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Abstract

Can forecasts of natural disasters alter their destructiveness? Poor forecasts increase

damages when individuals do not mitigate risks based on the false belief that they will

be unaffected. We test this hypothesis by examining the impact of 12-hour-ahead fore-

casts on hurricane damages and find that larger errors in the storm’s predicted landfall

location lead to higher damages. The cumulative reduction in damages from forecast

improvements since 1970 is about $82 billion. This exceeds the U.S. government’s

spending on these forecasts and private willingness to pay for them. The benefits from

forecast improvements are underestimated and individual adaptation decisions matter.
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1 Introduction
Damages from natural disasters in the United States, driven in part by several hurricanes,

reached a record high of $313 billion in 2017 (NOAA NCEI, 2018). Hurricanes now account

for seven of the top ten costliest disasters in the United States since 1980. They have

substantial impacts on local economic growth (Strobl, 2011), fiscal outlays (Deryugina, 2017),

lending and borrowing patterns (Gallagher and Hartley, 2017), and on where people live and

work (Deryugina et al., 2018). Despite their widespread effects, natural disasters are localized

events. Their costs are determined in part by individuals’ decisions about how and when

to protect their property. Decisions about whether to board up windows, stack sandbags,

harvest crops, relocate property etc. have to be made in advance. They rely on forecasts

of the event’s occurrence, location, and severity produced up to several days ahead. These

forecasts, despite dramatic improvements, are far from perfect and can exhibit large errors,

which are often not realized until it is too late. Large and unexpected forecast errors, even

up to just a few hours ahead, may lead people in the disaster area to protect their property

less than they would have otherwise. Individuals who place too much faith in the accuracy

of the forecasts may make poor decisions which result in higher damages.

This paper seeks to quantify, how the accuracy of short-term forecasts leading up to a

natural disaster affect the resulting destruction. While a considerable amount of research

examines changes in the natural hazards and vulnerabilities associated with natural dis-

asters, little attention has been paid to the effectiveness of short-term damage mitigation

decisions just prior to a disaster’s occurrence. Even less research focuses on how early warn-

ing systems based on short-term forecasts of the event affects these decisions. Quantifying

the extent to which short-term forecasts of natural disasters help individuals make better

damage mitigation decisions is important for understanding the effectiveness of short-term

adaptation efforts, for illuminating the drivers of the rising costs of natural disasters, and

for understanding the speed of the ultimate economic recovery.

We start by showing that, in an expected utility framework, errors in the forecasts of

a natural disaster can affect damages if individuals place too much faith in the accuracy

of these forecasts when formulating their beliefs about the benefits of damage mitigation.
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Next, using our theoretical framework as a guide we test for evidence of these effects using

a newly constructed database of all hurricanes to strike the continental United States from

1955-2014. We formulate an empirical model of damages with many determinants including

the 12-hour-ahead landfall-forecast errors and estimate it using ordinary least squares. Then,

we use model selection methods to determine the best model specification and also whether

forecast errors are among the most important determinants of damages. The robustness

of our results is confirmed using a variety of selection procedures and model specifications.

Finally, we conduct a counterfactual exercise in order to quantify how much improvements

in short-term forecast accuracy since 1970 have altered hurricane damages.

Short-term forecast errors of the storm’s location, together with a handful of other vari-

ables, explain most of the variation in aggregate hurricane damages over the past sixty years.

A one standard deviation increase in the distance between where a hurricane is expected to

strike and where it actually strikes is associated with up to $3, 000 in additional damages

per household affected by the hurricane. Interpreting this through the lens of our theoretical

framework indicates that short-term forecasts guide individual damage mitigation decisions.

In aggregate, individual decisions to protect and relocate property in the face of a disaster

have a significant impact on the overall costs.

The U.S. government devotes considerable resources to improving its hurricane forecasts

despite limited evidence of their value beyond reductions in fatalities. We quantify the

short-term reduction in damages due to hurricane forecast improvements. The predicted

cumulative damages prevented due to improvements in forecast accuracy since 1970 is about

$82 billion. This means that the cumulative net benefit is between $30 − 71 billion after

accounting for what the U.S. federal government spends on hurricane operations and research.

The benefits of further forecast improvements also outweigh measures of society’s ’willingness

to pay’ for them (see Katz and Lazo, 2011).

This paper contributes to several strands of the literature. The first is related to the

measurement of forecast uncertainty. Analyses of uncertainty go back at least as far as

Knight (1921), who distinguished between risk which is measurable ex-ante and ‘Knightian’

uncertainty which is not. Recent work defines uncertainty predominantly in terms of second

moments; see Bloom (2009, 2014). This is less true for forecast uncertainty, since as Jurado
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et al. (2015, p. 1178) argue, “what matters for economic decision making is [...] whether

the economy has become more or less predictable; that is, less or more uncertain.” We

extend Rossi and Sekhposyan (2015)’s measure of forecast error uncertainty to allow for

time-varying densities. We show how and under what conditions we can approximate this

measure as the ratio of forecast errors to their ex-ante standard deviation. This allows us to

test whether errors in ex-ante beliefs about the storm or the strength of those beliefs play

greater roles in altering damages from natural disasters.

We also contribute to the literature on the effectiveness of adaptation to natural disasters.

Our work is related to Bakkensen and Mendelsohn (2016), who estimate a model of global

tropical cyclone damages to understand the relationship between income and adaptation in

natural disasters. Although they find evidence of adaptation globally, they argue that the

United States is an exception. We extend their approach by allowing forecast errors to alter

adaptation decisions. This allows us to measure short-term adaptation efforts separately

from income. We find evidence of adaptation in the United States while also confirming the

finding that higher income is not associated with lower damages.

Finally, we also contribute to the literature on the value of environmental forecasts. Our

work relates to a large number of studies including Krzysztofowicz and Davis (1983), Carsell

et al. (2004), Regnier (2008) and Pappenberger et al. (2015). When assessing the value

of hurricane forecasts, previous studies typically focus on the value of improved evacuation

decisions and reduced fatalities. Our analysis illustrates that the benefits of accurate fore-

casts also play an important role in short-term damage mitigation decisions. This allows us

to consider the cost of forecast improvements and the private willingness to pay for those

improvements in a different context and we show that the benefits to forecast improvements

are even higher than previously considered.

The rest of the paper is structured as follows: Section 2 explores the link between natural

disasters, damages, and uncertainty. Section 3 proposes a theoretical model of how forecast

uncertainty can impact damages. The rest of the paper applies this model to an application

of damages from hurricane strikes where section 4 describes the statistical methods and the

data used. Section 5 presents the results while section 6 assesses their robustness. Section 7

discusses the implications of improving the forecasts and section 8 concludes.
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2 Natural Disasters: Damages and Forecasts
The destruction from a wide range of natural disasters, including wild fires, hurricanes,

tornadoes, droughts, and floods, reached a record breaking $313 billion in the United States

in 2017 (NOAA NCEI, 2018). This likely underestimates the total cost as natural disasters

have both persistent and transitory economic impacts. Strobl (2011) argues that a one

percent increase in the direct cost of a natural disaster is associated with a transitory decline

in local economic growth by 0.45 percentage points. Baker and Bloom (2013) also find

that natural disasters precede declines in economic activity. Deryugina (2017) finds that

natural disasters are associated with additional widespread direct and indirect fiscal costs.

Gallagher and Hartley (2017) find that Hurricane Katrina [2005] altered borrowing patterns

and spurred efforts to deleverage, while Deryugina et al. (2018) finds that it led to lasting

changes on where people live but only temporary changes otherwise. This illustrates that

natural disasters can have widespread and lasting economic impacts.

There are many potential determinants of the destructiveness of a natural disaster. Nat-

ural hazards such as the maximum wind speed of a hurricane, its storm surge, rainfall, and

minimum central pressure are considered to be the most important; see Nordhaus (2010),

Murnane and Elsner (2012) and Chavas et al. (2017). Damages are also determined by the

vulnerabilities of a location. This is often measured by how much income, housing or capital

stock there is in an area; see Pielke Jr and Landsea (1998), Pielke Jr et al. (2008), and

Neumayer and Barthel (2011). There is also a growing literature on medium and longer-

term efforts to mitigate damages. This is captured through higher incomes, building codes,

and spending on government damage mitigation programs; see Bakkensen and Mendelsohn

(2016), Geiger et al. (2016), Dehring and Halek (2013) and Davlasheridze et al. (2017).

Little attention has been paid to the role that early warning systems for natural disasters

and their forecasts could play in altering the destructiveness. For example, Deryugina et al.

(2018, p. 202) claims that Hurricane Katrina [2005] “struck with essentially no warning”,

which ignores that there were warnings in place several days before the storm struck. On the

other hand, Letson et al. (2007) argue that there is a trade-off between damage mitigation

efforts and forecast improvements in the medium-term. In their view, earlier warnings and
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better forecasts of a natural disaster may lead to moral hazard concerns as people are more

likely to move into higher risk locations due to the declining risk of fatalities. This in turn

would lead to increased vulnerabilities and higher damages. Sadowski and Sutter (2005)

claim that the negative bi-variate correlation between damages and fatalities and between

damages and forecast errors (see Appendix Table A.1) provides evidence in support of this

argument. However, these simple relationships are most likely confounded by the longer-term

trends in technological change and economic growth.

We focus instead on the short-term impact of forecasts on damages. We argue that

forecasts matter because they are used for planning and mitigation decisions. Behavioral

response surveys conducted by the U.S. Army Corps of Engineers (2004) illustrate this link:

“Many people believe the storm will miss their location, sometimes placing too
much faith in the forecast track of the storm, and sometimes those misconceptions
are reinforced by similar misconceptions by emergency management officials. In
some cases, 40% of the respondents said they have never spent anything to make
their homes safer in hurricanes”.

This finding, which is reaffirmed in more recent surveys (Milch et al., 2018), suggests that

individuals do not mitigate potential damages in part due to the forecasts. Individuals

form their beliefs and make damage mitigation decisions based on imperfect information.

This provides a basis though which poor forecasts can increase damages. The next section

formalizes this relationship within a theoretical model of damages from natural disasters.

3 Theoretical Framework
We start by developing a theoretical framework to illustrate how damage mitigation deci-

sions can provide a link between forecasts and damages. Consider the expected expenditures

when facing the risk of a natural disaster. Damages, d (·), occur with probability p(·), and a

cost c (·) of mitigating them. Damages depend on the event’s location and severity, F, the

vulnerable assets, V , and any mitigation efforts undertaken, A.

We assume that the sequence of actions are: (a) nature determines the location and

severity of the event, F; (b) individuals form imperfect beliefs about the event, F̂, and the

probability p(F̂) of damages d(·); (c) they then choose a level of mitigation, A, based on their

beliefs, the likely damages, and costs; (d) the event occurs based on nature’s predetermined
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location and severity. Although individuals are not observed directly, we assume that they

face similar choices based on publicly available information about the event and so the

aggregate decisions across all individuals can be modeled as a single representative agent.

We can write the choice in (c) as an expenditure minimization problem under uncertainty:

min
A

p(F̂)d(V, F̂, A) + c(A). (3.1)

This formulation dates back to Von Neumann and Morgenstern (1945) where the probability

of the event is known. Modifications adapt this formulation to allow for the probability to

be unknown; see Kahneman and Tversky (1979) among others. The typical setup allows for

individuals to be ex-ante uncertain (or ambiguous) about probabilities by integrating over all

possible future states. A false sense of security occurs when there is no ex-ante uncertainty

and where probabilities are determined exclusively by point forecasts of the event.

