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Abstract: This paper develops methods for characterizing stochastic evolution in networks. We

derive sufficient conditions for asymptotic global convergence to be global or path-wise contagion,

and that the network must be strongly connected. Strategies that are either globally or path-wise

contagious are then those that are asymptotically globally stable. Asymptotic global stability is

robust to the model of mistakes and addition of strictly dominated strategies. We show that for a

given payoff structure and hence relative payoff gains, a network can be designed to make at least one

strategy asymptotically globally stable. Similarly, for a given network structure and set of strategies,

one can determine the relative payoff gains that lead to a given strategy to be globally stable. We

briefly discuss the practical and empirical relevance of these findings.
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I. Introduction

Stochastic evolutionary models provide the justification for Nash Equilibrium as well

as a criterion for equilibrium selection. Under stochastic evolutionary dynamics, agents

adjust their behavior over time after learning from their opponents’ play. The adjustment
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process is such that players are assumed to best-respond to or imitate myopically their

opponents’ behaviors, but their assessments are subject to random shocks. In analyzing

long-run outcomes of such dynamic processes, Foster and Young (1990) and Kandori et al.

(1993) use the concept of stochastic stability. Stochastically stable outcomes are those that

occur with positive probability at the limit of randomness. Fairly concrete results have been

established with regard to stochastic stability in 2×2 coordination games. For example Young

(1993) and Kandori et al. (1993), Blume (1995) show that in 2× 2 coordination games and

under global interactions, risk-dominant strategies are stochastically stable.1 Maruta (1997)

derives equivalent results for m×m coordination games, showing that globally risk-dominant

strategies are selected in the long-run.2 Kandori and Rob (1998) show that globally pairwise

risk-dominant strategies are stable in the long-run only under strict conditions they refer

to as total bandwagon property and marginal bandwagon property.3 Under local interactions

and 2 × 2 games, (Ellison, 2000), Lee and Valentinyi (2000) and Lee et al. (2003) show

risk-dominant strategies are stable in the long-run.

In spite of these strong predictions, questions regarding robustness of and convergence

rates to long-run stable outcomes do exist. For example Bergin and Lipman (1996) show

that for given m×m asymmetric matrix games, the outcomes that are stochastically stable

strictly depend on the assumptions made concerning the structure of experimentation by

players. Kim and Wong (2010) show that for a given model of mistakes, any outcome can be

made stochastically stable by appropriately adding strictly dominated strategies. Alós-Ferrer

and Weidenholzer (2007) demonstrate that contrary to the predictions made in Kandori and

Rob (1998) regarding globally pairwise risk dominant strategies under global interactions,

under local interactions and beyond 4×4 coordination games, globally pairwise risk dominant

strategies need not be selected. Ellison (1993) showed that under global interactions, the

expected waiting times to stochastically stable outcomes are long.

This paper studies evolutionary processes in networks and m × m symmetric games.

We follow the customary behavioral and dynamics assumptions of Darwinian dynamics and

1. In a 2 x2 symmetric game with two symmetric equilibria in pure strategies, one risk-dominates another if
and only if the equilibrium strategy is a unique best response to any mixture that gives it at least a probability
of one half.

2. In an m×m symmetric game, a strategy is globally risk-dominant if it is a unique best response to any
mixture that gives it at least a probability of one half.

3. In an m ×m symmetric game, a strategy is globally pairwise risk dominant if it risk-dominates each
and every other strategy. Global pairwise risk dominance is a weaker notion compared to that of global risk
dominance according to Maruta (1997).
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with focus on establishing conditions for play to converge in the long-run and on how to

identify stable strategies. More specifically, agents are assumed to base their decisions on

the distribution of strategies in the previous period and not the entire history of play. Unlike

in the case of global interactions, local interactions imply that information available to each

agent is limited and is simply the distribution of strategies in their neighborhood. We

establish conditions for asymptotic global convergence and stability, that is the long-run

outcomes at the limit of population size rather than limit of noise. In so doing, we preserve

the necessity of maintaining positive noise levels in evolutionary models. That is positive

noise levels captures the general assumption of bounded rationality and experimentation

embedded in the models.

These two fairly standard assumptions, limited information (local interactions) and pos-

itive noise levels, circumvent some of the above mentioned limitations of evolutionary pro-

cesses in the following ways. First, several authors have shown that under local interactions

the expected waiting times to the long-run stable state from any other state are bounded

(e.g. Ellison (1993), Young (2011), Montanari and Saberi (2010)). The limitation concerning

the convergence rates is thus not necessarily critical under local interactions, specially when

the noise levels are kept positive.

Secondly, under local interactions asymptotic global convergence occurs for strongly con-

nected networks and additional conditions we describe below. We show that for a given

structure of interactions, strategies that are globally and/or path-wise contagious are glob-

ally stable for a sufficiently large population size. By contagious we mean a strategy spreads

by best-response once a small fraction of players have adopted it. A strategy is globally

contagious if it is uniquely contagious after pair-wise comparison with all other strategies.

A strategy, say a, is path-wise contagious relative to another say b if there exists a directed

path from b to a, such that each strategy on the path is contagious. For any given game

however, even when no strategy is globally contagious it is possible to construct a range of

network families for which at least one strategy is path-wise contagious. The relationship

between global and path-wise contagion on one hand with interaction and the underlying

game structures on the other hand is not linear. For a given game, sparsely connected net-

works tend to favor global and path-wise contagion. For a given network structure, strategies

with the largest relative payoff gains are those that are potentially globally and path-wise
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contagious.4

The notion of contagion in networks under strategic interactions as defined here is related

to that in Morris (2000). Any given arbitrary network has a critical contagion threshold such

that contagion occurs if and only if the relative payoff gain is below the contagion threshold.

In this regard, the analysis in this paper is closely related to Morris (2000) in making use

of the notion of contagion to characterize long-run outcomes of evolutionary processes in

networks. The main difference resides in the fact that we focus on stochastic rather than

deterministic dynamics. In so doing, we are able to make unique predictions of long-run

stable outcomes for m ×m coordination games. Similarly, we focus on characterizing long-

run stable outcomes as opposed to determining the properties of networks that influence

contagion.

Global contagion as we define here is related to the concept of p-dominance according to

Morris et al. (1995). Generally, an action pair in a two-player game is said to be p-dominant

if each action is a best response to any belief that the other player takes the action in this

pair with probability at least p. For the local interaction game we consider, a strategy is

p-dominant if for all players, it is the unique best-response when it is played by at least

proportion p of the neighbors. This implies that for a network with contagion threshold p, a

strategy that is p-dominant is also globally contagious. Path-wise contagion in the context of

local interaction game as defined in this paper is however a novel notion, and is less restrictive

compared to global contagion.

In relation to the analysis in Alós-Ferrer and Weidenholzer (2007), global and path-wise

contagion are alternative methods that focus on the properties of the underlying network and

game. Alós-Ferrer and Weidenholzer (2007) focus on establishing conditions for selection of

1
2 -dominant strategies, which occurs in networks with contagion threshold of 1

2 ; for example

the cyclic interaction structure. Here, we do not place restrictions on the contagion threshold

and hence network topology. Most importantly however, global and path-wise contagion

as opposed to the notion of Global pairwise risk-dominance and the partial bandwagon

properties in Alós-Ferrer and Weidenholzer (2007) can be employed to make prediction for

long-run outcomes in m×m and not just 3× 3 coordination games.

The closely related literature with regard to p-dominance is the recent papers by Sand-

4. For any given matrix game, the relative payoff gain of strategy say a in relation to another say b, is
equivalent to the fraction of opponents that must play a for that agent to switch from playing b to playing a.
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holm (2001) and Sandholm et al. (2014). They show that the deterministic dynamics where

players sample strategies of k-randomly chosen other players in the population leads to al-

most global convergence to 1
k -dominant strategies. In relation to the definitions in this paper,

1
k -dominant strategies would be those that are globally contagious whenever the maximum

number of neighbors any player has is k. The contrast with what we do in this paper is

that we study non-deterministic processes under general interaction structures, hence derive

results for general interaction topologies and revision probabilities. Secondly, we emphasize

evolutionary processes with positive noise levels. This enables us to derive results pertaining

global convergence rather than almost global convergence.

Thirdly, we show that asymptotic globally stable outcomes are robust to addition of

dominated strategies, circumventing the limitation of stochastic stability pointed out by

Kim and Wong (2010). The reason for the robustness of asymptotic global stability to

both addition of strictly dominated strategies and model of mistakes is that the factors

that determine global stability under local interactions (global and path-wise contagion) are

robust to both phenomena.

The most relevant aspect of our results is that for a given payoff structure and hence

relative payoff gains, it is possible to design a network such that at least one strategy is

asymptotically globally stable. Similarly, for a given network structure and set of strategies,

one can determine the relative payoff gains that lead to a given strategy to be globally stable.

