k = 1; : : : ; j � 1 or k = j + 1; : : : ;M is given by

@	d(j�1)+1+k('0)

@'>
=
�
0
>
d(j�1) 0

>
k 1 0

>
M�k 0 0

>
K 0

>
d(M�j) 0

>
M

�
;

10



the line d(j � 1) +M + 2 is given by

@	d(j�1)+M+2('0)

@'>
=
�
0
>
d(j�1) 0

>
M+1 1 0

>
K 0

>
d(M�j) 0

>
M

�
;

and the line d(j � 1) +M + 2 + k for k = 1; : : : ; K is given by

@	d(j�1)+M+2+k('0)

@'>
=
�
0
>
d(j�1) 0

>
M+k+1 1 0

>
K�k 0

>
d(M�j) 0

>
M

�
:

A direct application of the delta method then gives the following result.

Corollary 3.2 Under the assumptions of Theorem 3.3

p
n
�b�n � �0� L! N

�
0;�� :=

@	('0)

@'>
�'

@	>('0)

@'

�
;

as n!1.

3.3 Constrained models

The asymptotic results of the previous section can readily be used to test the signi�cance
of the log-GARCH parameters (see Section 5.1 for an illustration). Such tests may lead
to the estimation of new models in which some coe�cients are constrained to be zero.
Similarly, even if estimation of a large system of dimension M is performed equation-by-
equation, a general model of the form (2.3) remains intractable when M is large (in each
equation, the number of parameters is M + K + 2). For these reasons, one could want
to impose constraints, such as a diagonal or block-diagonal form for the matrix �0 (see
Section 5.2 for an illustration).

A way to introduce very general constraints is to assume that the VARMA-X model
(2.4) is parameterised by a vector #0, that does not necessarily correspond to the param-
eter de�ned in Section 3.1, and may be of lower dimension. We thus assume that c0 =

c(#0), �0 = �(#0), �0 = �(#0) and �0 = �(#0), and that #0 =
�
#
(1)>

0 ; : : : ;#
(M)>

0

�>
,

where #(j)
0 is the vector of the unknown parameters involved in the j-th VARMA-X

equation. Parameter #(j)
0 belongs to some compact parameter space �(j), whose generic

element # has typically less than M +K + 2 components. If, for instance, matrix �0 is
assumed to be diagonal, then one can set

# = (cj; �jj + �jj; �jj; �j1; : : : ; �jK)
> ; �(j) = � � RK+3:

In the general case, it is assumed that the parameterisation satis�es

the application # 7! fc(#);�(#);�(#);�(#)g is injective (3.11)

and
admits continuous third order derivatives in �(1) � � � � ��(M). (3.12)

11



Assume also that, denoting by �jj(#) the j-th diagonal term of �(#),

j�jj(#)j < 1; 8# 2 �(1) � � � � ��(M): (3.13)

With this change of notation, the estimator of #(j)
0 can still be de�ned by (3.7), replacing

� by �(j) if necessary. The asymptotic behaviour of b#(j)

n is unchanged.

More precisely, the strong consistency of b#(j)

n to #(j)
0 holds true under the previous

assumptions (3.1), (3.2), (3.3), (3.4), (3.5), the invertibility condition (3.13) and the iden-
ti�ability conditions (3.11) and �jj(#0) 6= 0. The asymptotic normality of Theorem 3.2
continues to hold under the additional assumption that #(j)

0 belongs to the interior of �(j)

for all j, and under the smoothness condition (3.12). The output of Proposition 3.1 also
remains valid if, in (3.10), the de�nition of edj;t�1 is changed into

edj;t�1 =� @

@#
cj

�b#(j)

n

�
�

MX
`=1

ln �2`;t�1
@

@#
�j`

�b#(j)

n

�
�

KX
`=1

X`;t�1
@

@#
�j`

�b#(j)

n

�
+ euj;t�1(b#(j)

n )
@

@#
�jj

�b#(j)

n

�
:

With this modi�cation, Theorem 3.3 directly applies.
As an illustration, consider for instance the case where �0 is assumed to be diagonal.

Moreover, assume that one wants to estimate the model with K = 2 covariates under
the constraint �j1 = �j2 for all j. The condition (3.11)-(3.12) is satis�ed with # =
(cj; �jj; �jj; �j1) = (c; �j; �; �1). If �(j) is assumed to be a compact subset of R2�(�1; 1)�
R, the condition (3.13) also holds true. In particular, we have (3.9) where J (j) is a 4� 4
matrix which can be consistently estimated as in Proposition 3.1 with

edj;t�1 = (�1;� ln �2j;t�1; buj;t�1;�X1;t�1 �X2;t�1)>:

4 Proofs

We �rst state a lemma that will be used to show the identi�ability of the parameters in
model (2.5).