We denote the expenditure function in (3.1) by E (A). Taking the derivative w.r.t A gives
∂E(A)
∂A

= E′(A) = p(F̂)d′(V, F̂, A) + c′(A). (3.2)

Assuming that d (·) is convex in A is necessary and sufficient for a solution. Then the optimal

level of mitigation A∗ (conditional on ex-ante beliefs about F̂) satisfies

d′(V, F̂, A∗) = −
c′(A∗)

p(F̂)
, (3.3)

where we assume that 0 < c′(A) < ∞. This implies that individuals should mitigate up

until the marginal benefit of mitigation is equal to the ratio between the marginal cost of

mitigation and the perceived probability of damages occurring.1 Thus, mitigation choice is

a function of individuals’ beliefs about the event which we denote as: A(F̂).

Even when beliefs are formed without any ex-ante uncertainty, they can be wrong or

uncertain ex-post. We can assess the impact of this ex-post uncertainty by examining the

difference between the ex-ante and ex-post optimal marginal benefit of mitigation. If miti-

gation is optimal in both cases, then with some algebraic manipulation this is written as:

d ′ (V, F, A (F)) − d ′(V, F̂, A(F̂)) =
1

p(F̂)

[
c′(A(F̂)) − c′(A(F))

]
+

[
p(F) − p(F̂)

P(F̂)

]
c′(A (F))

p (F)
. (3.4)

The first term in (3.4) represents the difference in the ex-post and ex-ante marginal costs

and the second term is driven by the error in the perceived probability of damages.
1This is analogous to the classic optimal demand for insurance problem.
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From (3.4), the marginal reduction in damages is lower ex-post than it is ex-ante if

and only if c′(A(F̂))−c′(A(F))
c′(A(F)) >

p(F̂)−p(F)
p(F) . When marginal costs are constant or increasing then

p(F̂) < p (F) is required. If this holds, then the marginal benefit of additional mitigation is

greater ex-ante than it is ex-post. Thus, when F̂ < F, mitigation will be lower, A(F̂) < A (F) ,

and damages higher, d (V, F, A (F)) ≤ d(V, F, A(F̂)), than they otherwise would have been.

If mitigation choices are sub-optimal, then the marginal cost is not a binding constraint

and (3.4) does not hold. However, a second order Taylor series expansion of d(V, F, A(F̂))

around F illustrates that as long as damages are convex in adaptation then d (V, F, A (F)) <

d(V, F, A(F̂)) if F̂ < F. Thus, irrespective of the optimality of mitigation, our theoretical

framework predicts that higher ex-post uncertainty about an event in the context of an

ex-ante optimistic bias is associated with lower levels of adaptation and higher damages.

This framework provides a guide for thinking about a realistic model of damages from

natural disasters. We assume, as is common in the literature, that damages can be repre-

sented by a Cobb-Douglas power function. Taking logarithms gives the expression:

ln (di) = c + αln (V i) + βln (Fi) − δln
(
Ai(F̂i)

)
, (3.5)

where bold terms are vectors and damages are convex in mitigation if δ > 0. This extends

Bakkensen and Mendelsohn (2016) to allow for adaptation based on imperfect information.

We also assume that adaptation is described by the linear relationship in Bakkensen and

Mendelsohn (2016): ln (Ai (Fi)) = γ1ln (V i) + γ2ln (Fi) and reparameterize (3.5) by adding

and subtracting adaptation under perfect information to get

ln (di) = c + (α − δγ1)ln (V i) + (β − δγ2)ln (Fi) + δγ2

[
ln (Fi) − ln

(
F̂i

)]
, (3.6)

where the final term in (3.6) captures the distance between the actual and predicted intensity

and/or location of the storm. This corresponds directly to the interpretation of (3.4) above

where an optimistic bias in private beliefs feeds into ex-ante adaptation decisions: Pi(Fi) −

Pi(F̂i) ≈ Ai(Fi) − Ai(F̂i) and then into higher damages.

This formulation does not account for uncertainty around the forecast. It can be thought

of as a pure representation of the false sense of security hypothesis. To capture the joint

impact of forecast accuracy and uncertainty around the forecast, we can replace the final
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term in (3.6) with a general measure of forecast uncertainty:

ln (di) = c + (α − ηγ1)ln (V i) + (β − ηγ2)ln (Fi) + ηln
(
Ui(Fi, F̂i)

)
+ εi, (3.7)

where Ui (·) jointly captures accuracy and uncertainty about or surrounding the forecast and

εi indicates the residual or approximation error when going from (3.6) to (3.7).

There are many different measures of forecast uncertainty. A popular measure for point

forecasts is the mean square forecast error (MSE); see Ericsson (2001). While the MSE pro-

duces a fixed measure over time, Jurado et al. (2015) propose a time-varying measure which

combines MSE’s across variables using a dynamic factor model with stochastic volatility.

A popular measure for density forecasts is the log score (Mitchell and Wallis, 2011) which

evaluates the predicted density, ĝi (·), at Fi conditional on the prediction F̂i. When Fi falls

in the tails of ĝi (·), it has a lower probability and so is associated with higher uncertainty.

Another measure is the continuous ranked probability score (CRPS), which compares ob-

servations against the predicted cumulative distribution function. However, neither of these

measures distinguish between Fi falling in the upper of lower tail of the distribution.

Rossi and Sekhposyan (2015) propose an alternative measure of uncertainty based on the

unconditional likelihood of the observed outcome. Their measure, in the context of a single

variable, is computed by evaluating the predicted cumulative distribution function at F1i

U1,i

(
F1i, F̂1i

)
=

∫ F1i

−∞

g̃i

(
x1 |F̂1i

)
dx1, (3.8)

which captures how likely it is to observe Fi given the predicted distribution. The innovation

is that g̃i (·) is computed using historical forecast errors. An important distinction between

(3.8) and Rossi and Sekhposyan (2015) is that g̃i (·) is allowed to change across events (or

time) so as to capture changes in the distribution (Hendry and Mizon, 2014). This ensures

that g̃i (·) is measured using information most relevant for adaptation decisions. So if F1i is

large relative to F̂1i and the difference is big compared to past prediction errors, then there

is more uncertainty than when F1i is small relative to F̂1i. Thus, (3.8) captures both forecast

accuracy as well as the uncertainty surrounding or associated with the forecast.

We can extend the measure to multiple variables and/or forecast horizons through the

joint predictive distribution function. If we define Fi = {F1i, . . . , FJi}
′ for J potential variables
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and/or horizons, then the multivariate extension of (3.8) is

UJ,i

(
Fi, F̂i

)
=

∫ F1i

−∞

...

∫ Fj,i

−∞

g̃i

({
x1i,, . . . , xJi

}′
|F̂i

)
dx1...dxJ, (3.9)

which captures both variable specific and common aspects of uncertainty across variables.

This measure can be decomposed to illustrate what information would be lost if multiple

variables / horizons actually mattered but only a single variable / horizon was considered:

ln
(
UJ,i(Fi, F̂i)

)
= ln

(
U1,i(F1i, F̂1i)

)
+ ln

(∫ F2i

−∞

...

∫ Fj, i

−∞

g̃i

({
x2i,, . . . , xji

} ′
|F1i, F̂i

)
dx2...dxJ

)
, (3.10)

where the second term in (3.9) represents the information loss. If the unobseved forecast

errors are highly correlated with the observed error then the variation of the conditional

density will be limited and so it is better to focus on the observed forecast errors.

Further simplification occurs if g̃i (·) follows a normal distribution. We show in Technical

Appendix B.1 that for small distances between Fi and F̂i (3.8) can be approximated as

U1,i(F1i, F̂1i) ≈
F1i − F̂1i

σ̂i,(F1_,F̂1_)
, (3.11)

where σ̂i,(F1_,F̂1_) is the standard deviation of the predicted distribution based on historical

forecast errors. It represents the ex-ante risk (in a Knightian sense) ascribed to the forecast

at the time of the forecast. When (3.11) has an absolute value greater than one, then

the forecast error falls outside of its expected mid-range and is associated with greater

uncertainty. An absolute value less than one indicates there is less uncertainty since the

forecast error is within the expected range. This measure is also related to comparisons of

ex-post and ex-ante forecast uncertainty; see Clements (2014) and Rossi et al. (2017).

We can generalize this measure further by taking logs and relaxing the fixed 1-to-1 rela-

tionship between forecast accuracy and ex-ante risk

ln
(
U1,i(F1i, F̂1i)

)
≈
η1
η
ln(

��F1i − F̂1i
��) + η2

η
ln(σ̂i,(F1_,F̂1_)

), (3.12)

which allows us to assess their relative importance for damages.2 In this context, forecast

accuracy captures the errors in beliefs that individuals have about the location or severity

of a disaster while ex-ante risk modulates the strength of those beliefs. Plugging (3.12) back

into (3.7), allows us to test the hypothesis that forecast accuracy matters after accounting
2Note that while the forecast errors are constrained to be positive, an indicator function could be added to
capture negative forecast errors.
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for the ex-ante uncertainty. The next section discusses how to assess this relationship in the

context of short-term forecasts and damages from hurricane strikes.

4 Short-term forecasts and Hurricane Damages
Tropical cyclones are powerful natural events that occur intermittently around the globe.

They are an intrinsic part of the climate system in that they are fueled by large air-sea surface

temperature differentials and play an important role in mixing different ocean layers to help

distribute heat (Emanuel, 2001). Tropical cyclones are also among the most destructive

climate events accounting for six of the top ten costliest global natural disasters since 1980

(MunichRe, 2018). Hurricanes, which are tropical cyclones that occur in the Atlantic and

northeastern Pacific oceans, account for seven of the top ten costliest weather and natural

disasters in the United States over the same period (NOAA NCEI, 2018). Therefore, they

provide an important application on which to test the implications of our framework.

The damage model in (3.7) encompasses many of the existing models of hurricane dam-

ages. Emanuel (2005), Nordhaus (2010) and Strobl (2011) implicitly set η ≡ 0 and α ≡ 1

to examine the relationship between damages and natural hazards. Others set η ≡ 0 to in-

vestigate the relationship between damages and vulnerabilities; see Kellenberg and Mobarak

(2008) and Geiger et al. (2016). Bakkensen and Mendelsohn (2016) allow for η , 0 but

implicitly assume F̂i ≡ Fi.

We are interested in understanding the relationship between damages and forecast accu-

racy and uncertainty. However, instead of imposing restrictions on the other determinants,

we focus on the general framework in (3.7). This allows us to test the implications of the

theoretical framework which controlling for alternative variables and explaining existing re-

sults. We then use model selection to simplify the model and understand which variables are

the most important drivers of damages. Our approach is broadly defined within a general-to-

specific modeling framework since we start with a general model and then simplify it while

using our theoretical framework as a guide. The rest of this section describes the methods

and data that we use to estimate the model.
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4.1 Methods
The general-to-specific (Gets) modeling framework is described in detail by Campos et al.

(2005) and Hendry and Doornik (2014). Recent developments, by Hendry et al. (2008), Cas-

tle et al. (2015), Hendry and Johansen (2015) and Pretis et al. (2016), illustrate its usefulness

across a range of applications. Gets modeling provides a way to simultaneously summarize

and extend the literature. This contrasts with the approach of focusing exclusively on indi-

vidual determinants of damages. We describe it in the current context as follows.