Moreover, these findings are robust to the model of mistakes, circumventing the limitations

pointed out by Bergin and Lipman (1996).

The findings in this paper have both practical and empirical implications. First, since

the model of mistakes does not play a role in determining the long-run stable outcomes

(but perhaps only the rates of convergence), then for any given game (e.g. institutional or

technological adoption) if the network and payoff structures are known a priori, the level

of noise/experimentation that is characteristic to the given interaction environment can be

estimated. This can be done using historical data for competing technological products for

example. For example Young (2009) fits adoption curves to data on diffusion of Hybrid

Corn (based on the empirical work of Ryan and Gross (1943)) to distinguish between three

diffusion processes; contagion, social influence and social learning. A similar exercise can be

performed for a specific learning process then estimate the desirable level of experimentation.
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This exercise is feasible since the network of interactions can be empirically determined. Re-

cently, there has been a growing literature both theoretical and empirical in the field of social

networks. Most of this literature is devoted to characterizing the distributional structure of

real world social networks (see for example Newman et al. (2002) and Newman (2003)). De-

termining the level of experimentation that is characteristic to a given institutional structure

or technology field is particularly relevant if we view the process of experimentation as an

abstraction from the actual process through which new technologies and institutions emerge.

The second practical relevance of our result is that, by relating network structure to relative

payoff gains it is possible to determine for a given network of interaction the required level

of incremental innovation for one product to take over the market. That is, for any given

network one can determine the level of relative payoff gain for a given strategy to be globally

contagious independently of the level of noise and model of mistakes. Similarly, if we think

of competing scientific theories as exhibiting strategic complementarity, then for a given

network of interactions between scientists (which can be constructed from co-authorship or

cross-citations) one can determine the level of empirical evidence/support (hence relative

payoff gains) that can lead to one theory to be firmly accepted.

The remainder of the paper is organized as follows. In section II. we introduce the

general framework of stochastic evolutionary dynamics in networks. Section III. defines the

solution concept and provides results for global convergence and stability. Sections IV. and

V. developed the concepts of global and path-wise contagion, explicitly characterizing how

the network and payoff structures interactively shape long-run stability.

II. The model

We consider an m strategy matrix coordination game Γ(X, {Ui}i∈N ) played by a set

N = {1, · · · , i, · · · } of players. Where X = {a, b, c, · · · } is the strategy set identical for all

players and U ∈ Rm×m is the associated payoff matrix such that Ui(a, b) is the base payoff

to i for playing a when the opponent plays b. Whenever the a finite population is referred N

will denote the population size. Players revise their strategies simultaneously at discrete time

intervals t = 1, 2, · · · . At each t, each player evaluates the available strategies and chooses

that which maximizes the expected payoffs. This evaluation process in based on strategies

of opponents in the neighborhood. The neighborhoods form each player’s social network.
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Generally, the network of interactions can be modeled in a graph theoretical manner.

Let G(N,E) be a graph with N vertices representing the number of agents and E edges

linking different pairs of agents, such that a graph gij defines the connection between i and

j. If gij = 1 then a directed link exists from i to j, and zero implies otherwise. G(N,E)

is thus a directed network describing the relationship of any one agent with every other

agent in the population. The adjacency matrix A of G(N,E) is defined as an N × N

matrix with entries being the elements of gij . The neighborhood of agent i, Ni, is defined as

Ni = {j ∈ N |gij = 1}, and gives the set of players to which i is linked to. The cardinality

#Ni = ki, is the degree of i.

We assume that each player plays the same strategy against all the neighbors. That is

given state x, where x−i denotes the population state with i excluded, the expected payoff

to i for playing strategy a is

Ui(a,x−i) =
∑
j∈Ni

JijU(a, xj), (1)

where xj is the jth coordinate of x. The parameter Jij takes on values in the closed interval

[0, 1]. It is the weight that i attaches to the interaction with j, such that if i weights all the

neighbors equally then Jij = 1
ki

for all j ∈ Ni. The model of stochastic evolution in networks

is then defined as follows.

Definition 1. A model of stochastic evolution for an m-strategy coordination game in

networks is a quadruple (Um×m,XN , PN , PN,ε, GN ) consisting of

1) A payoff function U ∈ Rm×m; a state space denoted by XN .

2) A family of interaction networks GN indexed by N as the number of vertices and EN as

corresponding number of edges such that

lim
N→∞

|EN |
N(N − 1)

< 1 (2)

3) A family of Markov transition matrices PN on XN indexed by N ≥ 3.

4) A family of Markov transition matrices PN,ε on XN indexed by N ≥ 3 and the set

ε = (ε1, · · · , εN ), such that

(i) PN,ε is ergodic for all εi > 0.
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(ii) PN,ε is continuous in ε and PN,0 = PN .

(iii) Each εi(x) can be state dependent but are independent of N and the position in

the network.

The state XN is a function of both N and the network structure GN . Condition (2) of

the model places restriction on the structure of the network as the population size grows.

It states that the density of the network as N grows should be bounded away from one.

A complete network (in which each player interacts with every other player) has density of

one; (2) therefore rules out complete networks and all network families for which the number

(or mass) of edges grows proportionally with its volume: N(N − 1). As already established

in Ellison (1993), for complete networks the radii of all basins of attraction are increasing

functions of N . Condition (2) rules out these cases and is necessary for the validity of results

in Theorem 9 (ii) and (iii) below.

The Markov transition matrix PN is based on the unperturbed dynamics and PN (x,y)

is the probability that state x is followed by y. Since we assume best response dynamics

rather than say imitation, PN (x,y) is the probability that state y is reached when each

player switches to a strategy yi which is best-response to x. That is for each i

BRi(y
i,x) =

 1 if yi ∈ arg maxb∈X Ui(b,x−i)

0 otherwise.
(3)

The fourth element of the model specifies the nature of random perturbations. There

are two main ways to capture the aspect of randomness. The mistakes resulting from exper-

imentation (on strategies) and randomness resulting from expected payoffs perturbations.

Under the former, the probability that player i chooses action a given x is

Pi(a,x) = (1− εi(x))BRi(a,x) + εi(x)Pi(a,x) (4)

where
∑

a∈X Pi(a,x) = 1 for each i ∈ N and a ∈ X.

Condition (iii) of element 4 of the model implies that each εi(x) and Pi(a,x) can be state

dependent but are independent of N . This condition is necessary to rule out cases in which

the likelihood of mistakes is a decreasing function of N . A distinction should however be

made between the likelihood of mistakes and the number of mistakes. While the likelihood
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of making a mistake to transition from one state to another is independent of N , the number

of mistakes required to exit a subset of states can grow with N . The special case of dynamics

(4) are Kandori et al. (1993) and Young (1993) where mutation rates are state and player

independent.

Under the case of expected payoff perturbations, i’s objective is to choose a strategy a

that maximizes the perturbed payoff Ui(a,x−i) + εa, that is

a ∈ arg max
b∈X

Ui(b,x−i) + εb

where εb’s are the random components of the expected payoff. The special cases of expected

payoff perturbations are those in which the components of ε = (εa, εb, · · · ) are assumed to

be independently distributed. For example the logit and multinomial probit in Blume (2003)

and Myatt and Wallace (2003) respectively.

III. Asymptotic global convergence

Given the conditions for random perturbations above, the process PN,ε has a well defined

unique invariant distribution πN,ε = limt→∞ q0P
t
N,ε, where qt is the vector of probability

mass functions at period t. It describes the amount of time the process spends in each state

in the long-run or equivalently the long-run probability of each state. We denote by l for a

typical limit states of the equivalent process without mistake, that derives from the dynamics

in (3). The set of all such sets is denoted by L. When interactions are localized, the number

of limit states may increase depending on the network topology. Throughout the paper, we

write D(l) for the basin of attraction of l.5 We then define ∂l as a set of all states in the

basin of attraction of l with l excluded and refer to it as the neighbourhood of the limit state

l.

Asymptotic global stability is then formally defined as follows

Definition 2. Given a family of networks GN indexed by N , a subset of states x is said to

be asymptotically globally stable if limN→∞ πN,ε(x) > 0

5. For the process without noise PN , a basin of attraction of a limit state l is formally defined as D(l) =
{x ∈ XN |P(∃T s.t xt ∈ l ∀ t > T |x0 = x) = 1}. That is, the set of states from which the chain without noise
converges to l.
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That is, asymptotically globally stable states are those where the probability with which it

is played in the long-run is positive at the limit of the population size. The definition of

asymptotic global stability above is different from that of stochastic stability commonly used

as an equilibrium selection mechanism in evolutionary. A stochastically stable state is that

in which limε→0 πN,ε(l) > 0. In other models of stochastic evolution, such as Binmore et al.