Lemma 4.1 Assume (3.2), (3.3) and (3.4). If for some non-random vectors �1 of RM

and �2 of R
K, and for some random variable �3;t�1 2 Ht�1 we have

�>1 ln �2t + �
>
2 lnX t + �3;t�1 = 0 a.s. (4.1)

then �1 = 0M , �2 = 0K, and �3;t�1 = 0 almost surely.

Proof of Lemma 4.1. Subtracting the mean, conditionally to Ht�1, on both sides of
equality (4.1), we obtain �>1 ut + �

>
2 vt = 0 a.s., which entails �1 = 0M and �2 = 0K by

12



(3.4), and then that �3;t�1 = 0 a.s. 2

Proof of Theorem 3.1. We have

sup
#2�

jujt(#)� eujt(#)j = sup
#2�

�t�1 juj1(#)� euj1(#)j � K�t; (4.2)

where, here and in the sequel of the paper, K denotes a generic positive random variable
which is F0-measurable, and � denotes a generic constant belonging to [0; 1). Note that
K�t tends almost surely to zero as t ! 1 wihout any moment assumption on K be-
cause Pr f! 2 
 : limt!1K(!)�t = 0g = 1 for any real random variable de�ned on some
probability space (
;A;Pr). Letting Q(j)

n (#) = n�1
Pn

t=1 u
2
jt(#), we then have

sup
#2�

���Q(j)
n (#)� eQ(j)

n (#)
��� � K

n

1X
t=1

�t
�
2 sup
#2�

jujt(#)j+K�t
�
= O

�
1

n

�
a.s. (4.3)

For the last equality, we use the fact that, under the moments conditions and the com-
pactness assumption,

sup#2� jujt(#)j2 <1, and thus the L2-norm of the sum is �nite,
which entails that the sum is �nite almost surely.

By the ergodic theorem we have almost surely

lim
n!1

Q(j)
n (#) = Eu2jt(#) = Eu2jt + E fujt(#)� ujtg2 ;

because ujt is uncorrelated with ujt(#)� ujt 2 Ft�1, under assumption (3.5). In view of
(4.3), we thus have

lim
n!1

eQ(j)
n (#) = lim

n!1
Q(j)

n (#) � lim
n!1

Q(j)
n (#

(j)
0 ) = lim

n!1
eQ(j)
n (#

(j)
0 ) a.s.

where the inequality is an equality if and only if Pr fujt(#) = ujtg = 1. The last equality
is equivalent to�

1� �0jjB

1� �0jjB
� 1� �jB

1� �B

�
ln �2jt �

�
c0j

1� �0jj
� c

1� �

�
�
X
` 6=j

�
�0j`B

1� �0jjB
� �`B

1� �B

�
ln �2`t �

KX
`=1

�
�0j`

1� �0jjB
� �`

1� �B

�
X`;t�1 = 0 a.s.

By Lemma 4.1, this entails that the four terms displayed in brackets are equal to zero.
Under the condition �0jl 6= �0jj, this implies that # = #

(j)
0 . We thus have shown that

lim
n!1

eQ(j)
n (#) > lim

n!1
eQ(j)
n (#

(j)
0 );

when # 6= #
(j)
0 . Using standard arguments (used, for instance, to show (d) on Page 157

in Francq and Zakoïan (2010)) the result can be extended to show that for any # 6= #
(j)
0
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there exists a neighborhood V (#) of # such that

lim inf
n!1

inf
#�2V (#)\�

Q(j)
n (#�) > lim

n!1
Q(j)

n (#
(j)
0 ):

The conclusion then follows from a compactness argument. 2

Proof of Lemma 3.1. We �rst study the e�ect of the initial values. A Taylor expansion
and (4.2) show that

sup
#2�

��eujt(#) � eeujt(#)
�� � K�t sup

#2�
eujt(#):

Since E sup#2� jujt(#)j <1, we have sup#2� jujt(#)j =t! 0 a.s. as t!1. Therefore,

lim sup
t!1

1

t
ln sup

#2�

��eujt(#) � eeujt(#)
�� � ln � < 0;

and thus
sup
#2�

��eujt(#) � eeujt(#)
�� < K�t;

from which we deduce

sup
#2�

����� 1n
nX
t=1

eujt(#) � 1

n

nX
t=1

eeujt(#)

����� = O

�
1

n

�
a.s. (4.4)

Now note that

@eujt(#)

@#
= eujt(#)

@ujt(#)

@#
;

@ujt(#)

@#
= dt�1(#) + �

@uj;t�1(#)
@#

; (4.5)

with

dt�1(#) = (�1;� ln �21;t�1; : : : ;� ln �2M;t�1; uj;t�1(#);�X1;t�1; : : : ;�XK;t�1)>: (4.6)

Moreover, we have@eujt(#)@#
� @eujt(#

(j)
0 )

@#

 � ���eujt(#) � eujt(#
(j)
0 )
��� @ujt(#)@#


+ eujt(#

(j)
0 )

@ujt(#)@#
� @ujt(#

(j)
0 )

@#

 :
The compactness of �, the fact that sup#2� j�j < 1 and (3.3) entail that

E sup
#2�

@ujt(#)@#

2 <1: (4.7)