First, we construct a general unrestricted model (GUM), which includes all potentially

relevant (theory-based or otherwise) determinants of hurricane damages. It is loosely as-

sumed that the residuals of the GUM are iid normally distributed.3 It is also assumed that

the GUM is potentially sparse and so nests the local data generating process (LDGP). Un-

der these conditions, Gets consistently recovers the same model as if selection began from

the LDGP. This helps ensure valid post-selection inference; see Chernozhukov et al. (2015).

Thus, formulation of the GUM is an integral part of the process and requires effort to ensure

that all potentially important drivers of hurricane damages are included.

Including a large number of explanatory variables can result in spurious correlations and

misleading inference. Gets tackles this by simplifying the GUM based on the ‘encompassing

principle’ (Mizon and Richard, 1986) so that each reduction exhibits minimal information

loss based on a user-specified ‘target gauge’. The target gauge plays the same role as regu-

larization in other machine learning or model selection procedures (Mullainathan and Spiess,

2017) in that it seeks control the loss of information in the selection procedure. While reg-

ularization parameters are typically chosen empirically based on model performance, the

target gauge is chosen beforehand and has a theoretical interpretation in that it determines

the false-retention rate of variables in expectation, i.e. the ‘gauge’ (Castle et al., 2011 and

Johansen and Nielsen, 2016). In practice, the target gauge is set based on the number of

variables being selected over, so that on average a single irrelevant variable is kept.

The final model is chosen so that it provides a parsimonious explanation of the GUM

conditional on the acceptable amount of information loss. This approach can be used to
3Hurricane damages approximate a log-normal distribution; see Willoughby (2012), Blackwell (2014) and
Appendix Figure A.1.
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search across many different model reduction paths in order to minimize potential path

dependencies; see Hendry and Doornik (2014). If multiple models are retained, information

criteria can be used to select between otherwise equally valid models. Alternatively, ‘thick

modeling’, as proposed by Granger and Jeon (2004) and discussed in a Gets framework by

Castle (2017), can be used to pool selected models.

There are many different model selection methods available. We use the multi-path

block search algorithm known as ‘Autometrics’ available in PcGive; see Doornik (2009) and

Doornik and Hendry (2013). An alternative multi-path search algorithm is implemented

using the ‘gets’ package in R; see Pretis et al. (2018). We also assess the robustness of the

results by performing model selection using regularized regression methods (i.e. Lasso) as

implemented in the ‘glmnet’ package in R; see Friedman et al. (2010).

4.2 Data
Although data on hurricane strikes goes back to the 1850s, we focus on hurricane strikes

in the Atlantic basin of the continental United States since 1955 for which a continuous

database of hurricane forecasts exists. We start by describing the number of hurricane

strikes and the sources for damages used in our analysis. Next, we describe the forecasts, the

errors, and how we measure forecast uncertainty. Finally, in the remainder of this section

we describe any additional variables used in the analysis.

The hurricane research division of the U.S. National Oceanic and Atmospheric Adminis-

tration (NOAA) maintains a list of every storm with hurricane force winds to make landfall

in the continental United States since 1851. 192 hurricanes made landfall in the Atlantic

basin between 1900 and 2015.4 Of these, 88 occurred between 1955 and 2015. Accounting

for the fact that some hurricanes struck in multiple locations, i.e. Katrina [2005] first crossed

the Florida panhandle and then moved into the Gulf and struck Louisiana several days later,

there were 101 unique strikes between 1955 and 2015. Our analysis focuses on the damages

for 98 of these strikes after removing cases for which forecasts are not available.

We collate damages for each strike from multiple sources. Damages are taken from an-

nual Atlantic Hurricane Season reports (1955-2015) following Pielke Jr and Landsea (1998).5

4The hurricane research division maintains two lists of U.S. Atlantic landfalls. We use most up-to-date where
the differences since 1955 are that it includes Helene [1958] and Ophelia [2005] but excludes Diane [1955].

5Reports were published in the Monthly Weather Review through 2011 and are available from the Hurricane
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Table 4.1: Comparing Hurricane Damages by Source

Source Obs
Median Std. Dev. Min Max Corr. Similar

dif (%) dif (%) dif (%) dif (%) (%) (%)

Pielke Jr and Landsea (1998) 52 - - 561 28 -3,225 -95 739 100 99.6 75.0

Pielke Jr et al. (2008) 79 - - 3,907 322 -33,291 -95 5,533 2,186 99.2 64.6

ICAT 86 - - 4,643 52 -33,291 -95 1,159 388 99.3 66.3

NOAA: Storm Events 81 -52 -27 11,860 46 -91,736 -96 2,117 180 88.2 9.9

NOAA: Billion-Dollar 27 373 4 4,713 28 -6,899 -32 20,961 117 99.2 7.4

Notes: All external sources are expressed relative to the current dataset. Dif is calculated as external minus current damages.
All values are in millions of 2017 dollars. % dif is computed by dividing dif by current damages to get a percentage difference.
A positive value implies that the external source has higher damages, whereas a negative number implies that current damages
are higher. Corr. is the correlation between external and current damages. Similar is the share of observations for which the
absolute percentage difference is less than or equal to 1 percent.

These are supplemented using individual tropical cyclone reports (1955-2015) and are up-

dated using data from NOAA’s hurricane research division; see Blake et al. (2011).6

While there are many datasets on hurricane damages, their values are not entirely reliable.

Pielke Jr and Landsea (1998) (updated and extended by Pielke Jr et al., 2008 and the ICAT

database) compile damages from 1900-2012. NOAA’s ‘Storm Events’ database, which the

SHELDUS database relies on, catalogs damages associated with each storm event at the

U.S. county level since 1959.7 However, Smith and Katz (2013) find that there is a tendency

to underestimate the most damaging storms. As a result, NOAA established the ‘Billion-

Dollar’ database which provides damages for climate and weather disasters that caused at

least $1 billion in damage since 1980.

Our dataset is consistent with existing ones. Table 4.1 shows that it is closest to Pielke Jr

et al. (2008) and the ICAT datasets. However, there are important differences. Damages are

revised for several hurricanes, notably Celia [1970]. There are also some hurricanes for which

the damages are lower. For example, Agnes [1972] initially struck Florida as a hurricane. It

then weakened and later re-intensified into a tropical storm causing damage in Pennsylvania,

New Jersey and New York. We only include damages associated with the initial hurricane

strike whereas other datasets include all of the damages associated with the storm.

Research Division until 2011. The National Hurricane Center maintains the annual summaries since 2012.
6Available from the National Hurricane Center from 1958-2016 and NOAA from 1954-2005.
7We do not use the Sheldus database due to concerns of under reporting and because damages are allocated
equally across counties for each storm. A common solution (see Davlasheridze et al., 2017) is to redistribute
damages based on wind speed which would biases the analysis if favor of wind speed as an explanatory
variable for damages. Addressing these issues is beyond the scope of our analysis and is left for future
research.
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Our dataset is also comparable with damages from the ‘Storm Events’ and ‘Billion-Dollar’

databases. Damages tend to be higher than the ‘Storm Events’ database, which suffers from

under-reporting, but lower than the ‘Billion-Dollar’ event database. However they typically

fall within the upper and lower confidence intervals.

Hurricane Forecasts, Errors and Uncertainty

Hurricane forecasts have a long history in the United States. The U.S. government

has produced hurricane forecasts since at least the 1850’s. These forecasts have changed

dramatically with the advent of new methods and technologies, particularly through the use

of satellite technology and supercomputers; see Shuman (1989), Sheets (1990) and Rappaport

et al. (2009) for a history of these changes.

The National Hurricane Center (NHC) maintains all historical hurricane forecasts since

it was establishment in 1954. The NHC’s ‘official’ forecasts form the basis for hurricane

watches, warnings and evacuation orders. They are also widely distributed to and used by

news outlets. The forecasts are not based on a single model and should not be considered the

same across storms. In fact, they are a combination of many different models and forecaster

judgment; see Broad et al. (2007).

The forecasts are available every 6 hours for the entire history of a storm. However, not

all time periods are relevant for our analysis. This especially true since hurricanes can be

active for up to a month (Ginger [1971]) and transect the entire Atlantic ocean. In order

to focus on the most relevant forecast for damages, we relabel each forecast in terms of the

number hours it was made before landfall. We start by rounding the timing of each landfall

to the closest point in a 6-hour window. Thus, if a hurricane made landfall at 16:00 UTC

then it is rounded to 18:00 UTC. Next, we subtract the length of the forecast horizon (h)

from the landfall time to get the time at which the h-hour-ahead ‘landfall forecast’ was

generated. So for example, the 12-hour-ahead landfall forecast of a storm that made landfall

at 18:00 UTC was generated at 6:00 UTC.

We focus on the 12-hour-ahead landfall track forecasts for several reasons. First, the U.S.

Army Corps of Engineers (2004) and Milch et al. (2018) emphasize that individuals often

wait until the last minute and focus on the track. Second, the short-horizon track forecasts
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are available for virtually every U.S. hurricane strike going back to 1955.8 Third, the track

is an integral part of the NHC’s forecasts of hurricane intensity including rainfall (Kidder

et al., 2005), wind speed (DeMaria et al., 2009), and storm surges (Resio et al., 2017). Thus,

there is strong support for focusing on the 12-hour-ahead track forecasts.

Hurricane track forecast errors are computed differently from typical forecast errors. The

track errors are calculated as the distance between two points on the surface of a spheroid

(Vincenty, 1975) so as to account for the curvature of the earth.9 Thus, the track error is

purely a distance measure (i.e. absolute error) and does not have a directional interpretation.

This calculation is problematic if the direction of the error matters for damages. For

example, forecasts that are too slow or biased to either side of the landfall location provide

less warning time. Alternatively, forecasts that are too fast may underestimate the amount

of rainfall and flooding and make individuals less likely to prepare for these damages. Despite

these differences, each forecast error direction can be linked with the belief that the hurricane

will be less destructive than it ultimately is.10

Panel A of Figure 4.1 plots the actual locations, 12-hour track forecasts and the difference

between them for the closest available points to each hurricane strike, where the base of the

arrow is the actual location and the head of the arrow is the projected location. The coloring

is determined by the degree of the angle in terms of where the storm came from, where it

actually is and where it was forecast to be with green indicating the storm moved faster than

expected and red indicating it was slower than expected. While there is a mix of different

types, there are more storms that were faster than expected.11

We can evaluate the the track forecast errors relative to the ex-ante risk associated with

them at the time. To do this we estimate a time-varying measure of the historical forecast

error density for each year using every forecast error at the 12-hour horizon in the previous

five years.12 As Appendix Figure A.3 shows, there have been large changes the estimated
8No forecasts are available for Debra [1959] and Ethel [1960], likely due to their short duration. Longer
horizon forecasts are available for even fewer storms and the intensity forecasts are only available since 1990.

9This calculation is more accurate than the more commonly used great-circle distance.
10By focusing on hurricane strikes we omit the costs of p(F̂) > p (F) when a hurricane did not strike.
11Robustness checks indicate that the results are unchanged after controlling for the size of the angle. However,
the angle is positively associated with damages (not significant) which suggests that slower than expect storms
are more damaging.