(1995), Binmore and Samuelson (1997) and Blume (2003), a limit of the population size is

taken primarily to approximate the stochastic process by a deterministic form. The definition

of long-run stable states in Blume (2003) is in the context of stochastic stability defined as

limε→0 limN→∞ πN,ε(l) > 0. Binmore et al. (1995) and Binmore and Samuelson (1997) on

the other hand partly discuss equilibrium selection with positive noise levels in the context

of asymptotic stability as defined above. They however do not refer to selected states as

stochastically stable. Sandholm (2007) and Sandholm (2010) discusses equilibrium selection

in deterministic evolutionary dynamics as in the above mentioned three papers, and defines

stochastically stable states in the limit of population size, that is limN→∞ πN,ε(l) > 0. This in

turn however prompted another definition, limit stochastic stability for states that are stable

in the long-run at the limit of noise; that is states for which limε→0 limN→∞ πN,ε(l) > 0. To

avoid such redefinitions of stochastic stability, we refer to long-run stable states at the limit

of population size as asymptotically globally stable.

The characterization of asymptotically globally stable states involves analysing the sta-

tionary distribution of PN,ε. The following definitions come handy in the characterization of

the limit behaviour of PN,ε. First, we define G(W )-graphs for a subset W ⊂ X as a set of

all oriented graphs g ⊂ X×X satisfying:

1. No arrows start from W and exactly one arrow starts from each state outside of W .

2. Each g ∈ G(W ) has no loops.

If W is a singleton set, say x, then G({x}) is a set of all graphs linking every point outside

of x to x, also commonly referred to as x-trees. Secondly, we define gl,l′ ∈ D(l)×D(l′) graphs

restricted to basins of attractions of l and l′. Similarly, Gl,l′(W ) graphs, where W is a subset

of D(l′) is a set of all graphs satisfying

1. No arrows start from W and exactly one arrow starts from each state outside of W .

2. Each gl,l′ ∈ Gl,l′(W ) has no loops.
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For example if ∂l = {x,y} and ∂l′ = {w,v, z}, then typical graphs in Gl,l′ include

l→ x→ y→ w→ v→ z→ l′, e.t.c.

The third definition regards transition probabilities associated with graphs. We define

PN,ε(g) =
∏

(x,y)∈g PN,ε(x,y). That is the product of probabilities of transitions in graph g.

A similar definition follows for graphs in Gl,l′(W ); where PN,ε(gl,l′) =
∏

(x,y)∈gl,l′
PN,ε(x,y).

In characterizing πN,ε we make use of the following two lemmas, which are Lemma 3.1

and Theorem 4.1 of Freidlin and Wentzell (2012).

Lemma 3. Given a process PN,ε, the stationary distribution πN,ε(x) of some state x is given

by

πN,ε(x) =

 ∑
g∈G({x})

Pε(g)

∑
y∈X

∑
g∈G({y})

Pε(g)

−1 (5)

Lemma 4. Given a process PN,ε, if probabilities PN,ε(x,y) consist of numbers exp
(
−ε−2v(x,y)

)
,

then for ε sufficiently small and for some γ > 0

πN,ε(x) = exp

{
−ε−2

(
V (x)−min

y∈X
V (y)± γ

)}
(6)

where V (x) = ming∈G({x})
∑

(x,y)∈g v(x,y)

Lemma 4 derives from Lemma 3 and places lower and upper bounds on the stationary

distribution in terms of the least cost graphs, where V (x) is the total cost of the minimum

cost x-tree. Given the relation in Lemma 4, it is sufficient to focus on the l-trees; that is,

the g ⊂ L × L graphs defined on the state space of limit states. The first step in doing so

is deriving probabilities PN,ε(gl,l′) for graphs between limit states as defined above. Once

these probabilities are expressed in the form exp (−c(l, l′)), where c(l, l′) is a cost function of

the graphs from l to l′, we can then use Lemma 4 to characterize the stationary distribution

of limit states.

For every graph gl,l′ ∈ Gl,l′(l
′), the process goes through two stages. First from l→ ∂l′,

then from ∂l′ → l′. Denote by gl,∂l′ ∈ Gl,∂l′(x) for graphs that start from l and end in

a single state x of ∂l′, and write PN,ε(gl,∂l′) =
∏

(x,y)∈gl,∂l′
PN,ε(x,y). Similarly, we write

g∂l′,l′ ∈ G∂l′,l′(l
′) for graphs starting from states in ∂l′ and end at l′. For every graph

gl,l′ ∈ Gl,l′(l
′), we can thus write PN,ε(gl,l′) as a product PN,ε(gl,l′) = PN,ε(gl,∂l′)PN,ε(g∂l′,l′).

We refer to the probabilities PN,ε(gl,∂l′) as exit probabilities in the sense that they involve
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exit from a basin of attraction, PN,ε(g∂l′,l′) as contagion probabilities since they involve

the dynamics within a basin of attraction and such dynamics is governed by the process of

contagion or best-response. We now derive expressions for each.

III.A. Exit probabilities

As defined above, exit probabilities are probabilities of evolution along the graphs gl,∂l′

for any given pair of limit states (l, l′). Along paths of such graphs, the dynamics is governed

by mutations and by definition each transition involves a single mutation. If mutation

probabilities are uniform, for example the case in which probabilities of a transition by

mistake from some state x to another y is given PN,ε(x,y) = εv(x,y), where v(x,y) is some

cost function that is greater than zero if the transition x→ y requires a mutation and zero if it

occurs under best-response. Then PN,ε(gl,∂l′) = εV (x,y) = exp {V (x,y) ln ε} where V (x,y) =∑
(x,y)∈gl,∂l′

v(x,y) is the total cost of graph gl,∂l′ . Under such homogeneous probabilities

of mistakes, it becomes straightforward to apply results of Lemma 4. The first step in

characterisation of exit probabilities thus involves expressing PN,ε(gl,∂l′) in exponential form.

For the model defined above, the following lemma provides upper and lower bounds for

PN,ε(gl,∂l′).

Lemma 5. Suppose (XN , PN,ε, GN ) is a model of evolution with noise and let l and l′ be

any two limit states of (XN , PN , GN ). Then

K exp
{
|gl,∂l′ | ln (P(xl′ , l))

}
≤ PN,ε(gl,∂l′) ≤ exp

{
|gl,∂l′ | ln (P(xl′ , l))

}
(7)

where |gl,∂l′ | is the cardinality of gl,∂l′ , Pi(xl′ , l) is the probability that i plays action xl′

given that the process is in state l, xl′ is the action played by all or a majority of players

in state l′ and K > 0 is some real number.

Proof.

See Appendix VII.A..

The quantity |gl,∂l′ | is the number of mistakes required to exit the basin of attraction D(l)

starting from l into the basin of attraction D(l′). Equivalently, it is the number of players

required to play action xl′ by mistake either simultaneously or consecutively for evolution
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from l → ∂l′ to occur. For the remainder of the paper we write R(l, ∂l′) for |gl,∂l′ | and the

normalization r(l, ∂l′) = 1
NR(l, ∂l′). The quantity c(l, ∂l′) = −r(l, ∂l′) ln (P(xl′ , l)) is then

the cost associated with the graph gl,∂l′ , or simply the cost of evolution from l → ∂l′. The

following example suffices to illustrate the implications of the measures contained in (7).

Consider a 2×2 symmetric coordination game with strategies a and b, where U(a, a) = 3,

U(a, b) = 2, U(b, a) = 0, U(b, b) = 4 such that a is risk-dominant. Let the interaction

structure be that of a ring network in which each player has two neighbours. There are two

limit states in this case: that in which all players play a and that in which they all play b.

Since a is risk-dominant, whenever a player has one neighbour playing a, his best-response

is a. For N ≥ 4, two mistakes are required to move from an all b state, b, to the basin of

attraction of an all a state, ∂a. To move from a to ∂b requires more than N/2 mistakes.

We then have r(b, ∂a) = 2
N and r(a, ∂b) = 1

2 . Now consider a model of mistakes in (4)

and assume that εi(x) = ε(x) for all i and that ε(x) follows a logit distribution such that

ε(a,b) = exp{βU(a,b)}
exp{βU(a,b)}+exp{βU(b,b)} = 0.018 and ε(b,a) = exp{βU(b,a)}

exp{βU(b,a)}+exp{βU(a,a)} = 0.0025.

Assume also Pi(a,b) = Pi(a,b) = 1
2 . That is, both strategies are equally likely whenever a

mutation occurs. Combining ε(.) and P(.) then gives P(b,a) = 0.0013 and P(a,b) = 0.009.

The costs of evolution between a and b are c(b, ∂a) = −9.4
N and c(a, ∂b) = −3.3. The

respective bounds for the exit probabilities are K exp(−3.3N) ≤ PN,ε(ga,∂b) ≤ exp(−3.3N)

and 8.3× 10−5K ≤ PN,ε(gb,∂a) ≤ 8.3× 10−5. In other words, given the structure of pertur-

bations, we can determine the rate at which exit probabilities decay with N . This is opposed

to the case of limit noise analysis where the quantity lnP(xl′ , l) tends to negative infinity.