By Lemma 2.1 and Remark 2.1 in Francq and Sucarrat (2013), it can be shown that there
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exists a neighbourhood V (#
(j)
0 ) of #(j)

0 such that

E sup
#2V (#(j)

0 )

��eujt(#)��2 <1: (4.8)

Let Vk(#
(j)
0 ) be the ball of centre #(j)

0 and radius 1=k. The dominated convergence theorem
and (4.8) imply

lim
k!1

E sup
#2Vk(#(j)

0 )\�

���eujt(#) � eujt(#
(j)
0 )
���2 = 0: (4.9)

The Lebesgue dominated convergence theorem also shows that

lim
k!1

E sup
#2Vk(#(j)

0 )\�

@ujt(#)@#
� @ujt(#

(j)
0 )

@#

 = 0: (4.10)

Note that (2.1)-(2.2) entail that E(�2jt) = 1, and thus Eeujt = e��j . Using (4.7) and (4.9)
with the Cauchy-Schwarz inequality, and (4.10) with (3.5) and Eeujt = e��j , we �nally
obtain

lim
k!1

E sup
#2Vk(#(j)

0 )\�

 @

@#
eujt(#

(j)
0 ) � @

@#
eujt(#)

 = 0: (4.11)

Note also that, by (3.5), ujt = ujt(#
(j)
0 ) is independent of Ft�1. In view of the strong

consistency established in Theorem 3.1, it follows from (4.11) that for any sequence #n

between b#(j)

n and #(j)
0 , almost surely

lim
n!1

1

n

nX
t=1

@

@#
eujt(#n) = lim

n!1
1

n

nX
t=1

@

@#
eujt(#

(j)
0 ) = e��jE

@ujt(#
(j)
0 )

@#
: (4.12)

Now it su�ces to point out that (4.4) and a Taylor expansion entail

1

n

nX
t=1

ebujt =
1

n

nX
t=1

eujt +
�b#(j)

n � #(j)
0

�> 1

n

nX
t=1

@

@#
eujt(#n) +O

�
1

n

�
= e��1 + o(1):

2

Proof of Theorem 3.2. Similarly to (4.3), it can be seen that

sup
#2�

 @

@#
Q(j)

n (#)� @

@#
eQ(j)
n (#)

 = O

�
1

n

�
a.s. (4.13)

By arguments that are similar to those used to prove (e) on Page 174 in Francq and

Zakoïan (2010), one can show that for any sequence #n between b#(j)

n and #(j)
0 , we have

lim
n!1

@2

@#@#>
Q(j)

n (#n) = 2J (j) a.s.
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The existence of J (j) comes from (4.5)-(4.6) and (3.2)-(3.3). Therefore, by using a Taylor
expansion, we obtain

o(1) =
p
n
@

@#
Q(j)

n

�b#(j)

n

�
=
p
n
@

@#
Q(j)

n

�
#
(j)
0

�
+
p
n
�b#(j)

n � #(j)
0

�n
2J (j) + o(1)

o
:

The central limit theorem of Billingsley (1961) for stationary and square integrable mar-
tingale di�erences entails that

p
n

0BBB@
@
@#
Q
(1)
n

�
#
(1)
0

�
...

@
@#
Q
(M)
n

�
#
(M)
0

�
1CCCA =

2p
n

nX
t=1

0B@ u1t
@u1t
@#
...

uMt
@uMt

@#

1CA
#0

L! N (0; 4I)

as n!1. It remains to show that the matrices J (j) are nonsingular. If J (j) is singular,
then there exists a non-zero vector � of Rd, such that �> @ujt

@#
= 0 a.s. By (4.5), this

entails �>dt(#
(j)
0 ) = 0 a.s. In view of Lemma 4.1, this is in contradiction with (3.4). The

conclusion follows. 2

Proof of Proposition 3.1. Using already-used arguments, it can be shown that the
initial values are unimportant. More precisely, we have bI(i; j) = In(b#n) + o(1) a.s., with

In(#) = I i;jn (#) =
1

n

nX
t=1

uit(#
(i))ujt(#

(j))�it(#
(i))�>

jt(#
(j)); �jt(#

(j)) =
@ujt
@#

(#(j)):

By the ergodic theorem In(#0)! I(i; j) a.s. as n!1. Since b#n ! #0 a.s., it remains
to show that for all " > 0, there exists a neighbourhood V (#0) of #0, such that

lim
n!1

sup
#2V (#0)

In(#)� I i;jn (#0)
 < ": (4.14)

Let Vk(#0) be the ball of centre #0 and radius 1=k. Note that

sup
#2Vk(#0)

kIn(#)� In(#0)k � 1

n

nX
t=1

xt(k)

where

xt(k) = sup
#2Vk(#0)

kY t(#)� Y t(#0)k ; Y t(#) = uit(#
(i))ujt(#

(j))�it(#
(i))�>

jt(#
(j)):