12Since the forecast database only extends back to 1954, the radius for storms prior to 1959 is estimated

16



12−hour−ahead landfall location errors

Actual
location

Predicted
location

Forecast too slow

Forecast biased left / right

Forecast too fast

Panel A: Direction of 12-hour-ahead landfall errors in space

12−hour−ahead uncertainty
radius at time of forecast

Distance between landfall
location and 12−hour−ahead
forecast location

Connie [1955] Alma [2] [1966] Allen [1980] Jerry [1989] Irene [1999] Wilma [2005]

0
20

40
60

80
10
0

D
is
ta
nc
e
win
m
ile
s)

Hurricane Strikes win chronological landfall order)

Panel B: 12-hour-ahead landfall errors over time

Notes: Errors are computed using Vincenty (1975)’s formula for the distance between two points on the surface of a spheroid.
The 12-hour-ahead landfall errors are computed such that the forecast was made 12 hours before the closest observed point of
the hurricane at landfall. In panel A, the coloring of arrows is based on the calculated angle of the triangle which is is calculated
from the distance between the forecast and the actual (shown), the distance between the actual 12-hour prior and the current
actual and the distance between the previously observed value and the forecast. Green is less than 90 degrees, orange is greater
than 90 but less than 135 degrees and red is greater than 135 degrees. In panel B, the shaded area is the implied radius of
uncertainty computed so that two-thirds of forecast errors for the five years prior to the strike fall within this area.

Figure 4.1: 12-Hour-Ahead Hurricane Landfall Track Errors

densities since 1955. Historically the densities have been skewed to the right with long

tails driven by extreme outliers. However, since the 1990’s, skewness has declined and a

normal approximation is much more apt. The 66th percentile of these historical forecast

error densities corresponds directly with how the NHC computes the radius of the ‘cone of

uncertainty’, which has accompanied every hurricane track forecast since 2002. Therefore,

using this distance provides a useful measure of the ex-ante risk associated with the forecast.

Panel B of Figure 4.1 plots the 12-hour-ahead landfall forecast errors along with our

reconstructed measure of the 12–hour-ahead radius of uncertainty going back to 1955. The

figure illustrates that landfall forecast errors have declined by around 60 percent over the

past 60 years. The implied ex-ante risk has also declined over the same period so that both

the errors and the expected risk associated with the forecasts has declined. However, the

figure also shows that there are multiple hurricane strikes where the forecast errors at landfall

exceeded their ex-ante risk; most recently for Sandy [2012].

using samples shorter than five years. Historically, the radius was also measured as the distance that
captured all errors in the previous ten years. For more information see Broad et al. (2007) and http:
//www.nhc.noaa.gov/aboutcone.shtml (last accessed December 22, 2017).
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Other Variables

While the focus of our analysis is on the link between damages and forecast uncertainty,

we embed this relationship within a general model of damages. This ensures that we have a

well specified model of hurricane damages. It also reduces the possibility that the relationship

between forecast uncertainty and damages is confounded by omitted variable bias.

First, we include several measures of vulnerabilities. We use county level population

and personal income estimates from the Bureau of Economic Analysis (BEA) since 1969.

Prior to 1969, we use county level population estimates from the U.S. Census, available

for each decade, along with state level population and personal income estimates available

annually from the BEA. We compute annual county level population values prior to 1969

by interpolating county level population shares between decades and then distributing them

using state level data. A similar approach is used for land area and housing units.13

Annual county level personal income prior to 1969 is estimated as follows. First, we

assume that county level personal income shares were constant from 1955 to 1969. Second,

we estimate annual income shares using a fixed effects panel data model and then starting

in 1969, backcast the shares to 1955.14 We combine the shares with state level income to

get a county level estimate. We average these two approaches to get a robust measure.

We compute a real-time measure of historical strike frequency using county level hurricane

strikes since 1900. The strike frequency for a county in a given year is computed over time by

taking the number of hurricanes that struck that county since 1900 divided by the number

of years that have passed. Strike level historical frequency is computed as an average of the

strike frequencies of all counties struck by the hurricane at the time of the strike.

Since damages are measured at the strike level, we aggregate across impacted counties.

This alleviates concerns about county level estimates but requires us to choose which counties

are impacted. We focus on coastal counties (Jarrell et al., 1992), which over-weights the

importance of the coastal but is less likely to over-weight the impact of wind damages as in

the approach used by Strobl (2011), Hsiang and Narita (2012), and Deryugina (2017).
13Pielke Jr et al. (2008) use a similar approach. We aggregate counties using BEA’s modifications to Census
codes: https://www.bea.gov/regional/pdf/FIPSModifications.pdf (last accessed November, 2016).

14The panel data model was estimated over for all U.S. counties from 1969 to 1999 using leads of income shares
and population shares as explanatory variables.
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Table 4.2: Data Descriptions and Summary Statistics

Variable Description Years Min Average Max Source

Damages (D)

DAMAGE Nominal Damage (U.S. $1,000 ) 1955-2015 $28 $3,990,506 $105,900,000 NOAA, NHC

Socio-economic Vulnerabilities (V)

PD Population Density (persons per acre) 1955-2015 12 257 3,940 BEA, Census

IP Income Per Capita ($ per person) 1955-2015 $864 $16,430 $60,213 BEA

HD Housing Unit Density (houses per acre) 1955-2015 5 104 1,672 Census

IH Income Per Housing Unit ($1,000 per unit) 1955-2015 $2 $37 $140 BEA, Census

FREQ Historical Hurricane Frequency (Average per year) 1955-2015 0.01 0.09 0.32 NOAA, HRD

LEVEE Levee Length Density (miles per acre) 1955-2015 0 0.03 0.22 USACE, NLD

CRS FEMA Community Rating System (rank) 1990-2015 7 9 10 FEMA

HMGP Hazard Mitigation Grant Program (U.S. $1,000) 1990-2015 0 $38,042 $396,102 FEMA

Natural Forces (F)

WIND Max Sustained Wind Speed (kt) 1955-2015 65 90.3 150 NOAA, HRD

PRESS Central Pressure at Landfall (mb) 1955-2015 909 965 1003 NOAA, HRD

RAIN Max Rainfall (in) 1955-2015 4.8 13.75 38.5 NOAA, WPC

SURGE Max Surge (ft) 1955-2015 0 8.5 27.8 NOAA, NHC

ACE Accumulated Cyclone Energy (Seasonal) 1955-2015 17 135 250 NOAA, HRD

MOIST Deviations from trend soil moisture (in) 1955-2015 -4.75 1 5.7 NOAA, ESRL

GST Land, Air and Sea-Surface Temp. index 1955-2015 0.1 0.34 0.93 NASA, GISS

Forecast Uncertainty (U)

FORC12 12-Hour Official Track Error (nautical miles) 1955-2015 5 34 114 NOAA, NHC

RADII12 Implied 12-hour radius of uncertainty (nautical miles) 1955-2015 34 70 59 NOAA, NHC

NAIVE12 12-Hour Naïve Track Error (nautical miles) 1970-2015 5 31 97 NOAA, NHC

SKILL12 Ratio of 12-Hour naïve forecast error to FORC12 1970-2015 0.19 1.44 10.35 NOAA, NHC

WARN Warning time over coast length (100 hours per mile) 1955-2015 0.7 11.33 45.78 NOAA, NHC

Notes: NOAA: National Oceanic and Atmospheric Administration; NHC: National Hurricane Center; HRD: Hurricane Research
Division; WPC: Weather Prediction Center; ESRL: Earth System Research Laboratory; NASA: National Aeronautics and Space
Administration; GISS: Goddard Institute of Space Studies; BEA: Bureau of Economic Analysis; Census: Census Bureau; FEMA:
Federal Emergency Management Agency; USACE: US Army Corps of Engineers; NLD: National Levee Database.

Next, we include measures of natural and climate forces. The maximum sustained (1-

minute) surface (10 meter) wind speed, minimum central pressure at landfall, maximum

storm surge height and accumulated seasonal cyclone energy are obtained from the NHC.

Maximum rainfall comes from NOAA’s Weather Prediction Center.

Model-based estimates of monthly soil moisture, derived using methods devised by van den

Dool et al. (2003), are obtained from NOAA’s Earth System Research Laboratory. These

estimates are then linked in the nearest grid point to a county’s centroid. County estimates

are averaged across impact counties for each hurricane strike and then smoothed.15 We then

use the smoothed estimate for the month prior to the strike.
15We use the Hodrick-Prescott filter and set the smoothing parameter equal to 129,600 following Ravn and
Uhlig (2002) for monthly data.
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Finally, we compute storm-level estimates of sea surface air temperature following Estrada

et al. (2015). The data are from NASA’s global mean surface temperature index based

on land-surface air temperature anomalies. The monthly series is then smoothed using

the Hodrick-Prescott filter with a smoothing parameter equal to 129,600. The resulting

estimate for the month prior to the hurricane strike is used. Table 4.2 and Appendix Figure

A.2 provide sources, summary statistics, and plots of each of the variables.

5 A Model of Hurricane Damages
This section presents the general hurricane damages model followed by its estimation

and reduction. The model includes all major determinants of hurricane damages and several

controls for spatial and temporal heterogeneity. It contains 37 explanatory variables and is

estimated over a sample of 98 observations. Lower case variables are in logs:

damagei = c + α1 hdi + α2 ihi + α3 FREQi + β1 raini + β2 surgei + β3 npressi

+ β4 windi + β5 MOISTi + β6 acei + β7 GSTi + η1 forc12i + η2 radii12i

+ δ1 STRENDi + δ2 YTRENDi + ψ MONTHi + κ HOURi + λ STATEi + εi .

(5.1)

The first line includes the vulnerabilities (V): housing unit density (hd), income per

housing unit (ih) and ‘real-time’ hurricane strike location frequency (FREQ). We exclude

population density since it is almost perfectly correlated with housing density and because

housing has a more direct interpretation in this context.16 The first two lines list the natu-

ral hazards (F): maximum rainfall (rain), storm surge (surge), negative minimum pressure

(npress), maximum wind speed (wind), soil moisture relative to trend (MOIST), accumu-

lated cyclone energy (ace) and global surface temperature (GST). The second line captures

forecast accuracy and uncertainty (U): 12-hour-ahead forecast track errors (forc12) and the

implied 12-hour-ahead radius of uncertainty (radii12). The last line lists additional spatial

and temporal controls: strike and annual trends, month dummies, hour dummies (to control

for the six-hour period in which the landfall occurred), and U.S. state dummy variables.

We estimate (5.1) using ordinary least squares (OLS). The estimated coefficients and their

standard errors are reported in column (1) of Table 5.1. Several coefficients are statistically

significantly different from zero. They include housing density, historical hurricane frequency,

storm surge, central pressure, and the forecast errors. The coefficient on the forecast errors
16The results are similar when the population variables are included. Available upon request.
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is positive, which is consistent with the prediction from the theoretical framework in (3.4)

and (3.6). This supports the false sense of security hypothesis that larger forecast errors are

associated with higher damages even after controlling for vulnerabilities and natural hazards.

Next we use model selection to discover the most important drivers of hurricane damages.

While the significant variables in the full model provide an initial sense of this, model selection

provides a more systematic approach. While we could impose restrictions to ensure that the

selected model is consistent with our theoretical model, we start by selecting over all variables

without any restrictions. Since the full model (i.e. the GUM) has 38 unique parameters (i.e.

37 variables plus the variance), then we set the target gauge equal to 1
37 ≈ 0.03. We can

adjust this target to understand how sensitive the results are to this choice. This helps

address concerns that model selection is unstable (Mullainathan and Spiess, 2017).