III.B. Contagion probabilities

The dynamics of the process from ∂l′ → l′ is driven by contagion or equivalently, by best-

response. We use this property to derive the lower bounds for the probabilities PN,ε(g∂l′,l′)

. The characterization is based on the notion that once the chain enters the neighbourhood

of a limit state, it acquires a quasi-stationary distribution over the state space of a basin

of attraction. The quasi-stationary distribution attained places most weight on the corre-

sponding limit state. The convergence rate within a basin of attraction is precisely the rate

at which the chain attains its quasi-stationary distribution. The following example will help

illustrate this concept.
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PN,ε =



0.91 0.05 0.03 0.003 0.003 0.004 0.

0.85 0.075 0.07 0.0005 0.001 0.003 0.0005

0.1 0.84 0.05 0.004 0.0006 0.0004 0.005

0.0006 0.003 0.0004 0.015 0.93 0.044 0.007

0.0005 0.0015 0.003 0.005 0.03 0.07 0.89

0. 0.0002 0.0003 0.001 0.0005 0.99 0.008

0.0001 0.0003 0.0006 0.009 0.04 0.9 0.05



(8)

Consider the Markov chain with transition matrix in (8). The state space is X =

{a,b, c,d, e, f ,g}. It consists of two limit states a and f and the corresponding basins

of attraction are ã = {a,b, c} and f̃ = {d, e, f ,g} respectively. The basins of attraction

thus form almost invariant subsets. The dashed lines partition the transition matrix into

transitions within the states of almost invariant subsets (the upper left and lower right blocks

of the matrix) and transitions from one invariant subset to another (upper right and lower

left blocks). Whenever the process is in either of these subsets, it attains a quasi-stationary

distribution that we denote by πN,ε(ã) and πN,ε(f̃) respectively.

For the transition matrix (8), the respective invariant distributions rounded to the fourth

decimal place are:

πN,ε = (0.0450, 0.0045, 0.0021, 0.0012, 0.0022, 0.9351, 0.0995),

πN,ε(ã) = (0.8700, 0.0865, 0.0435) and

πN,ε(f̃) = (0.0016, 0.0025, 0.9852, 0.0107).

The process thus spends 93.5% of the time in state f in the long-run. When in the basin

of attraction ã, it spend 87% of the time in state a; when in f̃ it spends 98.5% of the time

in f . To fully characterize the dynamics of the process within each basin of attraction, we

make use of the convergence rates to the quasi-stationary distributions. Closely related to

the convergence rates are the mixing times within these almost invariant subsets, the time it

takes the process to attain its stationary (quasi-stationary) distribution. For each D(l), we

denote the mixing time by MD(l). For the process (8) above, the mixing time for the entire

process is M = 1600 periods, Mã = 12 periods and Mf̃ = 16 periods.
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Seneta (1993) showed that the convergence rates for finite Markov chains are always expo-

nential. That is, for a given PN,ε and probability mass function at time t, qt,
∣∣∣∣∣∣P tN,εq0 − πN,ε

∣∣∣∣∣∣ =

O(Rt), for some R < 1. We can thus generally define the convergence rate to the quasi-

stationary distribution πN,ε(D(l)) as,

R(D(l)) = lim sup
t→∞

∣∣∣∣P tN,εqD(l) − πN,ε(D(l))
∣∣∣∣ 1t (9)

where qD(l) is the probability mass function that places most weight on some initial state of

the chain in D(l).

Contagion probabilities (for transitions ∂l → l) are then proportional to 1 − R(D(l)).

This is based on the fact that since R(D(l)) < 1, the closer R(D(l)) is to one the longer the

process takes to converge to its quasi-stationary distribution. We can then write PN,ε(g∂l,l) =

(1−R(D(l)))Kl , where Kl > 0 is some real number. Equivalently,

PN,ε(g∂l,l) = exp (Kl ln (1−R(D(l)))) (10)

The parameters R(D(l)) are equivalent to the second largest eigenvalues of the block

matrices describing the transitions within the states of almost invariant subsets (see proof

of Proposition 6 below). For the process (8) the respective values are R(ã) = 0.2002 and

R(f̃) = 0.2851. Hence PN,ε(g∂a,a) = exp (−0.22Kl) and PN,ε(g∂f ,f ) = exp (−0.34Kl).

In what follows, we derive and expression for R(D(l)) in terms of computable parameters

rather than using its relation to the eigenspectrum of the entire transition matrix. Here, we

provide bounds in terms of the eigenspectrum of the network of interactions. We begin with

the following definitions.

Denote the normalized adjacency matrix associated with the network of interactions by

A (we omit the index N for notational simplicity). Let also ρ(A ) = (λN1 , · · · , λNN ) be its

eigenvalue spectrum ordered in such away that λN1 = 1 ≥ λN2 ≥ · · · ≥ λNN . Denote by Σε for

a player’s individual transition matrix given an opponent’s actions. That is let P(xj |xi) be

the probability that a given player plays action xj ∈ X given that his opponent is playing
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xi ∈ X in the current period. Then Σε is given by

Σε =



P(x1|x1) P(x2|x1) · · · P(xm|x1)

P(x1|x2) P(x2|x2) · · · P(xm|x2)
...

...
. . .

...

P(x1|xm) P(x2|xm) · · · P(xm|xm)


(11)

Let also ρ(Σε) = (ϑ1, · · · , ϑm) be the eigenvalue spectrum of Σε. The following Lemma

provides bounds for convergence rates.

Lemma 6. For a given network of interactions GN , the convergence rate R(D(l)) within a

basin of attraction has the following bounds

1− λN2 (G) ≤ 1−R(D(l)) ≤ 1− ϑmλN2 (G)

where λN2 (G) is the second largest eigenvalue of the normalized adjacency matrix of

network GN .

Proof.See Appendix VII.B.

The eigenvalues of Σε, ϑm are functions of the underlying payoff structure and the level

of noise. As the noise level tends to zero, ϑm tend to one.The quantity 1 − λN2 (G) is also

generally referred to as the spectral gap of GN . A bound on λN2 can be established through its

relationship with the graph conductance φ(G). We give examples for specific graphs below.

Example: The following relation between second the eigenvalue of a network graph GN ,

λN2 (G) and φ(G) can be derived from Cheeger inequality: See Appendix VII.C. for more

detail concerning the relation plus derivations for the following examples.

λN2 (G) ≤ 1− φ(G)2

2
. (12)

(i) Complete network (Gcom): a network structure in which every vertex is connected to

every other vertex: λN2 (Gcom) ≤ 7
8 .

(ii) 1 −D cyclic network (Gcyc): a network in which vertices are arranged in a circle and
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every vertex is connected to two other neighboring vertices; λN2 (Gcyc) ≤ N2−2
N2 .

(iii) 2D N ×N lattice network (G2D): a lattice structure constructed with periodic neigh-

bourhood conditions such that each agent is connected to 4 neighbors: λN2 (G2D) ≤
16N2−1
16N2 .

(iv) Random d-regular network (Gd−r): a network structure in which each of the N vertices

is connected to d other vertices chosen at random: λN2 (Gd−r) ≤ 7
8 .

(v) Newman’s small world network (Gnsw): a network structure in which the mean shortest-

path between nodes increases sufficiently slowly (logarithmically) as a function of the

number of nodes in the network: λN2 (Gnsw) = 1−O
(

c
(lnN)2

)
, where c is a constant.

Proof.See Appendix VII.C.

In general, densely connected and random networks have higher second largest eigenvalues

compared to sparsely connected network. For sufficiently small noise, ϑm is close to one such

that 1 − R(D(l)) is approximately equal to 1 − λN2 (G). This enables us to focus on the

influence of the network on long-run stability.

III.C. Combining exit and contagion probabilities

The above discussion regarding the bounds for exit and contagion probabilities together

yields the following lemma that provides bounds for PN,ε(gl,l′).

Lemma 7. Suppose (Um×m,XN , PN,ε, GN ) is a model of evolution with noise and let l and

l′ be any two limit states of ((Um×m,XN , PN , GN ). Given the network of interactions

GN , let the second eigenvalue of its normalized adjacency matrix be λN2 (G), where for

some real number 0 ≤ Kl ≤ 1, γN (l) = Kl ln(1− λN2 (G)). Then

K exp

{
−N

[
c(l, ∂l′)− 1

N
γN (l′)

]}
≤ PN,ε(gl,l′) ≤ exp

{
−N

[
c(l, ∂l′)− 1

N
γN (l′)

]}
(13)

Given (13), we can then restates the results in Lemma 4 as follows.

Lemma 8. Given a process PN,ε, if probabilities associated with graphs gl,l′ are as in (13),
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then for sufficiently small rates of mutations and for some α > 0

πN,ε(l) = exp

{
−
(
ψN (l)−min

l′∈L
ψN (l′)± α

)}
(14)

where ψN (l) = ming∈G({l})
∑

(li,lj)∈g ψ
N (li, lj) and ψN (li, lj) = N

[
c(li, ∂lj)− 1

N γ
N (lj)

]
.