Since uit(#
(i)) and the components of �it(#

(i)) admit moments of order 2, uniformly in
� (see (4.7)), we have

E sup
#2�M

kY t(#)k <1: (4.15)

The process fxt(k)gt being stationary and ergodic, the left-hand side of (4.14) is a.s.
bounded by Ext(k). Noting that xt(k) ! 0 a.s. as k ! 1, we obtain (4.14) by the
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dominated convergence theorem and (4.15). The consistency of bI(i; j) is shown. That ofbJ (j)
is obtained similarly. 2

Proof of Theorem 3.3. We �rst show that the initial values are asymptotically negligi-
ble. In view of (4.4) and the almost sure convergence of 1

n

Pn
t=1 e

bujt to e��1 > 0, a Taylor
expansion shows that�����b�jn + ln

1

n

nX
t=1

eujt(
b#
(j)

n )

����� � K

����� 1n
nX
t=1

eujt(
b#
(j)

n ) � 1

n

nX
t=1

eeujt(
b#
(j)

n )

����� = o
�
n�1=2

�
a.s.

Doing again a Taylor expansion, we obtain

ln
1

n

nX
t=1

eujt(
b#
(j)

n ) = ln
1

n

nX
t=1

eujt(#
(j)
0 ) +

1
1
n

Pn
t=1 e

ujt(#n)

1

n

nX
t=1

@

@#>
eujt(#n)

�b#(j)

n � #(j)
0

�

for some sequence #n between b#(j)

n and #(j)
0 . In view of (4.12) and Theorem 3.2, it follows

that

p
n (b�jn � �j) =

p
n

 
� ln

1

n

nX
t=1

eujt � �j

!
�D>

j

p
n
�b#(j)

n � #(j)
0

�
+ oPr(1);

where Dj = E
@uj1(#

(j)
0 )

@#
. Now, using Lemma 3.1 we have

ln
1

n

nX
t=1

eujt = ��j + 1

e��j + o(1)

1

n

nX
t=1

�
eujt � e��j

�
:

Putting the results together, we obtain

p
n (b�jn � �j) = �e�j 1p

n

nX
t=1

�
eujt � e��j

��D>
j

p
n
�b#(j)

n � #(j)
0

�
+ oPr(1):

From the proof of Theorem 3.2, it follows that

p
n (b'n �'0) =M

1p
n

nX
t=1

�t + oPr(1);

where

�t =

0BBBBBBBB@

u1t
@u1t
@#

(#(1))
...

uMt
@uMt

@#
(#(M))

eu1t � e��1
...

euMt � e��M

1CCCCCCCCA
; M =

� �J�1 0Md�M
DJ�1 E

�
; D =

0B@ D>
1 0

. . .
0 D>

M

1CA
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and E = �diag(e�1 ; : : : ; e�M ): By already-given arguments, 1p
n

Pn
t=1�t

L! N (0;��) ;
where

�� =

�
I �#;�

�
>
#;� ��

�
; �#;� =

0B@ cov(u1t; eu1t)D1 � � � cov(u1t; euMt)D1
...

cov(uMt; e
u1t)DM � � � cov(uMt; e

uMt)DM

1CA
and

�� =
�
cov(euit ; eujt)

�
:

2

5 Empirical applications

5.1 Volatility spillover

How, and to what extent, volatility in one �nancial market may spill over to others is
of importance for both policymakers and investors. In ordinary multivariate GARCH
models, the study of volatility spillover rests upon complicated conditions on the parame-
ters, and on the restrictive assumption that the conditional correlations are constant, see
Conrad and Weber (2013), and Pedersen (2015). By contrast, in our model, complicated
assumptions on the parameters are not required (due to the exponential volatility speci-
�cation), and our tests are valid under time-varying conditional correlations of unknown
form. Indeed, a variety of tests can be undertaken either equation-by-equation, or jointly
for the whole system. Furthermore, we can also test whether covariates, e.g., volatility
proxies, provide additional � or alternative � channels of volatility spillover.

We illustrate the �exibility and generality of the results from the previous section
in a study of how the stock market volatilities of Europe and the US a�ect each other.
For illustration purposes, we restrict our attention to only two indices, the FTSE 100
and the Standard and Poor's 100 (SP100), and initially we only include two variables
in the X-part: The log of a range-based volatility proxy for FTSE 100 and SP100, re-
spectively. The range, i.e., the di�erence between the maximum and minimum prices,
is often available, and constitutes a volatility proxy, see, e.g., Parkinson (1980) and
Garman and Klass (1980). The log of our range-based volatility-proxy is computed as
ln [(hight � lowt) � 100]2, where hight is the natural log of the maximum value during day
t, and where lowt is the natural log of the minimum value during day t. The source of our
data is Bloomberg and goes from 2 January 1998 to 1 June 2015, a total 4297 observations
before di�erencing and lagging. Initially, before we add more variables to the X-part, all of
our estimated models will be contained in the two-dimensional log-GARCH(1,1)-X model