There are 237 (> 130 billion) possible model combinations if we allow for every variable to

be selected over. For a target gauge of 3 percent, the selection algorithm narrows the search

space to 216 (< 70 thousand). In the process it eliminates entire branches of possible models

and only estimates 335 candidate models. The algorithm finds that 9 terminal models are

acceptable reductions of the GUM. The final model is selected from these terminal models

using the Bayesian information criterion (BIC). It is also robust to alternative information

criteria (see Appendix Table A.2).

Columns (2)-(4) in Table 5.1 present the selection results across a range of target gauges.

Although the selected models are virtually identical, this masks large variation as the number

of terminal models for each target range from 9 − 18. In total, 48 unique terminal models

are found across the different targets. Almost three quarters of these include some measure

of forecast uncertainty, while almost 60 percent include the forecast errors themselves. For

comparison, Bayesian model averaging (Zeugner and Feldkircher, 2015) suggests that the

posterior inclusion probability of the forecast errors is between 40 and 60 percent depending

on the choice of the prior distribution.17

The most important drivers of damages are housing and income, (-) central pressure,

rainfall, storm surge, and the forecast errors. This is consistent with (3.7) in that the

selected model has at least one measure of vulnerabilities (V), natural hazards (F), and
17Results available upon request.
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Table 5.1: Damage Models by Selection Method
(1) OLS Gets (5) Lasso OLS (6) Double Lasso

Selection Target: (2) 1% (3) 3% (4) 5% BIC (10%) BIC (10%)

Housing density 0.53** 0.40*** 0.40*** 0.45*** 0.40**
(0.24) (0.15) (0.15) (0.15) (0.16)

Income per housing unit 0.70 1.58*** 1.28*** 1.28*** 1.05*** 1.35***
(0.79) (0.14) (0.18) (0.18) (0.17) (0.47)

Historical fequency -6.63** -3.72** -3.13
(2.94) (2.23) (2.22)

Max rainfall 0.51 1.18*** 1.14*** 1.14*** 0.74** 0.89**
(0.43) (0.32) (0.31) (0.31) (0.32) (0.32)

Max storm surge 1.21** 1.37*** 1.34*** 1.34*** 1.30** 1.39***
(0.48) (0.39) (0.37) (0.37) (0.37) (0.38)

Min central pressure (-) 52.6*** 52.9*** 52.0*** 52.0*** 51.1*** 49.0***
(18.2) (8.72) (8.43) (8.43) (8.46) (8.44)

Max wind speed -0.27
(1.54)

Soil moisture 0.77
(1.42)

Seasonal cyclone energy 0.42 0.43* 0.59**
(0.32) (0.23) (0.25)

Sea surface temperature 0.94 -0.25
(3.21) (1.68)

12-hour forecast errors 0.54* 0.55** 0.48** 0.48** 0.50**
(0.29) (0.24) (0.23) (0.23) (0.24)

12-hour radius 3.17 0.82
(2.60) (1.37)

Trends: Yes No No No No No
Hour fixed effects: Yes No No No No No
Month fixed effects: Yes No No No No No
U.S. state fixed effects: Yes No No No Yes Yes

k 37 5 6 6 8 11
σ̂ 1.300 1.304 1.261 1.261 1.250 1.228
R2 0.876 0.806 0.821 0.821 0.828 0.840
BIC 4.710 3.658 3.626 3.626 3.680 3.749

*p< 0.1 **p< 0.05 ***p< 0.01

Notes: Estimated using 98 observations including a constant and dummy variables for Gerda [1969] and Floyd
[1987]. Standard errors are in parentheses. k is the number of selected regressors in the model.

forecast uncertainty (U) with each of their signs are in the expected direction. Selection is

identical across a range of target gauges with the exception of housing density, which is not

retained when the target gauge is set to 1 percent. This is in line with the full model except

that rainfall and income are found to matter but historical hurricane frequency does not.

Wind speed, which is a common measure of natural hazards, does not appear in any

of the selected models.18 Instead, minimum central pressure is always included. This is

supported by Bakkensen and Mendelsohn (2016), who find that central pressure provides

a more reliable explanation of damages. In addition to central pressure, we also find that
18Even when it appears in the full GUM or one of the reduced GUM’s, its coefficient has the wrong sign and
is not significantly different from zero; see Appendix Table A.3.
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rainfall and storm surge are empirically relevant. Rainfall leads to inland flooding damages

whereas storm surge causes damages along the coast. Thus, we find a more disaggregated

measure of natural hazards than previous models.

The results are fairly robust across alternative selection methods. We can perform model

selection using Lasso, which shrinks the coefficients with a penalty (chosen here using BIC).

We present the post-selection OLS coefficients (and standard errors), shown in column (5) of

Table 5.1, to compare with the Gets results. More variables are retained, which is consistent

with the fact that BIC roughly corresponds to a target gauge of 0.10 for the sample size and

number of variables selected over; see Campos et al. (2003). The forecast errors are also not

retained, but this is very sensitive to the choice of the regularization hyper-parameter.19

Regardless of which selection procedure is used, there is a concern that post-selection

inference does not capture any uncertainty in the selection procedure. This can be addressed

in several ways. Selection can be restricted so that it does not take place over the variables

of interest; see Belloni et al. (2014), Hendry and Johansen (2015), and Chernozhukov et al.

(2018). Alternatively, the standard errors (Van de Geer et al., 2014) or the critical values

(Berk et al., 2013) can be adjusted to capture the additional uncertainty.

If the forecast errors are exogenous conditional on the other regressors, what we are

interested in is the treatment effect of the forecast errors onto damages. Then we can perform

‘Double Lasso’ selection proposed by Belloni et al. (2014). This procedure is described in

three steps. First, a Lasso regression is run on the full model of damages excluding the

forecast errors. Second, another Lasso regression is run on a model of the forecast errors

using all other explanatory variables. Third, the variables selected in the first two steps

along with forecast errors are combined into a final OLS regression on damages. This allows

for valid inference on the coefficient of the forecast errors as long as the underlying process

is sparse. The results of this procedure are shown in the final column of Table 5.1 where

the coefficient and standard errors corresponding to the landfall location forecast error are

broadly consistent with OLS and the Gets model selection results.

Overall the results indicate that a small subset of drivers explain much of the variation

in hurricane damages. The results provide further support for the false sense of security
19The forecast errors are included if cross-validation is used to determine the hyper-parameter.
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hypothesis. The estimated coefficient on the forecast error variable is positive and signifi-

cantly different from zero. This is in line with what the theoretical framework in (3.4) would

predict. Furthermore, decomposing forecast uncertainty into forecast accuracy and ex-ante

risk as in (3.12), illustrates that the forecast errors are included but not the ex-ante radius

of uncertainty. This indicates that the forecast errors matter for hurricane damages.20

6 Robustness of the Results
This section evaluates the robustness of the results. We start by checking the robustness

of the selected model to model misspecification. Next, we address potential concerns about

omitted variable bias. Finally, we assess out-of-sample fit. Overall, these robustness checks

confirm our finding that forecast errors matter for damages.

6.1 Model misspecification
Interpretation of the coefficients and their significance depends on whether the underlying

assumptions about the model are satisfied. However, rerunning our analysis with a battery of

diagnostic tests indicates that these assumptions may not be satisfied. The diagnostic tests

shown in Table 6.1 are: the χ2nd(2) test for non-Normality (Doornik and Hansen, 2008), the

FHet / FHet−X test for residual heteroskedasticity (with and without cross products; White,

1980), and the FRESET23 test for incorrect model specification (Ramsey, 1969).21 A rejection

of the null hypothesis indicates that the assumption associated with that test is invalid. The

diagnostic tests in column (1) indicate that the selected models have evidence of non-normal

and heteroskedastic residuals. This provides evidence against the assumptions about the

functional form and the log-linearity approximation.

Model misspecification can be dealt with in several ways. Heteroskedasticity of the

residuals can be addressed by correcting the standard errors following Newey and West

(1987). The model can also be extended by dropping outliers that may induce non-normality

and adding squares of the explanatory variables to help capture possible nonlinearities that

induce heteroskedasticity. These choices entail different trade-offs. Correcting the standard

errors ensures consistent estimates without changing the model but does not address amy
20Ignoring any model uncertainty, then forecast errors are always significant across different model selection
specifications, whereas ex-ante risk is not; see Appendix Table A.3.

21Note that since the data is irregularly spaced they are not really time series in a strict sense and so we do
not report diagnostic tests for residual autocorrelation and time-varying variances.
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underlying misspecification. Extending the model addresses misspecification but can make

estimates less reliable if added variables are irrelevant.

Although the model can be expanded in different ways, we follow the approach advocated

by Hendry and Johansen (2015). We embed the selected model into a more general model

that also includes impulse dummies for every observation and squares of the variables. This

manes that there are more variables than observations. However, selection is done over the

impulse dummies and nonlinearities by exploiting the algorithm’s ability to examine multiple

block path searches. This is known as impulse indicator saturation (IIS); see Hendry et al.

(2008) and Johansen and Nielsen (2016).22 While this biases any further selection in favor of

the model that was originally selected, it allows us to evaluate the robustness of the original

selection results to model misspecification.

Castle et al. (2018) advocate for expanding and then selecting over the original GUM. In

practice, this requires a tighter target to control the number of impulses retained and a looser

target to capture marginally relevant variables. Hendry (2018) uses a two-step procedure

where selection is done first over the impulse dummies with a tight target gauge and then

over the entire model jointly with a looser target. This ensures that not too many impulses

are retained without limiting the search space.

The selected model is broadly robust to misspecification. The heteroskedasticity corrected

standard errors in column (2) of Table 6.1 do not indicate major changes in the significance of

the coefficients. Extending the model produces similar results despite retaining the square of

income and several impulse dummy variables; see column (3).23 The nonlinear relationship

between income and damages is in line with Geiger et al. (2016). The outlying observations

capture several issues including measurement concerns in the late 1950s and the glancing

landfalls by Alex [2004] and Arthur [2014]. No further diagnostic concerns are indicated

when both impulses and nonlinearities are selected over jointly.24 Importantly, the standard

errors of the coefficients in column (3) are smaller than in column (1), which indicates that

estimates are more reliable despite including more covariates.
22It is equivalent in this context to selecting over individual strike fixed effects.
23Selection is done using a target gauge of 1 percent but the results are identical when using a target gauge
as tight as 0.01 percent.

24The normality test should be regarded with caution in this context; see Berenguer-Rico and Nielsen (2017).
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Table 6.1: Robust Models of Hurricane Damages

(1) Gets (3%) (2) Gets+HCSE (3) Extension (1%) (4) Robust

Housing density 0.40*** 0.40*** 0.29*** 0.27***
(0.15) (0.15) (0.10) (0.10)

Income per housing unit 1.28*** 1.28*** 1.40*** 1.43***
(0.18) (0.21) (0.13) (0.15)

Min central pressure (-) 52.0*** 52.0*** 55.5*** 56.6***
(8.43) (7.98) (5.66) (5.49)

Max rainfall 1.14*** 1.14*** 0.52** 0.57**
(0.31) (0.33) (0.21) (0.21)

Max storm surge 1.34*** 1.34*** 0.93*** 0.99***
(0.37) (0.38) (0.25) (0.24)

12-hour forecast errors 0.48** 0.48* 0.30* 0.34**
(0.23) (0.27) (0.16) (0.15)

Income per housing unit sq. 0.45*** 0.44***
(0.09) (0.09)

Outlying storms: -3.44***
(0.33)

Helene [1958] -2.70***
(0.86)

Cindy [1959] -4.22***
(0.86)

Gracie [1959] -2.73***
(0.84)

Alma [1] [1966] -4.41***
(0.84)

Bret [1999] -2.48***
(0.87)

Alex [2004] -3.56***
(0.83)

Arthur [2014] -4.17***
(0.88)

σ̂ 1.261 1.261 0.816 0.812
R2 0.821 0.821 0.932 0.927
χ2nd(2) 8.34** 8.34** 0.91 0.03

[0.015] [0.015] [0.636] [0.986]
FHet 1.76* 1.76* 0.88 0.80

[0.069] [0.069] [0.585] [0.675]
FHet−X 1.02 1.02 0.97 0.94

[0.457] [0.457] [0.532] [0.570]
FRESET23 1.30 1.30 1.35 1.09

[0.279] [0.279] [0.265] [0.341]

*p< 0.1 **p< 0.05 ***p< 0.01

Notes: All equations are estimated using 98 observations and include a constant and dummy variables for Gerda [1969] and Floyd
[1987]. The standard errors are in parentheses. The tail probabilty associated with the null hypothesis of each diagnostic test statistic is
in square brackets. Column (2) shows the heteroskedasticity corrected standard errors. Income per housing unit is demeaned to facilitate
interpretability of the coefficients.