From relation (14), the network and payoff structures, the model of mistakes and the

population size influence the stationary distribution through the cost functions ψN (.). The

relevant variables for characterising the long-run behaviour of the process are these cost

functions, and since we seek to establish the behaviour of πN,ε(.) for large population sizes,

it is sufficient to focus on the properties of limN→∞ ψ
N (.). The relationship between the

two concepts are as follows. For a given l ∈ L, the limit limN→∞ πN,ε(l) = 0 if and only

if limN→∞
{
ψN (l)−minl′∈L ψ

N (l′)
}

= ∞, implying that l is not asymptotically globally

stable; if on the other hand limN→∞
{
ψN (l)−minl′∈L ψ

N (l′)
}

= 0, then limN→∞ πN,ε(l) >

0, which implies that l is asymptotically globally stable. We build on this relations to derive

the theorem below that establishes sufficient conditions for asymptotic global convergence.

Theorem 9. Suppose (Um×m,XN , PN,ε, GN ) is a model of evolution with noise as described

above. Let gmin(l) ∈ arg ming∈G({l})
∑

(li,lj)∈g ψ
N (li, lj); that is, gmin(l) is the minimum

cost l-tree. A state l∗ is asymptotically globally stable if

(i) limN→∞
1
N ln(1− λN2 (G)) = 0,

(ii) and for all (li, lj) ∈ gmin(l∗), limN→∞ r(lj , ∂lj) = 0.

Proof.

See Appendix VII.D.

Theorem 9 provides sufficient conditions on the interaction structure and the underlying

base game for which asymptotic global convergence is feasible. It states that the unique

asymptotically globally stable state is that in which the costs of transitions in its l∗-tree

are decreasing functions of population size. Incidentally, such an l∗-tree is also the overall

minimum cost graph. The use of minimum cost graphs analysis in stochastic evolutionary

models has been employed before in the characterisation of stochastic stability (e.g. Young

(1993) and Kandori et al. (1993)). In relation to the literature, there are two aspects worth
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emphasizing in our analysis. First, rather considering x-tree for the entire state space, we

start by deriving probabilities and hence costs of evolution between pairs of limit states. This

makes it possible to then focus on graphs defined on state space of limit states. In doing so,

the size of x-trees for which one has to analyse their cost functions is dramatically reduced.

Secondly, most studies of stochastic stability in the literature has been done for cases in

which mutation probabilities are homogeneous. Under such scenarios, the cost of transition

between any pair of limit states say l and l′, is equal to the quantity R(l, ∂l′) as defined

above. Here, since we study cases in which the population size grows rather than vanishing

noise levels, the cost of transitions is R(l, ∂l′) ln (P(xl′ , l)). This then enables one to study

the effect of variations of models of mistakes and captured by the structure of probabilities

P(xl′ , l).

Both of the conditions stated in Theorem 9 are concerned with the structure of net-

work/payoff combination and are independent of the model of mistakes. This results from

the fact that for an asymptotically globally stable state, the quantities r(l, ∂l′) dominate

the probabilities of mistakes at ln (P(xl′ , l)) at large population sizes. The first sufficient

condition for asymptotic global convergence is that the rate at which the spectral gap of the

interaction network grows with N must be negligible at the limit of N . This condition is valid

for most strongly connected network structures. By strongly connected we mean networks in

which there exists a directed path from any one player to every other player. Consider the

examples in subsection III.B. above. For the case of random d-regular network (Gd−r), where

λN2 (Gd−r) ≤ 7
8 we have ln(1− λN2 (Gd−r)) = ln

(
1
8

)
. Thus limN→∞

1
N ln(1− λN2 (Gd−r)) = 0.

Similarly, for the 2D N × N lattice network (G2D), where λN2 (G2D) ≤ 16N2−1
16N2 , we have

ln(1 − λN2 (G2D)) = ln
(

1
8N2

)
. The limit limN→∞

1
N ln(1 − λN2 (G2D)) = −2 lnN

N . From

L’Hôpital’s rule it follows that limN→∞
1
N ln(1− λN2 (G2D)) = 0.

Conditions (ii) of Theorem 9 is influenced by not only the network structure but also the

payoffs. The network/payoff combination interactively determines whether the quantities

r(l, ∂l′) are decreasing functions of N . In what follows, we introduce a concept of contagion,

that is sufficient but not necessary for Conditions (ii) of Theorem 9 to hold. We start

by defining pairwise-contagion and then generalising it to l-trees. A strategy is contagious

relative to another for a given payoff and network it can spread by best-response once it

has been adopted by a small fraction of the population. If a strategy xl′ played by all or
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a majority of players in l′ is contagious relative to xl played in l, then r(l, ∂l′) will be a

decreasing function of N , and vice versa. The intuition behind this argument is that to

evolve from limit state l directly to another l′ without passing through other limit states, the

process first exits the basin of attraction of l into the neighbourhood ∂l′, and then from ∂l′ to

l′. Since the quantity r(l, ∂l′) corresponds to the fraction of players that should initially play

xl′ to trigger contagion, if xl′ is contagious relative to xl then such a fraction is a decreasing

function of N .

A generalization of pair-wise contagion to l-trees leads to two additional concepts: global

and path-wise contagion. A strategy xl is globally contagious if it is pair-wise contagious

relative to every other strategy xl′ for all l′ 6= l. It is path-wise contagious if for every xl′

there exists a path xl′ → xl+1′ → · · · → xl+i′ → · · · → xl from xl′ to xl along which xl+i+1′

is pair-wise contagious relative to xl+i′ . We develop each of these concepts more formally in

the following sections.

IV. Global contagion

We start the discussion of global contagion with a formal definition of pair-wise contagion.

Definition 10. Let |x|a denote the number of players playing strategy a in state x. For the

transition l→ l′, xl′ is said to be contagious relative to xl if xl′ spreads by best-response

whenever |x|xl′ > R(l, ∂l′). The strategy xl′ is globally contagious if it is contagious for

all transitions l→ l′ for all l 6= l′.

That is, a strategy xl′ is contagious if it spreads by best-response once at least R(l, ∂l′)

of the players have adopted it. The feasibility of global contagion depends on the properties

of the interaction network and the payoff structure: That is contagion threshold and relative

payoff gains respectively.

The relative payoff gain denoted by ηab, for any pair of strategies a and b is defined by6

ηba =
U(b, b)− U(a, b)

U(b, b)− U(b, a) + U(a, a)− U(a, b)
(15)

6. Relation (15) follows from the condition for best-response; that is, given strategies a and b, if p is the
fraction of i’s neighbours playing strategy b and 1 − p play strategy a, then i will switch to b if pU(b, b) +

(1− p)U(b, a) > pU(a, b) + (1− p)U(a, a). Rearranging for p yields p > U(a,a)−U(a,a)
U(b,b)−U(b,a)+U(a,a)−U(a,b)

; hence the
right hand side is the fraction of i’s neighbours that must switch to b for i to do likewise.
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and ηab = 1− ηba. The quantities U(b, b)−U(a, b) and U(a, a)−U(a, b) are the private and

social payoff gains of switching from b to a respectively. The measure of relative payoff gain

ηba, can also be interpreted as the fraction of neighbours that each player requires to play a

for that player to switch from b to a through best-response, and vice versa for ηab. We write

dme for the smallest integer not less than m such that for each i ∈ N with respective degree

ki, the quantity dηbakie is the minimum number of neighbours i requires to play a for i to

do likewise.

For every network GN there exists a real number 0 < ηG < 1 such that for any pair of

strategies say a and b, strategy a is contagious relative to b whenever ηba ≤ ηG. We then say

that a strategy a is globally contagious under s network GN whenever ηba ≤ ηG for all b 6= a.

Or equivalently, whenever ηmax,a ≤ ηG, where ηmax,a = maxb 6=a ηba. This real number ηG is

the contagion threshold of network GN (Morris, 2000).

Every arbitrary network has a unique contagion threshold. Consider for example a cyclic

network structure in which each player i has two neighbours i− 1 and i+ 1. Such a network

structure has the contagion threshold of 1
2 . Implying that for any underlying base game

containing a unique strategy say a with maximum relative payoff gain ηmax,a < 1
2 (that

is a risk-dominant strategy), such a strategy is globally contagious under a cyclic network

structure. Morris (2000) provides an explicit characterization of contagion threshold for

various families of deterministic networks. Lelarge (2012) derives similar conditions for

random networks.

The following example illustrate the selection of globally contagious strategies for given

a network.

Example 11. For the 3 × 3 game of Table I, strategy b is globally contagious and hence

asymptotically globally stable for all networks with contagion threshold ηG ≥ 1
3 . This is

true irrespective of the model of mistakes.