ln�21;t = !01 + �011 ln �
2
1;t�1 + �012 ln �

2
2;t�1 + �01 ln�

2
1;t�1

+�011X1;t�1 + �012X2;t�1; (5.1)

ln�22;t = !02 + �021 ln �
2
1;t�1 + �022 ln �

2
2;t�1 + �02 ln�

2
2;t�1

+�021X1;t�1 + �022X2;t�1; (5.2)
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where �1;t and �2;t denote daily European and US return (in percent), respectively, at
day t, and X1;t and X2;t are the logs of the volatility proxies at day t. The VARMA-X
representation of this model is

ln �21;t = c01 + �011 ln �
2
1;t�1 + �012 ln �

2
2;t�1 � �01u1;t�1

+�011X1;t�1 + �012X2;t�1 + u1;t; (5.3)

ln �22;t = c02 + �021 ln �
2
1;t�1 + �022 ln �

2
2;t�1 � �02u2;t�1

+�021X1;t�1 + �022X2;t�1 + u2;t; (5.4)

where, for equation j = 1; 2,

c0j = !0j + (1� �0j)E(ln �
2
j;t); �0jj = �0jj + �0j and uj;t = ln �2j;t � E(ln �2j;t):

We start by estimating two univariate log-GARCH(1,1) models for comparison pur-
poses:

ln b�21;t = 0:066 + 0:047
(0:006)

ln �21;t�1 + 0:943
(0:008)

ln b�21;t�1; (5.5)

ln b�22;t = 0:070 + 0:046
(0:006)

ln �22;t�1 + 0:947
(0:007)

ln b�22;t�1: (5.6)

The numbers in parentheses are standard errors of the estimates (we explain how they are
computed below). It should be noted, though, that they cannot be used to test whether
the ARCH parameter �0jj is equal to zero (under the null), since �0jj 6= 0 is required
in Theorem 3.1. Con�dence intervals can, however, be derived (under the assumption
that this parameter is nonzero). The ARCH and GARCH estimates are in the usual
range: The ARCH parameters are close to 0.05, the GARCH parameters are close to
0.95 and their sum in each equation is close to 1. Next, we estimate the two-dimensional
log-GARCH(1,1)-X model using our EBEE, which gives

ln b�21;t = �0:191� 0:020
(0:014)

ln �21;t�1 � 0:012
(0:014)

ln �22;t�1 + 0:674
(0:048)

ln b�21;t�1
+0:158

(0:032)
X1;t�1 + 0:172

(0:042)
X2;t�1; (5.7)

ln b�22;t = �0:232� 0:010
(0:013)

ln �21;t�1 � 0:056
(0:014)

ln �22;t�1 + 0:751
(0:032)

ln b�22;t�1
+0:081

(0:030)
X1;t�1 + 0:258

(0:035)
X2;t�1: (5.8)

It is noteworthy that all ARCH e�ects become negative � currently there are no QMLE
results for ordinary, i.e., non-exponential, GARCH models in the presence of negative
ARCH e�ects (Pedersen (2015)), and that only one of the ARCH e�ects � that of SP100
on its own log-volatility � is signi�cant according to usual signi�cance levels. It is also
noteworthy that the GARCH e�ects fall to 0.674 and 0.751, respectively. This is in
line with the �ndings of Lamoureux and Lastrapes (1990). Both volatility proxies are
signi�cant in both equations according to t-tests at usual signi�cance levels, hence overall,
the t-tests suggest the volatility spill-over is via the volatility proxies, and not the ARCH
e�ects.
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The standard errors can be computed in at least two ways. The �rst, which is usually
the simplest in practice, exploits the fact that numerical software often provides utility
functions for the numerical computation of the Hessian of the criterion function. In numer-
ical software, the least squares estimator of an ARMA-X speci�cation is typically imple-
mented by minimising

Pn
t=1 eu2jt(#) (rather than the average Q(j)

n (#) = n�1
Pn

t=1 eu2jt(#)).
Let cH(j)

n (b#(j)

n ) denote a numerical estimate of the Hessian of the criterion functionPn
t=1 eu2jt(b#(j)

n ) about the least squares estimate b#(j)

n . This means that n�1cH(j)

n (b#(j)

n )

provides an estimate of 2J (j), since (see the proof of Theorem 3.2)

lim
n!1

@2

@#@#>
Q(j)

n (#n) = 2J (j) a.s.