Since the coefficients of the outlying storms are all negative and approximately a similar

magnitude, we can test whether they are of equal magnitude. Under the null hypothesis

of equal magnitude, the likelihood ratio has a statistic of 5.763 which we compare against

a chi-square distribution with 6 degrees of freedom. The Wald test has a statistic of 0.960

which we compare against the F-distribution with (6, 82) degrees of freedom. In both cases

we fail to reject the null hypothesis using any reasonable critical value. Using a single dummy
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variable for the outlying storms results in a more parsimonious model, see column (4), with

less uncertainty around the estimated coefficients (see Hendry and Santos, 2005).

The coefficient on the forecast errors remains positive and significant even after account-

ing for model misspecification. The estimate varies between 0.30 − 0.52 with the estimate

in column (4) lying near the middle of this range. This result is also robust to additional

checks. Similar results are obtained if we first select over impulses while forcing in the GUM

and then selecting over the full model.25 We also obtain similar results if we augment the

full model with the joint outlier dummy variable and the square of income and then select.

The results are also robust to alternative measures of normalized damages (Appendix Table

A.4) and alternative measures of forecast uncertainty (Appendix Table A.5).

6.2 Controlling for potentially omitted variables
So far we have assumed that the forecast errors are at least weakly exogenous for hur-

ricane damages. This is a safe assumption if the forecast errors are randomly determined

(conditional on the other covariates) and unrelated to other potentially relevant variables

that are excluded from the analysis. However, this may not be the case. For example, there

are non-random changes in the forecast errors over time. To fully assess the robustness

of the results, we need to account for the possibility that omitted variables could bias the

relationship between damages and the forecasts.

The forecast errors may be correlated with storm dynamics. A volatile storm is more

difficult to forecast and can cause more damage. For example, the rapid intensification of

a hurricane just prior to landfall is difficult to forecast and is also associated with higher

damages; see Kaplan et al. (2010). Furthermore, a slow moving storm with high amounts

of rainfall can also be forecast poorly. For example, Harvey [2017] experienced rapid inten-

sification in its initial buildup, slowed down as it made landfall, and then dumped record

breaking amounts of rain leaving devastation in its wake. In either case, storm dynamics

are associated with increased forecast errors and higher damages. Thus, the relationship

between forecast errors and damages may be moderated by the storm’s dynamics.

Forecast errors may also be correlated with longer-term adaptation and technological
25One difference is the inclusion of historical hurricane frequency, which remains significant until outliers are
accounted for but does not alter the other results.
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change. Adaptation often goes hand-in-hand with efforts to improve hurricane forecasts and

could therefore be correlated with improved forecasts. There is evidence of this in column

(2) of Table A.5 where the unrestricted ex-ante risk is positively correlated with hurricane

damages. Since ex-ante risk is effectively a five-year moving average of past forecast errors,

changes in it are driven less by short-term randomness and more by longer-term trends such

as government expenditures and technological advancements. Therefore, the relationship

between forecast errors and damages may also be moderated by these longer-term changes.

Given the existence of non-random relationships between the forecast errors and variables

excluded from the model, it is important to assess whether controlling for them alters the

results. While there is no concise measure of storm dynamics, we construct an instrument

based on a measure of forecast skill, which is regularly used to assess the performance of hur-

ricane and weather forecasts; see Cangialosi and Franklin (2016). Forecast skill is measured

as the ratio of the official forecast errors to naïve forecast errors from a simple climatology

and persistence model. Since naïve forecasts suffer from the same natural variability as the

official forecast, this measure should remove the effect of storm dynamics from the official

forecast errors. Naïve hurricane forecasts are available for all hurricanes starting in 1970.

We also control for hurricane warning lead times to proxy for hurricane evacuations. This is

measured as the number of hours warning was issued before a strike divided by the length

of the coastline under warning.

It is more difficult to control for longer-term adaptation efforts. We include the nor-

malized length of protective levees from the US Army Corps of Engineers’ National Levee

Database as a measure of how location-specific efforts have changed over time. We also

include the radius of uncertainty as a general proxy of longer-term technological improve-

ment. The maximum processing speed of NOAA’s supercomputers was also considered.26

Together, these measures should control for longer-term adaptation efforts.

Alternative measures of adaptation include the U.S. Federal Emergency Management

Agency’s (FEMA) Community Rating System (CRS) as well as its Hazard Mitigation Grant

Program (HMGP). The CRS was created in 1990 as a part of the National Flood Insurance

Program to incentivize flood damage mitigation using reductions in flood insurance premi-
26Results available upon request.

28



Table 6.2: Controlling for storm dynamics and adaptation efforts

Dynamics Dynamics & Adaptation
(1) 12-hours (2) 36-hours (3) 12-hours (4) 36-hours

Housing density 0.26** 0.24** 0.18 0.08
(0.13) (0.11) (0.13) (0.10)

Income per housing unit 1.45*** 1.30*** 2.04*** 2.20***
(0.25) (0.20) (0.32) (0.30)

Income per housing unit sq. 0.40** 0.53*** 0.77*** 1.02***
(0.18) (0.16) (0.23) (0.27)

Min central pressure (-) 55.1*** 60.2*** 54.5*** 58.9***
(7.11) (7.46) (6.69) (6.76)

Max rainfall 0.45* 0.25 0.47* 0.28
(0.26) (0.23) (0.24) (0.21)

Max storm surge 1.10*** 0.94*** 1.10*** 0.93***
(0.29) (0.28) (0.27) (0.31)

H-hour error (IV) 0.55** 0.23 0.49* 0.34
(0.27) (0.19) (0.26) (0.20)

Warnings 0.31* 0.23* 0.38** 0.36***
(0.16) (0.12) (0.15) (0.12)

H-hour radius 2.95** 2.44***
(1.20) (0.88)

Levee length -3.07 -5.59***
(2.34) (2.34)

Outlying storms dummy -3.55*** -3.86*** -3.11*** -3.38***
(0.51) (0.56) (0.54) (0.53)

σ̂ 0.764 0.785 0.721 0.717
R2 0.928 0.925 0.939 0.939

*p< 0.1 **p< 0.05 ***p< 0.01

Notes: All equations are estimated using 65 observations and include a constant and a dummy
variable for Floyd [1987]. The standard errors are in parentheses. Heteroskedasticity corrected
standard errors are shown in columns (3) and (4).

ums. The HMGP was established in 1988 and includes grant funding for damage mitigation

efforts, including improved warning systems; see Davlasheridze et al. (2017). This additional

analysis can be found in Appendix Table A.6.

Table 6.2 shows that we continue to find a significant relationship between errors and

damages with an elasticity around 0.5. This suggests that the findings are robust to con-

cerns about omitted variables. However, the results do not hold for longer forecast horizons.

Although the direction of the relationship remains consistent with our hypothesis, the es-

timated coefficient is smaller and not statistically significantly different from zero. This

suggests that less attention is paid to longer forecast horizons which is consistent with the

survey findings in Milch et al. (2018).
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Table 6.3: Relative Out-of-Sample Model Performance
(1) Bias (2) RMSE (3) MAPE

Gets 0.89 0.66 0.94
Lasso OLS 0.69 0.58 0.84
Double Lasso 1.20 0.98 1.18
Robust Gets 0.20 0.20 0.64

Nordhaus (2010) 1.07 0.99 6.47

RMSE: Root mean square error. MAPE: Mean absolute
percent error. Metrics are computed relative to the perfor-
mance of the Bakkensen and Mendelsohn (2016) model. Val-
ues smaller than 1 indicate better performance.

6.3 Out-of-sample fit
Another concern is that we over fit the model in sample. Although Gets does not ex-

plicitly consider goodness of fit in its selection procedure, this is a common feature of model

selection and machine learning techniques that do. We can check for potential over fit by

evaluating the out-of-sample performance of the model. Since our estimation sample only

includes hurricanes that made landfall through 2015, we can evaluate the model performance

using hurricanes that made landfall in 2016 through 2018. This provides seven additional

observations against which we can assess the performance.

We compare the out-of-sample performance across several models. The first is the selected

model using Gets from column (4) of Table 5.1. The second is the selected model using

Lasso from column (5) of Table 5.1. The third is the selected model using Double Lasso

from column (6) of Table 5.1. The fourth is the robust model from column (1) of Table A.5.

The fifth is a simple model of damage based on the estimated relationship with income and

central pressure (see: Bakkensen and Mendelsohn, 2016). The sixth, and final model, is a

simple model of damage using a fixed relationship with income and an estimated relationship

with central pressure (see: Nordhaus, 2010; Strobl, 2011).

The results are presented in Table 6.3. Overall, the robust model performs considerably

better than any of the other models. This is in part driven by Harvey [2017] where the

robust model almost perfectly predicts official damages. However, as Appendix Figure A.4

shows, the robust model also performs well for the other hurricanes. In fact, it never does

worse than most models and official damages always fall within 1 standard deviation of the

forecast. This reinforces the idea that the results are robust both in sample and out.
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7 The value of improving hurricane forecasts
Next we seek to assess the implications of the findings given the consistency of the results.

Assuming that the model is correctly specified and forecast errors are super exogenous (see

Engle et al., 1983), then we can conduct a counterfactual experiment to assess the short-term

impact of improvements in forecast accuracy on hurricane damages. There are several tests

of super exogeneity by Engle and Hendry (1993), Hendry and Santos (2010), and Castle

et al. (2017). Using the approach by Hendry and Santos (2010), we fail to reject the null

hypothesis of super exogeneity.27 Given that super exogeneity is satisfied, we can start by

predicting what damages would have been using the average landfall-forecast errors from

1955-1969 for all strikes since 1970. From this we subtract damages predicted using actual

forecast errors from each strike to get a prediction of the damages prevented since 1970.28

Figure 7.1 illustrates that our prediction of the cumulative damages prevented due to

forecast improvements since 1970 is around $82 billion. To put this into context, this value

is 14 percent of the total predicted damages from 1970-2015 and is just shy of the damages

caused by Hurricane Maria [2018]. We can conduct a cost benefit analysis by comparing the

total benefit against the cumulative cost of producing the forecasts and their improvements

since 1970, which were obtained from historical reports of the Office of the Federal Coordi-

nator for Meteorology. This comparison illustrates that after accounting for the costs, the

predicted net savings is around $30 − 71 billion.