Proof.

The proof follows by first determining the relative payoff gains for each pair of strategies,

which respectively are: ηab = 1
8 . ηba = 7

8 , ηbc = 2
3 , ηcb = 1

3 , ηac = 5
8 , ηca = 5

6 . Consequently,

ηmax,a = 7
8 , ηmax,b = 1

3 and ηmax,c = 2
3 . Implying that strategy b is globally contagious for

all networks with contagion threshold ηG ≥ 1
3 . Strategy b is thus uniquely asymptotically

globally stable for all network with contagion threshold ηG ≥ 1
3 .
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TABLE I: For any pair of players the profile (b, b) is risk-dominant.

a b c

a 6 , 6 0 , 5 0 , 0

b
5 , 0 7 , 7 6 , 3

c 0 , 0 3 , 6 8 , 8

1

Figure I: The 2-dimensional network with contagion threshold of 1
3 .

Example 11 demonstrates the selection of globally contagious strategies and more specif-

ically that there exists a range of families of networks for which global contagion and hence

asymptotic global convergence is feasible. In this example, global contagion is feasible in all

networks whose contagion threshold is 1
3 ≤ ηG ≤

1
2 . The network in Figure I for example has

a contagion threshold of 1
3 ; and together with thes payoff structure in Table I imply that,

r(a, ∂b) = r(c, ∂b) = 1
N .

Now, consider the n-dimensions l-max distance interactions family of networks, which

is an n-dimensional lattice network where each player interacts with all players who are

within the distance of l steps away in all directions. See Figure II for the case of n = 2 and

l = 1. Morris (2000) provides general expressions for contagion thresholds for this family of

networks. For example when n = 2 the contagion thresholds are given by ηG = l(2l+1)
(2l+1)2−1 for

l = 1, 2, 3, · · · . When l = 1, ηG = 3
8 . For this family of networks, the contagion threshold is

ηG ≥ 1
3 , implying global contagion of strategy b.

We conclude this section by noting that the definition of global contagion above is related

to the notion of p-dominance according to Morris et al. (1995). An action pair in a two-player

game is said to be p-dominant if each action is a best response to any belief that the other

player takes the action in this pair with probability at least p. For the local interaction game

we consider, a strategy is p-dominant if for all players, it is the unique best-response when
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1

Figure II: The 2-dimensions 1-max distance interactions.

it is played by at least proportion p of the neighbors. This implies that for a network with

contagion threshold p, a strategy that is p-dominant is also globally contagious.

V. Path-wise contagion

As discussed above, path-wise contagion means pair-wise contagion along paths of l-trees.

The formal definition is as follows.

Definition 12. Given a state space of limit states L = {l1, · · · , lj , · · · , lJ}, if gmin(lJ) =

{l1 → · · · → lj → · · · → lJ} is the minimum cost lJ -tree, then xlJ is path-wise contagious

if for each pair (lj , lj+1) along gmin(lJ), xlj+1
is pair-wise contagious relative to xlj .

We provide three examples to illustrate application of the concept of path-wise contagion.

The first example demonstrates selection of globally pair-wise risk-dominant strategies, the

second example shows that it is feasible to appropriately design a network for a given payoff

structure, to ensure that asymptotic global convergence occurs in a case where the process

would otherwise exhibit cycles. The third example illustrate a case in which no strategy is

uniquely path-wise contagious.

Example 13. For the 3× 3 game of Table II, strategy c is path-wise contagious and hence

asymptotically globally stable for all network structures.

Proof.
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TABLE II: For any pair of players the profile (c, c) is risk-dominant.

a b c

a 6 , 6 0 , 5 0 , 0

b
5 , 0 7 , 7 5 , 5

c 0 , 0 5 , 5 8 , 8

The relative payoff gains for each pair of strategies are ηab = 1
8 . ηba = 7

8 , ηbc = 2
5 , ηcb = 3

5 ,

ηac = 5
8 , ηca = 5

6 . It follows that ηmax,a = 7
8 , ηmax,b = 3

5 and ηmax,c = 5
8 . Since the maximum

possible contagion threshold for any network structure is 1
2 , it follows that no single strategy

is globally contagious for all network structures.

First consider the case of network structures with contagion threshold of ηG ≥ 2
5 . For

such networks b is pair-wise contagious relative to a and c is pair-wise contagious relative to

b and not vice versa. The minimum cost graph is gmin(c) = {a→ b→ c}. This implies that

strategy c is path-wise contagious and hence c is the asymptotically globally stable state in

such network families.

Now, consider the case of network structures with contagion threshold of ηG ≥ 1
8 . For such

networks b is contagious relative to a but c is no longer contagious relative b since ηbc > ηG.

There however exist a series of intermediate limit states between b and c induced by the

network structure. These states can be ordered in such a way that they are contagious relative

to each other. The minimum cost graph is then gmin(c) = {b → · · · → lj · · · → · · · → c},

where lj ’s are the intermediate limit states. Consider the 2-dimensions nearest neighbor

interactions network of Figure III for example. In this network structure, the intermediate

states involve two players in each enclave of four simultaneously switching from playing b to

playing c. More explicitly, if we consider the diagonal enclaves, then for an N size network

we have
√
N of such limit states, each with r(lj , ∂lj+1) = 2

N ; together with r(a, ∂b) = 1
N

implies that along gmin(c), limN→∞ r(.) = 0 and hence c is asymptotically globally stable.

For the case of networks with 0 < ηG ≤ 1
8 , the similar argument of intermediate limit

states that applies between b and c will apply between a and b. Making c the asymptotically

stable state in this family of networks as well.
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Figure III: The 2-dimensions nearest neighbor interactions network.

Example 13 acts to illustrate one of the main implications of Theorem 9 that if the un-

derlying base game contains a globally pair-wise risk-dominant strategy, then it is always

selected independently of the model of mistakes and network structure. This result gener-

alizes earlier results by Lee and Valentinyi (2000) and Lee et al. (2003) to m × m matrix

games, models of mistakes and to arbitrary networks. The result is contrary to the case

of global interactions that crucially depends on the model of mistakes. For example Young

(1993) showed that for the game in Table II the stochastically stable strategy is b under

global interaction and mistakes model. Under multinomial logit model however, strategy c

is stochastically stable. The main reason for the difference is that under global interactions,

what matters for stochastic stability is simply the number of other players that must switch

to a different strategy for any given player to do likewise. For example, in the game of Table

II for any given player to switch from c to b, at least 3
8 of the other players must play a.

Since every player observes every other player’s strategy, this process needs to occur only

once. Under local interaction however, even if 3
8 of any players neighbors switched to playing

a, only that one player would switch to playing b and every other player keeps playing c.

Moreover, over time the process can easily revert back to an all c state. In other words, what

matters is whether or not the mistakes that occur can cause some form of relative contagion.

Example 14. For the 3× 3 game of Table III, strategy b is path-wise contagious and hence
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asymptotically globally stable for network structures with ηG = 1
3 , such as that in Figure

I.

TABLE III: In this game, no strategy is uniquely risk-dominant. Strategy a
risk-dominates b, b risk-dominates c and c risk-dominates a

a b c

a 5 , 5 3 , 1 0 , 3

b
1 , 3 6 , 6 2 , 2

c 3 , 0 2 , 2 4 , 4

Proof.

The relative payoff gains for each pair of strategies are ηab = 4
7 , ηba = 3

7 , ηbc = 2
3 ,

ηcb = 1
3 , ηac = 1

3 , ηca = 2
3 . It follows that ηmax,a = 2

3 , ηmax,b = 4
7 and ηmax,c = 2

3 .

Implying that no single strategy is globally stable for all network structures. For a network

with contagion threshold ηG = 1
3 however, c is contagious relative to a and b is contagious

relative to c, and gmin(b) = {a → c → b} is the minimum cost graph; Hence, strategy b is

asymptotically globally stable for this family of networks. It is then easy to check that for all

networks with ηG >
1
3 , all strategies are contagious relative to each other, implying that the

process indefinitely cycles around limit states, and hence global convergence does not occur.

Similarly, for ηG <
1
3 the network structure induces intermediate limit states between a and

c, c and b, and b and a, equally leading to a cycle among limit states.

Example 14 acts to illustrate another main implications of Theorem 9, which is that for

any given underlying game, it is possible to construct a network structure for which at least

one strategy is globally stable provided that the relative payoff gains are not equivalent for

all strategies. For example, for the game in Table III, strategy b is asymptotically globally

stable under the network structure in Figure I, but for any network structure with contagion

threshold ηG >
1
3 or ηG <

1
3 , all the three strategies are almost equally likely in the long-run.

This finding has quite strong implications even more so when viewed vice versa. That is, for

a given network structure and set of strategies, it is possible to construct a payoff matrix

hence relative payoff gains for which a given strategy gets globally adopted in the long-run.
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Moreover, the result is independent of the model of mistakes.