The expression  
1

n

nX
t=1

bu2jt
!
� 2n �

�cH(j)

n (b#(j)

n )
��1

thus provides an estimate of the asymptotic variance-covariance matrix Eu2jt
�
J (j)
��1

for
equation j. Finally, to obtain the empirical variance-covariance matrix of the log-GARCH-
X parameters in equation j, the relationships between the ARMA-X and log-GARCH-X
parameters are used. The standard errors in all of the equations above have been com-
puted in this way.4 The second way the standard errors can be computed is by using the
formulas following Theorem 3.2, and whose strong consistency is ensured by Proposition
3.1. This is necessary if the joint variance-covariance matrix of all the parameters in
the M -dimensional VARMA-X system of equations is needed. When studying volatility
spillover e�ects, we are indeed interested in the joint variance-covariance of all the pa-
rameters, hence we now use these formulas instead. The null-hypothesis of no spillover
e�ects between European and US markets corresponds to

H0 : �012 = �012 = �021 = �021 = 0: (5.9)

These are linear restrictions on a subset of the parameters of the VARMA-X represen-
tation. The associated Wald-statistic is distributed as a Chi-squared distribution with 4
degrees of freedom, and turns out to be huge: 7601.2. Therefore, the null of no spill-over
is resoundingly rejected at common signi�cance levels.

To further illustrate the computational attractiveness of our estimator, we add more
variables to the X-part. It is often the case that additional explanatory information is
readily available, for example, volume and leverage. For ordinary or non-exponential
GARCH models, strong non-negative restrictions on parameters are needed if one were
to include this additional information. In the multivariate log-GARCH(1,1)-X model, by

4The R package lgarch version 0.6, see Sucarrat (2015), was used.
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contrast, we readily obtain the following estimates by means of our EBEE:

ln b�21;t = �0:280� 0:010
(0:011)

ln �21;t�1 � 0:005
(0:011)

ln �22;t�1 + 0:807
(0:034)

ln b�21;t�1 + 0:117
(0:025)

X1;t�1

+ 0:067
(0:028)

X2;t�1 + 0:143
(0:048)

X3;t�1 + 0:212
(0:049)

X4;t�1 � 0:055
(0:134)

X5;t�1 + 0:262
(0:165)

X6;t�1 (5.10)

ln b�21;t = �0:428� 0:004
(0:012)

ln �21;t�1 � 0:050
(0:013)

ln �22;t�1 + 0:776
(0:031)

ln b�21;t�1 + 0:068
(0:027)

X1;t�1

+ 0:214
(0:034)

X2;t�1 + 0:241
(0:052)

X3;t�1 + 0:248
(0:052)

X4;t�1 � 0:061
(0:136)

X5;t�1 � 0:111
(0:177)

X6;t�1: (5.11)

The X3;t and X4;t are leverage terms de�ned as I�1;t<0 and I�2;t<0, and X5;t and X6;t are the
�rst-di�erence of log-volume. The leverage terms are highly signi�cant at usual signi�cant
levels in both equations according to t-tests, but the volume variables are not.

5.2 A 50-dimensional log-GARCH-X model with time-varying

correlations

Estimation of large multivariate GARCH models is plagued by the curse of dimensional-
ity: As the dimension grows, it becomes computationally unfeasible to reliably estimate
the parameters jointly. Our estimator sidesteps this problem by estimating the system
equation-by-equation. To illustrate we estimate a constrained version (see Section 3.3)
of an M -dimensional log-GARCH-X model of the returns of the stocks that make up the
EURO STOXX 50 index. The source of our individual stock price data is Bloomberg and
goes from 2 January 1998 to 11 June 2015, a total of up to 4474 observations before dif-
ferencing, lagging and data-cleaning (e.g., removal of missing X-values, etc.). Estimation
of the 50 equations is fast, since it takes just over one minute on a laptop computer.5 The
jth. equation is given by

ln�2jt = !j + �j1 ln �
2
j;t�1 + �j ln�

2
j;t�1 + �j1Xj1;t�1

+�j2X2;t�1 + �j3X3;t�1 + �j4X4;t�1 + �j5X5;t�1; (5.12)

where Xj1;t is a leverage-term for return �j;t computed as Xj1;t = I�1;t<0, X2;t is the log
of squared EURO STOXX 50 return, X3;t is a leverage-term for the EURO STOXX 50
return, X4;t is the di�erence of the log of EURO STOXX 50 volume and X5;t is a range-
based volatility proxy of EURO STOXX 50 return (computed in the same way as earlier).
The constraint we impose on the multivariate system is thus that �0 is diagonal.6 Table 1
contains the results, and an asterisk (�) indicates signi�cance at the 10% level. The ARCH
(�j1), GARCH (�j) and leverage (�j1) parameters behave as expected. All the ARCH
parameters are positive and in the 0:01 to 0:06 range, all the GARCH parameters are
positive, in the 0:81 to 0:97 range and signi�cant at 10%, and all the leverage parameters
are positive (41 of them signi�cant at 10%). The �rst unexpected result is the impact of
X2;t, which is de�ned as ln �2t where �t is the daily log-return (in percent) of the EURO

5The model is estimated with the R package lgarch version 0.6 (Sucarrat (2015)) under R version
3.2.2 running on Windows 7 (64-bit) on a Lenovo X250 with an Intel CORE i7 processor and 16GB RAM.