We can compare the prediction of damages prevented against the cumulative private

willingness to pay for forecast improvements since 1970 as extrapolated from the findings

of Katz and Lazo (2011). Figure 7.1 illustrates that damages prevented due to forecast im-

provements are greater than both public and private willingness to pay. This suggests that

both individuals and the federal government have severely underestimated the value of im-

proving hurricane forecasts. This is robust to alternative model specifications but should be

considered a lower bound of the total net benefit from hurricane forecast improvements since

we do not account for fatalities prevented (Willoughby et al., 2007) or reduced evacuation

and damage mitigation costs (Regnier, 2008).
27Results available upon request.
28See Technical Appendix B.2 for details.
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Figure 7.1: The cost and benefits of improving forecast accuracy since 1970

8 Conclusions
Forecasts of natural disasters can alter the destructiveness of t event when operating

through individuals’ beliefs about the costs of damage mitigation. This is particularly true

if individuals have a false sense of security about the accuracy of these imperfect forecasts.

In this paper we test for and quantify this relationship using an empirical model of damages

for all hurricanes to strike the continental United States in the past 60 years. We start by

estimating the full empirical model using OLS. Next, we simplify the model using model

selection methods and show that a small subset of drivers, including the 12-hour-ahead

forecast errors, explain most of the variation in hurricane damages.

There is a positive and statistically significant relationship between the 12-hour-ahead

landfall-forecast errors and damages. This relationship is consistent with the predictions

of the false sense of security hypothesis. It is robust to outliers, alternative measures of
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uncertainty, model specifications, out-of-sample storms, and controls for storm dynamics

and technological change. A one standard deviation increase in the distance between the

storm’s predicted and actual landfall location leads to $3, 000 additional dollars in damages

per household. Interpreting this result through the lens of the theoretical framework, it

indicates that the forecasts play a critical role in guiding individuals’ beliefs about the value

of short-term damage mitigation efforts. It also illustrates that, in aggregate, individual

decisions to protect and relocate property in the face of a disaster can have a significant

impact on the overall cost of a natural disaster.

Focusing on the specific implications of the results, we find that improvements in the

forecasts since 1970 have resulted in total damages being approximately $82 billion less than

they otherwise would have been. Although damages increased due to changes in vulnerabil-

ities and natural hazards, improvements in forecast accuracy along with other longer-term

adaptation efforts have kept damages from rising faster than they otherwise would have.

Comparing the cumulative damages prevented against the cost of producing the forecasts,

we find that there is a net benefit of around $30 − 71 billion. This illustrates that im-

provements in hurricane forecasts over the past few decades produced benefits beyond the

well-documented reduction in fatalities and have outweighed the associated costs.

This is particularly important since hurricanes are expected to become even more difficult

to forecast in the future. Knutson et al. (2010) argue that climate change will increase

hurricane intensity. As a result, in the future we are more likely to see hurricanes akin to

Harvey [2017] whose storm dynamics are harder to predict (Emanuel, 2017a,b). In light

of this reality, our findings support maintained investment in and continued measures to

improve hurricane forecasting capabilities along with other longer-term adaptation efforts so

that any future loss of life and property can be minimized.
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Figure A.3: 12-Hour-Ahead Forecast Error Densities by Year

Table A.1: Bivariate Correlations
pd hd ih ip FREQ rain surge npress wind MOIST ace GST forc12 cone12 Trend

dam 0.51 0.51 0.59 0.54 -0.14 0.32 0.54 0.60 0.34 0.09 0.30 0.52 -0.25 -0.43 0.53
pd 0.98 0.55 0.49 -0.02 0.14 0.12 0.11 -0.01 -0.02 0.05 0.39 -0.15 -0.29 0.41
hd 0.64 0.61 0.01 0.11 0.08 0.09 -0.05 -0.01 0.08 0.50 -0.19 -0.36 0.53
ih 0.99 0.02 0.11 0.07 0.05 -0.15 0.00 0.21 0.93 -0.42 -0.63 0.95
ip 0.04 0.07 0.03 0.02 -0.18 0.01 0.21 0.94 -0.42 -0.64 0.97

FREQ -0.17 -0.10 -0.04 0.12 0.05 0.03 0.01 -0.04 -0.03 0.02
rain 0.09 0.11 0.01 0.22 0.19 0.14 -0.24 -0.20 0.12
surge 0.65 0.52 0.11 0.08 0.01 -0.10 -0.09 0.01
npress 0.81 -0.02 0.18 0.03 -0.01 -0.14 0.01
wind 0.03 0.12 -0.20 0.08 0.08 -0.19
MOIST 0.08 0.01 0.01 -0.02 -0.02
ace 0.35 -0.26 -0.43 0.28
GST -0.46 -0.79 0.98
forc12 0.43 -0.44
cone12 0.74



Table A.2: Estimated Terminal Models for a target gauge of 3%
Terminal Model: Final GUM (1) (2) (3) (4) (5) (6) (7) (8) (9)

Housing density 0.60*** 0.58*** 0.64*** 0.61*** 0.59*** 0.40*** 0.64*** 0.56*** 0.44*** 0.55***
(0.18) (0.14) (0.19) (0.14) (0.14) (0.15) (0.18) (0.14) (0.15) (0.19)

Income per household 0.47 1.01*** 1.28*** 1.01*** 1.22*** 1.12***
(0.58) (0.19) (0.18) (0.17) (0.20) (0.21)

Historical fequency -4.46* -6.35** -4.85** -5.18** -6.54*** -4.21*
(2.48) (2.53) (2.24) (2.26) (2.31) (2.25)

Max rainfall 0.59* 1.12*** 1.14*** 0.72** 0.97*** 0.92***
(0.36) (0.32) (0.31) (0.32) (0.31) (0.34)

Max storm surge 1.16*** 1.44*** 1.41*** 1.45*** 1.34*** 1.30*** 1.24*** 1.30*** 1.27***
(0.41) (0.38) (0.38) (0.39) (0.37) (0.38) (0.39) (0.38) (0.38)

Min central pressure (-) 63.0*** 53.9*** 87.7*** 53.6*** 53.2*** 52.0*** 52.8*** 51.2*** 52.5*** 68.3***
(14.0) (8.66) (13.0) (8.73) (8.90) (8.43) (8.58) (8.62) (8.57) (13.9)

Max wind speed -1.03 -1.59 -1.53
(1.16) (1.23) (1.17)

Seasonal cyclone energy 0.53** 0.57** 0.61** 0.47* 0.42* 0.48*
(0.25) (0.25) (0.26) (0.24) (0.24) (0.25)

Soil Moisture 0.85 1.69*
(0.97) (0.95)

12-hour forecast error 0.52** 0.44* 0.33 0.48** 0.53**
(0.24) (0.24) (0.24) (0.23) (0.24)

12-hour radius 1.95 2.35* 2.96** 2.52** 1.23 0.88
(1.44) (1.19) (1.23) (1.25) (1.01) (0.99)

Strike trend 0.03 0.05*** 0.05*** 0.05*** 0.04***
(0.02) (0.01) (0.01) (0.01) (0.01)

AUG 0.20 0.16 0.15
(0.29) (0.32) (0.301)

NY -1.05 -1.78** -1.54** -0.85
(0.85) (0.81) (0.74) (0.80)

VA 1.73** 1.55* 1.79**
(0.82) (0.78) (0.81)

NC -0.71* -0.74** -0.74**
(0.42) (0.35) (0.36)

k 16 7 9 8 8 6 7 10 7 9
Log-likelihood (-) 147.9 157.6 161.3 157.6 158.8 157.1 157.5 153.5 157.1 157.8
AIC 3.406 3.420 3.537 3.441 3.464 3.389 3.417 3.397 3.411 3.464
HQ 3.609 3.527 3.666 3.558 3.582 3.485 3.524 3.536 3.517 3.592
BIC 3.908 3.684 3.854 3.731 3.754 3.626 3.681 3.740 3.675 3.780
σ̂ 1.219 1.275 1.340 1.282 1.298 1.261 1.273 1.244 1.269 1.291
R2 0.851 0.819 0.804 0.819 0.814 0.821 0.819 0.833 0.821 0.818

*p< 0.1 **p< 0.05 ***p< 0.01

Notes: Estimated using 98 observations and include a constant and dummy variables for Gerda [1969] and Floyd [1987]. Each terminal model
is selected from the Final GUM using a target gauge (target value) of 3%. Bolded values indicate terminal models with the lowest information
criteria. The standard errors are in parentheses. k is the number of selected regressors in the model.



Table A.3: Final Estimated GUMs at different targets

Target gauge: (Original GUM) (All) 1% 2% 3% 4% 5%

Housing density 0.53** 0.50** 0.46** 0.43** 0.60*** 0.44** 0.46**
(0.24) (0.21) (0.20) (0.20) (0.18) (0.20) (0.20)

Income per household 0.70 0.74 0.75 1.08 0.47 0.79 0.87
(0.79) (0.70) (0.68) (0.67) (0.58) (0.68) (0.61)

Historical fequency -6.63** -6.81** -7.09*** -6.14** -4.46* -6.30** -6.10**
(2.94) (2.70) (2.58) (2.68) (2.48) (2.63) (2.57)

Max rainfall 0.51 0.59 0.59 0.67* 0.59* 0.61 0.65*
(0.43) (0.38) (0.37) (0.38) (0.36) (0.37) (0.36)

Max storm surge 1.21** 1.13** 1.15*** 1.18*** 1.16*** 1.26*** 1.25***
(0.48) (0.43) (0.42) (0.43) (0.41) (0.41) (0.40)

Min central pressure (-) 52.6*** 56.3*** 51.8*** 59.5*** 63.0*** 53.6*** 53.4***
(18.2) (15.0) (9.25) (14.8) (14.0) (14.4) (13.9)

Max wind speed -0.27 -0.49 -0.98 -1.03 -0.49 -0.65
(1.54) (1.25) (1.24) (1.16) (1.23) (1.17)

Seasonal cyclone energy 0.42 0.32 0.31 0.45 0.53** 0.38 0.38
(0.32) (0.28) (0.28) (0.27) (0.25) (0.27) (0.25)

Soil moisture 0.77 0.57 0.65 0.11 0.85
(1.42) (1.09) (1.03) (1.05) (0.97)

Sea surface temperature 0.94 0.13 0.23 -1.79 0.18
(3.21) (2.51) (2.39) (2.28) (2.47)

12-hour forecast error 0.54* 0.62** 0.62** 0.59** 0.52** 0.64** 0.69***
(0.29) (0.26) (0.25) (0.26) (0.24) (0.25) (0.24)

12-hour radius 3.17 2.48 2.55 0.51 1.95 2.43 2.11
(2.60) (2.06) (2.01) (1.65) (1.44) (1.95) (1.62)

Trends: Yes Yes Yes Yes Yes Yes Yes
Hour fixed effects: Yes Yes Yes Yes No Yes No
Month fixed effects: Yes Yes Yes Yes Yes Yes Yes
U.S. State fixed effects: Yes Yes Yes Yes Yes Yes Yes

k 37 27 24 22 16 24 21
σ̂ 1.300 1.234 1.210 1.247 1.219 1.219 1.203
R2 0.876 0.869 0.868 0.856 0.851 0.866 0.864

*p< 0.1 **p< 0.05 ***p< 0.01

Notes: All equations are estimated using 98 observations and include a constant and dummy variables for Gerda
[1969] and Floyd [1987]. The standard errors are in parentheses. ‘All’ combines the retained variables from each
Final GUM. k is the number of selected regressors in the model.