The next example demonstrates that asymptotic global stability as defined in this paper

is robust to addition of strictly dominated strategies. Kim and Wong (2010) first pointed

out that addition of strictly dominated strategies may destabilise stochastically stable states.

Global and path-wise contagion (hence asymptotic global stability) are however robust to

this phenomenon. Addition of strictly dominated strategies does not make a strategy that

was originally globally or path-wise contagious non-contagious. Similarly, addition of strictly

dominated strategies does not make strategies that are not contagious contagious.

Consider the game in Table IV for example. The relative payoff gains are ηab = 6
13 ,

ηba = 7
13 , and hence under global interactions, r(a, ∂b) = 6

13 and r(b, ∂a) = 7
13 . It can then

easily be checked that b is stochastically stable under both the mistakes model with state

independent mutations and the multinomial logit model. Similarly, since b is risk-dominant

it is asymptotically globally stable for all network structures.

TABLE IV: Profile (b, b) is risk-dominant.

a b

a 8, 8 5, 5

b 5, 5 8.5, 8.5

Now, consider the game in Table V derived from the game in Table IV by addition of

a strictly dominated strategy c. Under global interactions, r(a, ∂b) = 6
13 and r(b, ∂a) =

1
3 , which means that a becomes stochastically stable. Under asymptotic global stability

however, addition of a strictly dominated strategy does not affect the relative payoff gains

and hence the values of r(a, ∂b) and r(b, ∂a) for any given network structure.

TABLE V: Game in Table IV with addition of strictly dominated strategy c.

a b c

a 8, 8 5, 5 7 , 7

b
5 , 5 8.5, 8.5 0 , 6

c 7 , 7 6 , 0 0 , 0
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Finally, the following examples act to illustrate the case in which no strategy is uniquely

path-wise contagious, and hence there is more than one asymptotically globally stable.

TABLE VI: Strategy a is globally pairwise risk-dominant and 0 < ε < 1
5 .

a b c

a 0 2 2

b
−2 + 2ε 3 + 2ε 4

c −4 3 5− 2ε

Consider first the game in Table VI. The respective relative payoff gains are ηab = 2(1−ε)
3 ,

ηba = 1+2ε
3 , ηbc = 2ε, ηcb = 1 − 2ε, ηac = 2(1+ε)

3 , ηca = 1
2−ε . Clearly, no strategy is uniquely

globally contagious nor uniquely path-wise contagious even for networks with contagion

threshold of 1
2 . For networks with contagion threshold of 1

2 , the only paths along which

contagious occurs are: {b → a} and {b → c}. Implying that the asymptotically stable

states are a and c in such networks.

VI. Concluding remarks

This paper develops methods for stochastic evolutionary equilibrium selection in net-

works. We defined asymptotic global stability as an appropriate solution concept. We

then defined two concepts that are compatible with asymptotic global stability: global and

path-wise contagion. Strategies that are uniquely globally or path-wise contagious are also

uniquely asymptotically globally stable. These two concepts are used to analyze how the

network and payoff structures interactively influence asymptotic global convergence hence

stability. We show that under local interactions, asymptotic global convergence is robust

to the model of mistakes and addition of strictly dominated strategies. But perhaps most

importantly, we show that for a given payoff structure and hence relative payoff gains, it is

possible to design a network such that a unique strategy is asymptotically globally stable.

Similarly, for a given network structure and set of strategies, one can determine the relative

payoff gains that lead to a given strategy to be globally stable. The results we find have both

practical and empirical implications that have been briefly discussed in the introduction.
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VII. Appendix

VII.A. Proof of Lemma 5

For each pair (l, l′) of limit states, PN,ε(gl,∂l′) is by definition given by

PN,ε(gl,∂l′) =
∏

(x,y)∈gl,∂l′

PN,ε(x,y) (VII..1)

Notice that the right hand side (RHS) of (VII..1) can be expressed in terms of arithmetic

mean. To see how, consider a vector p = (p1, · · · , pN ) of real numbers, let Am(p) and

Πm(p) denote its arithmetic and geometric means respectively; defined formally as Am(p) =

1
N

∑N
i=1 pi and Πm(p) =

(∏N
i=1 pi

) 1
N

. The difference Am(p)−Πm(p) between the two means

has the following weak bounds: 0 ≤ Am(p) − Πm(p) ≤ (pmax − pmin), where pmin and pmax

are the minimum and maximum entries of p (see for example Tung (1975) for a detailed

discussion of such bounds). We can thus first rewrite the RHS of (VII..1) as
(
Πm(gl,∂l′)

)N
where Πm(gl,∂l′) is the geometric mean of a vector of probabilities of transition in gl,∂l′ . From

the above inequality for the difference between the two means, we then have that

K exp
{
|gl,∂l′ | ln

(
Am(gl,∂l′)

)}
≤ PN,ε(gl,∂l′) ≤ exp

{
|gl,∂l′ | ln

(
Am(gl,∂l′)

)}
(VII..2)

where |gl,∂l′ | is the cardinality of gl,∂l′ , Am(gl,∂l′) is arithmetic average of the probabilities

of transitions in gl,∂l′ and K > 0 is some real number. The quantity |gl,∂l′ | is the number

of mistakes required to exit the basin of attraction D(l) starting from l into the basin of

attraction D(l′). Equivalently, it is the number of players required to play action xl′ by

mistake either simultaneously or consecutively for evolution from l→ ∂l′ to occur.

For sufficiently small probabilities of mistakes, that is small rates of mutations, and since

each transition in gl,∂l′ involves a mutation, the probabilities of such transitions within a given

basin of attraction, say D(l), are approximately equal to the probabilities of transitions from

l to it’s immediate successive state x; that is, tx is a state in which the transition l → x

involves one mutation. The probabilities of transitions in gl,∂l′ can thus be approximated by

Pi(xl′ , l), that is the probability that a given agent plays action xl′ given that the process is

in state l. Finally, since Pi(xl′ , l) is by assumption independent of i’s position in the network

(see model definition above), then Pi(xl′ , l) = P(xl′ , l) for all i and hence Am(gl,∂l′) = P(xl′ , l).
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Inequality (VII..2) then becomes.

K exp
{
|gl,∂l′ | ln (P(xl′ , l))

}
≤ PN,ε(gl,∂l′) ≤ exp

{
|gl,∂l′ | ln (P(xl′ , l))

}
(VII..3)

VII.B. Proof of Lemma 6

We begin by proving the following lemma.

Lemma 15. Let L be the number of closed communication classes and µj the jth eigenvalue

of PN,ε. Then the contagion rate within any basin of attraction ll has the following lower

and upper bounds

1− µL+1 ≤ R(∂ll, ll) ≤ 1− µL+L

Proof.The proof makes use of the spectral properties and near-complete decomposability

of transition matrix PN,ε. Under chain (XN , PN , GN ), the transition matrix is completely

decomposable into the form

PN =



M∗1
. . .

M∗l
. . .

M∗L


where M∗l for l = 1, · · · , L is a block matrix describing the transitions within each basin of

attraction under (XN , PN , GN ). The rest of the undisplayed elements are zeros and L is the

number of closed communication classes. All leading eigenvalues of the block matrices are

ones. The transition matrix PN,ε on the other hand is near-completely decomposable into L

“loosely” connected block matrices that we denote by Ml for l = 1, · · · , L. PN,ε = PN +εP ∗N ,

where ε is a small real number and P ∗N is an arbitrary #XN by #XN matrix. A more detailed

exposition on the notion of near-complete decomposability can be found in Simon and Ando

(1961). For ε small enough, the leading eigenvalues of the diagonal block matrices of PN,ε

are close to one.

Let µil denote the ith eigenvalue of the lth diagonal block matrix, such that (µ11 , µ12 , · · · , µ1L)

are the largest eigenvalues in blocks 1 to L, and (µ21 , µ22 , · · · , µ2L) are the respective second

largest eigenvalues. Index by nl as the number of columns in diagonal block l such that the
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eigenvalue spectrum ρ(PN,ε) of PN,ε can be written as

ρ(PN,ε) =
(
µ11 , µ21 , · · · , µn11

, · · · , µ12 , · · · , µ1l , · · · , µnll
, · · · , µ1L , · · · , µnLL

)
.

The spectral decomposition of (XN , PN,ε, GN ) is then given by

q0P
t
N,ε = q0r11z

T
11 +

n1∑
j=2

µtj1q0rj1z
T
j1 + µt12q0r12z

T
12 +

n2∑
j=2

µtj2q0rj2z
T
j2

+ · · ·+ µt1Lq0r1Lz
T
1L

+

nL∑
j=2

µtjLq0rjLz
T
jL

(VII..4)

where zT is the transpose of z, and rjl and zjl are the right and left eigenvectors of µjl .