6Otherwise each of the j equations would have M +K + 2 = 57 parameters.
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STOXX 50 index. The twelve terms that are signi�cant all have a negative e�ect, while
one would maybe have expected a positive one. The e�ect is small, however, since the
largest � in absolute value � is 0.023 (for j = 8). An economic explanation for the negative
impact is, possibly, that higher EURO STOXX 50 volatility reduces volatility for certain
types of stocks. Further investigation is needed in order to shed light on this hypothesis.
The leverage term of the EURO STOXX 50 index, X3;t, is positive and signi�cant for
all but four (when j = 5; 23; 27 and 47) out of the 50 stocks, and economically quite
substantial when compared with the ARCH e�ects, i.e., �j1 and �0j2. Thirteen of the
stocks are signi�cantly a�ected by EURO STOXX 50 volume, X4;t, and in all these cases
the e�ect is positive. In other words, higher EURO STOXX 50 volume increases volatility
� on average � on the next day for these stocks. Finally, the EURO STOXX 50 volatility
proxy, X5;t, has a positive and signi�cant impact in thirty-seven out of �fty cases.

To obtain estimates of the conditional correlations we �t the corrected DCC (cDCC)
model of Aielli (2013), which is a modi�ed version of Engle's (2002) DCC. The cDCC
model is given by

Rt = Q
��1=2
t QtQ

��1=2
t ; Qt = (1� 0 � �0)S0 + 0Q

�1=2
t�1 �t�1�

>
t�1Q

�1=2
t�1 + �0Qt�1 (5.13)

where 0; �0 � 0, 0+ �0 < 1, S0 is a correlation matrix, Q�
t is a diagonal matrix with the

elements from the diagonal of Qt and �t = D�1
t �t. Estimation of 0 and �0 by Gaussian

QML yields the estimator

(b; b�) = arg min
(;�)

nX
t=1

�
ln jbRtj+ b�>t bR�1

t b�t� ; (5.14)

where b�t are the standardised residuals from the 50 log-GARCH models,

bRt = bQ��1=2
t

bQt
bQ��1=2
t ; bQt = (1� b � b�)Sn + b bQ�1=2

t�1 b�t�1b�>t�1 bQ�1=2
t�1 + b� bQt�1

Sn =
1

n

nX
t=1

bQ�1=2
t b�tb�>t bQ�1=2

t ; bQ�
t = diag(bq11t; : : : ; bqmmt)

bqiit = (1� b � b�) + bb�2i;t�1 + b�bqi;t�1 for i = 1; : : : ;m:

The estimates of 0 and �0 are 0.003 and 0.963, respectively, which suggests the correla-
tions are very persistent. Figure 1 contains histograms of selected descriptive statistics
of the 50 � 49=2 = 1225 �tted correlations paths. Graphically, the empirical distribution
of the unconditional correlations is bell-shaped and symmetric about 0.49 (the mean and
median are virtually identical, 0.487 and 0.485, respectively), and the maximum and min-
imum unconditional correlations are 0.89 and 0.16. The distributions of the minima and
maxima of the conditional correlations are also unimodal, but somewhat skewed to the
left and right, respectively. Moreover, the distribution of the minima reveals that some
paths cross the zero line.

22



6 Conclusions

We derive an equation-by-equation estimator (EBEE) of a multivariate log-GARCH-X
model that admits feedback e�ects between the equations, and Dynamic Conditional
Correlations (DCCs). Our least squares EBEE does not rely on �nancial returns being
distributed according to a speci�c conditional distribution, e.g., the multivariate normal.
Equation-by-equation estimation is particularly attractive when the dimensionality of the
system is large, or when the number of covariates is large, or both, since then estimation
often becomes numerically unfeasible due to the "curse of dimensionality". The vector
of covariates ("X") is assumed to be stationary and ergodic, which means many of the
variables that are believed to have an impact on volatility, and which are readily available,
e.g., leverage, volume and volatility proxies, can be included as conditioning variables.
Both strong consistency and asymptotic normality of our EBEE is proved under mild
assumptions, and consistency of the estimators of the terms involved in the asymptotic
variance-covariance matrices is also proved.

Two empirical applications illustrate the usefulness of the results. In the �rst, we show
how the volatility-spillover hypothesis can be tested when it involves restrictions in several
equations � the null of no spillover is resoundingly rejected. In the second application,
we illustrate how a high-dimensional multivariate log-GARCH-X model can readily be
estimated in minutes. The model concerns the constituent returns of the EURO STOXX
50 index, i.e., the model is 50-dimensional, and the X-part contains a leverage term, past
values of EURO STOXX 50 variability together with its leverage, volume and a range-
based volatility proxy. One or more of these are found to be signi�cant in most of the
equations.