Table A.4: Alternative Measures of Normalized Damages

(1) Nominal (2) Real (3) Norm-1 (4) Norm-2 (5) Norm-3

Housing density 0.27*** 0.35*** 0.43*** 0.38*** -0.78***
(0.10) (0.10) (0.11) (0.10) (0.10)

Income per housing unit 1.43*** 0.74*** -0.00 -0.01 0.27**
(0.12) (0.19) (0.13) (0.14) (0.13)

Income per housing unit sq. 0.44*** 0.42*** 0.38*** 0.42*** 0.38***
(0.09) (0.09) (0.10) (0.10) (0.09)

Min central pressure (-) 56.6*** 57.2*** 61.2*** 61.2*** 46.1***
(5.49) (5.53) (6.06) (6.11) (5.82)

Max rainfall 0.57*** 0.56*** 0.66*** 0.64*** 0.35
(0.21) (0.21) (0.23) (0.23) (0.22)

Max storm surge 0.99*** 1.06*** 0.96*** 0.95*** 0.98***
(0.24) (0.25) (0.27) (0.27) (0.26)

12-hour forecast errors 0.34** 0.33** 0.24 0.29* 0.40**
(0.15) (0.15) (0.17) (0.17) (0.16)

Outlying storms dummy -3.44*** -3.47*** -3.63*** -3.56*** -3.20***
(0.33) (0.34) (0.37) (0.37) (0.35)

σ̂ 0.812 0.817 0.896 0.902 0.860
R2 0.927 0.908 0.882 0.879 0.853

*p< 0.1 **p< 0.05 ***p< 0.01

Notes: All equations are estimated using 98 observations and include a constant and a dummy variable for Gerda [1969] and Floyd
[1987]. Standard errors are in parentheses. The different normalizations are: (2) CPI inflation; (3) Pielke Jr and Landsea (1998);
(4) Pielke Jr et al. (2008); (5) Neumayer and Barthel (2011)



Table A.5: Alternative Measures of Uncertainty

(1) Errors (2) Errors & Radius (3) Errors/Radius (4) R&S(2015)

Housing density 0.27*** 0.24** 0.28*** 0.28***
(0.10) (0.09) (0.10) (0.10)

Income per housing unit 1.43*** 1.76*** 1.36*** 1.36***
(0.12) (0.19) (0.12) (0.12)

Income per housing unit sq. 0.44*** 0.66*** 0.41*** 0.41***
(0.09) (0.13) (0.09) (0.09)

Min central pressure (-) 56.6*** 57.8*** 56.8*** 56.9***
(5.49) (5.41) (5.55) (5.58)

Max rainfall 0.57*** 0.56*** 0.55*** 0.54**
(0.21) (0.20) (0.21) (0.21)

Max storm surge 0.99*** 0.98*** 0.97*** 0.97***
(0.24) (0.24) (0.25) (0.25)

12-hour forecast errors 0.34** 0.27*
(0.15) (0.15)

12-hour radius 2.10**
(0.96)

12-hour error/radius 0.29*
(0.16)

12-hour uncertainty 0.23*
(0.14)

Outlying storms dummy -3.44*** -3.19*** -3.49*** -3.50***
(0.33) (0.35) (0.34) (0.34)

σ̂ 0.812 0.795 0.819 0.822
R2 0.927 0.930 0.925 0.925

*p< 0.1 **p< 0.05 ***p< 0.01

Notes: All equations are estimated using 98 observations and include a constant and a dummy variable for Gerda [1969] and Floyd [1987].
Standard errors are in parentheses. R&S(2015): Rossi and Sekhposyan (2015)



Table A.6: Controlling for Storm Dynamics and Adaptation Efforts

(1) Final (2) (1)+ (3) (1)+ (4) (1)+ (5) (1)+ (6) (5)+ (7) (5)+ (8) (5)+
RAD+LEV CRS+HMG (2)+(3) Naïve RAD+LEV CRS+HMG (6)+(7)

Housing density 0.27 0.16 0.17 0.10 0.25 0.15 0.15 0.09
(0.18) (0.19) (0.21) (0.22) (0.18) (0.19) (0.21) (0.22)

Income per housing unit 4.12*** 4.39*** 4.17*** 4.24*** 4.18*** 4.41*** 4.23*** 4.23***
(1.16) (1.16) (1.23) (1.23) (1.17) (1.18) (1.24) (1.24)

Income per housing unit sq. -1.07 -0.64 -1.01 -0.51 -1.14* -0.70 -1.07 -0.57
(0.62) (0.66) (0.64) (0.70) (0.63) (0.67) (0.65) (0.71)

Min central pressure (-) 65.6*** 64.5*** 63.8*** 63.2*** 64.7*** 63.7*** 62.9*** 62.4***
(9.43) (9.32) (9.77) (9.67) (9.55) (9.47) (9.91) (9.82)

Max rainfall 0.20 0.16 0.26 0.19 0.21 0.17 0.27 0.19
(0.31) (0.31) (0.32) (0.32) (0.31) (0.31) (0.32) (0.33)

Max storm surge 1.09** 1.03** 1.15** 1.12** 1.09** 1.03** 1.16** 1.12**
(0.40) (0.40) (0.42) (0.42) (0.40) (0.40) (0.42) (0.42)

12-hour official error 0.39 0.29 0.41 0.36 0.37 0.28 0.39 0.35
(0.23) (0.24) (0.25) (0.25) (0.24) (0.24) (0.26) (0.26)

12-hour naïve error 0.19 0.17 0.19 0.19
(0.24) (0.26) (0.25) (0.262)

12-hour radius 2.58 2.76 2.53 2.77
(1.52) (1.72) (1.54) (1.74)

Levee length -1.61 -1.74 -0.79 -0.85
(3.17) (3.25) (3.42) (3.51)

Community rating system -0.17 -0.19 -0.18 -0.20
(0.22) (0.21) (0.22) (0.22)

HMG spending per capita -0.02 0.00 -0.02 0.00
(0.03) (0.03) (0.03) (0.04)

Outlying storms dummy -3.56*** -3.22*** -3.57*** -3.15*** -3.58*** -3.23*** -3.59*** -3.14***
(0.55) (0.59) (0.57) (0.64) (0.56) (0.60) (0.58) (0.65)

σ̂ 0.783 0.772 0.797 0.788 0.788 0.780 0.802 0.795
R2 0.923 0.930 0.925 0.932 0.924 0.931 0.927 0.933

*p< 0.1 **p< 0.05 ***p< 0.01

Notes: All equations are estimated using 41 observations and include a constant. The standard errors are in parentheses.
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Notes: Official damages and confidence intervals are from NOAA’s Tropical Cyclone Reports and NOAA’s Billion-Dollar Events
Database. The standard errors around the forecasts are computed using the delta method under the assumption of normality.

Figure A.4: Out-of-sample damage ‘predictions’ by method and storm



B Technical Appendix

B.1 Approximation of the Normal Distribution
Given the assumption that the past forecast errors have a normal density then

gi(F1i |F̂1i) =
1

√
2πσi,(F1_,F̂1_)

e−(F1i−F̂1i)2/2σ2
i , (B.1)

which we can rewrite in terms of a standard normal density as

g (zi) =
1
√
2π

e−
zi
2

2 , (B.2)

where zi =
F1i−F̂1i

σ
i,(F1_,F̂1_)

so that the density is centered around the prediction. The integral of

the standard normal density becomes the standard normal distribution function so that

Φ

(
F1i, F̂1i

)
=

∫ (Fi−F̂i)

−∞

g (zi) dzi . (B.3)

This can be rewritten as

Φ

(
F1i, F̂1i

)
=

1

2
er f


F1i − F̂1i

√
2σi,(F1_,F̂1_)

 , (B.4)

where er f (·) is the Gaussian error function, which can be expanded as

er f (xi) =
2xi
√
π
1F1

(
1

2
,
3

2
,−x2i

)
(B.5)

=
2xi
√
π

[
∞∑

k=0

(−1)k x2k
i

(2k + 1) k!

]
,

1F1 (a, b, c) is a confluent hypergeometric function of the first kind. Plugging (B.5) into (B.4):

Φ

(
F1i, F̂1i

)
=

F1i − F̂1i

σi,(F1_,F̂1_)


1
√
2π

∞∑
k=0

(
−1
2

) k

(2k + 1) k!

(
F1i − F̂1i

σi,(F1_,F̂1_)

)2k . (B.6)

(B.6) illustrates that the normal distribution is a rescaling of the forecast errors relative to

their standard deviation. When |F1i−F̂1i |
σ
i,(F,F̂)

< 1 then |F1i−F̂1i |
σ
i,(F,F̂)

provides a close approximation

of (B.6) since the terms inside the brackets collapse to zero for large k. However, when
|F1i−F̂1i |
σ
i,(F,F̂)

≥ 1, then the terms inside the brackets downscale (B.6) so that |F1i−F̂1i |
σ
i,(F,F̂)

will be more

sensitive to relatively larger errors



B.2 Counterfactual Policy Analysis
Consider a simple representation of damages as:

ln (piyi) = X′i β + εi, (B.7)

where Xi is a vector of explanatory variables and εi is assumed to be iid normal. We estimate

this model, apply the delta method, and re-scale by prices to get a prediction of real damages

ŷi ∼ IN
(
yi,

(
yiσi,ŷ

)2)
. (B.8)

The difference between this prediction and some counterfactual, ỹi, gives

(ỹi − ŷi) ∼ IN ((ki − 1) yi,V (ỹi − ŷi)) , (B.9)

V (ỹi − ŷi) =
(
kiyiσi,ỹ

)2
+

(
yiσi,ŷ

)2
− 2 ∗ Cov (ỹi, ŷi) ,

where ki , 0. By the independence and normality assumptions (B.9) can be cumulated as:
n∑

i=1

(ỹi − ŷi) ∼ N

(
n∑

i=1

(ki − 1) yi,

n∑
i=1

V (ỹi − ŷi)

)
. (B.10)

Since we are working with the forecasts, then we typically think of the variance as the

residual error variance plus parameter estimation uncertainty as

σ2
i,ŷ =

(
β − β̂

)′
V (Xi)

(
β − β̂

)
+ σ2

i,ε (B.11)

σ2
i,ỹ =

(
β − β̂

)′
V

(
X̃i

) (
β − β̂

)
+ σ2

i,ε . (B.12)

Doornik and Hendry (2013) show that this can by approximately estimated as

σ̂2
i,ŷ = X′i

[ �
V

(
β̂
)]

Xi + σ̂
2
i,ε (B.13)

σ̂2
i,ỹ = X̃′i

[ �
V

(
β̂
)]

X̃i + σ̂
2
i,ε, (B.14)

where V
(
β̂
)
is the covariance matrix of the parameter estimates. Covariance is estimated as

Ĉov (ỹi, ŷi) = kiy
2
i

{
X̃′i

[ �
V

(
β̂
)]

Xi + σ̂
2
i,ε

}
. (B.15)

Bringing these pieces together and simplifying, the total estimate of the variance is�V (ỹi − ŷi) = y2i

{(
ki X̃i − Xi

)′ [ �
V

(
β̂
)] (

ki X̃i − Xi

)
+ (ki − 1)

2 σ̂2
i,ε

}
. (B.16)

When ŷi = ỹi then ki = 1 and Xi = X̃i so (B.16) collapses to zero. Using (B.16) we construct a

confidence interval around the difference between the predicted and counterfactual damages.