Let xl be the initial state of (XN , PN,ε, GN ) in l̃l and ql̃l
be the #XN -dimensional vector

of zeros except a one at the point corresponding to the state xl.

qt = µt1lql̃l
r1lz

T
1l

+

nl∑
j=2

µtjlql̃l
rjlz

T
jl

πN,ε(̃ll) = lim
t→∞

qt = µ∞1l ql̃l
r1lz

T
1l
≈ ql̃l

r1lz
T
1l

where the approximation holds from the fact that µ1l is close to one for all l. It then follows

that

lim sup
t→∞

∣∣∣∣∣∣P tN,εql̃l
− πN,ε(̃ll)

∣∣∣∣∣∣ 1t = |µ2l | lim sup
t→∞

∣∣∣∣∣∣
∣∣∣∣∣∣ql̃l

r2lz
T
2l

+

nl∑
j=3

(
µjl
µ2l

)t
ql̃l

rjlz
T
jl

∣∣∣∣∣∣
∣∣∣∣∣∣
1
t

= |µ2l |

Implying that R(∂ll, ll) = |µ2l | Since µj ’s are arranged in ascending order we then have that

maxl µ2l = |µL+1| and minl µ2l = |µL+L|. For any ll,

1− µL+1 ≤ R(∂ll, ll) ≤ 1− µL+L

To prove the second part of the theorem, we consider the linearization of PN,ε of the form

qtΨ = q0P
t
N,εΨ = q0ΨΠt

N,ε (VII..5)
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where Ψ is the event matrix derived by stacking into rows all possible realizations of states

of (XN , PN,ε, GN ) written in the basis vector form. The choice basis vector for each player

i ∈ N is a vector of zeros except a one in a position corresponding to the action i is playing.

For example for a binary action set X = {A,B}, a vector (1, 0) implies that i is playing

action A and (0, 1) implies that i is playing action B. In the case of two players and binary

action set, there are four possible realization such that

Ψ =


1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

 (VII..6)

where the first row corresponds to the state in which both players play action A, and so

forth. Then ΠN,ε is an Nm × Nm matrix defined by ΠN,ε = A T ⊗ ΣN,ε, where ⊗ is a

Kronecker product, A T is the transpose of the normalized adjacency matrix A and ΣN,ε is

the action-transition matrix defined in (11). A detailed exposition on the validity of (VII..5)

can be found in Asavathiratham (2001, Chapter 5). The following lemma follows directly

from (VII..5) and the definition of ΠN,ε above.

Lemma 16. Let ρ(ΠN,ε) = µ̃1, · · · , µ̃nm, ρ(A ) = (λ1, · · · , λN ) and ρ(ΣN,ε) = (ϑ1, · · · , ϑm)

denote the eigenvalue spectra of ΠN,ε, A and ΣN,ε respectively.

(a) If µ1 and µ̃1 are the unique largest eigenvalues of PN,ε and ΠN,ε respectively, then µ1 =

µ̃1 = 1.

(b) ρ(ΠN,ε) = (ϑiλj) ∀ϑi ∈ ρ(ΣN,ε), λj ∈ ρ(A ).

Proof.Multiplying (VII..5) by the right eigenvector ri of PN,ε, we have PN,εΨr1 =

ΨΠN,εr1. Since PN,ε is a stochastic matrix, µ1 = 1, which implies that PN,εΨr = Ψr1,

which is true if and only if ΠN,εr1 = r1. That is µ̃1 = µ1 = 1. For the proof of Lemma 16

(b) see Horn and Johnson (1990, page 245, Theorem 4.2.12).

For sufficiently small noise, |µL+1| = |µ̃L+1| = λ2ϑ1 = λ2 and |µL+L| = |µ̃L+L| = λ2ϑm.

This completes the proof.
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VII.C. Proofs for the Example

Let G = (N , E) be a graph or network of N vertices. Denote by S a subset of N and S

its cardinality. Let e(S,N −S) be the number of interactions (for a weighted network graph

its is the sum of weighted interactions) between S and its complement N −S. Also let d(S)

denote the total degree of S. Then the conductance of G

φ(G) = min
S,S≤N

2

e(S,N − S)

d(S)
(VII..7)

For regular network graphs (in which all vertices have the same degree), it is shown by (Alon

and Milman, 1985) that

λ2(G) ≤ 1− φ(G)2

2
. (VII..8)

For a complete graph, since every vertex is connected to every other vertex, we have that

every vertex in S is connected to all other vertices in N −S. This implies that e(S,N−S) =

S ×#(N − S) = S × (N − S), and d(S) = N × S such that

φ(Gcom) = min
S,S≤N

2

S × (N − S)

N × S
≥ 1

2
, (VII..9)

where the last inequality follows from the fact that S ≤ N
2 . We thus have that

λ2(Gcom) ≤ 7

8
(VII..10)

In the case of a 1−D cyclic network, e(S,N − S) = 2, and d(S) = 2× S such that

φ(Gcyc) = min
S,S≤N

2

2

2× S
≥ 2

N
. (VII..11)

Hence λ2(Gcyc) ≤ N2−2
N2 .

2D network: Let the composition of S be chosen in such a way that the peripheral vertices

(vertices at the perimeter or boundary of S) contain approximately one edge each connecting

it to the set N −S. Since it is a 2-dimensional structure there should be approximately
√
S

vertices forming such a boundary. This implies that e(S,N − S) ≈
√
S, and d(S) = 4 × S
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such that

φ(G2D) = min
S,S≤N2

2

√
S

4× S
≥
√

2

4N
. (VII..12)

where the last inequality follows from the fact that
√
S ≤

√
N2

2 . It follows that

λ2(G2D) ≤ 16N2 − 1

16N2
.

Random d-regular network: Since for each vertex the vertices to which it is connected

are chosen at random, and that the maximum size of S is N
2 , then a typical vertex in S

is connected to approximately d×(N−S)
N other vertices in N − S such that e(S,N − S) ≈

d×S(N−S)
N . We thus have

φ(Gd−r) = min
S,S≤N

2

d×S(N−S)
N

d× S
≥ 1. (VII..13)

λ2(Gd−r) ≤
7

8
(VII..14)

For Newman’s small world networks see Durrett (2006).

VII.D. Proof of Theorem 9

From the definition of asymptotic global convergence, we seek for conditions under

which l∗ satisfies the condition limN→∞ πN,ε(l∗) > 0. This is equivalent to the condi-

tion limN→∞
{
ψN (l)−minl′∈L ψ

N (l′)
}

= 0. Recall that ψN (l) =
∑

(li,lj)∈gmin(l)
ψN (li, lj),

ψN (li, lj) = N
[
c(li, ∂lj)− 1

N γ
N (lj)

]
, c(l, ∂l′) = −r(l, ∂l′) ln (P(xl′ , l)) and γN (l) = Kl ln(1−

λN2 (G)), where gmin(l) ∈ arg ming∈G({l})
∑

(li,lj)∈g ψ
N (li, lj). Since for all li, lj , l ∈ L,

γN (lj) > 0, c(l, ∂l′) > 0 and hence ψN (li, lj) > 0, it must be that ψN (l) > 0. This

implies that one among states for which limN→∞
{
ψN (l)−minl′∈L ψ

N (l′)
}

= 0, is l∗ ∈

arg minl∈L ψ
N (l).

Given that l∗ satisfies condition limN→∞ πN,ε(l∗) > 0, we then need to derive conditions

under which it is the unique asymptotically stable state. That is conditions under which

for every l 6= l∗, limN→∞ πN,ε(l) = 0. This requires that limN→∞
{
ψN (l)− ψN (l∗)

}
> 0, or

equivalently limN→∞ ψ
N (l) > limN→∞ ψ

N (l∗). Substituting for expressions of ψN () yields
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the inequality

lim
N→∞

 ∑
(li,lj)∈gmin(l)

(
c(li, ∂lj)−

1

N
γN (lj)

) > lim
N→∞

 ∑
(li,lj)∈gmin(l∗)

(
c(li, ∂lj)−

1

N
γN (lj)

)
(VII..15)

Assumption 4 (iii) of model Definition 1 requires the probabilities of mistakes to be in-

dependent of population size, hence ln (P(xl′ , l)) is a finite negative real number independent

of N . For inequality (VII..15) to hold, it suffices for

lim
N→∞

(
c(li, ∂lj)−

1

N
γN (lj)

)
= 0 (VII..16)

for all (li, lj) ∈ gmin(l∗), and for at least one transition (l′i, l
′
j) ∈ gmin(l),

lim
N→∞

(
c(l′i, ∂l

′
j)−

1

N
γN (l′j)

)
> 0 (VII..17)

Conditions (VII..16) and (VII..17) together are equivalent to requiring that limN→∞
1
N ln(1−

λN2 (G)) = 0, and limN→∞ r(lj , ∂lj) = 0 for all (li, lj) ∈ gmin(l∗), and that for at least one

transition (l′i, l
′
j) ∈ gmin(l), limN→∞ r(l

′
i, ∂l

′
j) > 0.
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