Among the potential developments of the present work, let us mention that, in par-
ticular for the applications, it would be sensible to allow covariates obtained from mixed
data sampling (MIDAS). The linear structure of the log-GARCH-X model should help to
de�ne an operational log-GARCH-MIDAS model.
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Table 1: A multivariate Log-GARCH(1,1)-X model of the
EURO STOXX 50 constituent returns (see Section 5.2)

j b!0j
(s:e:)

b�0jj
(s:e:)

b�0jj
(s:e:)

b�0j1
(s:e:)

b�0j2
(s:e:)

b�0j3
(s:e:)

b�0j4
(s:e:)

b�0j5
(s:e:)

1 �0:040 0:047
(0:007)�

0:900
(0:023)�

0:110
(0:036)�

�0:007
(0:007)

0:122
(0:035)�

�0:025
(0:089)

0:034
(0:015)�

2 0:011 0:038
(0:008)�

0:932
(0:017)�

0:059
(0:028)�

�0:005
(0:006)

0:076
(0:033)�

0:328
(0:091)�

0:021
(0:010)�

3 �0:002 0:043
(0:006)�

0:911
(0:013)�

0:117
(0:032)�

0:003
(0:007)

0:078
(0:034)�

0:126
(0:089)

0:034
(0:012)�

4 �0:011 0:033
(0:006)�

0:946
(0:013)�

0:048
(0:030)

�0:001
(0:006)

0:104
(0:030)�

0:082
(0:092)

0:010
(0:009)

5 �0:007 0:028
(0:005)�

0:967
(0:006)�

0:070
(0:019)�

�0:005
(0:004)

0:019
(0:021)

0:182
(0:084)�

0:007
(0:005)

6 �0:016 0:043
(0:006)�

0:939
(0:011)�

0:076
(0:024)�

�0:007
(0:005)

0:063
(0:026)�

0:132
(0:082)

0:016
(0:008)�

7 �0:052 0:027
(0:006)�

0:919
(0:013)�

0:109
(0:030)�

�0:004
(0:006)

0:146
(0:034)�

0:092
(0:085)

0:048
(0:013)�

8 �0:075 0:034
(0:007)�

0:860
(0:021)�

0:179
(0:040)�

�0:023
(0:009)�

0:096
(0:040)�

�0:017
(0:089)

0:091
(0:020)�

9 0:034 0:027
(0:007)�

0:876
(0:027)�

0:081
(0:037)�

0:005
(0:008)

0:082
(0:037)�

0:144
(0:097)

0:054
(0:020)�

10 �0:050 0:038
(0:006)�

0:899
(0:017)�

0:132
(0:033)�

�0:017
(0:007)�

0:083
(0:036)�

0:058
(0:090)

0:069
(0:018)�

11 �0:066 0:033
(0:008)�

0:891
(0:019)�

0:191
(0:037)�

�0:018
(0:008)�

0:072
(0:038)�

0:062
(0:088)

0:080
(0:019)�

12 �0:005 0:032
(0:006)�

0:942
(0:012)�

0:042
(0:025)�

�0:006
(0:005)

0:079
(0:027)�

�0:006
(0:090)

0:023
(0:010)�

13 �0:016 0:046
(0:008)�

0:915
(0:017)�

0:115
(0:033)�

�0:012
(0:007)�

0:071
(0:034)�

0:104
(0:091)

0:037
(0:013)�

14 0:008 0:039
(0:006)�

0:937
(0:012)�

0:039
(0:026)

0:000
(0:006)

0:091
(0:028)�

0:213
(0:086)�

0:014
(0:009)�

15 �0:005 0:035
(0:007)�

0:897
(0:019)�

0:063
(0:032)�

�0:012
(0:008)

0:111
(0:037)�

0:022
(0:093)

0:060
(0:017)�

16 0:010 0:046
(0:007)�

0:933
(0:014)�

0:064
(0:028)�

�0:004
(0:006)

0:058
(0:027)�

0:050
(0:087)

0:011
(0:008)

17 �0:010 0:033
(0:007)�

0:907
(0:021)�

0:083
(0:031)�

�0:004
(0:007)

0:115
(0:037)�

�0:042
(0:093)

0:055
(0:019)�

18 �0:008 0:033
(0:007)�

0:908
(0:024)�

0:069
(0:034)�

�0:004
(0:007)

0:095
(0:039)�

0:048
(0:093)

0:042
(0:017)�

19 0:007 0:047
(0:006)�

0:946
(0:007)�

0:039
(0:026)

�0:003
(0:005)

0:090
(0:026)�

0:152
(0:084)�

0:005
(0:006)

20 �0:028 0:059
(0:008)�

0:886
(0:020)�

0:133
(0:036)�

�0:021
(0:008)�

0:089
(0:035)�

0:041
(0:089)

0:051
(0:016)�

21 �0:031 0:055
(0:007)�

0:926
(0:012)�

0:097
(0:030)�

�0:016
(0:006)�

0:088
(0:032)�

0:130
(0:094)

0:022
(0:009)�

22 0:022 0:012
(0:012)
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Figure 1: Histograms of the estimated unconditional correlations, the minima and maxima
of the �tted conditional correlations, and the sample standard deviations (SDs) of the 1225
�tted conditional correlations of the 50-dimensional model of the EURO STOXX 50 index
(see Section 5.2)
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